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Abstract
Even after the discovery of a Higgs boson fundamental questions of particle physics remain
unanswered. Neither the origin of the baryon-antibaryon asymmetry of the universe, nor the
nature of Dark Matter is understood. Two models of New Physics capable of addressing these
problems are investigated here. In the first part of the thesis branching ratios for the decays
of the lightest up-type squark in the Minimal Supersymmetric Extension of the Standard
Model (MSSM) are calculated to high precision for scenarios with compressed supersymmetric
spectra by including the finite width of the W boson. These branching ratios affect the limits
on the model which can be set by experiments. The second part concentrates on predictions
of cross sections for squark gluino production in the MSSM. Spin correlations between the
production and the decay of the gluino as well as next-to-leading order corrections are taken
into account and a framework consistently treating both the production and the decay of
the squark and the gluino in an event generator is elaborated. First results show that the
impact of spin correlations on differential cross sections is considerable. In the last part the
electroweak phase transition is investigated in the Two-Higgs-Doublet Model by analyzing
the loop-corrected effective potential at finite temperature. Based on the development of a
new renormalization prescription an effective scan over the parameter space of the model is
performed. The results show that demanding a strong first order phase transition, as required
for baryogenesis, leads to strong constraints on collider observables.

Zusammenfassung
Selbst nach der Entdeckung eines Higgsbosons bleiben fundamentale Fragen der Teilchen-
physik unbeantwortet. Weder der Ursprung der Baryon-Antibaryonasymmetrie des Univer-
sums, noch die Natur Dunkler Materie sind verstanden. Zwei Modelle Neuer Physik, welche
diese Probleme behandeln können, werden hier untersucht. Im ersten Teil der Doktorarbeit
werden Verzweigungsverhältnisse des leichtesten Up-Type Squarks in der Minimalen Super-
symmetrischen Erweiterung des Standardmodells (MSSM) für Szenarien mit komprimiertem
Teilchenspektrum verbessert, indem die endliche Breite des W -Bosons berücksichtigt wird.
Diese Verzweigungsverhältnisse beeinflussen die Beschränkungen des Modells, welche durch
Experimente auferlegt werden können. Der zweite Teil konzentriert sich auf Vorhersagen
von Wirkungsquerschnitten für die Squark-Gluino-Produktion im MSSM. Spinkorrelationen
zwischen Produktion und Zerfall des Gluinos, ebenso wie Korrekturen höherer Ordnung wer-
den berücksichtigt, und ein Programm, in welchem Produktion und Zerfall des Squarks und
des Gluinos konsistent in einem Ereignisgenerator beschrieben werden können, wird ent-
wickelt. Erste Ergebnisse zeigen einen beachtlichen Einfluss der Spinkorrelationen auf dif-
ferentielle Wirkungsquerschnitte. Im letzten Teil wird der elektroschwache Phasenübergang
im Zwei-Higgs-Doublett Modell untersucht, indem das schleifenkorrigierte effektive Poten-
tial bei endlicher Temperatur analysiert wird. Basierend auf der Entwicklung eines neuen
Renormierungsschemas, wird ein effektiver Scan über den Parameterraum des Modells aus-
geführt. Die Ergebnisse zeigen, dass die Forderung nach einem Phasenübergang stark erster
Ordnung, wie er für Baryogenese notwendig ist, zu wichtigen Einschränkungen von Obser-
vablen an Teilchenbeschleunigern führt.

iii





Contents

1. Introduction 1

2. Prerequisites 5
2.1. Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. General Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2. Sfermion Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3. Experimental Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2. Fixed Order Calculations and Event Generators . . . . . . . . . . . . . . . . . 11
2.2.1. Fixed Order Calculation at Next-to-Leading Order . . . . . . . . . . . 12
2.2.2. Matching to Parton Showers via POWHEG− BOX . . . . . . . . . . . . . 15

2.3. The Electroweak Phase Transition . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Decays of the Lightest Up-Type Squark 19
3.1. Decay Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2. Implementation and Numerical Setup . . . . . . . . . . . . . . . . . . . . . . 22
3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4. Squark Gluino Production with Spin Correlations at Next-to-Leading Or-
der 29
4.1. Framework at Leading Order . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1. Helicity Density Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.2. Gluino Decay at Leading Order . . . . . . . . . . . . . . . . . . . . . . 32
4.1.3. Squark Decay at Leading Order . . . . . . . . . . . . . . . . . . . . . . 33

4.2. Virtual Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3. Real Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1. On-Shell Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2. Left- and Right-Handed Squarks and Fermion-Number-Violating Inter-

actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.3. Gauge Invariance for Amplitudes with Two External Gluons . . . . . . 43

4.4. Implementation in the POWHEG-BOX . . . . . . . . . . . . . . . . . . . . . 47
4.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5. Electroweak Phase Transition in the Two-Higgs-Doublet Model 59
5.1. Effective Potential of the Two-Higgs-Doublet Model at Finite Temperature . 59

5.1.1. Tree-Level Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.2. Coleman-Weinberg Potential . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.3. Temperature Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

v



vi Contents

5.2. Renormalization of the Effective Potential . . . . . . . . . . . . . . . . . . . . 65
5.2.1. Renormalization Conditions . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.2. First and Second Derivative of the Coleman-Weinberg Potential . . . 66
5.2.3. Goldstone Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3. Implementation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.1. Implementation, Experimental Constraints and Parameter Settings . . 68
5.3.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.2.1. Results for the 2HDM Type II . . . . . . . . . . . . . . . . . 72
5.3.2.2. Results for the 2HDM Type I . . . . . . . . . . . . . . . . . . 76

5.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6. Conclusion 81

7. Appendix 83
A. Doxygen Documentation and Input Variables . . . . . . . . . . . . . . . . . . 83

Bibliography 85

vi



1. Introduction

Seht Ihr den Mond dort stehen?
Er ist nur halb zu sehen,

Und ist doch rund und schön!
So sind wohl manche Sachen,

Die wir getrost belachen,
Weil uns’re Augen sie nicht seh’n.

Matthias Claudius, Abendlied, 1779

The discovery of a Higgs boson [1, 2] by the experiments ATLAS and CMS in 2012 is a
major achievement of high energy physics. The determination of the mass of the Higgs boson
fixed the last free parameter of the Standard Model (SM) of particle physics, which can now
be regarded as a complete, self-contained model describing elementary particles and their
interactions at the energy scale of current particle accelerators. However, at the same time
the SM is not able to solve significant problems: it has been measured that only a small
fraction of the energy of the universe exists as ordinary matter [3]. A much larger portion
consists of Dark Matter (DM), whose nature is hitherto unknown. Another open question
is the origin of the baryon-antibaryon asymmetry of the universe (BAU) [4]. The SM can
neither provide a viable candidate for DM, nor explain the BAU, and as a consequence both
observations call for physics beyond the SM (BSM). In conclusion it is quite possible, that
only a small part of the whole has been observed so far and there may be much more to
discover.

In order to investigate solutions to these and other open questions and to distinguish possible
extensions of the SM, predictions for observables have to be derived in the new models,
which can be tested by experiments. This work focuses on two such extensions: the Minimal
Supersymmetric Standard Model (MSSM) [5–11] and the Two-Higgs-Doublet Model (2HDM)
[12–14].
Supersymmetry (SUSY) is an intensely studied extension of the SM. In supersymmetric
theories, a symmetry relating fermions and bosons to each other is introduced. By this
symmetry all SM particles acquire superpartners sharing the same gauge quantum numbers
and mass but with a different spin. In addition, the Higgs sector is extended and features new
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2 1. Introduction

Higgs bosons. Since no superpartner has been observed so far, SUSY must be broken, which
allows for the masses of SUSY particles to be different from the mass of their SM equivalents.

The top-quark receives two scalar superpartners, one for the left- and one for the right-chiral
component, called left- and right-handed stop t̃L and t̃R. As they share identical gauge
quantum numbers the two stops can mix and form a light mass eigenstate called t̃1 and a
heavy one called t̃2. A large mixing is of particular interest in the MSSM, since it can lift the
mass of the light CP -even Higgs boson, whose upper bound at tree-level is given by the mass of
the Z boson, to the value observed by experiments through radiative corrections. Due to the
large mixing the light stop can be light enough to be copiously produced at the Large Hadron
Collider (LHC) at the European Organization for Nuclear Research (CERN), although other
SUSY particles can be heavy. Accordingly, important searches of ATLAS and CMS focus on
a light stop and require predictions for different decay channels and their branching ratios
(BR). Assuming conservation of the so-called R-parity, which is a multiplicative quantum
number with value −1 for all superpartners and value +1 for all SM particles, the lightest
supersymmetric particle (LSP) is stable. In this work, the lightest neutralino χ̃0

1, which is a
mixture of the superpartners of the photon, the Z boson and neutral Higgs bosons, is chosen
to be the LSP, forming an ideal candidate for DM, and the light stop is the next-to-lightest
supersymmetric particle (NLSP). Hence, the mass difference between the light stop and the
lightest neutralino determines which decay channels of the light stop are kinematically open.
In previous works [15–17], it has been shown that if the mass difference is smaller than
the mass of the top-quark, flavor-changing neutral current decays can become important,
which are possible at tree-level, if in addition to the left-right mixing also mixing between
different generations of up-type squarks is allowed. In this case, the stops also mix with the
superpartners of the up- and charm-quarks and the lightest up-type squark mass eigenstate
is then denoted by ũ1. The ũ1, which is then chosen as NLSP, is dominated by the light
stop due to the large mixing, but has small up and charm flavor admixtures. If the mass
difference of this lightest up-type squark to the LSP is lower than the mass of the W boson,
either a two-body decay into a charm-quark and the neutralino can take place, or a four-body
decay into a down-type quark, the lightest neutralino and two SM fermions stemming from an
off-shell W -decay. On the other hand, if the phase space available in the decay of the lightest
up-type squark allows for an on-shell W boson, the four-body decay turns into a three-body
decay, where the W boson is on-shell. This transition region together with the general flavor
mixing is not covered by previous calculations [18–20]. The first part of this work focuses
on a consistent description of the threshold region, including the general flavor mixing of the
lightest up-type squark and finite width effects for the W boson [21].

In order to interpret observed limits on cross sections measured at the LHC in terms of the
MSSM and to derive exclusion bounds on the parameters of the model, in addition to the
BRs also predictions for the production cross sections of SUSY particles are necessary. The
second part of this work focuses on the production of a squark q̃ and a gluino g̃, where the
squark is one of the superpartners of quarks of the first two generations, and the gluino
is the superpartner of the gluon. The lifetimes of both squarks and gluinos are usually
very small, such that the decays of the particles are important for computing differential
cross sections. Since the gluino is a spin half particle and decays before it hadronizes in
the scenarios considered here, the spin information is transferred to the decay products,
which are a quark and a squark of same flavor. These spin correlations affect distributions
of kinematic observables. Differential distributions for squark gluino production combining
next-to-leading order (NLO) corrections, the decays of the particles and the spin correlations
have not been given in the literature so far [22–33]. This is taken up here and a framework
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3

where spin correlations and NLO corrections are combined is elaborated. An important step
in this context is the calculation of the real corrections to the squark gluino production which
feature on-shell singularities that have to be cured in a gauge-invariant way [34, 35]. For
instance the radiation of a massless quark from the squark gluino production can also be
regarded as squark pair production with the subsequent decay of one of the squarks. This
contribution is already covered by the explicit calculation of squark pair production and hence
has to be subtracted from the cross section for squark gluino production in order to avoid
double counting. To this end, a calculation of the amplitudes squared for the real corrections
to squark gluino production including the spin dependence is performed by hand. This is
a necessary ingredient for the gauge-invariant subtraction of the on-shell singularities. The
framework comprising the production and the decays including spin correlations together with
the NLO corrections to squark gluino production is then implemented in the event generator
POWHEG− BOX [36–38].

A well-studied approach to explain the BAU is Electroweak Baryogenesis (EWBG), based
on the baryon number non-conservation by anomalies at high temperatures [39–41] in the
breakdown from the SU(2)L × U(1)Y to the U(1)em in the early universe. In EWBG the
three Sakharov criteria for baryogenesis [42] can be fulfilled by a departure from the ther-
mal equilibrium in the transition from the unbroken to the broken phase of the electroweak
symmetry and by sphaleron [43] transitions in presence of C- and CP -violating interactions.
Although these conditions are met by the SM in principle, EWBG is still not possible: for
successful EWBG the phase transition additionally has to be of strong first order [41]. This
requirement results in an upper bound on the Higgs mass in the SM mh of about [44–46]

mh . 70 GeV . (1.1)

This bound is obviously violated by the measured value of 125.09 GeV [47]. Moreover, the
amount of CP violation induced by the Cabibbo-Kobayashi-Maskawa (CKM) matrix [48, 49]
is not sufficient to lead to the observed BAU [50–52]. Hence, in terms of EWBG, the BAU
necessitates New Physics.
In the MSSM, it has been shown that EWBG is possible, if the SUSY spectrum provides a
light stop with a mass [53]

mt̃1 . 120 GeV . (1.2)

By now, this possibility is excluded by the direct searches for a stop by ATLAS [54]. In
consequence, a different extension of the SM is investigated with respect to the electroweak
phase transition (EWPT) in this work: the 2HDM. In the 2HDM the Higgs sector of the
SM is extended by a second Higgs doublet1, leading to five Higgs bosons instead of only
one. The upper bound Eq. (1.1) does not hold in this case. Additionally, the Higgs potential
allows for new sources of CP violation and thereby addresses both shortcomings of the SM.
Regarding the Higgs sector, the 2HDM offers more flexibility than the MSSM since the quartic
couplings of the Higgs potential are not governed by gauge couplings, but are independent
input parameters.

In Ch. 2 basic concepts required for the three topics are introduced. After that, the W boson
threshold in the decay of the lightest up-type squark is investigated in Ch. 3. The subsequent
Ch. 4 focuses on the squark gluino production with spin correlations at NLO, before the
EWPT is studied in Ch. 5. The findings are summarized in the conclusion in Ch. 6.

1In contrast to the MSSM, in the 2HDM both Higgs doublets carry the same hypercharge.
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2. Prerequisites

In this chapter principles of SUSY, the field content and examples for experimental exclusion
bounds are presented in Sec. 2.1. In Sec. 2.2 the foundations of the NLO calculation performed
at fixed order are presented, before closing with explanations regarding the EWPT in Sec. 2.3.

2.1. Supersymmetry

Profound introductions to SUSY are given for instance in [55, 56]. In this section only major
aspects are discussed.

2.1.1. General Features

Similar to the SM, the beauty of SUSY is the guiding principle of symmetries. According to
the Coleman-Mandula no-go theorem [57] the Poincaré symmetry of the S matrix cannot be
combined with any other continuous symmetry of the S matrix in a non-trivial way. Hence,
the maximum symmetry group is given by the direct product of the Poincaré group with
the symmetry group defining internal symmetries. However, the theorem does not cover the
possibility of a fermionic generator Q in the (1

2 , 0) representation of the Lorentz group and its
hermitian conjugate Q̄ in the (0, 1

2) representation enhancing the space-time symmetry. As
stated in the Haag-Łopuszański-Sohnius theorem [58] the most general form of incorporating
the spinorial generators Q and Q̄ consistent with the assumptions of the Coleman-Mandula
theorem is given by extending the Poincaré algebra to the Super-Poincaré algebra defined by
the additional (anti-)commutators [55]

{QA, Q̄Ḃ} = 2σµ
AḂ
Pµ , {Q̄Ȧ, QB} = 2σ̄µȦBPµ , (2.1)

{QA, QB} = 0 , {Q̄Ȧ, Q̄Ḃ} = 0 , (2.2)

[QA, Pµ] = 0 , [Q̄Ȧ, Pµ] = 0 , (2.3)

[Mµν , QA] = −(σµν) B
A QB , [Mµν , Q̄

Ȧ] = −(σ̄µν)Ȧ
Ḃ
Q̄Ḃ , (2.4)

where Pµ are the generators of translations and Mµν the generators of Lorentz transfor-
mations, and the spinorial generators are understood to be in the Weyl representation with
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6 2. Prerequisites

spinor indices A and B. In these relations we used

σµ = (12, ~σ) , (2.5)
σ̄µ = (12,−~σ) , (2.6)

σµν = i
4 (σµσ̄ν − σν σ̄µ) , (2.7)

σ̄µν = i
4 (σ̄µσν − σ̄νσµ) , (2.8)

where 12 denotes the 2 × 2 identity matrix and ~σ is the vector of 2 × 2 Pauli matrices. For
a detailed introduction to the Weyl component notation with dotted and undotted spinor
indices we refer to [55, 59]. Introducing only one set of fermionic generators is referred to as
N = 1 SUSY. The fermionic operator defines a transformation between bosons and fermions
schematically given by

Q |boson〉 = |fermion〉 and Q |fermion〉 = |boson〉 . (2.9)

This transformation relates every boson of the SM to a fermionic superpartner and every
fermion of the SM to a bosonic superpartner, which are both part of irreducible representa-
tions of the SUSY algebra called supermultiplets. Due to Eq. (2.3) P 2 commutes with the
generator Q and hence all particles within a supermultiplet have a common mass. Moreover,
since the gauge symmetries are untouched, they also share the same gauge quantum numbers
with respect to the SM gauge group SU(3)C ×SU(2)L×U(1)Y . This way, a quark q receives
two scalar superpartners q̃L and q̃R called left- and right-handed squarks. The subscripts L
and R and the corresponding names refer to the chirality of the quark in the supermulti-
plet. Similarly, each lepton l obtains two scalar superpartners l̃L and l̃R called sleptons, and
gauge bosons acquire fermionic superpartners, called gauginos. In order to give mass to both
up- and down-type fermions in SUSY theories the Higgs sector has to be furnished with two
SU(2) Higgs doublets, Hu = (H+

u , H
0
u) with hypercharge Y = +1/2 and Hd = (H0

d , H
−
d ) with

hypercharge Y = −1/2. These scalar Higgs fields get fermionic superpartners H̃+
u , H̃

0
u, H̃

0
d

and H̃−d called higgsinos. Left- and right-handed fermions of the SM together with their
scalar superpartners, as well as the Higgs bosons with their fermionic superpartners form
chiral superfields summarized in Tab. 2.1, the gauge bosons of the SM with their fermionic
superpartners form gauge superfields collected in Tab. 2.2. In each superfield, the number of
bosonic degrees of freedom is equal to the number of fermionic ones. Denoting the baryon
number of particles by B, the lepton number by L and the spin by S the R-parity mentioned
in Ch. 1 is defined as

R = (−1)3B−L+2S . (2.10)
For all SM particles holds R = +1, whereas for all SUSY particles R = −1. Requiring
R-parity conservation in a model implies that in a decay of a SUSY particle there must be
an odd number of SUSY particles in the final state, enforcing stability of the lightest SUSY
particle. Furthermore, in a production process starting with SM particles, SUSY particles
are always produced in even numbers. Using the notation of [60], in terms of the superfields
the superpotential of the MSSM WMSSM with conserved R-parity is given by [55, 56]

WMSSM = εab
[
(YE)ijĤa

d L̂
b
i Ê

c
j + (YD)ijĤa

d Q̂
b
iD̂

c
j + (YU )ijĤb

uQ̂
a
i Û

c
j − µĤa

d Ĥ
b
u

]
, (2.11)

where εab is the totally antisymmetric tensor with ε12 = ε12 = 1, (YE,D,U )ij are the compo-
nents i, j of 3 × 3 Yukawa matrices in generation space for (s)leptons, down-type (s)quarks
and up-type (s)quarks, respectively, and µ is the higgsino mass parameter2.

2A discussion of the µ-problem can be found for instance in [55].
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2.1. Supersymmetry 7

Superfield Spin 0 Spin 1/2 SU(3)C × SU(2)L × U(1)Y

Q̂ Q̃ = (ũL, d̃L) (uL, dL) (3, 2, 1/6)
Û c ũ∗R u†R (3̄, 1,−2/3)
D̂c d̃∗R d†R (3̄, 1, 1/3)
L̂ L̃ = (ν̃L, ẽL) (νL, eL) (1, 2,−1/2)
Êc ẽ∗R e†R (1, 1, 1)
Ĥu Hu = (H+

u , H
0
u) (H̃+

u , H̃
0
u) (1, 2, 1/2)

Ĥd Hd = (H0
d , H

−
d ) (H̃0

d , H̃
−
d ) (1, 2,−1/2)

Table 2.1: Chiral superfields and their elementary particles together with the representation/charge
with respect to the gauge group [55, 56] in the notation of [60]. The properties shown hold for all
three generations and the superscript c denotes charge conjugation.

Superfield Spin 1/2 Spin 1 SU(3)C × SU(2)L × U(1)Y

Ŵ W̃i Wi (1, 3, 0)
B̂ B̃ B (1, 1, 0)
Ĝ g̃f gf (8, 1, 0)

Table 2.2: Gauge superfields and their elementary particles together with the representation/charge
with respect to the gauge group [55, 56] in the notation of [60]. The index i ranges from 1 to 3 and
f = 1...8.

As argued above, in conserved SUSY the masses of the superpartners are the same as the
masses of the SM particles. Up to now, no superpartner has been observed and in conclu-
sion SUSY must be broken. Irrespective of any breaking mechanism, the breaking can be
parametrized by soft SUSY-breaking terms, which break SUSY explicitly and are either pure
mass terms or interactions with dimensionful couplings. Summing over repeated indices with
a, b = 1, 2, i, j = 1...3 and f = 1...8 they are given by [55, 56, 60]

Lsoft =−m2
Hd
H∗daH

a
d −m2

HuH
∗
uaH

a
u − Q̃∗ia(m2

Q̃
)ijQ̃aj − L̃∗ia(m2

L̃
)ijL̃aj

− ũiR(m2
Ũ

)ij ũ∗jR − d̃iR(m2
D̃

)ij d̃∗jR − ẽiR(m2
Ẽ

)ij ẽ∗jR

− 1
2
(
M1B̃B̃ +M2W̃iW̃i +M3g̃f g̃f + h.c.

)
+ εab

(
m2

3H
a
dH

b
u − (TE)ijHa

d L̃
b
i ẽ
∗
jR

−(TD)ijHa
d Q̃

b
i d̃
∗
jR − (TU )ijHb

uQ̃
a
i ũ
∗
jR + h.c.

)
,

(2.12)

with the soft SUSY-breaking massesm2
Hd

, m2
Hu

,M1,M2,M3 andm2
3, the soft SUSY-breaking

mass matrices in generation space m2
Q̃
, m2

L̃
, m2

Ũ
, m2

D̃
, m2

Ẽ
, and trilinear coupling matrices

TE , TD and TU defined by

(TP )ij = (YP )ij(AP )ij , P = E,D,U , (2.13)

for each element i, j (no sum over the indices). The matrices AP are soft SUSY-breaking
trilinear coupling matrices in generation space. The soft SUSY-breaking parameters can be
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8 2. Prerequisites

defined as inputs at the weak scale, or they can be derived by renormalization group equation
(RGE) running from a high scale down to the weak scale under the assumption of a certain
mechanism to transfer the breaking of SUSY in the hidden sector to the MSSM fields. In
this thesis, the first approach is followed in Ch. 3, whereas in Ch. 4 the mSUGRA [61–67]
mechanism is used3. In the latter, only five parameters have to be set at the unification scale
mGUT. These are a common scalar mass parameter m0, a common fermion mass parameter
m1/2, a single trilinear coupling A0, the sign of µ and tan β which is explained below.
From the two Higgs doublets defined above only five degrees of freedom lead to physical Higgs
particles, namely a light and a heavy CP -even Higgs boson h and H, respectively, a CP -odd
Higgs boson A and a charged Higgs pair H±. The three remaining degrees of freedom give
mass to the weak gauge bosons as in the SM. At tree-level, the Higgs sector of the MSSM can
be specified by only two parameters: tan β = vu/vd, where vu,d are the vacuum expectation
values of the two neutral Higgs fields, and the mass of the pseudoscalar Higgs boson mA.
The SUSY fields explained above are defined in the gauge basis and can mix to form physical
mass eigenstates. Such a mixing defines the neutralino mass eigenstates χ̃0

l , l = 1...4 as a
mixture of the bino B̃, the wino W̃3 and the two neutral higgsinos H̃0

u and H̃0
d . Similarly, the

charged higgsinos H̃+
u and H̃−d and the winos W̃1 and W̃2 mix and form mass eigenstates χ̃±k ,

k = 1, 2, called charginos. The mixing in the squark and slepton sector is explained in the
following section.

2.1.2. Sfermion Mixing

Similarly to the higgsinos and gauginos, also the sfermions, i.e. squarks and sleptons, can
mix. Adopting the notation of [68] the mass terms for up-type and down-type squarks are
given by

Lq̃ = −ũ†M2
ũũ− d̃†M2

d̃
d̃ , (2.14)

where ũ = (ũL, c̃L, t̃L, ũR, c̃R, t̃R)T and d̃ = (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R)T are six-component vectors
of left- and right-handed up-type and down-type squarks. Accordingly, the matricesM2

ũ and
M2

d̃
are 6× 6 mass squared matrices which can be decomposed into four 3× 3 blocks

M2
ũ,d̃

=

M2
ũ,d̃LL

M2
ũ,d̃LR

M2†
ũ,d̃LR

M2
ũ,d̃RR

 . (2.15)

The blocks explicitly mix the left- and right-handed components of the vectors ũ and d̃, re-
spectively, which is indicated by the subscripts LL,RR and LR. As is obvious from Eq. (2.12)
flavor mixings can be introduced by flavor-changing entries in the soft SUSY-breaking mass
matrices m2

Q̃
, m2

Ũ
, and m2

D̃
, and by the trilinear coupling matrices TU and TD. In the limit of

no flavor violation in the squark sector, the mass matrix only connects left- and right-handed
squarks of equal flavors. In this case only the diagonal terms of the soft SUSY-breaking
mass matrices and trilinear couplings are present and are denoted by mQ̃i

, i = 1, 2, 3,
mŨR

, U = u, c, t and mD̃R
, D = d, s, b. In the remaining mixing of left- and right-handed

states, usually only the mixing in the third generation is considered, since the strength of
the mixing is proportional to the mass of the corresponding SM quark, which is small for
the first two generations. The two sbottoms b̃L and b̃R are mixed to a light mass eigenstate
b̃1 and a heavy mass eigenstate b̃2 and likewise t̃L and t̃R form the mass eigenstates t̃1 and
t̃2. The left- and right-handed states of the first two generations are directly treated as mass
eigenstates. This version of sfermion mixing is considered in Ch. 4.

3An introduction to mSUGRA is provided in [55].
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2.1. Supersymmetry 9

In case flavor-changing effects are considered as in Ch. 3, flavor off-diagonal elements in the
squark mass matrices are not neglected. In this case, the mass matrix is diagonalized by a
6 × 6 rotation matrix, which incorporates both flavor- and left-right-mixing of the squarks.
The resulting mass eigenstates are no longer flavor eigenstates, but a mixture of all three
flavors. The mass eigenstates are then denoted by up-type squarks ũi, i = 1...6 and down-
type squarks d̃i, i = 1...6, which are ordered in mass, with ũ1 and d̃1 being the lightest ones.
The flavor-violating elements in the squark mass matrix can be manipulated by the flavor
off-diagonal elements in the soft SUSY-breaking mass matrices and trilinear couplings. The
inputs of the model can then be chosen in the so-called Super-Cabibbo-Kobayashi-Maskawa
(Super-CKM) basis, where the squarks are rotated in parallel to the quarks, as defined in [68].
However, even if only flavor diagonal entries of the soft SUSY-breaking parameters are set,
flavor violation in the mass matrices in the Super-CKM basis is induced by the CKM matrix.
This is inevitable due to SU(2)L invariance enforcing the common soft SUSY-breaking mass
matrix m2

Q̃
for left-handed up-type and down-type squarks, faced with the distinct rotations

of up- and down-quarks in flavor space. By convention in this case the down-type sector is
diagonal in flavor space, whereas the up-type sector remains flavor mixed, with the mixing
given by the CKM matrix. This general mixing of squarks is considered in Ch. 3, and with
the parameter choices made there, the strongest contribution to the lightest up-type squark
ũ1 stems from the top flavor as the left-right-mixing for the stops is much larger than the
flavor mixing.
For sleptons throughout this work only the left-right-mixing is considered for the staus, while
for the smuons and selectrons the left- and right-handed states are taken to be mass eigen-
states. Accordingly, in Ch. 3, where the soft SUSY-breaking parameters are set explicitly,
it is sufficient to provide the diagonal entries of the matrices m2

L̃
and m2

Ẽ
, given by mL̃i

,
i = 1, 2, 3 and mẼR

, E = e, µ, τ , and correspondingly for the trilinear couplings.

2.1.3. Experimental Constraints

Important searches of the two experiments ATLAS and CMS at the LHC concentrate on the
production of SUSY particles. For the work on the decay of the lightest up-type squark in
Ch. 3, the limits obtained for the production of stops are taken over, because as explained
in Sec. 2.1.2 in our case the ũ1 is stop-like. Current limits on stop pair production from
both experiments are shown in Fig. 2.1. In both summary plots, the result is plotted in the
plane of the mass of the light stop mt̃1 and the mass of the lightest neutralino mχ̃0

1
, such

that constant differences are given by straight lines from the lower left to the upper right, as
indicated explicitly by the dashed lines in Fig. 2.1(a). As can be inferred, the exclusion limits
strongly depend on the kinematic situation and the decay channel of the stop, once the mass
difference is smaller than the mass of the top-quark. The specific analyses for different decay
channels and kinematic regions are indicated in the legends of the plots. An important aspect
for deriving these limits is to have precise predictions for the branching ratios in the region
of small mass differences between the stop and the neutralino. Note, that in Fig. 2.1(b) the
region where the mass difference is smaller than the mass of the W boson mW is not shown,
but results for this region can be found in [71]. According to the plots, the highest stop mass
that can be excluded is about 550 GeV in case the mass difference is smaller than the mass of
the top-quark, but larger than the W boson mass. However, if the mass difference is slightly
smaller than mW , a stop is only excluded for mt̃1 . 300 GeV. The white spots for small
stop masses in Fig. 2.1(a) are not covered by the searches indicated in the legend so far. At
the time the research described in Ch. 3 has been done, these limits were still much weaker
[72–77] and the coverage with different decay modes across the kinematic thresholds was not
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Figure 2.1: Summary plots of exclusion limits for stop pair production in various decay channels
for different values of the mass difference between the stop and the lightest neutralino. The specific
analyses are indicated in the legends of the plots.
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Figure 2.2: Exclusion limits on mSUGRA scenarios obtained by ATLAS [69, 78].

complete. Hence, an important motivation was also to show the contribution of possible
decay channels for this region. Furthermore, the limits reported in Fig. 2.1 were derived for
branching ratios of 100% for the respective final states. If the branching ratios are smaller,
the expected cross sections are smaller as well and thereby the limits will be lower. This
is of particular interest in the region where the mass difference of the stop and the lightest
neutralino is smaller than the top-quark mass, such that several competing decay channels
are relevant. The experimental bounds used for the analysis are the ones which were available
when the work was done and are described in Sec. 3.2.
While the exclusion limits on stop pair production have been obtained by interpretation
within simplified models, the observed limits on cross sections for the production of SUSY
particles have also been interpreted within the mSUGRA approach described in Sec. 2.1.1,
which is used for the analysis of squark gluino production in Ch. 4. This way it is possible to
constrain the input parameters of the model directly. The plot in Fig. 2.2 shows the obtained
exclusions for the first run of the LHC in the plane of the common scalar mass parameter m0
and the common fermion mass parameter m1/2, while the other parameters have been set to

A0 = −2m0 , tan β = 30 , µ > 0 . (2.16)

The physical mass spectrum resulting from the input parameters is schematically indicated
by the dashed grey and light blue lines in the background. The scenarios chosen for the
analysis in Ch. 4 are guided by the choice of Eq. (2.16) and are located in the region which
is not excluded in Fig. 2.2. Additionally they fulfill current limits on the masses of squarks,
gluinos and stops as described in Sec. 4.5.

2.2. Fixed Order Calculations and Event Generators
This section provides principles of hadronic cross sections and NLO calculations in Sec. 2.2.1
and major aspects of the event generator POWHEG− BOX in Sec. 2.2.2. These basics are used
in the calculation of squark gluino production in Ch. 4.
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12 2. Prerequisites

2.2.1. Fixed Order Calculation at Next-to-Leading Order

The calculations performed in this work are tailored to experiments at the LHC, where
bunches of protons4 are accelerated in opposite directions and are brought to collision in
the center of the detectors, as for instance ATLAS and CMS. However, the protons are
composite objects and the calculations performed here are based on quarks and gluons in
the initial state, which are constituents of the protons. The relation between the differential
hadronic cross section for a final state f with n particles and with protons P1, P2 in the initial
state, dσP1P2→f , and the partonic scattering cross section dσij→f with initial partons i, j is
given by the factorization formula [79]

dσP1P2→f =
∫ 1

0
dx1

∫ 1

0
dx2

∑
i,j

fiP1(x1, µF )fjP2(x2, µF )dσij→f , (2.17)

where fiP1(x1, µF ) and fjP2(x2, µF ) are the parton distribution functions (PDFs) for the
partons i in the proton P1 and j in the proton P2. The integration variables x1 and x2 are
the fractions of the proton momenta taken by the two partons, such that the momenta of the
initial partons of the partonic scattering cross section pi and pj are given by

pi = x1pP1 , (2.18)
pj = x2pP2 , (2.19)

where pP1 and pP2 are the momenta of the two protons. The sum extends over all suitable
partons inside the proton, namely quarks and gluons in this work. The PDFs are determined
experimentally and provide the probability of extracting a parton i with a momentum fraction
x1 of the proton, and a parton j with momentum fraction x2. The PDFs depend on the
factorization scale µF at which the factorization of the complete cross section into PDFs and
the partonic cross section is performed. The calculation performed for the squark gluino
production in Ch. 4 focuses on the partonic cross section which generically reads [80]

dσij→f = 1
4
√

(pipj)2 −m2
im

2
j

|Mij→f |2dΦn , (2.20)

where mi and mj are the masses of the incoming partons5, |Mij→f |2 is the amplitude squared
for the partonic process ij −→ f which can be calculated by Feynman diagrams and dΦn

denotes the n-particle phase space given by

dΦn = (2π)4δ4
(
pi + pj −

n∑
k=1

pfk

)
n∏
k=1

d3~pfk
(2π)32p0

fk

. (2.21)

The delta function ensures four-momentum conservation, where pfk , k = 1...n are the mo-
menta of the n final state particles. The matrix element squared is determined order by order
in perturbation theory. In Ch. 4 the leading order (LO) as well as the next-to-leading order
in the strong coupling constant αs are considered.
The calculation of the NLO corrections to the partonic process amounts to calculating virtual
corrections to, and real emissions from the LO process. The loop diagrams appearing in the
virtual corrections can lead to both ultraviolet (UV) and infrared (IR) divergences which have
to be removed properly. The UV divergences can be extracted by continuation from four to

4Heavy ion collisions are not considered in this thesis.
5The masses of quarks of the first two generations are set to zero in Ch. 4.
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2.2. Fixed Order Calculations and Event Generators 13

D = 4− 2ε dimensions, known as dimensional regularization, where the divergences show up
as poles in ε. These poles can be eliminated by renormalization of the masses, couplings and
wave functions in the Lagrangian. Thereby the bare parameters and fields are replaced by
renormalized ones, and counterterms are added. The UV divergences are then absorbed by
the counterterms so that the final result is UV finite. Conventional dimensional regularization
breaks SUSY due to a mismatch of bosonic and fermionic degrees of freedom. This can be
cured by introducing a SUSY-restoring counterterm [25]. We refrain from giving more details
on the virtual corrections and the renormalization as they are not the focus of this thesis.
Specific aspects for squark gluino production are given in Sec. 4.2.
The IR divergences contained in the virtual corrections are canceled by the IR divergences in
the corresponding real emission amplitudes, as guaranteed by the Kinoshita-Lee-Nauenberg
(KLN) theorem [81, 82]. For total cross sections σNLO

tot , this cancelation can be performed
analytically, since the phase space for the real emission process dΦn+1 can be factorized into
the Born phase space dΦn and an additional phase space only accounting for the real emission
dΦrad, so that

σNLO
tot =

∫
dΦn

[
B(Φn) + V(Φn) +

∫
dΦradR(Φn+1)

]
. (2.22)

The Born and virtual contribution with the renormalization already performed are denoted
by B(Φn) and V(Φn) and depend on n-body kinematics Φn, whereas the real correction is
denoted by R(Φn+1) and depends on (n + 1)-body kinematics Φn+1. Integrating out the
additional phase space dΦrad in D dimensions reveals the IR divergences as poles in ε which
cancel the IR divergences of the virtual corrections. Hence the integrand of the Born phase
space integration is already IR finite, and the integration can be performed in four dimensions
safely. The cancelation of the IR divergences in an event generator like the POWHEG− BOX,
however, requires additional work explained in Sec. 2.2.2.

In this thesis the squark gluino production and the subsequent decays of the squark and the
gluino are investigated. Including also the decay of the squark stemming from the gluino
decay the entire process is hence a 2 → 5 process, schematically illustrated by the graph in
Fig. 2.3, where the quarks and squarks can be of any light flavor and both left- and right-
handed and only the decay of the squark into a quark and the lightest neutralino is considered.
The NLO corrections in the strong coupling constant to this process involve many different
loop topologies up to hexagon diagrams and real emission graphs with six particles in the final
state, rendering the calculation complicated. A common method to reduce the complexity of
the calculation is given by the Narrow Width Approximation (NWA) (see [83] and references
therein), which allows for separating the complete process into the production of an on-shell
squark and gluino, and the subsequent on-shell decays of the particles. Accordingly, the
process can be split into the subprocesses indicated by the dashed lines cutting the squark
and gluino lines in Fig. 2.3, which are

q + g −→ q̃ + g̃ , (2.23)
g̃ −→ q̃ + q̄ , (2.24)
q̃ −→ q + χ̃0

1 . (2.25)

The NWA holds in the limit where the width Γi of the unstable intermediate particle i = q̃, g̃
is small, since in this limit for the denominator of the propagator in the amplitude squared
holds

1
(p2
i −m2

i )2 +m2
iΓ2

i

miΓi→0−−−−−→ π

miΓi
δ(p2

i −m2
i ) , (2.26)
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q̃
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q

χ̃0
1

χ̃0
1

q′q̄′

q̃′

q

g

q

Figure 2.3: Complete process of squark gluino production including the decays of the gluino and the
squarks. The dashed lines cutting the lines of the squarks and the gluino split the entire process into
the subprocesses calculated in the Narrow Width Approximation.

where pi is the momentum of the intermediate particle. This limit sets the intermediate parti-
cle on-shell and allows for the factorization of production and decay. For squarks and gluinos
this is a good approximation for the scenarios considered here, such that the expected error
of O(Γi/mi) [84, 85] is small. In this approximation, NLO corrections have to be calculated
for the specific subprocesses Eqs. (2.23)-(2.25). Employing the NWA, the differential cross
section for the entire process at LO dσLO

tot is then given by

dσLO
tot = dσ0

dΓg̃→q̃
′q̄′

0
Γg̃0

dΓq̃→qχ̃
0
1

0
Γq̃0

dΓq̃
′→q′χ̃0

1
0

Γq̃′0
, (2.27)

where dσ0 is the differential cross section at LO for the production of the squark and the
gluino, dΓg̃→q̃

′q̄′

0 , dΓq̃→qχ̃
0
1

0 and dΓq̃
′→q′χ̃0

1
0 are the differential partial decay widths at LO for

the decays indicated in the superscript, and Γi0, i = g̃, q̃, q̃′ are the total decay widths at LO
for the particles i. For the total cross section σLO

tot the ratios of partial and total decay widths
become branching ratios, resulting in

σLO
tot = σ0 · BR(g̃ → q̃′q̄′) · BR(q̃ → qχ̃0

1) · BR(q̃′ → q′χ̃0
1) , (2.28)

where BR denotes the branching ratio of the decay indicated in the argument. Inserting the
expansions of the differential NLO production cross section dσ and the (differential partial)
decay widths (d)Γ in the strong coupling constant

dσ = dσ0 + αsdσ1 , (2.29)

dΓg̃→q̃′q̄′ = dΓg̃→q̃
′q̄′

0 + αsdΓg̃→q̃
′q̄′

1 , (2.30)

dΓq̃→qχ̃0
1 = dΓq̃→qχ̃

0
1

0 + αsdΓq̃→qχ̃
0
1

1 , (2.31)

dΓq̃′→q′χ̃0
1 = dΓq̃

′→q′χ̃0
1

0 + αsdΓq̃
′→q′χ̃0

1
1 , (2.32)

Γi = Γi0 + αsΓi1 , i = g̃, q̃, q̃′ (2.33)

in Eq. (2.27) and keeping only terms up to O(αs) yields the formula for the differential cross
section for squark gluino production at NLO combined with the decays of the gluino and the
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2.2. Fixed Order Calculations and Event Generators 15

squarks in the NWA dσNLO
tot used in this thesis

dσNLO
tot = 1

Γg̃0Γq̃0Γq̃′0

[
dσ0dΓg̃→q̃

′q̄′

0 dΓq̃→qχ̃
0
1

0 dΓq̃
′→q′χ̃0

1
0

(
1− αs

(
Γg̃1
Γg̃0

+ Γq̃1
Γq̃0

+ Γq̃
′

1

Γq̃′0

))

+αs
(

dσ1dΓg̃→q̃
′q̄′

0 dΓq̃→qχ̃
0
1

0 dΓq̃
′→q′χ̃0

1
0 + dσ0dΓg̃→q̃

′q̄′

1 dΓq̃→qχ̃
0
1

0 dΓq̃
′→q′χ̃0

1
0

+dσ0dΓg̃→q̃
′q̄′

0 dΓq̃→qχ̃
0
1

1 dΓq̃
′→q′χ̃0

1
0 + dσ0dΓg̃→q̃

′q̄′

0 dΓq̃→qχ̃
0
1

0 dΓq̃
′→q′χ̃0

1
1

)]
.

(2.34)

In Eqs. (2.29)-(2.34) the quantities with subscript ’1’ denote the NLO correction to the quan-
tity. If any of the subprocesses is calculated only at LO, in Eq. (2.34) the terms proportional
to the NLO correction of this process drop out.
Final state radiation from the production process could be interpreted as initial state radia-
tion from the decay process, depending on whether the radiation takes place before or after
the intermediate particle is on-shell. Although in the entire process this appears as a single
contribution, within the NWA both final state radiation off the production and initial state
radiation off the decay have to be taken into account [86].

2.2.2. Matching to Parton Showers via POWHEG− BOX

In an event generator instead of the analytic cancelation of the IR divergences in the integral
over the entire phase space as explained in Sec. 2.2.1, a pointwise cancelation of the diver-
gences is required, which is provided by a subtraction method. The idea of a subtraction
method is the following: counterterms C(Φn+1) are introduced which have the same singular
behavior as the real emission amplitudes and which are easy to integrate analytically. Adding
and subtracting these counterterms in Eq. (2.22) yields

σNLO
tot =

∫
dΦn

[
B(Φn) + V(Φn) +

∫
dΦradC(Φn+1)

]
+
∫

dΦn+1 [R(Φn+1)− C(Φn+1)] .
(2.35)

In the integral over the Born phase space dΦn the analytic structure of IR divergences is
universal and known. The counterterms integrated over the radiation phase space can then
be used to cancel the divergences, such that the integrand is finite and the integration over the
Born phase space can be performed numerically. As the singular structure of the counterterms
is the same as for the real corrections, also the integral over the phase space including the real
radiation dΦn+1 can be performed numerically and the singularities are canceled pointwise6.
The total result remains unaltered. In the event generator POWHEG− BOX a specific variant
called Frixione-Kunszt-Signer (FKS) subtraction scheme [87, 88] is implemented and the
subtraction terms are generated automatically once the user provides color and spin correlated
Born amplitudes defined in Sec. 4.4. The color and spin correlated amplitudes serve as
building blocks for the subtraction method due to the factorization of the real amplitudes in
the soft and collinear limits. Specific details on the implementation of the FKS subtraction
scheme in the POWHEG− BOX can be found in [37].

The hard scattering process described by σNLO
tot is only the first step of deriving predictions

for physical events which can be measured by experiments. The quarks in the final state
of the hard scattering depicted in Fig. 2.3 will radiate gluons which can radiate further or

6Note, that counterterms required for canceling initial state collinear singularities are not considered here for
simplicity. Details can be found in [37].
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split into quarks, such that a cascade of partons is produced. When the energy scale of the
partons reaches a sufficiently low value, due to color confinement the partons form hadrons
that are color singlets and which can decay further. Moreover the remnants of the protons
which collide and give rise to the hard scattering process are not color singlets any more, so
that also their evolution has to be modeled. All these steps connecting the hard scattering
process calculated here to the physical event recorded by experiments are performed by par-
ton showers.
At NLO combining the hard scattering process with the parton shower poses the following
problem: the first radiation performed by a parton shower off the Born process is covered
by the real correction of the hard scattering already, which leads to a double counting. One
way to avoid this double counting problem is to subtract from the NLO calculation of the
hard scattering process the contribution the parton shower would generate, known as MC@NLO
approach [89]. However, the difference of the NLO computation and the parton shower con-
tribution is not necessarily positive. Hence, events with negative weights are possible. More-
over, the NLO computation has to be adapted to the parton shower which is attached. The
event generator POWHEG− BOX used in this work employs another approach called POWHEG
method [36, 37] (POsitive Weight Hardest Emission Generator). Here, the hardest emission is
generated first with the full NLO accuracy, which leads to positive weights by construction7.
The differential POWHEG cross section dσPWHG is given by [37]

dσPWHG = B̄(Φn)
[
∆(Φn, p

min
T ) + ∆(Φn, kT (Φn+1))R(Φn+1)

B(Φn) dΦrad

]
dΦn , (2.36)

where
B̄(Φn) = B(Φn) + V̄(Φn) +

∫
dΦrad (R(Φn+1)− C(Φn+1)) (2.37)

with the renormalized virtual amplitude with all IR singularities canceled by appropriate
subtractions denoted by V̄(Φn). The POWHEG Sudakov form factor is called ∆(Φn, pT ) and
can be interpreted as probability for no emission down to pT and reads

∆(Φn, pT ) = exp
{
−
∫ R(Φn+1)
B(Φn) dΦradθ(kT (Φn+1)− pT )

}
. (2.38)

The first emission in Eq. (2.36) is hence generated with a transverse momentum kT with a
lower cutoff pmin

T . All subsequent emissions generated by the parton shower will have smaller
transverse momenta and accordingly, the NLO calculation is matched to the parton shower
without double counting. The POWHEG− BOX generates events at NLO precision with the
hardest radiation according to Eq. (2.36) and writes them to Les Houches Event (LHE) files
[90] which can be forwarded to a parton shower. The essential ingredients for the imple-
mentation of squark gluino production in the POWHEG− BOX are summarized in Sec. 4.4 and
details on POWHEG and the POWHEG− BOX can be found in [36–38].

2.3. The Electroweak Phase Transition
Introductions and reviews for EWBG and field theory at finite temperature can be found
for instance in [91–93]. The dynamics of the EWPT are governed by the effective potential
Veff which will be explained in detail in Sec. 5.1. Schematically, the behavior of the effective
potential with respect to the temperature around the phase transition can be deduced from
Fig. 2.4. The figure displays a one-dimensional potential V (ω, T ) depending on the variable

7Note, that due to the NLO expansion of the total widths Eq. (2.33) negative events are possible in the NWA
Eq. (2.34) due to the resulting correction ∝ αs in the first line of Eq. (2.34). This can be avoided by leaving
the total widths unexpanded with the drawback, that the total NLO cross section is not reproduced.
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Figure 2.4: General one-dimensional potential in arbitrary units for different temperatures T .

ω which will take the role of a specific field configuration in Sec. 5.1 and the temperature
T . Illustrating the basic properties of the effective potential around the temperature where
the phase transition happens, we show three representative cases of the temperature: a high
temperature (red, dotted), the temperature where the phase transition takes place Tc (green
line) and a low temperature (blue, dashed). In the early universe at high temperatures
T > Tc, the potential might exhibit several minima varying with the temperature, but the
global minimum determining the ground state of the system is always located at ω = 0.
Consequently the vacuum expectation value v vanishes and the electroweak symmetry is not
broken. As the universe evolves and cools down, at some point a temperature Tc, called
critical temperature, is reached, where one of the minima other than the one at ω = 0 has
the same depth as the one at the origin, leading to two degenerate minima. The position of
the minimum other than the one at ω = 0 determines the critical vacuum expectation value
vc. When the universe cools down further, the new minimum at ω 6= 0 will get deeper than
the one at ω = 0 and therefore turn into the new global minimum. Hence, there will be a
finite non-zero vacuum expectation value for T < Tc and the electroweak symmetry is broken.
Accordingly, the phase transition is marked by a jump of the vacuum expectation value from
zero to a non-zero value at T = Tc. Phase transitions from the minimum at ω = 0 to the
global minimum at ω 6= 0 with a potential barrier in between such that the transition to the
global minimum proceeds via tunneling through the barrier are of first order. For successful
EWBG, the phase transition not only has to be of first order [41], but it also has to be strong
enough: in this work, we classify a phase transition to be strong first order and consequently
valid for EWBG, if (see for example [91–93] and references therein)

vc
Tc
≥ 1 . (2.39)

Thus, for the 2HDM to be able to explain the BAU it is essential to investigate the EWPT
in this model to quantify the ratio vc/Tc. Existing works [94–107] have already studied the
EWPT and possible EWBG in the 2HDM. But only in [107] the results of the LHC at a
center of mass energy of 8 TeV and especially the discovery of a Higgs boson at a mass of
roughly 125 GeV were taken into account for phenomenological studies. In our work [108]
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18 2. Prerequisites

we not only take into account the latest results from the LHC at 13 TeV, but also relevant
results from flavor physics, electroweak precision experiments and tree-level perturbative
unitarity. Furthermore, we propose a novel treatment of massless Goldstone bosons in the
renormalization procedure, other than the regularization applied in [106, 107]. Moreover, we
develop a new renormalization scheme which for the first time preserves both masses and
mixing angles of the Higgs sector at the tree-level values. At high temperature the effective
potential at one-loop can lose meaningfulness due to large contributions from higher orders
in perturbation theory. These contributions can be captured by resumming higher-order
corrections from so-called ring-diagrams [109–111]. Both methods proposed in [110, 111] are
investigated in our work. All details concerning the calculation, the renormalization and the
results are presented in Ch. 5.
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3. Decays of the Lightest Up-Type Squark

In Sec. 2.1.3 the current limits on the mass of the light stop were explained, together with
the dependence of the limits on the investigated decay channels at the kinematic thresholds.
The first threshold is located where the W boson can be produced on-shell in the decay of
the light stop, and the second one resides where the top-quark can be on-shell. As explained
in Sec. 2.1.3, these limits are carried over to the lightest up-type squark ũ1 for the case of
general flavor mixing investigated here. In this work the focus is on the parameter region
leading to differences of the mass of the lightest up-type squarkmũ1 to the mass of the lightest
neutralino mχ̃0

1
, ∆m = mũ1 −mχ̃0

1
from ∆m = 60 GeV up to ∆m = 140 GeV, covering the

first of the two thresholds and investigate possible decay modes of the lightest up-type squark
ũ1 (cf. 2.1.2). In Sec. 3.1 possible decay modes of the ũ1 are explained. After a brief summary
of the numerical setup in Sec. 3.2, the results are presented in Sec. 3.3. We finish this chapter
by a conclusion in Sec. 3.4.

3.1. Decay Channels
In the parameter region, where the W boson cannot be produced on-shell, there are two
competing decay modes

ũ1 −→ χ̃0
1(u, c) , (3.1)

where χ̃0
1 is the lightest neutralino and u and c are the up- and charm-quark, respectively,

and
ũ1 −→ χ̃0

1diff̄
′ , i = 1...3 , (3.2)

with di, i = 1...3 being a down-type quark of generation i and ff̄ ′ denoting all possible
combinations that can result from a W boson decay with f = u, d, s, c, τ, ντ , µ, νµ, e, νe. If
the mass difference ∆m exceeds the sum of the W boson mass mW and the mass of the
down-type quark mdi , the W boson can be produced on-shell in the decay of the ũ1 and the
four-body decay Eq. (3.2) turns into the three-body decay

ũ1 −→ χ̃0
1W

+di . (3.3)

A representative Feynman diagram for each of these three decay modes is shown in Fig. 3.1.
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20 3. Decays of the Lightest Up-Type Squark
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(a) Example for the two-
body decay Eq. (3.1).
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ũ1
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(b) Example for the four-body
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ũ1
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(c) Example for the three-
body decay Eq. (3.3).

Figure 3.1: Representative Feynman diagrams for the three decay modes considered.

ũ1
t, c, u

ũ1...6

χ̃0
1

u, c
g̃

Figure 3.2: Example for a one-loop correction to the two-body decay Eq. (3.1).

The tree-level diagram for the two-body decay ũ1 −→ χ̃0
1(u, c) is shown in Fig. 3.1(a). The

general flavor structure as explained in Sec. 2.1.2 is vital for this process to happen at tree-
level. The four-body decay is represented by Fig. 3.1(b), where due to the flavor mixing,
all three up-type quarks can propagate internally. The corresponding diagram for the three-
body decay is shown in Fig. 3.1(c), which is obtained from Fig. 3.1(b) by leaving the W
boson undecayed. For the two-body decay, SUSY-Quantum-Chromo-Dynamic (SUSY-QCD)
corrections were included, where a representative diagram is shown in Fig. 3.2. The general
flavor structure affects all three vertices and causes all three generations of up-type quarks
and all six up-type squarks to propagate in the loop.
Previous calculations for the flavor-changing neutral current two-body decay of the light stop
into a charm-quark and the lightest neutralino [15, 16] showed that within the hypothesis
of Minimal Flavor Violation [112–115] resummation effects should be taken into account
by solving RGEs, leading to flavor-changing elements in the squark mixing matrix. For
that reason the two-body decay has been calculated with general flavor mixings including
contributions at NLO in SUSY-QCD [17, 116, 117]. In order to consistently compare the
two-body decay to the other decay modes, also the three- and four-body decays have been
calculated with a general flavor structure, thereby extending existing calculations for these
decay modes [19, 20, 118]. Moreover, the masses of fermions of the third generation have
been taken into account in the final state. Details on the three- and four-body decays have
been presented in [117] and [21]. Here, we put emphasis on the method employed to account
for finite width effects in the four-body decay, resulting from a W boson going on-shell.
The amplitude for the four-body decay has contributions proportional to

1
p2
W −m2

W

, (3.4)
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3.1. Decay Channels 21

ũ1

di

χ̃0
1

f

f̄ ′
H+

χ̃+

Figure 3.3: Example for a non-resonant contribution to the four-body decay of the ũ1, which is
suppressed at the W threshold due to the factor Eq. (3.5).

where pW is the W boson four-momentum, stemming from the W boson propagator in
diagrams like the one shown in Fig. 3.1(b). These terms lead to a singularity once the
phase space available in the decay of the ũ1 is large enough to allow for p2

W = m2
W . In order

to cure this singularity the amplitude can be regularized by incorporating the finite width
of the W boson. In general, this can be done in a consistent and gauge-invariant way by
the Complex-Mass-Scheme [119]. In our case, however, a simpler approach is also valid: the
Overall-Factor-Scheme [120]. In this scheme, the entire amplitude is multiplied by

p2
W −m2

W

p2
W −m2

W + imWΓW
(3.5)

for each W boson propagator which can become singular in the integration over the phase
space. More precisely, among all terms of the amplitude the maximum power of the divergent
propagator Eq. (3.4) has to be figured out and the whole amplitude has to be multiplied by the
non-divergent factor Eq. (3.5) to exactly that power. Thereby all divergent denominators are
canceled and replaced by the expression leading to the correct Breit-Wigner resonance shape
when squaring the amplitude. Since the entire amplitude is multiplied in this way, gauge
invariance is preserved. Moreover, having analytical expressions of the amplitudes at hand,
the implementation of this procedure is straight forward. The drawback of this method is the
suppression of non-resonant contributions at the threshold due to uncanceled numerators of
Eq. (3.5). In our calculation this affects diagrams without any internal W bosons, such as for
instance the one shown in Fig. 3.3 with an internal chargino χ̃+ and an internal charged Higgs
H+. In Fig. 3.4 we show the absolute value squared of the factor Eq. (3.5) as it is present
in the matrix element squared in this method for mW = 80.385 GeV and ΓW = 2.085 GeV
[121] as a function of the momentum of the W boson pW . Apparently, the overall factor
is close to one already ten GeV away from the threshold. Consequently, the suppression is
limited to a narrow region around the threshold. Moreover, the contribution arising from
diagrams similar to Fig. 3.3 to the total amplitude squared strongly depends on the masses
of the internal particles and thereby on the specific scenario under consideration. To this
end we verified explicitly that in all scenarios shown in the results below the non-resonant
diagrams give only minor contributions. Hence, in our case the Overall-Factor-Scheme is a
valid approach to describe the threshold effects when the W boson goes on-shell.
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22 3. Decays of the Lightest Up-Type Squark

60 70 80 90 100 110
pW [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

(p
2 W
−
m

2 W
)2

(p
2 W
−
m

2 W
)2

+
m

2 W
Γ

2 W

Figure 3.4: Absolute value squared of the overall factor of Eq. (3.5) as a function of the W boson
momentum pW .

3.2. Implementation and Numerical Setup
The numerical setup is explained in detail in Refs [17, 21, 116]. Here, the most important
facts are summarized for convenience.
The three decay modes explained above have been implemented in the program package
SUSY− HIT [17, 122]. Provided with all required input parameters by means of an SLHA2
[60, 68] file, the program can calculate the branching ratios of SUSY particle decays, including
the decays considered here. The SUSY spectra were generated using the spectrum generator
SPHENO [123, 124]. For the general MSSM with flavor violation the inputs are given by SM
parameters and soft SUSY-breaking parameters. The SM parameters were set to [121]

GF = 1.166379 · 10−5 GeV−2 , αs(MZ)MS = 0.1185 ,
mt(pole) = 173.07 GeV , mb(mb)MS = 4.18GeV , (3.6)
MZ(pole) = 91.1876 GeV , mτ (pole) = 1.77682 GeV ,

and the CKM matrix has been provided by the Wolfenstein parametrization with the values
[121]

λ = 0.22535 , A = 0.811 , ρ̄ = 0.131 , η̄ = 0.345 . (3.7)

Not all soft SUSY-breaking parameters have strong impact on the decays considered in this
work. Moreover, due to the large number of input parameters a scan covering all parameters
is unfavorable for practical reasons. Therefore we restricted the investigated parameter space
and derived our scenarios with the following settings:
The soft SUSY-breaking bino mass M1 has been varied within the range

M1 ∈ [75, 500] GeV , (3.8)

whereas the wino and gluino mass parameters M2 and M3 have been set to

M2 = 650 GeV and M3 = 1530 GeV , (3.9)
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3.2. Implementation and Numerical Setup 23

respectively. This leads to a rather light bino-like neutralino being the LSP in our scenarios.
The gluino mass parameter has been chosen as light as possible regarding the experimental
exclusion bounds at the time when the analysis was performed. The wino mass parameter
together with the higgsino mass parameter µ, which was set to

µ = 900 GeV , (3.10)

ensure that there are no light charginos that could drop below experimental limits. The
trilinear couplings of sleptons and down-type squarks of all three generations, and the trilinear
couplings for up-type squarks of the first and second generation were taken to be zero. In
contrast, the trilinear coupling of the stops At was varied in the range

At ∈ [1.0, 2.0] TeV . (3.11)

These values for At lead to large mixing in the stop sector so that one stop becomes light.
This light stop contributes most to the lightest up-type squark which is the NLSP in our
scenarios. Moreover, the large mixing enters the radiative corrections to the mass of the light
CP -even Higgs boson and helps lifting the mass from the tree-level bound mZ to the actual
value measured by the experiments (see [125] and references therein). Furthermore, the Higgs
sector of the MSSM is characterized by the ratio of the vacuum expectation values of the
two Higgs doublets, tan β, and the mass of the pseudoscalar Higgs boson mA. These two
parameters were varied within

tan β ∈ [1, 15] and mA ∈ [150, 1000] GeV . (3.12)

The values of tan β are favored by constraints on the parameter space due to B-physics
observables, which we took into account. The bino-like LSP emerging from the choices in
Eqs. (3.8) to (3.10) often causes the relic density to be too high to be compatible with
experimental data. However, Higgs funnels offer a possibility to reduce the relic density,
e.g. in the case of 2mχ̃0

1
≈ mA via the annihilation of two neutralinos into a pseudo scalar

Higgs in the s-channel. For that reason, the parameter mA has been chosen such that the
range accommodates this neutralino annihilation mode for the expected values of mχ̃0

1
due to

Eq. (3.8).
The remaining parameters which have to be defined are the soft SUSY-breaking masses for
squarks and sleptons. As we do not investigate the impact of light sleptons on the decays
explained in Sec. 3.1 we set the soft SUSY-breaking masses for sleptons to

MẼR
= ML̃i

= 1 TeV ; E = e, µ, τ ; i = 1, 2, 3 . (3.13)

Thereby the sleptons are heavy enough to have negligible impact on the considered decays
and at the same time evade the experimental exclusion limits. In the squark sector the
soft SUSY-breaking masses for the third generation are important, since the lightest up-type
squark ũ1 is mostly stop-like. In order to have a light stop, but not a light sbottom, the soft
SUSY-breaking mass for the right-handed stop Mt̃R

was chosen in the range of

Mt̃R
∈ [300, 600] GeV . (3.14)

Choosing the soft SUSY-breaking mass for the left-handed doublet of the third generation
mQ̃L3

to be low instead, would lead to a light sbottom accompanying the light stop. In order to
comply with experimental exclusion limits and to avoid a light right-handed sbottom, the soft
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24 3. Decays of the Lightest Up-Type Squark

SUSY-breaking masses for the right-handed down-type squarks mD̃R
and the right-handed

up-type squarks of the first and second generation mŨR
have been fixed at

mD̃R
= mŨR

= 1.5 TeV ; D = d, s, b ; U = u, c . (3.15)

Finally, the residual soft SUSY-breaking masses of left-handed squarks mQ̃L
have been set

according to
mQ̃1

= mQ̃2
= 1.5 TeV , mQ̃3

∈ [1.0, 1.5] TeV . (3.16)

All these parameters are read in by the spectrum generator at the scale

Min = MSUSY , (3.17)

with MSUSY being the geometric mean of the two stop masses.

In order to be valid scenarios for our numerical analysis, the scenarios generated with these
parameter choices had to fulfill several experimental constraints. All constraints explained in
the following are the ones which were available at the time the analysis was performed.
First of all, the scenario must provide a candidate that is compatible with the observed Higgs
signal. We check this by invoking HiggsSignals [126]. As the MSSM comprises four Higgs
bosons, but only one has been measured so far, we have to check for the non-observation
of three of them. This is done by requiring the scenarios to pass HiggsBounds [127–130],
which checks for compatibility with exclusion bounds at 95% confidence level. The effective
couplings and branching ratios for the Higgs bosons required by these two programs were
calculated using HDECAY [131–133]. As this program is not suited to work with arbitrary
flavor mixing among the squarks, we reduced the general mixing of the squarks ũs, s = 1...6,
to the dominant ones for the third generation and omitted the mixing for the first and
second generation. This is possible since the flavor-violating elements in the mixing matrix
are usually very small such that for each squark ũs the dominant flavor contribution can
be identified uniquely. From the mixing of the two resulting squarks which correspond to
the third generation, the stop mixing matrix was constructed. The remaining squarks were
assigned to the left- and right-handed squarks of the first and second generation giving the
strongest contribution. The same procedure was followed for the down-type squarks. More
details on this can be found in [116]. The error in the branching ratios and effective couplings
caused by this are small in comparison to the experimental precision and can be neglected.
Further constraints on BSM physics originate from B-physics observables and in particular
from rare meson decays. All scenarios considered in the analysis are required to fulfill

BR(B0
s −→ µ+µ−) = (2.8+0.7

−0.6)× 10−9 [134] , (3.18)
BR(B0 −→ µ+µ−) < 8.1× 10−10 at 95% CL [135] , (3.19)
BR(B+ −→ τ+ντ ) = (1.05± 0.25)× 10−4 [121] , (3.20)

BR(B −→ Xsγ) = (355± 24± 9)× 10−4 [136] . (3.21)

The theory predictions of our scenarios for these observables have been calculated by SuperIso
[137, 138] and were required to be within the two sigma range of Eq. (3.18) to Eq. (3.21).
Moreover, the impact of the new particles in the spectrum on the ρ-parameter which is
determined by electroweak precision measurements has been constrained by requiring the
ρ-parameter for the spectrum calculated by SPheno to be within two standard deviations of

ρ = 1.0004± 0.00024 [125] . (3.22)
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3.3. Results 25

The lightest neutralino χ̃0
1 being the LSP in our scenarios is a suitable candidate for DM.

The space telescope Planck reported a cold DM density of

Ωch
2 = 0.1199± 0.0027 [3] , (3.23)

which we take as an upper bound on the neutralino relic density for our scenarios. This
means that there could also be particles other than the neutralino that contribute to the
observed DM density. To verify this bound the neutralino relic density has been calculated
with SuperIsoRelic [139, 140] and

Ωch
2 < 0.12 (3.24)

was requested for a parameter point to be valid.
Finally there are limits from direct searches for SUSY particles. All scenarios had to fulfill a
constraint on the gluino mass mg̃ and on the masses of squarks of the first two generations
mq̃

mg̃ > 1450 GeV and mq̃ > 900 GeV [141, 142] . (3.25)

In addition, there are limits on stop pair production which directly constrain the allowed
masses for the light stop, depending on the mass of the lightest neutralino. These limits on
the stop t̃1 are taken over for the ũ1 as in typical scenarios the dominant contribution to the
ũ1 stems from the stop flavor. However, these limits were derived under the assumption of the
branching ratios being one for the respective decay modes which are looked for. If there are
competing decay modes, this assumption is in general not valid any more and the resulting
limits can be weaker. To investigate this impact, we have used the experimental exclusion
limits, but reinterpreted them for branching ratios other than one under the assumption

BR(2-body) + BR(4-body) = 1 (3.26)

for mũ1 − mχ̃0
1
< mW . The details of this procedure are described in [17] and [117]. If

the difference between the masses of the lightest up-type squark and the lightest neutralino,
∆m = mũ1 −mχ̃0

1
, is larger than mW , SModelS [143, 144] was used to check compatibility of

the scenario under consideration with the limits from direct searches for SUSY particles.

3.3. Results
First, we investigate the transition from the four-body decay ũ1 −→ χ̃0

1diff̄
′ to the three-body

decay ũ1 −→ χ̃0
1W

+di. In Fig. 3.5(a) we show the ratio of the partial decay width for the four-
body decay divided by the one for the three-body decay. As expected, for mass differences
well above the threshold, the two partial decay widths approach each other, resulting in a
ratio Γ4-body/Γ3-body ≈ 1. However, for mass differences of ∆m ≈ 100 GeV the partial decay
widths can still differ by about 10%, with increasing values closer to the threshold8. Hence,
predictions for the branching ratio of a particular final state close to the threshold will depend
on whether the three-body or the four-body decay of the ũ1 has been assumed. Inspecting
the region of large ∆m in Fig. 3.5(a) we observe that the decay width of the 4-body decay
remains slightly above the width for the three-body decay. This emerges from the integration
of the Breit-Wigner resonance resulting from the overall-factor of Eq. (3.5) in the phase space
integration of the four-body decay. Thus, the small shift in the decay width at high ∆m from
the three- to the four-body decay can be regarded as the finite-width effect of the W boson.
In Fig. 3.5(b) we show the partial decay width of all three decay modes with respect to

8The ratio diverges for ∆m→ mW since the partial width for the three-body decay vanishes in this limit.
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Figure 3.5: Results for the partial decay widths with respect to ∆m = mũ1 −mχ̃0
1
[21].

the mass difference ∆m. Below the W threshold, only the two-body (red) and the four-
body (blue) decays are possible, above the threshold additionally the three-body decay is
present, depicted in green. The partial decay width for the two-body decay is scattered
widely, whereas the points for the four- and three-body decays are concentrated on narrow
lines. This reflects the different dependence of the decay modes on the flavor mixing: while
the two-body decay being a flavor-changing neutral current decay essentially relies on the
flavor-changing elements in the squark mixing matrix, the four- and three-body decays are
dominated by flavor-conserving elements. In our scenarios, the size of the flavor-changing
elements can vary over a large range [17], but the flavor-conserving mixing matrix elements
are always of O(1). Furthermore, we observe that close to the threshold the two-body decay
can be competitive with the other decay modes and in some cases even dominate them.
This becomes obvious in Fig. 3.6(a), where the branching ratio of the two-body decay is shown
as a function of the mass difference ∆m. Even 10 GeV above the W boson threshold, the
branching ratio of the two-body decay can be as large as about 50%. Experimental searches in
the kinematic region around the threshold require special care, since the separation of signal
and background can become difficult if the decay products of the ũ1 are produced nearly at
rest in the rest frame of the ũ1. A branching ratio of the two-body decay as large as found
here can have two effects: on the one hand, exclusion bounds derived from searches in the
four- or three-body decay can be loosened by the branching ratios deviating from one. On
the other hand, a new search channel for the lightest up-type squark with different signature
and kinematics and in consequence a different background is provided in the threshold region
and above. This might lead to new discovery or exclusion prospects in the threshold region.
Finally, in Fig. 3.6(b) the results are shown in the mũ1 − mχ̃0

1
plane, with the color code

indicating the branching ratio of the two-body decay. The absence of parameter points for
very low mũ1 is due to experimental constraints, whereas for high mũ1 it is caused by the
limited ranges of the input parameters. We find a high branching ratio of the two-body decay
close to the lower bound of the mass difference considered and a transition region where the
branching ratio decreases down to zero for increasing ∆m. This feature holds irrespective of
the actual values of the masses of the lightest up-type squark and the neutralino. It solely
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Figure 3.6: Relative importance of the two-body decay with respect to the four-body decay [21].

depends on the mass difference and the size of the flavor-changing elements in the squark
mixing matrix as explained above.

3.4. Conclusion
The consistent calculation of the four-body decay across the W boson threshold by means of
the Overall-Factor-Scheme shows, that the finite width of the W boson has a sizable effect
on the partial decay width close to the threshold. Hence, for calculations of branching ratios
in the investigated parameter region the four-body decay should be used rather than the
three-body decay. This holds especially in view of the results for the two-body decay at the
threshold, showing partial decay widths similar to the ones of the three- and four-body decay
mode, which increases the importance of small effects on the branching ratios. Nevertheless,
bearing in mind that the W boson can be on-shell above the threshold might be useful for
reconstruction purposes. Generally, we find that the flavor mixing has strong influence on
the phenomenology of the ũ1 decay. Depending on the actual scenario, the branching ratios
of all decay modes can vary from zero to one at the threshold, solely due to the size of the
flavor-changing matrix elements in the squark mixing matrix. Hence, complementary searches
have to be conducted in the two- and the four-body decay in order to cover the parameter
region around the W boson threshold. Hereby a large branching ratio of the two-body decay
potentially offers an alternative channel for studies in the threshold region. The impact of
branching ratios deviating from one on the exclusion bounds was recently confirmed by the
experimental analysis [54].
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4. Squark Gluino Production with Spin
Correlations at Next-to-Leading Order

In this chapter the squark gluino production is discussed. The inclusion of spin correlations
is an important feature considered in this work. To this end, in Sec. 4.1 the framework is
described, how this is accomplished in the combination of squark gluino production with the
decay of the gluino, followed by formulae for the gluino and the squark decay at LO. In
Sec. 4.2 the virtual corrections are described shortly, before focusing on the real corrections
to the production process in Sec. 4.3. Finally the implementation of the calculation in the
POWHEG− BOX and preliminary results are discussed in Secs. 4.4 and 4.5 before drawing a
conclusion in Sec. 4.6.
If not stated otherwise, q and q̃ in this chapter generally denote left- and right-handed quarks
and squarks of the first two generations and the quarks are treated as massless.

4.1. Framework at Leading Order
In order to combine the production and the decay of all particles in the squark gluino pro-
duction the NWA as described in Sec. 2.2.1 is used. Hence, the complete process is split
into three sub-processes: first, the squark gluino production qg −→ q̃g̃ with corresponding
Feynman diagrams at leading order in Fig. 4.1(a). Second, the squark decay into a quark of
the same flavor and the lightest neutralino q̃ −→ qχ̃0

1 (Fig. 4.1(b)), and third the gluino decay
into a squark and an antiquark of the same flavor g̃ −→ q̃q̄ (Fig. 4.1(c)). In the complete
process, the squark from the gluino decay decays further. Both squarks can be either left-
or right-handed. In the production and also the decays, antisquarks are considered as well,
but for simplicity only the processes with squarks are shown in Fig. 4.1. These processes are
calculated separately and plugged together according to Eq. (2.27) and Eq. (2.34) for the LO
and the NLO case, respectively. However, naively summing over final state polarizations in
the production and averaging over initial state polarizations in the decay of the gluino, spin
correlations between production and decay are lost. A convenient way of maintaining them
in a calculation using the NWA is given by employing helicity density matrices. In the next
subsection it is shown how helicity density matrices are used in this work, based on [145].
After that, the gluino decay will be evaluated at leading order to demonstrate the procedure
and its consequences by means of a short example.
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(a) Diagrams for the production sub-process qg −→ q̃g̃.
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cay g̃ −→ q̃q̄.

Figure 4.1: Generic diagrams for squark gluino production and the decays of the squark and gluino
at tree-level. Indices for chiralities and flavors are omitted for simplicity.

4.1.1. Helicity Density Matrices

Consider the squark gluino production at leading order where the gluino directly decays into
a squark and an antiquark with a total amplitudeMtot, ignoring the decays of the squarks
for the moment as shown in Fig. 4.2 (i.e. before factorizing production and decay for the
gluino). In order to separate the production and decay process, not only the denominator
of the gluino propagator is involved according to Eq. (2.26), but also the numerator has to
be factorized. In the matrix elementMtot for the diagram Fig. 4.2, the spin of the gluino is
consistently transferred from the production to the decay, encoded in the numerator of the

q

g

q

g̃

q̃

q̃′

q̄′

Figure 4.2: Tree-level Feynman diagram for squark gluino production with the decay of the gluino
directly attached. Indices for chiralities and flavors are omitted for simplicity.
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4.1. Framework at Leading Order 31

gluino propagator p/g̃ +mg̃. In the limit of Eq. (2.26) the total amplitude then takes the form

Mtot =MD̃(p/g̃ +mg̃)MP̃ , (4.1)

whereMP̃ ,D̃ are the remaining parts of the amplitude for the production of the squark and
the gluino and the decay of the gluino. In order to factorize this expression into production
and decay, the polarization sum for the gluino

p/g̃ +mg̃ =
∑
λ

u(pg̃, λ)ū(pg̃, λ) (4.2)

can be used, where u(pg̃, λ) is the u-spinor for the gluino with momentum pg̃ and helicity λ,
so that

Mtot =
∑
λ

MD̃u(pg̃, λ)ū(pg̃, λ)MP̃ . (4.3)

Identifying
MD̃u(pg̃, λ) =MD,λ (4.4)

and
ū(pg̃, λ)MP̃ =MP,λ , (4.5)

where MP (D),λ is the stand-alone matrix element for the production (decay) of the gluino
with helicity λ, we obtain

Mtot =
∑
λ

MD,λMP,λ . (4.6)

The amplitude squared then reads

|Mtot|2 =
∑
λ

MD,λMP,λ

∑
λ′

M†P,λ′M
†
D,λ′ (4.7a)

=
∑
λ,λ′

M†D,λ′MD,λ︸ ︷︷ ︸MP,λM†P,λ′︸ ︷︷ ︸ (4.7b)

=
∑
λ,λ′

(ρD)λ′,λ (ρP )λ,λ′ (4.7c)

= Tr{ρPρD} , (4.7d)

which defines the helicity density matrices for the production (decay) of the gluino ρP (D).
It is the coherent sum over the gluino helicities in production and decay in Eq. (4.6) and
its representation via the matrix product and the trace in Eq. (4.7d) which retains the spin
correlations. As shown in [145] an explicit evaluation of Eq. (4.7d) yields

|Mtot|2 = 1
2 |MP,0|2|MD,0|2

(
1 + Pµ

(
−gµν + pg̃µpg̃ν

m2
g̃

)
Dν

)
, (4.8)

where MP (D),0 and Pµ(Dµ) are the spin independent and spin dependent parts of the am-
plitude for the production (decay), respectively. These are defined by

|MP,λ|2 = 1
2 |MP,0|2

(
1 + s(λ)

µ Pµ
)
, (4.9a)

|MD,λ|2 = 1
2 |MD,0|2

(
1 + s(λ)

µ Dµ
)
, (4.9b)
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32 4. Squark Gluino Production with Spin Correlations at Next-to-Leading Order

where s(λ)
µ is the spin-four-vector corresponding to the spin of the gluino with helicity λ.

These formulations of the amplitudes for production and decay can be obtained through
projection on the gluino helicity by [145]

u(pg̃, λ)ū(pg̃, λ) = 1
2
(
1 + γ5s/

(λ)
)

(p/g̃ +mg̃) , (4.10)

instead of summing over the helicities. At NLO, the total matrix element squared is still
determined by Eq. (4.8), but all ingredients have to be determined at NLO. Also in the
virtual and real corrections the separation into a spin independent part and a spin dependent
part has to be done9. Since the amplitudes squared for the production including the spin
dependence are rather lengthy, no explicit formulae are provided here. Instead, explicit
relations with respect to the spin dependence for the gluino decay at LO are provided in the
next section.

4.1.2. Gluino Decay at Leading Order

It is instructive to see the application of Eqs. (4.8)-(4.10) in practice by the example of
an amplitude at tree-level. For simplicity, consider the amplitude squared for the decay
of a gluino into a left-handed squark q̃L and an antiquark q̄ corresponding to the diagram
Fig. 4.1(c) ∑

λq̄

|Mg̃→q̃Lq̄|
2 = g2

s

(
(pg̃pq̄)−mg̃(pq̄s(λ))

)
, (4.11)

where gs is the strong gauge coupling and pq̄ the four-momentum of the antiquark. The sum
indicates that it has already been summed over the helicities of the final state antiquark λq̄.
On the other hand it is not summed over the gluino helicities, but the projection Eq. (4.10)
has been used. This amplitude squared can now be split up into the spin dependent and spin
independent part according to Eq. (4.9b), resulting in

|MD,0|2 = 2g2
s(pg̃pq̄) , (4.12a)

Dµ = − mg̃

(pg̃pq̄)
pµq̄ . (4.12b)

After computing the amplitude squared for the squark gluino production similarly, the combi-
nation of production and decay Eq. (4.8) is obtained by replacing the spin-vector in Eq. (4.9a)
by

s(λ)
µ −→

(
−gµν + pg̃µpg̃ν

m2
g̃

)
Dν , (4.13)

where Dν is determined by Eq. (4.12b), and multiplying the result by |MD,0|2 given by
Eq. (4.12a). The result for the spin dependent part Eq. (4.12b) also holds when the gluino
decays into a right-handed antisquark. On the other hand, if it decays into a right-handed
squark, or a left-handed antisquark, the spin dependent part Eq. (4.12b) changes sign.
In order to understand the effect of incorporating the spin dependence in the calculation
consider the matrix element squared Eq. (4.11) in the rest frame of the gluino: choosing
the spin of the gluino as axis such that θ is the angle between the three-momentum of the

9In an implementation based on helicity amplitudes, rather than on analytic amplitudes squared, calculating
the total amplitude squared by a direct evaluation of Eq. (4.7d) can be more convenient than using Eq. (4.8).
In this work, analytic amplitudes squared are used for reasons given in Sec. 4.3.1.
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antiquark and the space-components of the spin vector, the second scalar product of Eq. (4.11)
for a massless antiquark with energy Eq̄ reads

(pq̄s(λ)) = −Eq̄ cos θ , (4.14)

since the time-component of the spin vector vanishes in the rest frame of the gluino [145].
Then Eq. (4.11) simplifies to∑

λq̄

|Mg̃→q̃Lq̄|
2 = g2

smg̃Eq̄(1 + cos θ) . (4.15)

The effect of the spin dependence explicitly taken into account is now solely contained in the
second term cos θ and leads to the following findings: the spin-contribution has no impact
on the total decay width, since in this case the matrix element squared is integrated over
the complete range of cos θ such that the second term has no effect as it is linear in cos θ.
By contrast, the second term leads to an angular modulation of the differential decay width
proportional to cos θ. This observation holds more generally: spin correlations do not affect
branching ratios and total cross sections, but influence kinematic distributions.

4.1.3. Squark Decay at Leading Order

The partial decay width for the squark decay q̃ −→ qχ̃0
1, where the squark can be either

left- or right-handed and of any light flavor is well known in the literature [146]. For the
implementation in the POWHEG− BOX the matrix element squared has to be separated from
the flux factor and the phase space. The only Feynman diagram contributing to the decay at
LO is shown in Fig. 4.1(b). The corresponding matrix element squared for a massless quark
in the final state, summed over the quark and neutralino helicities λq and λχ̃, is given by

∑
λqλχ̃

|Mq̃→qχ̃0
1
|2 = 4παm2

q̃

1−
m2
χ̃0

1

m2
q̃

 f2
L/R , (4.16)

where α is the electroweak fine-structure constant, mq̃ and mχ̃0
1
are the masses of the squark

and the lightest neutralino, respectively. The factor fL/R has to be chosen according to the
chirality of the squark,

fL =
√

2
[
eqN

′
11 + (Iq3 − eqs2

W ) 1
sW cW

N ′12

]
, (4.17)

fR = −
√

2
[
eqN

′
11 − eq

sW
cW

N ′12

]
. (4.18)

In the above equations eq is the charge of the quark q in units of the elementary charge, Iq3
is the third component of the isospin of the quark q and N ′11 and N ′12 are given by

N ′11 = cWN11 + sWN12 , (4.19)
N ′12 = −sWN11 + cWN12 , (4.20)

where N11 and N12 are elements of the neutralino mixing matrix and sW = sin θW and
cW = cos θW with θW being the weak mixing angle. As the squark is a scalar particle its
decay is isotropic and is not involved in the spin correlations.
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Figure 4.3: Example diagrams for virtual contributions to squark gluino production at the one-loop
level. Indices indicating chiralities or flavors have been omitted for better readability.
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4.2. Virtual Corrections
The virtual corrections have been calculated using the program packages FeynArts [147] and
FormCalc [148] by another team member, and will be explained here only briefly. Examples for
the three different types of virtual contributions are shown in Fig. 4.3. The corrections consist
of triangle and box contributions like Fig. 4.3(a) and Fig. 4.3(b), respectively, and self-energy
diagrams similar to the ones shown in Fig. 4.3(c). The regularization and renormalization
has been performed similarly to [149]. The divergences have been regularized by dimensional
regularization and in consequence a SUSY-restoring counterterm [25]

δĝs = δgs + αs
3π , (4.21)

where ĝs is the Yukawa coupling present in the squark quark gluino vertex and gs is the
strong gauge coupling, has been introduced for compatibility with supersymmetry. The
renormalization of the quark, squark and gluino fields and masses is performed in the on-
shell scheme, whereas the strong gauge coupling is renormalized in the MS scheme with five
active flavors. For details, see [149].
The spin correlations for the gluino included in this work can be incorporated in the Fortran
code for the one-loop corrections generated by FormCalc in a convenient way: in the sum
over helicities of the gluino performed in the code, a replacement similar to Eq. (4.13) can be
made.

4.3. Real Corrections
The computation of the real corrections to squark gluino production is a key ingredient to the
NLO corrections to squark gluino production including spin correlations. As will be explained
in detail in Secs. 4.3.1 and 4.3.2 care has to be taken in the calculation due to intermediate
resonances and fermion-number-violating interactions. Issues connected to gauge invariance
of the amplitudes are discussed in Sec. 4.3.3.

4.3.1. On-Shell Subtraction

The real corrections to squark gluino production result from radiation of a gluon or a massless
quark. Consequently, the real corrections to the production of a left-handed squark with flavor
i, q̃iL, and a gluino from a quark qi and a gluon, qig −→ q̃iLg̃, consist of the sub-processes

qi + g −→ q̃iL + g̃ + g , (4.22)
g + g −→ q̃iL + g̃ + q̄i , (4.23)
qi + q̄i −→ q̃iL + g̃ + q̄i , (4.24)
qi + qi −→ q̃iL + g̃ + qi , (4.25)
qi + q̄j −→ q̃iL + g̃ + q̄j , i 6= j , (4.26)
qi + qj −→ q̃iL + g̃ + qj , i 6= j , (4.27)
qj + q̄j −→ q̃iL + g̃ + q̄i , i 6= j . (4.28)

The flavor indices indicate, that the quark or squark is of flavor i or j, respectively, where
i, j = u, d, s, c. The corresponding sub-processes for producing a right-handed squark q̃iR are
the same and the channels for antisquarks are obtained by replacing quarks and squarks by
their respective antiparticles. The channels Eq. (4.22) and Eq. (4.23) are related by cross-
ing symmetry, as well as the channels Eq. (4.24) and Eq. (4.25). The channel Eq. (4.26)
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36 4. Squark Gluino Production with Spin Correlations at Next-to-Leading Order

comprises only the subset of diagrams of channel Eq. (4.24), where the two initial quarks
are disconnected in flavor space, channel Eq. (4.27) is obtained via crossing from Eq. (4.26).
The last channel Eq. (4.28) is the disjoint subset of the diagrams of channel Eq. (4.24) in
comparison to the subset needed for channel Eq. (4.26), i.e. all diagrams from Eq. (4.24)
where the initial quarks are connected in flavor space10. Hence, in the calculation only the
channels Eq. (4.23) and Eq. (4.24) were calculated explicitly and all others were derived as
described above. The Feynman diagrams for the gluon gluon channel Eq. (4.23) are presented
in Fig. 4.4. In Fig. 4.4(a) the diagrams with an intermediate gluino resonance are collected, in
Fig. 4.4(b) the diagrams with an intermediate squark resonance, and the diagrams depicted
in Fig. 4.4(c) do not involve any intermediate resonance. The Feynman diagrams for the
quark antiquark channel Eq. (4.24) are shown in Fig. 4.5. Analogous to the case of the gluon
gluon channel also here a classification into diagrams with an intermediate gluino resonance in
Fig. 4.5(a), diagrams with intermediate squark resonance Fig. 4.5(b), and diagrams without
any resonance in Fig. 4.5(c) has been made. An important feature of the quark antiquark
channel is that there are diagrams involving an intermediate squark whose chirality is inde-
pendent of the chirality of the external squark. This is the case for the diagramsM2 -M5
in Fig. 4.5(a), for the diagrams M7 and M8 of Fig. 4.5(b), and for the diagrams M10 and
M11 of Fig. 4.5(c). Consequences of this will be discussed in Sec. 4.3.2.
The intermediate resonances present in Figs. 4.4(a), 4.4(b), 4.5(a) and 4.5(b) are problematic
if the kinematic situation allows for the intermediate particle to be on its mass shell. For
instance, the intermediate gluino in M1 of Fig. 4.4(a) can be on-shell (OS) if mq̃iL < mg̃

and if the center-of-mass energy allows for the production of two OS gluinos. In this case,
the gluino propagator becomes divergent, which is why these divergences are called on-shell
singularities (OSS). From a different point of view, this OS resonance can be regarded as
gluino pair production, followed by the decay of one gluino at leading order. The resonant
contribution is hence already taken into account in the calculation for gluino pair produc-
tion. In order to avoid double counting of this contribution, it has to be subtracted properly
in the calculation of squark gluino production. Similar OS contributions which are already
taken into account in the calculation of different production processes arise also from OS
squarks, and are present for all channels of the real corrections except the quark gluon chan-
nel Eq. (4.22). The OSS occurring in the production of a left-handed squark q̃iL and a gluino
are summarized in Tab. 4.1. While the channel is indicated in the first column, in the sec-
ond column the process that already covers the resonant contribution is stated. In the third
column the diagrams developing the OSS are listed. For OSS stated in channels derived by
crossing, the diagrams are those which develop an OSS after crossing. In the last column
the kinematic constraint is provided, which decides on whether the OSS can develop or not.
Apparently there can be OSS stemming from gluino pair production (g̃g̃ production), squark
pair production of same flavors and chiralities (q̃iLq̃iL production), squark antisquark pro-
duction of same flavor and chiralities (q̃iLq̃∗iL production) and the corresponding channels for
mixed flavors and chiralities.
The occurrence of these OSS is not a unique feature of squark gluino production but has been
studied already for tW production in the SM [150, 151], for the production of neutralinos and
charginos [152] or squarks and gluinos [25, 31, 34, 35]. The existing methods for subtracting
the OS contributions used in these works on the one hand differ in how a regulator is intro-
duced to the resonant amplitudes in order to regularize the singularities and on the other
hand they subtract different contributions. In [34] and [149] a detailed analysis of existing
methods has been performed, together with the proposal for a new procedure to treat the

10Alternatively, channel Eq. (4.28) can also be obtained from channel Eq. (4.27) by crossing.
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Figure 4.4: Feynman diagrams contributing to the sub-process g + g −→ q̃iL + g̃ + q̄i, Eq. (4.23), of
the real corrections to squark gluino production.
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Figure 4.5: Feynman diagrams contributing to the sub-process qi + q̄i −→ q̃iL + g̃ + q̄i, Eq. (4.24),
of the real corrections to squark gluino production.
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Channel OSS stemming from Diagrams Kinematic Constraint

Eq. (4.23): g + g q̃iLq̃
∗
iL production 4, 5, 6, 7 mg̃ < mq̃iL

g̃g̃ production 1, 2, 3 mq̃iL < mg̃

Eq. (4.24): qi + q̄i g̃g̃ production 1, 2, 3, 4, 5 mq̃iL < mg̃

q̃iLq̃
∗
iL production 6, 7 mg̃ < mq̃iL

q̃iLq̃
∗
iR production 8 mg̃ < mq̃iR

Eq. (4.25): qi + qi q̃iLq̃iL production 4,10 mg̃ < mq̃iL

q̃iLq̃iR production 5,11 mg̃ < mq̃iR

Eq. (4.26): qi + q̄j q̃iLq̃
∗
jL production 7 mg̃ < mq̃jL

q̃iLq̃
∗
jR production 8 mg̃ < mq̃jR

Eq. (4.27): qi + qj q̃iLq̃jL production 10 mg̃ < mq̃jL

q̃iLq̃jR production 11 mg̃ < mq̃jR

Eq. (4.28): qj + q̄j g̃g̃ production 1, 2, 3, 4, 5 mq̃iL < mg̃

q̃iLq̃
∗
iL production 6 mg̃ < mq̃iL

Table 4.1: Overview of OSS in the real corrections to q̃iLg̃-production. The diagram numbers refer
to the numbers indicated in Fig. 4.4 for the gluon gluon channel and to Fig. 4.5 for the other channels.

OSS. For convenience, the major facts are summarized in the following.
In general, the amplitude for a specific channel of the real corrections to squark gluino pro-
ductionMtot can always be decomposed as

Mtot =Mr +Mnr , (4.29)

whereMr comprises all diagrams which develop an OSS and other diagrams are collected in
Mnr. Following [149], the different methods can then be classified as follows:

• Diagram Removal Type I (DRI): this method amounts to neglecting all resonant dia-
grams, such that |Mtot|2 = |Mnr|2.

• Diagram Removal Type II (DRII): in this case the interference terms of resonant and
non-resonant contributions are kept as well, so |Mtot|2 = |Mnr|2 + 2Re(MnrM∗r ).

• Diagram Subtraction (DS): here, a counterterm is constructed which subtracts only the
resonant part of the amplitude pointwise in phase space but retains off-shell contribu-
tions from |Mr|2. To that end, a regulator Γreg is introduced to the resonant amplitudes.
For the counterterm the original momenta of the particles are remapped to a kinematic
configuration where the intermediate particle is OS via a Catani-Seymour remapping
[153]. The counterterm then subtracts from the total amplitude the contribution re-
sulting from the resonant amplitudes evaluated at the remapped configuration.

The first two methods DRI and DRII spoil gauge invariance since they only take into account
a subset of diagrams, or neglect parts of the amplitude squared. Whether the DS method is
gauge-invariant or not depends on how the regulator is introduced. In [31, 152] the regulator
is introduced at the amplitude level by replacing the denominator of the propagator that
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40 4. Squark Gluino Production with Spin Correlations at Next-to-Leading Order

leads to the singularity by
(pq̃iL + pq̄i)2 −m2

g̃ −→ (pq̃iL + pq̄i)2 −m2
g̃ + img̃Γreg (4.30)

for the example of the gluino resonance present for instance in the diagrams of Fig. 4.4(a),
where pq̃iL and pq̄i are the momenta of the external squark and antiquark, respectively11.
This variant is, however, not gauge-invariant for Γreg 6= 0, but only in the limit Γreg → 0. A
fully gauge-invariant OS subtraction scheme, called DS∗, has been pioneered in [34, 35, 149].
Here, the regulator is introduced at the amplitude squared level after expanding the entire
amplitude in a non-redundant set of kinematic invariants. This is motivated by the fact, that
each type of OSS always develops in a single kinematic invariant, defined by the denominator
of the propagator developing the OSS. Namely, the gluino resonance in the real corrections
Eq. (4.23) and Eq. (4.24) always develops in the invariant

dg̃ = (pq̃iL + pq̄i)2 −m2
g̃ (4.31)

in the limit dg̃ → 0. Expanding the entire amplitude squared in this invariant results in
a power series, where each order is independently gauge-invariant [34, 149]. The difference
between the DS and DS∗ method is that the term of O(d−2

g̃ ) in the expansion is not necessarily
the same as |Mr|2, which is used to determine the counterterm in the DS method. This is the
case if the numerator of |Mr|2 contains an implicit dependence on dg̃, for example brought
about by scalar products like

(pq̃iLpq̄i) = 1
2(dg̃ +m2

g̃ −m2
q̃iL

) , (4.32)

where mq̃iL is the mass of the squark q̃iL. Then |Mr|2 implicitly contains terms of O(d−1
g̃ ).

Introducing the regulator not at the amplitude level, but at the amplitude squared level
and constructing the counterterm from the term of O(d−2

g̃ ) in the proper expansion in the
invariant dg̃ preserves gauge invariance [34, 149].

In order to make the gauge-invariant method DS∗ applicable, analytic amplitudes squared
are required to allow for the expansion in kinematic invariants. To that end, the calculation
of the amplitudes squared for the real corrections to squark gluino production has been
performed by hand and traces of γ-matrices have been evaluated using FeynCalc [154]. The
spin dependence of the amplitudes has been taken into account similarly to the case at leading
order described in Sec. 4.1.

4.3.2. Left- and Right-Handed Squarks and Fermion-Number-Violating In-
teractions

Since the calculation of the amplitudes squared including the spin dependence by hand pro-
vides many sources of mistakes and hence requires diligence, it is convenient to reduce the
number of amplitudes which have to be calculated to a minimum amount. Hence only the
channels Eq. (4.23) and Eq. (4.24) were calculated and all other channels have been obtained
via subsets of diagrams and crossing symmetry as stated in 4.3.1. While from Sec. 4.1.2
one could conclude that it is sufficient to calculate the amplitude squared for producing a
left-handed squark and to obtain the amplitude for a right-handed squark by changing the
sign of the spin dependent part, this is not true in general for the real corrections.
In order to clarify this, consider the subset M2, M3, M6, M10, M11 of the diagrams in
Fig. 4.5. According to the projection operators at the squark quark gluino vertices it can be
figured out, which helicities of the external quarks contribute to the amplitude, leading to
the results shown in Tab. 4.2. Since ū(p, λ)u(p, λ′) ∝ δλλ′ there is no interference between
11Note, that intentionally not the physical width of the gluino is inserted, but a regulator width Γreg.
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Diagram Helicity of initial qi Helicity of initial q̄i Helicity of final q̄i

M2 - + +
M3 + - +
M6 0 0 +
M10 - + +
M11 - - -

Table 4.2: Helicities of the external quarks contributing to the amplitude for the diagrams indicated
in the first column for the process qi+ q̄i −→ q̃iL+ g̃+ q̄i, Eq (4.24). A ’+/−’ means positive/negative
helicity, a ’0’ means that both contribute. For massless quarks holds u(p, λ) = v(p,−λ) [145].

Diagram Helicity of initial qi Helicity of initial q̄i Helicity of final q̄i

M2 - + -
M3 + - -
M6 0 0 -
M10 + + +
M11 + - -

Table 4.3: Helicities of the external quarks contributing to the amplitude for the diagrams indicated
in the first column for the process qi + q̄i −→ q̃iR + g̃ + q̄i, which is the process corresponding to
Eq. (4.24) with a right-handed squark. A ’+/−’ means positive/negative helicity, a ’0’ means that
both contribute. For massless quarks holds u(p, λ) = v(p,−λ) [145].

diagrams with different helicities. As a consequence the interference termsM2M∗6, M3M∗6
andM6M∗10 are non-zero, whereasM6M∗11 = 0. Similarly there is no interference between
diagrams 10 and 11, and between 2 and 3, butM2M∗10 6= 0. Likewise all different combina-
tions of diagrams can be analyzed on their helicity structure to see how they contribute to
the process. For comparison, consider the helicities of these diagrams, when a right-handed
squark is produced instead of a left-handed one in Tab. 4.3. Here, for each amplitude one
helicity has changed with respect to the ones for the q̃iL, resulting in different vanishing or
non-vanishing combinations: in contrast to the q̃iL case nowM6M∗10 = 0 butM6M∗11 6= 0.
The interference between diagram 2 and 10 is still present though. In total this shows that
depending on the chirality of the external squark different interference terms contribute.
However, it is not true, that always only one type of internal squarks gives non-vanishing
contributions so that a simple replacement of L ↔ R could be executed in the amplitudes,
but both contribute in separate interferences. In general the left- and right-handed squarks
are not degenerate in mass and hence the propagator of a left-handed squark is not equal to
the one of a right-handed squark. This renders the total amplitude and in particular its spin
dependent part different if a right-handed squark is produced instead of a left-handed one.
Only in the limit of degenerate squark masses the difference reduces to a global sign of the
spin dependent part as seen at leading order in the gluino decay. Producing a left-handed
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42 4. Squark Gluino Production with Spin Correlations at Next-to-Leading Order

ūqj2Γuqi ūg̃Γuqj1 ūg̃Γuqi ūqj2Γuqj1 v̄qj1Γuqi ūg̃Γvqj2
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v̄qiΓvqj2 v̄qj1Γvg̃ v̄qiΓvg̃ v̄qj1Γvqj2 v̄qiΓuqj1 ūqj2Γvg̃
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Figure 4.6: Diagrams for the sub-process qi + qj1 −→ q̃iL + g̃ + qj2. The diagrams differing only
in the chirality of the internal squark are collected and different spinor combinations for the external
fermions according to the orientation of the fermion flows are provided below the diagrams.

antisquark instead of a squark results in the same pattern as indicated in Tab. 4.2, but with
opposite helicities. Hence the analytical structure of the amplitude squared is equal to the
one for a squark, but the overall change of helicities translates into the opposite helicity of
the gluino being projected out. The net effect is that the spin dependent part changes sign
with respect to the amplitude squared for a squark. The same holds for the transition from
a right-handed squark to a right-handed antisquark. At leading order and for the channels
Eq. (4.22) and Eq. (4.23) this complication does not occur, since there exists only one single
fermion chain and no internal squark whose chirality is detached from the chirality of the
external squark.

Due to the Majorana nature of the gluino the squark quark gluino vertex is a fermion-
number-violating interaction. Feynman rules for fermion-number-violating interactions have
been derived in [155, 156] and have to be applied here. This amounts to assigning to each
fermion line a new continuous fermion flow and applying appropriate Feynman rules for the
chosen orientation of the fermion flow for vertices, propagators and external legs. Hence, for
each fermion line in a diagram, there are two possibilities to derive the amplitude. For the
quark-initiated channel, Eq. (4.24), this results in four different expressions for the amplitude
of a single diagram. To clarify this point, in Fig. 4.6 the diagrams for the quark-initiated
channel, Eq. (4.27), are displayed. These diagrams correspond to diagrams M7 and M8 of
Fig. 4.5(b) and diagrams M10 - M14 of Fig. 4.5(c), and the diagrams only differing in the
chirality of the internal squark have been gathered, such that the internal squark can be
either left- or right-handed, denoted by q̃jL/R. In order to distinguish between the initial
and final quark of flavor j, the initial quark is called qj1 and the final one qj2, respectively.
According to the orientation of the fermion flow, the external particles are represented by
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either u- or v-spinors. From the formulae below the diagrams, for each diagram the four
different representations can be read off: the upper and lower term on the left-hand side of
the curly brackets correspond to the resulting expressions for the one fermion chain for both
orientations of the fermion flow, the upper and lower term on the right-hand side correspond
to the two orientations of the fermion flow for the second fermion chain. While the spinors
for the particle a with momentum pa and helicity λa are denoted explicitly by ua := u(pa, λa)
and va := v(pa, λa), all remainders of the amplitude are collected in the generic variable Γ 12.
For each diagram any concatenation of a term on the left-hand side of the curly brackets with
one term on the right-hand side of the brackets leads to a valid expression for the amplitude.
For the analytic calculation of the interference terms, one has to make sure that from the
four possible expressions for each of the single amplitudes, the ones are picked which lead to a
common spinor representation of each particle. For example for the interference term between
the upper left and middle diagram in Fig. 4.6 for both diagrams one can choose the upper
term on both sides of the curly brackets, since then all particles are described by u-spinors
in both amplitudes. Similarly one could also choose the lower terms on both sides of the
brackets for both diagrams. However, any other combination is not possible for the analytic
calculation since then a single particle is represented by a v-spinor in the one amplitude,
but by a u-spinor in the other amplitude. For the interference term between the upper left
and the upper right diagram of Fig. 4.6, one could choose either the upper left and lower
right term, or the lower left and upper right term in both amplitudes for a valid description.
Other combinations mix u- and v-spinors. The reason for the different combinations to be
compatible or not lies in the distinct connections of external fermions by the fermion chains.
In the upper left diagram qi is connected to qj2, in the middle it is connected to the gluino and
on the right to the other quark qj1. To summarize, for each interference term being calculated
suitable individual choices for the orientations of the fermion flows have to be made for the
two amplitudes involved.
It turns out, that two different combinations of fermion flows are sufficient for each diagram
to cover all interference terms. In the gluon-initiated channel and the leading order diagrams
there is only a single fermion line involved such that the fermion flow can be fixed once and
for all.

In total, a calculation of the quark-initiated real corrections, Eq. (4.24), has been performed
for a left-handed squark and a right-handed squark and for two different orientations of the
fermion flows, the gluon-initiated channel, Eq. (4.23), and the leading order amplitudes were
calculated only for a left-handed squark for one orientation of the fermion flow. All remaining
chiralities and the amplitudes for antisquarks have been obtained by appropriate changes of
the sign of the the spin dependent parts.

4.3.3. Gauge Invariance for Amplitudes with Two External Gluons

Slavnov-Taylor identities offer a test of gauge invariance and unitarity of the S matrix (see
for example [157]). Thereby they also help to ensure that only the physical states of quantum
fields contribute to the scattering amplitude. In the channels Eq. (4.22) and Eq. (4.23) this is
of particular interest as the non-abelian nature of QCD encoded in the SU(3) symmetry can
lead to unphysical longitudinal polarization states of the gluons. To subtract these unphysical
states one can either calculate and subtract the corresponding ghost contribution or choose
the polarization sums for the external gluons such that only the physical modes remain. Here,
12Note, that these remainders are not identical for the different diagrams and fermion flows, but still we denote

them collectively by Γ for better readability and since the exact expressions do not matter for the current
explanation.
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44 4. Squark Gluino Production with Spin Correlations at Next-to-Leading Order

we focus on the gluon gluon channel Eq. (4.23) which was calculated explicitly.
Let the momentum and color of the first gluon be k1 and a, respectively, and the ones for the
second gluon k2 and b. Stripping off the polarization vectors for the gluons, the amplitude
for this process can be denoted by Mab

µν and the corresponding ghost contribution by Gab.
From the unitarity of the S-matrix one can derive the condition that [157]

Mab
µνMab∗

µ′ν′g
µµ′gνν

′ − 2GabGab∗ =Mab
µνMab∗

µ′ν′P
µµ′(k1)P νν′(k2) , (4.33)

where gµµ′ is the Minkowski metric and Pµµ′(k1) and P νν′(k2) are the polarization sums for
the external gluons only accounting for the physical modes. The left-hand side of Eq. (4.33)
corresponds to using the simple polarization sum over physical polarizations λphys∑

λphys

εµ∗(ki)εν(ki) = −gµν , (4.34)

with the polarization vectors εµ(ki) for i = 1, 2, known from QED. Thereby in a first step
the unphysical polarization states are not treated properly. They are then canceled explicitly
by subtracting the ghost amplitude squared incoherently. On the right-hand side, unphysical
polarizations of the external gluons are directly avoided by summing over physical states only
by the correct polarization sums Pµµ′(k1) and P νν′(k2). Following [157], in this section we
will show the equality of both approaches by Slavnov-Taylor identities and discuss possible
advantages and disadvantages of the methods.

The polarization sums of axial type on the right-hand side of Eq. (4.33) are given by

Pµµ
′(k1) = −gµµ′ + kµ1n

µ′

1 + kµ
′

1 n
µ
1

(k1n1) − n2
1k
µ
1k

µ′

1
(k1n1)2 ,

P νν
′(k2) = −gνν′ + kν2n

ν′
2 + kν

′
2 n

ν
2

(k2n2) − n2
2k
ν
2k

ν′
2

(k2n2)2 ,

(4.35)

where n1 and n2 are arbitrary four-vectors fulfilling

ni · εi(ki) = 0 and ni · ki 6= 0 . (4.36)

It directly follows that ni must not be proportional to ki. For the polarization vectors εi we
have

ki · εi(ki) = 0 . (4.37)

Transversality of the polarization sums Eq. (4.35) can be shown by contraction with the
corresponding momenta. Comparing the left- and right-hand side of Eq. (4.33) apparently
the terms involving the vectors ni in the polarization sums Eq. (4.35) must account for the
ghost part on the left-hand side of Eq. (4.33). To verify this explicitly, contractions of the
amplitudesMab

µν andMab∗
µ′ν′ with these terms have to be calculated. In that context, the two

contractions kµ1Mab
µν and Mab

µνk
ν
2 are of particular interest and are given by Slavnov-Taylor

identities [157]

kµ1M
ab
µν = −iGabk2ν , (4.38)

Mab
µνk

ν
2 = −iGabk1µ . (4.39)

Moreover, choosing light-like vectors ni such that n2
i = 0, i = 1, 2, removes the last term in

the sums Eq. (4.35) and simplifies the calculation. With this simplification the right-hand
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side of Eq. (4.33) is given by

MµνM∗µ′ν′Pµµ
′(k1)P νν′(k2) (4.40a)

=MµνM∗µ′ν′
(
−gµµ′ + kµ1n

µ′

1 + kµ
′

1 n
µ
1

(k1n1)

)(
−gνν′ + kν2n

ν′
2 + kν

′
2 n

ν
2

(k2n2)

)
(4.40b)

=MµνM∗µ′ν′
(
gµµ

′
gνν

′ − gµµ′ k
ν
2n

ν′
2 + kν

′
2 n

ν
2

(k2n2)︸ ︷︷ ︸
I µµ′νν′

1

− gνν′ k
µ
1n

µ′

1 + kµ
′

1 n
µ
1

(k1n1)︸ ︷︷ ︸
I µµ′νν′

2

+ kµ1n
µ′

1 + kµ
′

1 n
µ
1

(k1n1)
kν2n

ν′
2 + kν

′
2 n

ν
2

(k2n2)︸ ︷︷ ︸
I µµ′νν′

3

)
,

(4.40c)

where the color indices a and b have been omitted for simplicity. The first term in the bracket
of Eq. (4.40c) can be identified with the first term on the left-hand side of Eq. (4.33). With
the help of Eqs. (4.38) and (4.39) the contraction of the matrix elements with I1 is computed
as

MµνM∗µ′ν′I
µµ′νν′

1 =MµνM∗µ′ν′gµµ
′ kν2n

ν′
2 + kν

′
2 n

ν
2

(k2n2) (4.41a)

= (−iGk1µ)M∗µν′nν
′

2
(k2n2) + Mµν(+iG∗kµ1 )nν2

(k2n2) (4.41b)

= −iG(+iG∗k2ν′)nν
′

2
(k2n2) + iG∗(−iGk2ν)nν2

(k2n2) (4.41c)

= (GG∗ + G∗G)(k2n2)
(k2n2) (4.41d)

= 2GG∗ . (4.41e)

Likewise also the contraction of the matrix elements with I2 of Eq. (4.40c) can be evaluated
and results in

MµνM∗µ′ν′I
µµ′νν′

2 = 2GG∗ . (4.42)

Focusing only on the numerators first, the computation of the four terms resulting from the
last term in the bracket of Eq. (4.40c) yields

MµνM∗µ′ν′k
µ
1n

µ′

1 k
ν
2n

ν′
2 = −iGk2νk

ν
2M∗µ′ν′n

µ′

1 n
ν′
2

= 0 ,
(4.43)

MµνM∗µ′ν′k
µ
1n

µ′

1 k
ν′
2 n

ν
2 = −iGk2νn

µ′

1 (+iG∗k1µ′)nν2
= GG∗(n1k1)(n2k2) ,

(4.44)

MµνM∗µ′ν′k
µ′

1 n
µ
1k

ν
2n

ν′
2 = −iGk1µ(+iG∗k2ν′)nµ1nν

′
2

= GG∗(k1n1)(k2n2) ,
(4.45)

MµνM∗µ′ν′k
µ′

1 n
µ
1k

ν′
2 n

ν
2 =Mµνk

µ′

1 n
µ
1 (+iG∗k1µ′)nν2

= 0 ,
(4.46)

where in Eqs. (4.43) and (4.46) it has been used that the external gluons are on-shell. Hence
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Figure 4.7: Diagrams for the unphysical process ζ + ζ̄ −→ q̃iL + g̃ + q̄i.

the contraction of the matrix elements with I3 results in

MµνM∗µ′ν′I
µµ′νν′

3 = GG
∗(n1k1)(n2k2) + GG∗(k1n1)(k2n2)

(k1n1)(k2n2) (4.47)

= 2GG∗ . (4.48)

Altogether we find for Eq. (4.40)

MµνM∗µ′ν′Pµµ
′(k1)P νν′(k2) =MµνM∗µ′ν′

(
gµµ

′
gνν

′ − 2GG∗ − 2GG∗ + 2GG∗
)

(4.49)

=MµνM∗µ′ν′
(
gµµ

′
gνν

′ − 2GG∗
)
, (4.50)

which proves that the polarization sums Eq. (4.35) with n2
1 = n2

2 = 0 satisfy Eq. (4.33). Since
the contractions of the matrix elements with I1 and I2 lead to the same result, one of them
is already sufficient to fulfill Eq. (4.33), meaning that in the polarization sums Eq. (4.35) the
second term is required only for one of the polarization sums. If both are taken into account,
the contribution of one of them is canceled by the contraction of the matrix elements with I3.
Hence, the only choice to be made is to define either n1 or n2. The verification of Eq. (4.33)
shown above only requires the second condition of Eq. (4.36) to hold. Accordingly, it is
possible to set nµ1 = kµ2 or nµ2 = kµ1 . This is advantageous as no new four-vector is introduced
which would lead to new contractions with momenta in the matrix element squared. The
polarization sums then read

Pµµ
′(k1) = −gµµ′ + kµ1k

µ′

2 + kµ
′

1 k
µ
2

(k1k2) ,

P νν
′(k2) = −gνν′ .

(4.51)

As explained above alternatively the unphysical degrees of freedom can be canceled explicitly
by subtracting the ghost contribution. In the case of the gluon gluon channel the latter is
given by the unphysical process of two ghosts ζ producing the squark, the antiquark and the
gluino. Working in Feynman gauge for the internal gluon, the only interaction of physical
particles with ghosts is given by the ghost ghost gluon vertex and only the diagrams with
a triple gluon vertex can be converted into diagrams contributing to the ghost amplitude.
These are the diagrams M1, M5 and M8 of Fig. 4.4 and the resulting ghost diagrams are
presented in Fig. 4.7. Also the calculation of the matrix element Mab

µν can be performed
in Feynman gauge, where the numerator of the gluon propagator takes a simple form. The
amplitude squared for the process Eq. (4.23) is then given by the left-hand side of Eq. (4.33).

Both approaches have been implemented and have been used as cross-check. Note, that
if a regulator width Γreg is introduced at the amplitude level for regularizing an OSS, the
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two methods do not give identical results any more. Only in the limit Γreg −→ 0 they are
equivalent. Although the polarization sums Eq. (4.51) are much simpler than the general ones
Eq. (4.35), still the resulting amplitudes squared for the calculation with physical polarization
sums are much longer than the amplitudes squared obtained with the calculation with ghosts.
However, since for the OS subtraction explained above the amplitudes are split in resonant and
non-resonant parts and depending on the subtraction method several parts of the amplitude
squared are dropped, one has to make sure that the cancelation of the unphysical polarizations
is still intact as there are OS resonances also in the ghost process. Therefore in order to be
on the safe side the matrix element squared computed according to the right-hand side of
Eq. (4.33) with the polarization sums Eq. (4.51) has been used for the implementation and
the results. For internal gluons the Feynman gauge has been used13.
The entire calculation of the amplitude squared for the real corrections to squark gluino
production has been checked against an independent calculation of a team member. Moreover,
numerical checks against results obtained by FeynArts and FormCalc have been performed
for the spin independent part. Due to their length, we do not show explicit formulae for the
amplitudes squared for the real corrections with spin dependence here.

4.4. Implementation in the POWHEG-BOX
The process has been implemented in the POWHEG− BOX [38], which has been introduced in
Sec. 2.2.2. The implementation of the production process with the gluino decay at LO has
been performed according to the procedure explained in Sec. 4.1.1 and Sec. 4.1.2. Addition-
ally, the amplitude for the squark decay presented in Sec. 4.1.3 has been implemented in order
to complete the decay chain. The total decay widths of squarks and gluinos at LO which are
required for the correct application of the NWA explained in Sec. 2.2.1 are computed with
routines from SDECAY [158]. These routines can also be used to calculate the decay widths
at NLO as required for the NLO computation. After implementing all amplitudes for the
LO process as explained above, as well as the virtual and real corrections for the production
process, spin and color correlated matrix elements which occur in the soft and collinear limits
of the real amplitudes squared have been derived and implemented. The color correlated
Born amplitudes are given by [38]

Bij = −N
∑
s,c

M{ck}
(
M†{ck}

)
ci→ci′
cj→cj′

T acici′T
a
cjcj′

, (4.52)

where N is a factor collecting all contributions from spin and color averaging, the sum runs
over all spins s and colors c and {ck} denotes all color indices in the Born matrix elements
M. The minus sign is a convention of the POWHEG− BOX. The generators T acici′ depend on the
SU(3) representation of the ith particle, namely T acb = ifcab for particles in the adjoint repre-
sentation, like gluons or gluinos, where fabc are the structure constants of SU(3). For incoming
particles and outgoing antiparticles in the fundamental representation (quarks, squarks) we
have T aαβ = taαβ and for incoming antiparticles and outgoing particles T aαβ = −taβα where taαβ
are the color matrices in the fundamental representation of SU(3). This means that the color
correlated matrix elements are given by the usual Born matrix elements squared with a color
factor modified according to Eq. (4.52). They have been derived both for the production
process and the decays. The spin correlated matrix elements must not be confused with the
spin correlations between production and decay of the gluino which we investigate here. The
13The tensorMµν is a gauge-invariant quantity, so the gauge for the internal gluons can be chosen indepen-

dently of the polarization sums.
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spin correlated Born amplitudes are defined by [38]

Bµνj = N
∑

{s},sj ,sj′
color

M({s}, sj)M†({s}, sj′)εµ∗(sj)εν(sj′) , (4.53)

with sj denoting the spin of the jth gluon and {s} all other spins, respectively, and N is the
normalization factor covering spin and color averages. The polarization vectors εµ(sj) are
normalized by

gµνε
µ∗(sj)εν(sj′) = −δsjsj′ , (4.54)

such that
gµνBµνj = −B , (4.55)

where B denotes the Born matrix element squared. A check for the correctness of the spin-
and color correlated matrix elements is provided by verifying the cancelation of all soft and
collinear divergences resulting from the real corrections. This is done automatically by the
POWHEG− BOX.
Furthermore, a parametrization of the phase space for the leading order process has been
implemented, which takes random numbers as inputs and defines all kinematics of the process
accordingly. Starting from this Born phase space, the phase space for the real emission is
constructed automatically by the POWHEG− BOX. As explained in [34, 149] this leads to two
problems for the OS subtraction using the DS method. First, in this way the resonances in
the real emission amplitudes are not sampled efficiently and second, the phase space which
is remapped to the OS kinematics in the OS subtraction counterterm requires a modified
Jacobian factor, which cannot be accomplished easily in the construction of the phase space
by the POWHEG− BOX. A solution to these problems was invented in [34, 149] and taken up in
[152]. There, the amplitudes squared of the real corrections are split into parts containing OS
resonances and parts without resonances. The parts with resonances are integrated separately,
while the non-resonant parts are integrated by the usual POWHEG− BOX routines. The separate
integration is tailored to the resonance structure and allows for the modified Jacobian of
the phase space. This splitting is possible as the resonant parts do not contain infrared
singularities which have to be treated by the FKS subtraction scheme implemented in the
POWHEG− BOX. However, this solution requires major modifications of the source code of the
POWHEG− BOX because a new part of the cross section has to be defined, where the resonant
parts are integrated separately, and which is added to the result in the end. While the
virtual and real corrections described above have already been implemented the necessary
modifications and implementations for the OS subtraction have not been adapted to squark
gluino production yet.

The implementation has been accompanied by a documentation using Doxygen [159], which
can provide assistance for future developments. A description of this together with basic in-
formation on input variables for the POWHEG− BOX is provided in App. A. The implementation
of the LO process has been checked by independent calculations and implementations. Also
the implementation of the real corrections in the POWHEG− BOX has been cross-checked by
another team member and by results from FeynArts and FormCalc for the spin independent
part.

4.5. Results
Since the full implementation of squark gluino production including the OS subtraction and
the decays is not yet complete, we provide results at parton level for the calculation at
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Scenario m0 [GeV] m1/2 [GeV] A0 [GeV] tan β

A 1000 1200 -2000 30
B 1600 1400 -3200 30

Table 4.4: Input parameters for the two test scenarios A and B. In both scenarios we set µ > 0.

Particle mass Scenario A Scenario B

mũL ≈ mc̃L [GeV] 2466 3043
md̃L

≈ ms̃L [GeV] 2467 3044
mũR ≈ mc̃R [GeV] 2379 2949
md̃R

≈ ms̃R [GeV] 2369 2938
mg̃ [GeV] 2544 2968

Table 4.5: Masses oft left- and right-handed squarks of the first two generations and the gluino for
the test scenarios A and B.

LO which serve as a proof of principles for the spin correlations captured by the procedure
explained in Sec. 4.1.1.
For these demonstration purposes we choose two different scenarios A and B in the MSSM
using the mSUGRA mechanism (cf. Sec. 2.1). The input parameters of the scenarios are
presented in Tab. 4.4. These parameters are read in by the spectrum generator SPheno to
generate the complete particle spectrum. The electroweak fine-structure constant αMS(MZ)
and the strong coupling constant αMS

s (MZ) in the MS-scheme at the scale MZ and the Fermi
constant GF have been set according to [80](

αMS(MZ)
)−1

= 127.95 , αMS
s (MZ) = 0.1182 , GF = 1.1663787 · 10−5 , (4.56)

and the masses have been set to

mZ = 91.1876 GeV , mt = 174.2 GeV , mMS
b (mb) = 4.18 GeV , (4.57)

mτ = 1.77686 GeV , mµ = 105.6584 MeV , me = 510.9989 keV , (4.58)
md = 4.7 MeV , mu = 2.2 MeV , ms = 96 MeV , (4.59)

mMS
c (mc) = 1.27 GeV , (4.60)

where MZ ,mt,mτ ,mµ and me are the pole masses of the Z-boson, the top-quark, and the
charged leptons, mMS

b (mb) and mMS
c (mc) are the running masses of the bottom- and the

charm-quark in the MS-scheme evaluated at the bottom- and charm-quark mass, respectively,
and md,mu,ms are ’current quark masses’ for the down-, the up- and the strange-quark as
given in [80]. The masses of the squarks of the first two generations and the gluino in the
scenarios A and B are given in Tab. 4.5. The scenarios are chosen such that they evade
the exclusion limits on the parameters m0 and m1/2 shown in the introduction in Fig. 2.2.
Moreover, with the masses given in Tab. 4.5 they are not excluded by current searches for
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50 4. Squark Gluino Production with Spin Correlations at Next-to-Leading Order

the four light-flavored squarks, stops and the gluino [160–168]. Additionally both scenarios
feature a CP -even Higgs boson with a mass of

mA
h = 123.0 GeV and mB

h = 124.7 GeV (4.61)

for scenario A and B, respectively, such that it is compatible with the measured value of
(125.09 ± 0.32) GeV [47] regarding the theoretical uncertainty of the spectrum generator
[169]. Since these scenarios serve for demonstration purposes only, a more detailed analysis
of all relevant experimental exclusion bounds is not performed here.
In the first scenario A all squarks are lighter than the gluino, so all decay channels of the
gluino are kinematically open. Scenario B is an intermediate case, where the left-handed
squarks are heavier, but the right-handed squarks are lighter than the gluino. Accordingly
the gluino can only decay into a right-handed squark. The phase space available in the gluino
decay in scenario B is much smaller than in scenario A, which will influence the impact of
spin correlations on kinematic distributions. With respect to the OS subtraction, these two
scenarios will be interesting to study, as they lead to distinct patterns of OSS as shown in
Tab. 4.1.

The parton distribution functions used for this analysis at LO are the CTEQ6LO functions
[170] provided by the LHAPDF interface [171] and the factorization scale as well as the
renormalization scale have been set to

µF = µR = mq̃ +mg̃

2 , (4.62)

where q̃ denotes the specific squark considered in the analyses below. The total cross sections
of the squark gluino production for all types of squarks calculated with the implementation in
the POWHEG− BOX at a center-of-mass energy of 14 TeV are given in Tab. 4.6. In the bottom
line the sum of all sub-channels is computed, which is the total cross section of squark gluino
production to any squark and a gluino in the scenarios A and B. In order to investigate the
spin correlations at the parton level, we pick one sub-channel and specify the complete decay
chain for each scenario. In scenario A, a left-handed up-squark is produced directly and the
gluino is chosen to decay into a right-handed down-squark and a down-antiquark. Completing
the decay chain, the corresponding squark decays are attached for both squarks. For scenario
B, we choose a right-handed down-squark to be produced directly and let the gluino decay
into a right-handed charm-squark and a charm-antiquark. Again, the corresponding squark
decays are attached. These choices for both scenarios are depicted in Figs. 4.8(a) and 4.8(b),
respectively.
The total decay widths and the branching ratios of the squark and gluino decays which are
relevant for the processes defined in Fig. 4.8 are obtained from the SDECAY routines and are
given in Tab. 4.7. Hence for the process considered in scenario A a cross section of about
2.39 · 10−5 fb and for the process in scenario B a cross section of about 4.45 · 10−7 fb are
expected according to the NWA. The total cross sections for these processes calculated from
the POWHEG− BOX are listed in Tab. 4.8. The agreement of these numbers among each other
and with the expected cross sections on the one hand shows that the implementation of the
decays in the POWHEG− BOX is correct and on the other hand proves that the spin correlations
do not change the total cross section, as already stated in Sec. 4.1.2.
In order to investigate the effect of the spin correlations we now turn to kinematic distri-
butions. For differential cross sections with respect to an observable X shown in the upper
panels of the following plots, the ratio plotted in the lower panels is always defined by

Ratio = dσ/dX|with spin correlations
dσ/dX|without spin correlations

. (4.63)
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Squark produced σA
LO [fb] σB

LO [fb]

ũL 1.24 · 10−1 1.24 · 10−2

d̃L 2.93 · 10−2 2.46 · 10−3

c̃L 2.28 · 10−4 1.48 · 10−5

s̃L 5.64 · 10−4 3.45 · 10−5

ũR 1.49 · 10−1 1.52 · 10−2

d̃R 3.67 · 10−2 3.16 · 10−3

c̃R 2.85 · 10−4 1.88 · 10−5

s̃R 7.31 · 10−4 4.56 · 10−5

ũ∗L 1.19 · 10−3 7.85 · 10−5

d̃∗L 9.61 · 10−4 4.98 · 10−5

c̃∗L 2.28 · 10−4 1.48 · 10−5

s̃∗L 5.64 · 10−4 3.45 · 10−5

ũ∗R 1.48 · 10−3 1.00 · 10−4

d̃∗R 1.26 · 10−3 6.73 · 10−5

c̃∗R 2.85 · 10−4 1.88 · 10−5

s̃∗R 7.31 · 10−4 4.56 · 10−5

Total 3.48 · 10−1 3.37 · 10−2

Table 4.6: Cross sections for squark gluino production at leading order σA
LO and σB

LO for different
squarks and antisquarks for scenarios A and B.

ũL
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(a) Specific process considered for scenario A.
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(b) Specific process considered for scenario B.

Figure 4.8: Processes considered for the analysis of spin correlations.
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Scenario A Scenario B

ΓũL 21.8 GeV 28.2 GeV
Γd̃R 1.20 GeV 1.50 GeV
Γc̃R 4.82 GeV 6.04 GeV
Γg̃ 35.0 GeV 33.3 GeV

BR(ũL −→ uχ̃0
1) 1.41 · 10−2 1.36 · 10−2

BR(d̃R −→ dχ̃0
1) 9.99 · 10−1 9.99 · 10−1

BR(c̃R −→ cχ̃0
1) 9.99 · 10−1 9.99 · 10−1

BR(g̃ −→ d̃Rd̄) 1.37 · 10−2 3.62 · 10−4

BR(g̃ −→ c̃Rc̄) 1.22 · 10−2 1.41 · 10−4

Table 4.7: Total decay widths and branching ratios at leading order involved in the processes defined
in Fig. 4.8.

Scenario A Scenario B

with spin correlations (2.396± 0.003) · 10−5 fb (4.468± 0.005) · 10−7 fb
without spin correlations (2.397± 0.002) · 10−5 fb (4.469± 0.004) · 10−7 fb

Table 4.8: Total cross sections for the processes defined in Fig. 4.8 for the two scenarios A and B
calculated by the POWHEG− BOX with and without spin correlations. The error is the statistical error
stated by the POWHEG− BOX.

Statistical errors provided by the POWHEG− BOX are indicated by the error bars on the ratio
in the lower panel. For the distributions in the upper panels the errors are not shown for
better readability.
The impact of the spin correlations on the angular distribution of the quarks can be inves-
tigated in Fig. 4.9, where differential distributions with respect to the pseudo-rapidities of
the three quarks are shown. While for the up-quark and the down-quark stemming from
the decays of the squarks in Figs. 4.9(a) and 4.9(c) the influence of the spin correlations is
negligible, the central region for the down-antiquark from the gluino decay is slightly en-
hanced, as shown in Fig. 4.9(b). At the same time the tails for high absolute values of the
pseudo-rapidity are suppressed such that the integral over the distribution is unchanged and
leads to the total cross section given in Tab. 4.8.
A similar pattern can be observed in the distributions of the transverse momentum of the
quarks shown in Fig. 4.10. The distributions for the two quarks from the squark decays
in Figs. 4.10(a) and 4.10(c) are nearly unchanged, whereas the distribution for the down-
antiquark from the gluino decay in Fig. 4.10(b) is shifted towards high pT,d̄. The strength of
the enhancement can be up to about 20% for a transverse momentum of about 250 GeV. On
the other hand, the suppression at low transverse momenta is about 10% for pT,d̄ < 150 GeV.
This is consistent with the observation for the pseudo-rapidities in Fig. 4.9, since a quark
of a certain energy emitted in central direction has a higher transverse momentum than a
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(b) Pseudo-rapidity of the down-antiquark.
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(c) Pseudo-rapidity of the down-quark.

Figure 4.9: Distributions of the pseudo-rapidities of the quarks for scenario A. The distributions in
red correspond to the calculation with spin correlations for the gluino, the ones in blue are without
spin correlations. The ratio in the lower panel is defined by Eq. (4.63). The error on the ratio results
from the statistical errors provided by the POWHEG− BOX.

quark emitted at high absolute values of the pseudo-rapidity. The transverse momentum of
the down-quark is dominated by the phase space available in the squark decay, such that
the spin correlations do not have a visible impact on it. The distributions for the up-quark
Figs. 4.9(a) and 4.10(a) are not expected to change due to spin correlations as the squark
decay is isotropic.
Finally, the impact can also be measured in the distribution of the invariant mass of the
up-quark and the down-antiquarkMud̄ displayed in Fig. 4.11. Also this distribution is shifted
to higher values with enhancements up to about 20% for invariant masses of about 1300 GeV.

In the case of scenario B, we start investigating the transverse momenta of the quarks in
Fig. 4.12. Similar to the case in scenario A in Fig. 4.10, the transverse momentum of the
down-quark in Fig. 4.12(a) is not expected to change and the transverse momentum of the
charm quark in Fig. 4.12(c) is dominated by the phase space available in the squark decay.
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(a) Transverse momentum of the up-quark.
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(b) Transverse momentum of the down-
antiquark.
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(c) Transverse momentum of the down-quark.

Figure 4.10: Transverse momentum distributions of the quarks for scenario A. The distributions
with (without) spin correlations are shown in red (blue). The ratio in the lower panel is defined
according to Eq. (4.63) with errors provided by the POWHEG− BOX.
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Figure 4.11: Invariant mass of the up-quark and the down-antiquark for scenario A. The result with
spin correlations is plotted in red, the one without in blue, the ratio in the lower panel is defined by
Eq. (4.63) with errors derived by the POWHEG− BOX.
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(a) Transverse momentum of the down-quark.
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(b) Transverse momentum of the charm-
antiquark.
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(c) Transverse momentum of the charm-quark.

Figure 4.12: Distributions of the transverse momenta of all three quarks for scenario B. In red the
distributions with spin correlations, in blue the ones without. The ratio in the lower panel is given by
Eq. (4.63) and the statistical error by the POWHEG− BOX.

The impact of the spin correlations is visible in the distribution of the transverse momentum
of the charm-antiquark from the gluino decay in Fig. 4.12(b). This time, the spin correlations
shift the distribution towards lower values. This results from the different chiralities of the
squarks attached to the gluino line in Fig. 4.8(b) in comparison to Fig. 4.8(a). Instead of a
left- and a right-handed squark, we now have two right-handed squarks, which cause the spin
dependent part to have an opposite sign with respect to the process considered for scenario
A (cf. Sec. 4.3.2). In contrast to the case for scenario A, the effect of the spin correlations
cannot be observed in the distributions with respect to the pseudo-rapidities depicted in
Fig. 4.13. While for the two quarks from the squark decays in Figs. 4.13(a) and 4.13(c) this
is expected, it is not for the quark from the gluino decay in Fig. 4.13(b). The shift towards
low values of the transverse momentum in Fig. 4.12(b) indicates an enhancement for large
pseudo-rapidities. However, within the uncertainties indicated for the ratio in the lower panel
of Fig. 4.13(b) this is not observed decisively. The reason for that is the very small difference
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(a) Pseudo-rapidity of the down-quark.
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(b) Pseudo-rapidity of the charm-antiquark.
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(c) Pseudo-rapidity of the charm-quark.

Figure 4.13: Distributions of the pseudo-rapidities of the quarks for scenario B. The distributions in
red correspond to the calculation with spin correlations for the gluino, the ones in blue are obtained
without spin correlations. The ratio in the lower panels is given by Eq. (4.63), the errors are derived
by the POWHEG− BOX.
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Figure 4.14: Invariant mass of the down-quark and the charm-antiquark of the process for scenario
B. The red distribution results from the calculation with spin correlations, the blue curve is derived
without them. The ratio in the lower panel is defined by Eq. (4.63) and the errors are provided by
the POWHEG− BOX.
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between the mass of the gluino and the mass of the right-handed charm squark of less than
20 GeV. Therefore the shift in the transverse momentum of the charm-antiquark caused by
the spin correlations does not translate visibly into a to change of the angular distribution
given by the pseudo-rapidity in Fig. 4.13(b) since its effect is completely overwhelmed by
longitudinal boosts of the total event. These do not enter the distribution of the transverse
momentum in Fig. 4.12(b). The invariant mass of the down-quark and the charm-antiquark
shown in Fig. 4.14 on the other hand, is influenced by the spin correlations. Similarly to
the case for the transverse momentum, the distribution is shifted towards low values of the
invariant mass. The enhancement is about 10% for Mdc̄ < 200 GeV and the suppression for
high values of the invariant mass reaches up to about 20% for Mdc̄ ≈ 500 GeV.

4.6. Conclusion
In addition to NLO corrections, the spin correlations for the gluino are an important feature
to investigate in the context of squark gluino production. In this work we have elaborated a
framework to incorporate the spin correlations in a fully differential calculation of the pro-
duction cross section for squark gluino production. The incorporation of the spin correlations
also at NLO in a way where a gauge-invariant method to isolate and subtract OSS can be
implemented required the analytic computation of the amplitudes squared for the real correc-
tions to squark gluino production. This calculation has been accomplished here, the results
have been implemented in the POWHEG− BOX and were checked against an independent calcu-
lation. The real corrections to the squark gluino production form a major ingredient for the
full calculation at NLO. Since the final implementation of the OS subtraction together with
the decays at NLO is not done yet, for demonstration purposes, results have been shown for
the complete framework at LO. We found that the effect of spin correlations on distributions
in the transverse momentum, pseudo-rapidities and invariant masses can be up to about 20%.
These results only serve as a proof of principles. As we only investigated results at the parton
level here, the observations can change when looking at physical events with a parton shower
attached, which is left for future work.
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5. Electroweak Phase Transition in the
Two-Higgs-Doublet Model

This chapter is devoted to the investigation of the EWPT in the 2HDM. First, the effective
potential of the 2HDM at finite temperature is explained in Sec. 5.1. Subsequently we will
elucidate the renormalization procedure in Sec. 5.2 before finishing with the results and the
conclusion in Secs. 5.3 and 5.4, respectively.

5.1. Effective Potential of the Two-Higgs-Doublet Model at Fi-
nite Temperature

Electroweak symmetry breaking takes place when the vacuum expectation value (VEV) of
the Higgs field is no longer zero but attains a finite value. Hence, in order to find the critical
temperature Tc where the EWPT occurs the Higgs potential has to be investigated as the VEV
is determined by the field configuration in the global minimum of the potential. Obviously
a calculation at vanishing temperature cannot cover the dynamics of the symmetry breaking
which is why the potential has to be computed at finite temperature T . The temperature
dependence first appears at the one-loop level and hence the effective potential Veff , consisting
of the tree-level potential V0 and one-loop radiative corrections V1

Veff = V0 + V1 (5.1)

has to be considered. Calculating the one-loop effective potential at finite temperature, as
done for instance in [93], shows that V1 can be split into two parts: a part already present
at T = 0 called Coleman-Weinberg potential VCW [172] and a part explicitly depending on
the temperature VT . In addition we add a counterterm potential VCT which we use later to
specify our renormalization scheme in Sec. 5.2. To summarize, the effective potential used in
this work can be decomposed as

Veff = V0 + VCW + VT + VCT . (5.2)

We will now explain V0, VCW and VT in detail and elaborate on the counterterm potential
VCT in Sec. 5.2.
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60 5. Electroweak Phase Transition in the Two-Higgs-Doublet Model

5.1.1. Tree-Level Potential

Imposing a softly broken Z2 symmetry for the two SU(2) Higgs doublets of the 2HDM Φ1
and Φ2 to avoid flavor-changing neutral currents

Φ1 −→ Φ1 , Φ2 −→ −Φ2 , (5.3)

the tree-level potential of the 2HDM respecting renormalizability and invariance with respect
to the SM gauge group is given by

V0 = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
[
m2

12Φ†1Φ2 + h.c.
]

+ 1
2λ1(Φ†1Φ1)2 + 1

2λ2(Φ†2Φ2)2

+ λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1) +
[1

2λ5(Φ†1Φ2)2 + h.c.
]
.

(5.4)

While the dimensionful parameters m2
11, m

2
22 and the dimensionless parameters λi, i = 1...4

are real, the dimensionful parameter m2
12 and the dimensionless one λ5 can in general be

complex, providing new sources of CP violation in the Higgs sector. Here, all parameters are
kept real. The term proportional to m2

12 breaks the Z2 symmetry softly14. Decomposing the
two Higgs doublets as

Φ1 = 1√
2

ρ1 + iη1

ζ1 + iψ1

 , Φ2 = 1√
2

ρ2 + iη2

ζ2 + iψ2

 , (5.5)

we allow the real fields ζ1, ζ2 and ψ2 to acquire a VEV. In order to parametrize the develop-
ment of the VEVs in the minimization of the effective potential, we furnish these fields with
field configurations ω1, ω2 and ω3

ζ1 −→ ζ1 + ω1 , (5.6)
ζ2 −→ ζ2 + ω2 , (5.7)
ψ2 −→ ψ2 + ω3 . (5.8)

The VEVs ωi, i = 1, 2, 3 of the fields ζ1, ζ2, ψ2, respectively, are the values of the field
configuration {ω} = {ω1, ω2, ω3} in the global minimum of Veff . By allowing a VEV for
ψ2 we allow for spontaneous CP violation. Without loss of generality ψ1 does not acquire
a VEV. Furthermore, we do not allow the fields ρi, ηi, i = 1, 2, to develop a VEV to avoid
the breaking of the U(1)em. At T = 0 the field configurations in the global minimum of the
potential, i.e. the VEVs, are related to the measured value v ≈ 246 GeV by

ω1 = v1 := v cosβ , (5.9)
ω2 = v2 := v sin β , (5.10)
ω3 = v3 = 0 , (5.11)

such that
tan β = v2

v1
. (5.12)

The angle β rotates the charged gauge eigenstates ρi, ηi, i = 1, 2 to the physical charged
mass eigenstates, namely the charged Higgs bosons H± with masses MH± and the massless
14If a hard breaking of the Z2 symmetry is allowed, two additional terms with complex couplings are possible.

This is not considered here.
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Type I Type II Lepton-Specific Flipped

Up-type quarks Φ2 Φ2 Φ2 Φ2

Down-type quarks Φ2 Φ1 Φ2 Φ1

Leptons Φ2 Φ1 Φ1 Φ2

Table 5.1: Specification of the couplings of the Higgs doublets to quarks and massive leptons

charged Goldstone bosons G± 15. At the same time, this angle rotates the neutral states
ψi, i = 1, 2 to a pseudo-scalar CP -odd mass eigenstate, A0 with mass mA, and a massless
neutral Goldstone boson G0. Diagonalizing the mass matrix of the ζi, i = 1, 2 by a rotation
with a mixing angle α yields two CP -even Higgs bosons H and h with masses mH and mh,
respectively.
For a complete definition of the 2HDM Higgs sector the couplings of the Higgs doublets to the
fermions have to be specified: in order to avoid flavor-changing neutral currents at tree-level,
each of the up-type quarks, down-type quarks or massive leptons can receive its mass only
due to one of the Higgs doublets. This can be achieved by augmenting the Z2 symmetry
Eq. (5.3) by suitable Z2 symmetries for right-handed fermions in various ways, resulting in
different combinations of couplings of the Higgs doublets to fermions called Type I, Type II,
Lepton-Specific and Flipped. These are summarized in Table 5.1. Here, we investigate the
2HDM of Type I and Type II 16.
A necessary condition for a minimum of Veff is that the first derivative of the potential
vanishes at the field configuration of the minimum. The resulting conditions are called tadpole
conditions. Knowing the present VEVs Eqs. (5.9)-(5.11) at T = 0, the tadpole conditions can
be used to eliminate two parameters of the tree-level potential. By choice, we eliminate m2

11
and m2

22 by

m2
11 = v2

v1
m2

12 −
1
2
(
λ1v

2
1 + v2

2(λ3 + λ4 + λ5)
)
, (5.13)

m2
22 = v1

v2
m2

12 −
1
2
(
λ2v

2
2 + v2

1(λ3 + λ4 + λ5)
)
. (5.14)

For phenomenological studies it is convenient to transform the parameters of the potential
Eq. (5.4) to physically meaningful parameters like masses and mixing angles. This way,
experimental constraints can be fulfilled by appropriate input parameters easier, which makes
a scan over the parameter space of the 2HDM more efficient compared to a scan over the
parameters of Eq. (5.4). Using the relations given in [173] the resulting set of input parameters
is given by

mh, mH , mA, mH± , m
2
12, α, tan β, v . (5.15)

Here, we directly exploited Eqs. (5.13) and (5.14) and traded v1 and v2 for v and tan β, which
is convenient as v is fixed by experimental data.
15We work in Landau gauge.
16For the choice Eq. (5.3) the Z2 symmetries for right handed fermions for Type I are fR → −fR for all

right-handed fermions fR and the symmetries leading to Type II are given by uR → −uR, dR → dR and
lR → lR, where uR, dR and lR generically denote right handed up-type quarks, down-type quarks and
massive leptons of any generation. More details are given in [14].
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62 5. Electroweak Phase Transition in the Two-Higgs-Doublet Model

5.1.2. Coleman-Weinberg Potential

In a compact form the Coleman-Weinberg potential VCW in Landau gauge17 and MS renor-
malization for a particle i is given by [93]

VCW,i(m2
i ({ω})) = ni

64π2 (−1)2si(m2
i ({ω}))2

[
log

(
m2
i ({ω})
µ2

)
− ci

]
, (5.16)

where the spin of the particle is denoted by si and m2
i ({ω}) is the corresponding eigenvalue of

the mass-squared matrix at the given field configuration {ω} 18. The variable ci takes values

ci =
{5

6 , i = W±, Z, γ ,
3
2 , otherwise ,

(5.17)

µ is the renormalization scale which we set to the vacuum expectation value v and the
factors ni are the degrees of freedom of the particle i. The Coleman-Weinberg potential
receives contributions from all quarks u, c, t, d, s, b, massive leptons e, µ, τ , physical Higgs
bosons h,H,A,H±, vector bosons W±, Z, γ and Goldstone bosons G0, G±. Although at
T = 0 the photon is massless, the longitudinal component acquires a mass at T 6= 0 (see
Sec. 5.1.3). Similarly, the Goldstone bosons are massless at the tree-level VEVs at T = 0,
but not at field configurations and temperatures different from that, which is required in the
minimization of the effective potential. Hence these particles are taken into account when
constructing VCW . In anticipation of the temperature potential in Sec. 5.1.3 we distinguish
between longitudinal and transverse degrees of freedom for the gauge bosons and set

nΦ = 1 ; Φ = {h,H,A,H+, H−, G0, G+, G−} , nZT = 2 , nZL = 1 , (5.18a)
nq = 12 ; q = {u, c, t, d, s, b} , nWT

= 4 , nWL
= 2 , (5.18b)

nl = 4 ; l = {e, µ, τ} , nγT = 2 , nγL = 1 , (5.18c)

whereWL (ZL, γL) andWT (ZT , γL) denote the longitudinal and transverseW (Z, γ) bosons,
respectively. Then, the particles taken into account in the calculation are

P = {h,H,A,H+, H−, G0, G+, G−, ZT , ZL,WT ,WL, γT , γL, u, c, t, d, s, b, e, µ, τ} , (5.19)

and the complete Coleman-Weinberg potential VCW is given by

VCW =
∑
i∈P

VCW,i(m2
i ({ω})) . (5.20)

5.1.3. Temperature Potential

The temperature dependent part of the effective potential VT for each particle i ∈ P of
Eq. (5.19) at temperature T reads [93, 175]

VT,i(m2
i ({ω}), T ) = ni

T 4

2π2J
(i)
±

(
m2
i ({ω})
T 2

)
. (5.21)

17In Landau gauge the ghosts decouple and do not need to be considered further. For a discussion of the
gauge dependence of the effective potential, see e.g. [92, 174] and references therein.

18Note that depending on the implementation of temperature corrected masses, the Coleman-Weinberg po-
tential can become temperature dependent (see 5.1.3).
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Henceforth the eigenvalues of the mass matrices at the field configuration {ω}, m2
i ({ω}), will

be abbreviated by m2
i . The complete temperature potential is given by

VT =
∑
i∈P

VT,i(m2
i , T ) . (5.22)

It is known that at very high temperatures perturbation theory breaks down [176, 177]. In
order to overcome this problem, temperature dependent contributions from diagrams of higher
order can be resummed, leading to thermally corrected masses m2

i ({ω}, T ), abbreviated by
m2
i . This procedure is known as ring-improvement of the masses. Not all particles acquire

a thermally corrected mass, but only scalars and longitudinal vector bosons. There are
two ways of implementing the thermally corrected masses in the effective potential: in one
case, called Arnold-Espinosa (AE) method [178], the thermally corrected masses are only
inserted in the cubic term in the high-temperature expansion of J− (see Eq. (5.27) below)
which is critical for the breakdown of perturbation theory, whereas in the other case, called
Parwani (PA) method [110], the thermally corrected masses are inserted everywhere in the
high-temperature expansion of J− and also in the Coleman-Weinberg potential. Specifically
this means that in case of AE holds

J
(i)
± =



J−

(
m2
i

T 2

)
− π

6T 3 (m3
i −m3

i ) i = WL, ZL, γL,Φ

J−

(
m2
i

T 2

)
i = WT , ZT

J+

(
m2
i

T 2

)
i = f ,

(5.23)

where Φ generically denotes all scalars and f all fermions included in P Eq. (5.19). In the
PA case holds instead

J
(i)
± =



J−

(
m2
i

T 2

)
i = WL, ZL, γL,Φ

J−

(
m2
i

T 2

)
i = WT , ZT

J+

(
m2
i

T 2

)
i = f

(5.24)

and the thermally corrected masses also have to be inserted in VCW Eq. (5.16)19. The
functions J± are given by

J±

(
m2
i

T 2

)
= ∓

∞∫
0

dxx2 log
[
1± e−

√
x2+m2

i /T
2
]

(5.25)

and are thermal loop functions for fermions (J+) and bosons (J−). We take up an existing
comparison of the two methods in the 2HDM [103] and perform our calculation using both
methods. Although formally the difference is of higher order the results can change consid-
erably as we will see in Sec. 5.3.
The integral in Eq. (5.25) can in principle be calculated numerically. However, this is com-
putationally expensive and therefore not well-suited for the minimization of the effective
potential Veff since at each temperature T the potential has to be evaluated at a multitude
of field configurations {ω} to find the global minimum. Instead, it is more convenient to use
19Hence, only in the PA, but not in the AE case the Coleman-Weinberg potential Eq. (5.16) depends explicitly

on the temperature.
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expansions of the integrals in m2
i /T

2 as for instance given in [103]. For small m2
i /T

2 the
expansions read

J+,s(m2
i /T

2, n) = −7π4

360 + π2

24
m2
i

T 2 + 1
32
m4
i

T 4

(
log

(
m2
i

T 2

)
− c+

)

− π2m
2
i

T 2

n∑
l=2

(
− 1

4π2
m2
i

T 2

)l (2l − 3)!!ζ(2l − 1)
(2l)!!(l + 1)

(
22l−1 − 1

)
,

(5.26)

J−,s(m2
i /T

2, n) = −π
4

45 + π2

12
m2
i

T 2 −
π

6

(
m2
i

T 2

)3/2

− 1
32
m4

T 4

(
log

(
m2
i

T 2

)
− c−

)

+ π2m
2
i

T 2

n∑
l=2

(
− 1

4π2
m2
i

T 2

)l (2l − 3)!!ζ(2l − 1)
(2l)!!(l + 1) ,

(5.27)

with c+ = 3/2 + 2 log π − 2γE and c− = c+ + 2 log 4. The variable γE denotes the Euler-
Mascheroni constant, ζ(x) is the Riemann ζ-function and (x)!! denotes the double factorial.
In case of large m2

i /T
2 the expansion of the integrals is given by

J±,l(m2
i /T

2, n) = − exp

−(m2
i

T 2

)1/2
π

2

(
m2
i

T 2

)3/2
1/2

n∑
l=0

1
2ll!

Γ(5/2 + l)
Γ(5/2− l)

(
m2
i

T 2

)−l/2
(5.28)

for both bosons and fermions with Γ(x) denoting the Euler Gamma function. For intermediate
m2
i /T

2 the two expansions either for bosons or fermions are connected continuously: the
intersection of the derivatives of Eq. (5.26) and Eq. (5.28) and of Eq. (5.27) and Eq. (5.28),
respectively, are determined and at the intersection a small constant shift is added to the
expansions J+,s and J−,s in order to make the connection of the two expansions continuous.
In the expansion J+,s we use n = 4 whereas in J−,s and J±,l we use n = 3 in accordance with
[103]. The locations of the intersections for fermions x+ and bosons x− and the corresponding
shifts δ+ and δ− are found to be

x+ = 2.2161 , δ+ = −0.015603 , (5.29)
x− = 9.4692 , δ− = 0.0063109 . (5.30)

Adding the shifts to J+,s and J−,s or subtracting them from J±,l is in general a matter of
choice. However, for large m2

i /T
2 the value of the integral approaches 0, such that if a finite

shift as in Eqs. (5.29) and (5.30) is subtracted from J±,l, the result approaches the constant
shift rather than 0 and thereby may alter the result. Hence we add the shifts Eq. (5.29) and
Eq. (5.30) to the expansions J+,s and J−,s, where this problem does not occur as the integral
approaches a value much larger than the value of the shifts. Comparing this procedure
of approximating the temperature integrals Eq. (5.25) to the numerical evaluation of the
integrals we can quantify the error to be less than 1% in the bosonic case and less than 1.3%
in the fermionic case. This also shows that the chosen orders of the expansions n are sufficient
to reach a good enough accuracy.
For unphysical field configurations {ω} the scalars can obtain negative masses squared, in
which case the above expansions for the integrals do not hold anymore. In general this is not
an issue, since in the global minimum the mass-squared matrix is positive semi-definite and
accordingly in the global minimum negative m2

i can never occur. However, in the course of
the numerical minimization of the potential the integrals Eq. (5.25) also have to be evaluated
at these configurations. In this case, the real part of the numerical evaluation of J− is taken

64



5.2. Renormalization of the Effective Potential 65

as result, which is the relevant quantity for finding the global minimum [179]. Practically, the
integral has been evaluated numerically once and for all at many points in a sufficient range
of m2

i /T
2 and a linear interpolation between these points has been used for the continuous

evaluation.

5.2. Renormalization of the Effective Potential
Following the explanation in Sec. 5.1.1 we would like to use the physical parameters Eq. (5.15)
for the scan over the parameter space of the 2HDM to look for viable parameter points
compatible with theoretical and experimental constraints. Using these parameters in the one-
loop effective potential, however, leads to a mismatch of the input parameters which are used
for all constraints in the scan, and the parameters calculated from the one-loop potential.
In this sense, the input parameters can be understood as tree-level parameters, while the
masses and angles calculated from the one-loop potential can be understood as one-loop
parameters. Since we would like to perform all constraints with the most precise parameters,
we should use the one-loop parameters for the checks. Practically this renders the scan over
the parameter space inefficient and the advantage of choosing the set Eq. (5.15) as inputs
is lost for two reasons: first, the calculation of the one-loop parameters from the effective
potential is time consuming and second, the one-loop corrections can be very large such that
the scan efficiency with respect to theoretical and experimental constraints is reduced20. In
order to restore the advantages of scanning over physical parameters Eq. (5.15) we perform a
specific renormalization: the Coleman-Weinberg potential Eq. (5.16) is already renormalized
in the MS-scheme, so no divergences have to be absorbed by renormalization any more.
However, we are still free to fix the finite terms to comply with renormalization conditions of
our choice. By suitable conditions, the finite terms are chosen such that the one-loop masses
and mixing angles remain at their tree-level values.
To this end a counterterm for each parameter of the tree-level potential Eq. (5.4) is introduced,
leading to

VCT = δm2
11Φ†1Φ1 + δm2

22Φ†2Φ2 −
[
δm2

12Φ†1Φ2 + h.c.
]

+ 1
2δλ1(Φ†1Φ1)2

+ 1
2δλ2(Φ†2Φ2)2 + δλ3(Φ†1Φ1)(Φ†2Φ2) + δλ4(Φ†1Φ2)(Φ†2Φ1)

+
[1

2δλ5(Φ†1Φ2)2 + h.c.
]
.

(5.31)

The counterterms are determined by the conditions presented in the next section.

5.2.1. Renormalization Conditions

The renormalization conditions relate the counterterm potential VCT of Eq. (5.31) to the
Coleman-Weinberg potential VCW . By contrast, the temperature potential VT does not con-
tribute because the parameter scan and the check for all constraints are done at T = 0 21.
The desired properties can be achieved by conditions involving the first and second derivative
of the potential, since they determine the position of the minimum and the mass matrix of the
Higgs bosons which leads to the mass eigenvalues and mixing angles α and β. The conditions
for the first derivative are given by

∂φi VCT (φ)|φ=〈φ〉T=0
= −∂φi VCW (φ)|φ=〈φ〉T=0

, i = 1...8 (5.32)
20Also the hierarchies of the Higgs bosons can change due to one-loop contributions.
21The current temperature of the cosmic microwave background T ≈ 2.7 K ≈ 0.23 meV is negligible compared

to the electroweak scale and can be ignored for studying the electroweak phase transition.
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where φ comprises all component fields of the Higgs doublets according to Eq. (5.5), i.e.

φ = {ρ1, η1, ρ2, η2, ζ1, ψ1, ζ2, ψ2} (5.33)

and 〈φ〉T=0 are the corresponding VEVs of the component fields at T = 0 according to
Eqs. (5.9)-(5.11). The conditions for the second derivative read

∂φi∂φj VCT (φ)|φ=〈φ〉T=0
= −∂φi∂φj VCW (φ)|φ=〈φ〉T=0

, i, j = 1...8 . (5.34)

In principle, Eq. (5.32) poses eight conditions, while Eq. (5.34) embodies an 8 × 8 matrix-
equation. Even though many of the resulting equations are not independent and drop out,
the eight counterterms of Eq. (5.31) are not sufficient to solve the system. Consequently in
the literature alternatives have been studied, involving only the first derivatives and masses
of the Higgs bosons, or subsets of them [103, 106, 107, 180, 181]. Here, a new approach
involving the first derivatives, masses and for the first time also mixing angles of the Higgs
sector is pursued and explained in the following. As an approximation, we do not demand
the conditions Eq. (5.34) for the complete matrix, but only for those entries corresponding to
the physical Higgs bosons h,H,A,H±. However, Eq. (5.34) is formulated in the gauge basis,
where it is not possible to assign an entry to a certain physical Higgs boson. This problem can
be overcome, by rotating Eq. (5.34) with the tree-level rotation matrix from gauge- to mass-
eigenstates. In the rotated system we can then identify certain entries with mass eigenstates
and demand the renormalization condition only for the physical Higgs bosons: a 2×2 matrix
for the charged Higgs bosons H±

∂φi∂φj VCT(φ)|φ=〈φ〉T=0

∣∣H±
mass = −∂φi∂φj VCW(φ)|φ=〈φ〉T=0

∣∣H±
mass (5.35)

and a 3×3 matrix for the neutral Higgs bosons, which further decomposes into a 2×2 matrix
for the CP -even Higgs bosons h,H and an entry for the CP -odd Higgs A

∂φi∂φj VCT(φ)|φ=〈φ〉T=0

∣∣h,H,A
mass = −∂φi∂φj VCW(φ)|φ=〈φ〉T=0

∣∣h,H,A
mass . (5.36)

In the above equations the subscript ’mass’ indicates that the equations are posed in the
system rotated to mass eigenstates and the superscripts H± and h,H,A illustrate that only
the entries corresponding to these physical states are considered.
From these conditions for first and second derivatives, Eqs. (5.32), (5.35) and (5.36), one
obtains seven independent renormalization conditions, fixing seven of the eight counterterms
in VCT Eq. (5.31). Inserting the field configurations Eqs. (5.6)-(5.8) and setting all fields φ
to zero as required for the numerical minimization, it is apparent that the counterterms δλ3
and δλ4 only appear in a sum. Hence we choose to set δλ4 = 0 as further condition.
Eventually, by our renormalization prescription we are able to keep a local minimum at T = 0
at v ± 2 GeV, which is checked to be the global minimum numerically, and the masses and
mixing angles of the Higgs sector are preserved at their tree-level values up to numerical
fluctuations.

5.2.2. First and Second Derivative of the Coleman-Weinberg Potential

For the renormalization conditions Eqs. (5.32), (5.35) and (5.36) the first and second deriva-
tive of the Coleman-Weinberg potential in the gauge basis are required. Starting from the
potential for scalars and interaction Lagrangians for gauge bosons and fermions involving
scalar fields, explicit formulae for the derivatives of VCW have been derived recently in [182].
This is a non-trivial task since it involves derivatives of the field-dependent matrix logarithm
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in Eq. (5.16). Here only the starting points for the calculation implementing the procedure
of [182] are explained.
The scalar potential required is the tree-level potential given in Eq. (5.4). The interaction of
electroweak gauge bosons and the scalar fields is embodied in the covariant derivative

iDµ = i∂µ −
g

2~σ
~Wµ −

g′

2 Bµ (5.37)

for the kinetic term of the scalar fields, where the couplings g and g′ (Wµ and Bµ) are
the SU(2)L and U(1)Y gauge couplings (fields) and ~σ is the vector of Pauli matrices. The
interaction Lagrangian of the scalars with fermions has to be provided in Weyl notation.
Exemplarily, the term in the interaction Lagrangian for fermions LF giving rise to the masses
of up-type quarks reads

LF ∝ uiRY u
ij (Φc

2)†
 ujL

V CKM
jk dkL

 , (5.38)

where i, j, k = 1...3 are generation indices for up- and down-type quarks, uiR is a right-handed
up-type quark in Weyl notation of generation i, ujL and dkL are left-handed up- and down-
type quarks in Weyl fermion notation of generation j and k, respectively. The matrix Y u

ij is
the Yukawa coupling matrix and is given by

Y u
ij = yuiδij , (5.39)

where yui is the Yukawa coupling of the quark ui. V CKM denotes the CKM matrix and Φ2
is the second Higgs doublet of Eq. (5.5) with

(Φc
2)† =

 0 1
−1 0

Φ∗2

† =

 1√
2

 ζ2 − iψ2

−ρ2 + iη2

† . (5.40)

The terms for down-type quarks and leptons are obtained similarly, but the Higgs doublet
coupling to them has to be chosen according to the 2HDM type as shown in Tab. 5.1. With
the second derivative of VCW at hand, the one-loop corrections to masses and mixing angles
in the approximation of vanishing external momenta can be determined. We find that the
corrections can be substantial, including a change of the hierarchy of the Higgs bosons. This
demonstrates the need for a proper renormalization prescription for an efficient scan over the
parameter space.

5.2.3. Goldstone Problem

The second derivative of the Coleman-Weinberg potential required for fixing the counterterms
by the renormalization conditions Eqs. (5.35) and (5.36) yields infrared divergences connected
to the Goldstone bosons being massless in Landau gauge. These divergences can be under-
stood as follows: the second derivative of VCW corresponds to one-loop corrections to the
scalar masses and hence to self-energies in the diagrammatic terminology. The source of the
divergences can then be understood by looking at Fig. 5.1. Neglecting constant terms and
the ultraviolet divergent part which is canceled by the MS renormalization the contribution
of this self-energy Σh scales as

Σh(p2) ∝ log
(
p2

µ2

)
, (5.41)
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h
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G−

h

Figure 5.1: Feynman diagram for a Higgs boson self-energy leading to an infrared divergence in the
limit of vanishing external momenta in Landau gauge.

where p2 is the momentum of the external Higgs boson squared and µ2 is the renormalization
scale. The effective potential approach corresponds to the calculation with vanishing external
momenta. In this limit, however, the logarithm in Eq. (5.41) diverges

log
(
p2

µ2

)
p2→0−−−→ −∞ , (5.42)

which is a well-known problem [103, 106, 107, 182–184]. In the effective potential this diver-
gence is encoded in the logarithm of the Coleman-Weinberg potential Eq. (5.16). In previous
works either the logarithm was redefined to capture on-shell contributions [103], or an infrared
regulator mass for the Goldstone boson mG was introduced [106, 107, 180], motivated by the
observation, that the self-energy Σh(mG) for a massive Goldstone boson and for vanishing
external momenta scales as

Σh(mG) ∝ log
(
m2
G

µ2

)
. (5.43)

In this work, we follow another approach: solely in the effective potential approach it is
not possible to eliminate this divergence. However, it has been shown in [185] and argued
in [182, 184] that the divergence is spurious and cancels, when building up the self-energy
with full momentum dependence out of the second derivative of the Coleman-Weinberg po-
tential and the diagrammatically calculated self-energies for the momentum dependent part.
Schematically this means

Σh(p2) = ∂2VCW +
(
Σh(p2)− Σh(0)

)
, (5.44)

where ∂2VCW abbreviates the second derivative of the Coleman-Weinberg potential. After
the cancelation of the divergence on the right-hand side of Eq. (5.44), the limit of vanishing
external momenta can be taken safely and one obtains a finite result for the second derivative
of the Coleman-Weinberg potential. The validity of this approach in our case has been checked
explicitly with the calculations of [186, 187]. In the actual implementation, this amounts to
leaving away only the singular part of the second derivative for the Goldstone bosons [182]22.

5.3. Implementation and Results
5.3.1. Implementation, Experimental Constraints and Parameter Settings

The entire calculation has been implemented in Mathematica. Starting from the potential
and interaction Lagrangians as explained in Sec. 5.2.2 first the derivatives of the Coleman-
22The non-singular part of Eq. (5.16), namely the term proportional to ci must not be ignored.
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# points mh mH mA mH± m2
12 tan(β)

in GeV in GeV2

105 30− 120 mh125 30− 1000 65− 1000 0− 5× 105 1− 35

Table 5.2: Parameter ranges for the scan performed in the 2HDM Type I. The first column specifies
the number of points generated. This scan has been performed in [108].

# points mh mH mA mH± m2
12 tan(β)

in GeV in GeV2

106 mh125 130− 1000 30− 1000 480− 1000 0− 5× 105 0.1− 35

Table 5.3: Parameter ranges for the scan in the 2HDM Type II. The first column specifies the number
of points generated. This scan has been performed in [108].

Weinberg potential are calculated for a given set of input parameters Eq. (5.15) in order
to determine the counterterms for the counterterm potential Eq. (5.31). In a second step,
the effective potential Eq. (5.2) is constructed and minimized for a given temperature T 23.
In the minimization procedure, the global minimum is determined by variations in the field
configuration space {ω} for all fields which we allow to acquire a VEV (Eqs. (5.6)-(5.8)).
This is done for temperatures from T = 0 to T = 300 GeV 24 in order to extract the critical
temperature by the procedure explained in Sec. 5.3.2.
The calculation has been checked by an independent calculation (see [108]) that is also used
for the phenomenological investigation of the 2HDM with respect to a strong EWPT.

The parameter scan has been performed at T = 0 by ScannerS [188, 189], which directly
checks for boundedness of the potential from below and for tree-level perturbative unitarity
by relations from [190] and [191], respectively. It is then verified, that the global minimum at
tree-level is CP -even [192]. Moreover, we have checked the S, T and U parameters [193] via
relations given in [194, 195] and demanded compatibility with the results from [196] within
two standard deviations. Furthermore, constraints resulting from the measurement of Rb
[197, 198] and B −→ Xsγ [198–200] were imposed, together with the reported limit [201]

mH± > 480 GeV (5.45)

for the 2HDM Type II25. For Type I, the limit is weaker and depends on tan β. Although
generally much weaker, also the corresponding limits from LEP [203] and LHC [204, 205] were
taken into account. In order to comply with the Higgs data predictions for production cross
sections and branching ratios have been obtained by SusHi [133, 206] and HDECAY [131–133]
and were checked using HiggsBounds [127–130] for the exclusion limits. For the observed
signal, the signal strengths were calculated and requested to be within the two times one
sigma bound of [207]. More details are given in [108].
The range of the input parameters chosen for the phenomenological analysis can be inferred
from Tabs. 5.2 and 5.3 for the 2HDM Type I and Type II, respectively. Here, in the Type
23It is sufficient to consider only the real part of the potential for the minimization [179].
24With our choice for the criterion for a strong first order PT Eq. (2.39) no strong PTs can occur for T > v

and hence our choice covers the entire allowed range.
25The recently reported bounds [202] were published after the work has been finished and are not included.
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II scan the light CP -even Higgs boson was chosen to be the observed Higgs h125 with a mass
of mh125 = 125.09 GeV [47], whereas in the Type I scan the heavy CP -even Higgs was chosen
to be h125. A spacing of 5 GeV between the SM-like Higgs h125 and other Higgs bosons was
required to avoid overlapping signals. Moreover, the ranges for the masses have been chosen
according to phenomenological relevance and observability at current colliders. The range
for the charged Higgs boson in Type II starts at the bound Eq. (5.45). In order to ensure
that the tree-level minimum is the global one the parameter m2

12 was required to be positive
[192], and the lower bound for tan β in Type I was chosen such, that it leaves away a part
of the parameter space which is already excluded. The upper bound on tan β has been set
by choice, but does not influence our results noticeably since parameter points with a strong
phase transition tend to cluster at low values of tan β. The angle α has been varied in

− π

2 ≤ α ≤
π

2 (5.46)

and the VEV v was set to v = 246.22 GeV. For the fine structure constant αEM at zero
momentum transfer and at the scale M2

Z and for the W and Z boson masses MW and MZ

we have used [125, 208]

α−1
EM(0) = 137.0359997 , α−1

EM(M2
Z) = 128.962 , (5.47a)

MW = 80.385 GeV , MZ = 91.1876 GeV . (5.47b)

The quark masses were taken to be [208, 209]

mu = 100 MeV , mc = 1.51 GeV , mt = 172.5 GeV , (5.48a)
md = 100 MeV , ms = 100 MeV , mb = 4.92 GeV , (5.48b)

the lepton masses were chosen as [125, 208]

me = 0.510998928 MeV , mµ = 105.6583715 MeV , mτ = 1.77682 GeV , (5.49)

and the CKM matrix has been set to [125]

V CKM =


0.97427 0.22536 0.00355
−0.22522 0.97343 0.0414
0.00886 −0.0405 0.99914

 . (5.50)

For determining the counterterms, we set V CKM = 1 for simplicity.
All parameter points shown in the results in the next section fulfill all theoretical and exper-
imental constraints explained above.

5.3.2. Results

In Sec. 2.3 the criterion for a phase transition to be classified as strong first order was
introduced in Eq. (2.39). By inspecting Fig. 5.2 we explain how the value of

ξc := vc
Tc

(5.51)

is extracted from the result of the calculation explained above. The result of the calculation
for one parameter point of the Type II scan is shown on the left-hand side of Fig. 5.2. For a
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Figure 5.2: Vacuum expectation value v(T ) with respect to the temperature resulting from the
calculation using the AE method (left) and the one-dimensional potential for different temperatures
explained in the introduction 2.4.

sufficient range of the temperature the effective potential Eq. (5.2) is minimized globally and
the VEV v(T ) is determined by

v2(T ) = ω2
1(T ) + ω2

2(T ) + ω2
3(T ) (5.52)

and plotted with respect to the temperature. On the right-hand side of Fig. 5.2 the plot
of a one-dimensional potential shown in Sec. 2.3 is repeated for convenience. The curve on
the right-hand side representing the situation at T > Tc where the global minimum is at
v(T ) = 0 corresponds to the points in our results for temperatures above 150 GeV where the
VEV is found to be zero. At these temperatures, the electroweak symmetry is not broken.
As explained in Sec. 2.3 the temperature where two degenerate minima occur is the critical
temperature Tc (green curve). This temperature can be extracted from our results by the
position of the jump, which is at Tc = 150.0 GeV for this parameter point, since at the critical
temperature the global minimum jumps from zero to a non-zero value. The critical VEV vc
is then given by the height of the jump, found to be vc = 203.9 GeV. This height corresponds
to the distance from zero to vc in the green curve for the potential on the right-hand side of
Fig. 5.2. For temperatures lower than 150 GeV the VEV continuously moves to higher values
until it reaches v = 246.22 GeV at T = 0. Such temperatures correspond to situations like the
blue curve on the right-hand side. Hence at these temperatures the electroweak symmetry is
broken. To summarize, for each parameter point the critical temperature Tc is determined to
be the highest temperature where the VEV is found to be non-zero, and the vc is set to the
VEV at this temperature26. From these two quantities the condition for a strong first order
phase transition is determined. In this case we have

ξc = 203.9
150.0 ≈ 1.36 , (5.53)

so with our criterion Eq. (2.39) this parameter point leads to a strong first order phase
transition. In general, in the analysis no parameter point generated a non-zero CP -breaking
26Note that the spacing in temperature between two evaluations in Fig. 5.2 (left) was chosen to be 5 GeV

for simplicity. In the version used for the phenomenological analysis below a bisection procedure was used
until Tc is determined up to a precision of 0.01 GeV.
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(a) Results obtained with the AE method. This
figure has been published in [108].
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Figure 5.3: Results for h ≡ h125 for the 2HDM Type II (Tab. 5.3). All parameter points found
in the scan are shown in grey, colored are those with additionally a strong first order PT, where the
strength ξc according to Eq. (5.51) is given by the color code.

VEV ω3 at finite temperature and we will not investigate the possibility of spontaneous CP
violation further.
In the following phenomenological analysis first we focus on the light CP -even Higgs being
the SM-like Higgs boson considering the Type II model in 5.3.2.1, and second investigate
the Type I model with the heavy CP -even scalar as SM-like Higgs boson in 5.3.2.2. The
complementary cases, i.e. h ≡ h125 in the Type I model and H ≡ h125 in the Type II model
are included in [108].

5.3.2.1. Results for the 2HDM Type II

We start discussing the results for our parameter scan of Tab. 5.3 explained in Sec. 5.3.1 by
comparing the AE and PA methods (see 5.1.3) in Fig. 5.3. On the left-(right-)hand side the
results for the AE (PA) method are shown in the mH − mA plane. All parameter points
found in the scan that respect all theoretical and experimental constraints are drawn in grey
and points that additionally have a strong first order PT are colored, with the strength of
the PT indicated by the color code. First, we observe that the PA method leads to many
more points with a strong PT than the AE method. Although for masses up to about
800 GeV the regions with strong PTs are similar, in the PA method also the region of masses
up to 1 TeV is populated. Moreover, the PTs are much stronger in the results for the PA
method, with values of ξc up to 25. Given that vc ≤ v = 246.22 GeV for ξc ≥ 1 implies
that the PTs with a strength of about 25 happen at very low temperatures of about ten
GeV. This means that the potential Eq. (5.2) using the PA method is very sensitive to small
deviations of the temperature from zero, although for small temperatures it is expected that
the temperature independent part of the one-loop corrections VCW is dominant and only for
increasing temperature the temperature potential VT gains importance because it scales as
T 4 (cf. Fig. 5.2 (left), where the AE method was used). This means, that the temperature
corrections introduced through the ring-improvement in VT and in VCW are such, that they
dominate the evolution of the potential already at low temperatures. This is unexpected
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since the ring-improvement amounts to adding corrections of higher order in perturbation
theory relevant at high temperatures. Consequently the strength of the PTs found in the PA
method indicates that the perturbative series has collapsed. This is an effect of truncating
the perturbative series at the one-loop level and the problem is resolved at higher orders [178].
Since we are working at the one-loop level we henceforth focus on results obtained by the AE
method which provides a consistent resummation in this case [108, 178]27. A comparison of
our results with [180] where the PA method was used can be found in [108].

We now focus on the shape of all points found in the parameter scan in the mH −mA plane
Fig. 5.3(a). The quadrant cut out for low masses is a consequence of the bound Eq. (5.45) in
combination with the electroweak precision tests: due to the latter, one of A or H is forced to
be close in mass to the charged Higgs, which is limited from below by Eq. (5.45). The upper
bound of mH for low mA and the upper bound of mA for low mH result from the relations
for the masses of the heavy Higgs bosons in the 2HDM and the bounds on the parameters
from perturbative unitarity constraints. The masses of the heavy Higgs bosons are given by
[187]

mφheavy = M2 + f(λi)v2 +O(v4/M2) , (5.54)

where M2 = m2
12/(sin β cosβ), f(λi) denotes a function of λi, i = 1...5. Since in these two

regions one of the heavy Higgs bosons is rather light, the M2 term setting a common scale
of the masses cannot be large while the splitting between the Higgs bosons is governed by
the function f(λi). Since the couplings λi are bound by perturbative unitarity however, the
induced differences of the masses of the heavy Higgs bosons are also limited. This holds for
both regions pointed out. In the region of high mA and mH , the overall scale M2 can be
large, opening up the region where all Higgs bosons are heavy.
Considering now the region leading to a strong PT, we observe a gap at 130 GeV ≤ mA ≤
340 GeV. On the one hand this region of mA is experimentally much more constrained than
others due to the kinematic suppression of the decay A −→ tt̄ in favor of the decay A −→ Zh
which is strongly constrained by searches at the LHC. On the other hand, in this region H is
rather heavy, such that small deviations from the alignment limit which cause H to acquire
a VEV suppress the strength of the PT. In consequence, by requiring a strong first order PT
this range of mA is excluded. As the constraints for mA ≤ 120 GeV are less stringent there
are more valid parameter points in this region, including some with a strong PT.
In the plot Fig. 5.4(a) we show a heat map of all parameter points found to be compatible
with the applied constraints in the mH − mA plane. The color code indicates the relative
frequency of points in a bin with respect to the maximum number of points in any of the bins.
The shape is identical to the shape of the grey points of Fig. 5.3(a). However, the majority of
the points is located where both mH and mA are about 500 GeV or larger, in particular in the
diagonal regime. This is the region, where the common scaleM2 dominates the masses of the
heavy Higgs bosons according to Eq. (5.54), which brings them closely together. This falls
into the decoupling limit where the couplings of the light CP -even Higgs boson are similar to
the ones of the SM Higgs, explaining why many points are found here. Requiring in addition
a strong first order PT as shown in the right plot Fig. 5.4(b) this is not pronounced any more.
The points shown here correspond to the colored ones in Fig. 5.3(a). Apparently the region
of high masses for all heavy scalars is not favored by a strong PT.
The possibility of a preferred hierarchy of the heavy Higgs bosons can be studied in Fig. 5.5.
In Fig. 5.5(a) all parameter points found in the scan are plotted as a heat map in the plane
of the mass differences mH −mH± and mA −mH± , where the relative frequency of points

27The smallest values of Tc found with the AE method are about 57 GeV.
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Figure 5.4: Scenarios of the Type II scan with h ≡ h125 in the mH − mA plane. The relative
frequency of the parameter points normalized to the bin containing most points is given by the color
code.

normalized to the bin with most points is given by the coloring. The general shape impres-
sively reflects the constraints imposed by the electroweak precision tests which caused the
lower left quadrant of Fig. 5.3(a) to be cut out: in order to fulfill them at least one of the
other heavy scalars must have a similar mass as the charged Higgs. The outliers are few
parameter points, where cancelations allow to fulfill the constraints. The majority of the
points is located in the center, implying that all heavy scalars are close in mass. In view of
the bound on the charged Higgs Eq. (5.45) we conclude that also the other two heavy scalars
preferably have high masses around the charged Higgs mass. This corresponds to the region
around the diagonal in Fig. 5.4(a). The corresponding plot with only those parameter points
which additionally lead to a strong PT is shown in Fig. 5.5(b). While the general shape
remains unchanged, the focus has changed and hence reveals a preferred hierarchy among the
heavy scalars: when A and H± have similar masses the heavy CP -even scalar H is preferred
to be about 170 GeV lighter than the others. Nevertheless, other hierarchies are possible,
though less frequent. Consequently there is no smoking gun signature for scenarios exhibiting
a strong PT as claimed in [180].
In order to investigate signal strengths which can be measured at the LHC and which can
deviate from SM predictions in the 2HDM, we investigate the ratio µV /µF and the signal
strength modifiers µγγ , µττ and µV V . The cross section for producing the SM-like Higgs
h125 via massive vector boson fusion and associated production with a massive vector boson
normalized to the SM prediction is denoted by µV , µF represents the fermion initiated cross
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Figure 5.5: Scenarios of the Type II scan with h ≡ h125 in the plane of the differences mH −mH±

and mA − mH± . The relative frequency of the parameter points normalized to the bin containing
most points is given by the color code. These plots have been published in [108].

section comprising gluon fusion and associated production with a pair of heavy quarks, also
normalized to the SM cross section. Then, µxx , x = γ, τ, V is defined by

µxx = µF
BR2HDM(h125 −→ xx)
BRSM(HSM −→ xx) , (5.55)

where BR2HDM(SM) is the branching ratio of the SM-like Higgs boson h125 (SM Higgs boson
HSM) into the final state xx.
In Fig. 5.6(a) we show the ratio µV /µF over µγγ and µττ over µV V in Fig. 5.6(b). A bow tie
structure hosting most of the parameter points with a strong first order PT is obvious in both
plots. Comparing the grey area to the colored one we furthermore conclude that requiring
a strong first order PT constrains a possible enhancement or suppression of both µγγ and
µV /µF . For instance observing an enhancement of the photon rate of µγγ = 1.3 together
with a ratio µV /µF = 0.75 is not compatible with ξc > 1. Similarly also the allowed range
for µττ and µV V is restricted by demanding a strong PT. In both plots there are regions
with parameter points which are not part of the bow tie structure. In Fig. 5.6(a) these are
the parameter points in the lower left quadrant, in Fig. 5.6(b) they are located in the upper
left area. These points are points in the so-called wrong-sign limit which can be explored
in future experiments [189, 210–212]. For these parameter points, the sign of the couplings
to down-type fermions is opposite to the couplings to massive vector bosons, which is only
possible in the Type II model. From the plots we infer that the wrong-sign limit is strongly
constrained and disfavored by a strong first order PT.

75



76 5. Electroweak Phase Transition in the Two-Higgs-Doublet Model

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

ξc

0.6 0.8 1.0 1.2 1.4
µγγ

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

µ
V
/µ

F

(a) Ratio µV /µF versus µγγ .

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
µV V

0.6

0.8

1.0

1.2

1.4

µ
τ
τ

(b) Signal strength modifier µττ versus µV V .

Figure 5.6: Scenarios of the Type II scan with h ≡ h125. In grey all parameter points found in the
scan are shown, while for those with ξc > 1 the strength of the PT obtained with the AE method is
given by the color code. These plots have been published in [108].

5.3.2.2. Results for the 2HDM Type I

We now turn to the discussion of results for the scan of Tab. 5.2, where the heavy CP -even
scalar H is chosen to be h125 in the Type I model. In Fig. 5.7(a) we show all parameter
points found in the scan of Tab. 5.2 in the mh − mA plane. The line without points at
mA ≈ 125 GeV is the window left open around the SM-like Higgs H ≡ h125. If mh < 65 GeV
there are much less points due to the decay H −→ hh that is kinematically open in this region
and experimentally constrained. The upper bound of mA is due to the relation Eq. (5.54),
similarly to the situation explained for Fig. 5.3(a). The majority of the points found in this
parameter scan is located around mA ≈ 200 GeV. If now in addition a strong PT is required
as done in Fig. 5.7(b) many of the previously found parameter points drop out. There are
barely any scenarios left with mh < 65 GeV or mA < 280 GeV. Masses of the pseudoscalar
Higgs larger than 480 GeV are completely excluded. Hence, imposing a strong first order PT
serves as a severe constraint on scenarios with the heavy CP -even Higgs being the observed
Higgs h125.
Investigating the actual strength of the PTs in Fig. 5.8 reveals another clear pattern. While
all scenarios found in the scan that are compatible with the applied constraints are shown in
grey, the colored scenarios lead to a strong first order PT. According to the color code the
strongest PTs are reached for high values of mA. As already explained above, the difference
of mA to the masses of the CP -even Higgs bosons is governed by the couplings λi, i = 1...5.
At the same time these couplings enter the quartic and triple Higgs couplings (cf. V0 in
Eq. (5.4)) which are relevant for the strength of the phase transition. Hence higher mA are
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Figure 5.7: Frequency of parameter points found in the Type I scan of Tab. 5.2, normalized to the
number of scenarios in the largest bin in the mh −mA plane.
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Figure 5.8: Scenarios found in the Type I scan of Tab. 5.2 shown in the mh −mA plane. Scenarios
in grey fulfill all experimental and theoretical constraints, colored ones additionally have a strong PT
derived with the AE method with a strength ξc given by the color code. This plot is published in
[108].
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with the AE method.

Figure 5.9: Heat map of all valid points found in the Type I scan Tab. 5.2 in the mH± −mA plane.
The color code indicates the frequency of scenarios in the bin, normalized to the largest bin. This
figure has been published in [108].

accompanied by stronger PTs up to about 480 GeV, where the interplay of the Higgs masses
and the couplings λi prevents a strong PT. For low values of mh < 80 GeV requiring a strong
PT further constrains the valid parameter space.
The distribution of the scenarios in the mH± −mA plane is depicted in Fig. 5.9(a) as a heat
map. The empty cross where either of the two masses is 125 GeV stems from the span left
out around h125. The two branches are subject to the electroweak precision constraints: on
the vertical branch the charged Higgs H± is in vicinity of the CP -even Higgs bosons, whereas
on the diagonal branch mA and mH± are of similar size and large. Also the region where all
Higgs bosons are lighter than 200 GeV is populated. The maximally allowed masses for the
pseudoscalar and the charged Higgs bosons are about 720 GeV. In Fig. 5.9(b) only the points
with ξc > 1 are shown. Here the allowed domain for the two masses is even more restricted:
a strong first order PT strongly favors the charged and pseudoscalar Higgs bosons to have
masses from 300 to 500 GeV. Enforcing a strong PT the complete spectrum of the Higgs
bosons is lighter than ∼ 500 GeV.
Similarly to Fig. 5.6 in the Type II model, we now turn to the signal strengths in the Type I
model with H ≡ h125. Figure 5.10(a) shows the ratio µV /µF plotted against µγγ . While the
grey points that represent all scenarios found in the scan still allow for enhancements of µγγ
up to about 1.5, there is no scenario left above µγγ = 0.9, with one exception, when a strong
first order PT is demanded (colored points). Also the central region in µV /µF for µγγ < 0.9
is strongly constrained by the demand for a strong PT. The plot in Fig. 5.10(b) shows all
scenarios in the µττ −µV V plane in grey and as before the colored ones additionally lead to a
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Figure 5.10: Scenarios of the Type I scan with H ≡ h125. All parameter points found in the scan
are shown in grey, while for those with ξc > 1 the strength of the PT using the AE method is given
by the color code. These plots have been published in [108].

strong PT. There are no strong PTs with values of µττ & 1.1. The gap at µττ = µV V results
from the structure of the couplings in trigonometric functions together with experimental
constraints.

5.4. Conclusion
In this work the electroweak phase transition has been studied in the 2HDM Type I and
Type II. In order to determine the critical temperature the effective potential has been cal-
culated at the one-loop level at finite temperature including ring-resummation for the masses
of bosons and a renormalization prescription which allows for an efficient scan over the pa-
rameter space of the model. The renormalization conditions applied for the first time also
cover the Higgs mixing angles that enter collider observables through the Higgs couplings.
Moreover, the infrared divergence occurring for the Goldstone bosons in the second derivative
of the Coleman-Weinberg potential in Landau gauge has been treated by an approach applied
to the 2HDM in this context for the first time. The applicability of this approach has been
verified explicitly.
Results have been derived for two different implementations of the ring-resummed thermal
masses and the results of the AE method have been found to be more reliable than the ones
for the PA method. In general, the results show that if in addition to theoretical and exper-
imental constraints a strong first order PT is required, the complete spectrum of the Higgs
bosons has to be below 1 TeV in the case of the AE method. The results derived for the
Type II model with h ≡ h125 show that a strong first order PT favors low masses for the
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heavy CP -even Higgs boson H. Moreover, a pseudoscalar Higgs with a mass between 130
and 340 GeV is excluded. It is not possible to identify a unique hierarchy among the heavy
scalars, although there is a preference for mA ≈ mH± and mA −mH ≈ 170 GeV. The wrong
sign limit is strongly constrained by demanding a strong first order PT. In the analysis for
the Type I scan with H ≡ h125, insisting on a strong first order PT reveals a typical spectrum
of the Higgs masses: while the light CP -even Higgs boson preferably has a mass between 65
and 120 GeV, the charged Higgs and the pseudoscalar Higgs have similar masses between
300 and 500 GeV. The observation of a Higgs boson with a mass larger than 500 GeV is
incompatible with a strong PT and possible modifications of signal strengths are restricted.
In conclusion we showed that the CP -conserving 2HDM leads to viable scenarios compatible
with theoretical and experimental constraints featuring a strong first order phase transition
which is a key ingredient for successful baryogenesis. The link between a strong phase transi-
tion and collider observables established in this work may serve as guideline for experimental
searches, but also as a further constraint on the models. This demonstrates that extend-
ing the Higgs sector of the SM is a sensible strategy to help investigating the origin of the
observed baryon-antibaryon asymmetry.
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6. Conclusion

In this thesis models of New Physics were investigated and predictions for collider observables
were improved.
In the first part of the thesis the decay of the lightest up-type squark in the MSSM with
general flavor mixings was investigated at the threshold where the W boson in the four-body
decay defined in Eq. (3.2) can become on-shell. The finite width of the W boson was taken
into account by means of a simple and gauge invariant method valid for the scenarios consid-
ered in this work. An extensive scan over relevant parameters of the MSSM was performed,
respecting experimental constraints which were available when the work was done. The re-
sults showed that the impact of the finite width on the branching ratios of the four-body
decay and the two-body decay defined by Eq. (3.1) is substantial. The branching ratios of
both decay modes deviate significantly from one, which has important consequences for ex-
clusion bounds in this region. Although the current exclusion bounds are stronger than the
ones applied in the analysis here, the findings will still hold as the relevant quantity for the
results is the mass difference of the lightest up-type squark and the lightest neutralino and
not the absolute values of the masses.
In the second project squark gluino production was studied in the MSSM including the de-
cays of the gluino and the squark. In order to derive precise predictions for the cross section,
NLO corrections to all subprocesses are important as well as spin correlations between the
production and the decay of the gluino. As a first step the NLO corrections to the production
process were considered with a special focus on the real corrections, where on-shell singular-
ities have to be subtracted properly. The basis for a gauge invariant subtraction of these
singularities within the framework of the POWHEG− BOX was set up by a calculation by hand
of the amplitudes squared for the real corrections to squark gluino production including the
spin dependence for the gluino. In addition to all ingredients at LO the NLO corrections to
the production process were implemented in the POWHEG− BOX together with the framework
for incorporating spin correlations at NLO. As a proof of principles, results were shown for the
LO calculation for two example scenarios. The effect of the spin correlations on the kinematic
distributions was shown to be up to 20%. The foundation for the gauge invariant calculation
of squark gluino production including spin correlations and decays at NLO laid in this work
can be taken up in future works aiming at the implementation of the OS subtraction and the
decays.
Finally, the electroweak phase transition has been explored within the 2HDM. The strength
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of the phase transition has been determined by minimizing the effective potential at finite
temperature at the one-loop level, including temperature corrected masses. A renormaliza-
tion prescription has been developed which keeps the masses and mixing angles of the Higgs
bosons at their tree-level values at one-loop and ensures that the vacuum expectation val-
ues at tree-level are still a minimum of the potential at the one-loop level. This allows for
an efficient scan over the parameter space of the 2HDM. Furthermore, a novel treatment to
overcome the Goldstone problem in the second derivative of the Coleman-Weinberg potential
was employed. Results were derived for parameter points found in a scan over the parameter
space of the 2HDM taking into account recent theoretical and experimental constraints. The
results showed that in large parts of the parameter space a strong first order electroweak
phase transition is possible, which is a key ingredient for electroweak baryogenesis. More-
over, demanding a first order phase transition in the 2HDM was shown to have important
consequences on the allowed Higgs spectrum and possible signal rates at colliders. The renor-
malization scheme developed here could also be extended in order to investigate the EWPT
in other BSM Higgs sectors.

The computations shown in this work improve our understanding of current exclusion bounds
set by experiments at the LHC and provide precise predictions of collider observables for the
specific models investigated in this thesis. The study in the last part of this work revealed
an interesting interplay of Higgs masses and signal strengths and the EWPT in the 2HDM.
The findings can help to interpret current and future results of searches for New Physics at
the LHC.
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7. Appendix

A. Doxygen Documentation and Input Variables
Instructed by keywords written in comments in the source code, the public tool Doxygen
[159] automatically generates a documentation of the program. It can cope with various
programming languages and provides several output formats. In particular, a website can be
constructed, offering the possibility to guide through features relevant for users, but also for
programmers. All subroutines and functions are documented with their input parameters and
links are provided to the definition in the source code and also to other routines calling, or
being called by the subroutine. Although in the documentation all information is provided,
here the additional input parameters required for a run of the program are explained shortly.
The general inputs of the POWHEG− BOX which have to be provided in the file powheg.input
are explained in its user manual. For the implementation of the squark gluino production,
the entries described in Tab. A.1 are appended to the input file.
The Doxygen documentation can be generated by the command

doxygen doxyfile ,

where doxyfile is a file configuring all in- and outputs. In addition to the documentation
generated from the keywords in the source code the content of the documentation and website
is provided in the file manual.dox.
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Keyword Description and Value

SLHA Name of the SUSY spectrum file in the SLHA format.
part1 Squark produced in the squark-gluino production process. Possible val-

ues are qL, qR, qLbar, qRbar with q = u, d, c, s for left-handed, right-
handed, left-handed anti- and right-handed antisquarks, respectively.

part2 Indicates the gluino and has to be set to go.
part3 Squark produced in the decay of the gluino, takes same values as part1.
hels1 Helicity code of part1, value is 0 in this case as it is always a scalar

particle.
hels2 Helicity code of part2, value is determined according to the binary codes

used by FormCalc.
scaleflag Value 1 means that the scales are chosen by the inputs facscale and

renscale, value 2 means that renormalization and factorization scale
are set to the arithmetic mean of the masses of part1 and part2.

facscale Value is the factorization scale if scaleflag = 1
renscale Value is the renormalization scale if scaleflag = 1
facscfact Factor multiplying the factorization scale, determined according to

scaleflag.
renscfact Factor multiplying the renormalization scale, determined according to

scaleflag.
decays 0: No decays.

1: Include only the decay of the squark directly produced.
2: Include only the decay of the gluino.
3: Include the decay of the gluino and the squark directly produced.
4: Include the decay of the gluino and the squark produced in the gluino-
decay.
5: Include all decays.

nlo_prod Include NLO contributions for the production, 1 = yes
nlo_sq1dec Include NLO contributions for the decay of part1, 1 = yes
nlo_sq2dec Include NLO contributions for the decay of part3, 1 = yes
nlo_gldec Include NLO contributions for the gluino decay, 1 =yes
gammasq Value for Γreg for the OS subtraction for part1

gammagl Value for Γreg for the OS subtraction for the gluino
gammaql Value for Γreg for the OS subtraction for an internal left-handed squark
gammaqr Value for Γreg for the OS subtraction for an internal right-handed squark
OSmethod Value defines the method for the OS subtraction. 0 = no subtraction,

1 = DRI, 2 = DRII, 3 = DS

Table A.1: Process specific input variables required for the implementation of squark-gluino produc-
tion in the POWHEG− BOX. The decays entry and the ones following behind are still in the development
phase in case of the NLO calculation.
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