
1

 SAE Technical Paper 2017-01-0006, © 2017 SAE International, doi: 10.4271/2017-01-0006.

An Integrated Approach Enabling Cross-Domain Simulation of Model-Based E/E-

Architectures

Harald Bucher*, Clemens Reichmann+, Jürgen Becker*

*Karlsruhe Institute of Technology (KIT), +Vector Informatik GmbH

Abstract

The increasing complexity of electric/electronic architectures (EEA)

in the automotive domain raised the necessity of model-based

development processes for the design of such heterogeneous systems,

which combine different engineering principles with different

viewpoints. High-level simulation is a great means to evaluate the EEA

in the concept phase of the design, since it reduces costly real-world

experiments. However, model-based EEA design and analysis as well

as its simulation are often separate processes in the development

lifecycle. In this paper, we present a novel approach that extends state-

of-the-art model-based systems engineering principles of EEA by a

behavior specification reusing library components. The specification

is seamlessly integrated in the development process of a single source

EEA model. Therewith, the starting point is the abstract logical

function architecture of the EEA. Based on this single source EEA

model we synthesize a unified high-level simulation model, which is

capable of linking the behavioral model with lower level

implementation details of other domains, e.g. the network

communication of the underlying hardware topology. This cross-layer

simulation enables an early but holistic system’s behavior analysis of

the dynamic changes which typically depend on the scenarios applied.

Moreover, the integrated approach enables the potential to feedback

the simulation results into suitable EEA metrics and benchmarks for

further analysis and optimization as well as the seamless traceability

of the behavioral specification to requirements and other abstraction

layers. A driver assistance system use case demonstrates the proof-of-

concept and the benefits of our methodology.

Introduction

The increasing complexity of automotive and avionic

electric/electronic architectures (EEA) due to the integration of

evermore features required the need of model-based development

principles in the last years in order to cope with that complexity.

Nowadays modern high-class vehicles are a distributed system of up

to 100 ECUs communicating over different bus systems [1]. Latest

communication technology like Car-2-X communication, safety

standards like ISO26262, various innovations like driver assistance

systems or autonomous driving as well as integrating multi-core

technology into ECUs [2] makes the development of an EEA an even

more difficult endeavor.

A successful concept phase determines about 80% of the costs of

further lifecycle process steps in the development of EEA [3]. The

concept phase is an iterative process that deals with the overall

functionality, convenience, risks and costs of the vehicle that have to

meet its requirements. Hence, early stage analysis and evaluation at

system-level is necessary in order to avoid subsequent changes in the

EEA which incur enormous costs, because of extensive re-designs.

For system modelling of EEA several approaches and methodologies

have emerged in the last years, either based on general purpose

modelling languages like SysML/MARTE [4] [5] or on domain-

specific architecture description languages like EEA-ADL [6], EAST-

ADL [7], or the AUTOSAR [8] meta-model. The named domain-

specific ones all have a layered architecture where each layer

represents a different abstraction level and view on the system.

AUTOSAR is also based on abstraction layers and complements the

implementation level e.g. of the EAST-ADL specification [7].

However, the major drawback of these approaches is the poor support

for modelling the dynamic system behavior, which is a necessary

prerequisite to perform system level simulation and evaluation.

Specifically, they only specify end-to-end flows (what the system

does) without defining the semantics for the model execution.

Simulation is a great means to evaluate and test a system, since it

provides an early feedback on the system dynamics and especially of

non-functional properties which typically depend on the simulation

scenario applied. Additionally, it reduces costly real-world

experiments and time-to-market. Hence, there is a need to have a

behavioral specification that not only captures the temporal end-to-end

flows of the system functions (what the system does), but also one that

is executable and shows how the system dynamics behave based on the

implemented behavior.

Furthermore, there is a lack in state-of-the-art methodologies and tools

covering both, modelling the system architecture and simulating the

system’s dynamic behavior linked with implementation details in an

integrated development process. Simulation of functional behavior,

controls or plants and domain-specific implementation details (e.g. the

distributed execution of the function and the used bus protocol between

the hardware) is typically done in separate domain-specific tools like

MATLAB/Simulink [9] or Modelica [10]. They are following different

abstraction levels, meta-models and Models of Computations (MoC)

[11] which represent the individual domains. This makes it hard to

An Integrated Approach Enabling Cross-Domain Simulation of Model-Based E/E-Architectures H. Bucher et al.

2

integrate them in a holistic manner or yields to fragile tool chains [12].

Hence, the heterogeneous nature of EEA would benefit from an

integrated and holistic approach, where the focus lies on the

interoperation of semantics of heterogeneous domains in a

deterministic and unified manner [12] [13].

In this paper, we address this issue and present a generic approach for

the cross-domain simulation of model-based EEA. We introduce an

additional modelling layer, which specifies the functional behavior,

control or plant models reusing an actor library. The specification is

seamlessly integrated in the development process of a single source

EEA model [6]. The novelties and contributions are 1. the executable

behavioral system model specification at a high abstraction level

integrated in the EEA model design flow, 2. the synthesis and

integrated conduction of a unified simulation model, which links the

behavioral models to more detailed domain-specific information from

lower abstraction levels (e.g. bus communication), 3. the reuse of

library-based simulation components, 4. the extension of existing

EEA’s logical function descriptions by the behavioral specification via

layer mapping principles and 5. the application to an Adaptive Cruise

Control (ACC) use case as proof-of-concept. The simulation model is

synthesized for the heterogeneous modelling and simulation

framework Ptolemy II [14] (PtII) and conducted within the EEA design

and analysis tool PREEvision [15] from Vector which is based on [6].

The remainder of the paper is organized as follows: first, we present

some related works and give background information about the used

approaches and tools in this work. Afterwards, we detail our model-

based simulation model synthesis methodology and its individual

components. Then we present our ACC case study and discuss our

approach before we finally conclude the work.

Related Work

The benefits of general purpose approaches based on SysML and/or

MARTE are the possibility to reuse existing tools and the capability to

model behavioral end-to-end flows including timings. However,

SysML only specifies the syntax of the behavioral models and not their

semantics in order to execute them. Thus they are not suitable for high-

level simulation. Similarly, the domain-specific approaches like the

EAST-ADL and also the EEA-ADL used in this work do not support

the explicit modelling of executable behavior, but only what the

system does. Specifically, e.g. the EAST-ADL is referencing their

FunctionBehavior blocks to an external behavior description in a tool-

dependent format [7] without integrating it into the development

process like it is done in our approach.

There are several previous works dealing with the generation of

simulation models out of model-based EEA. Autonomie [16] is a tool

which supports GUI based vehicle level modelling. It is capable of

automatically assembling the vehicle model consisting of several

Simulink sub-systems by means of a set of XML meta-data files.

Although it provides similar features like an automatic model

assembly, it is done on a different granularity. Moreover, non-

functional properties in simulation and traceability features across all

EEA abstraction layers due to the lack of integrated cross-layer

mappings are not mentioned.

Works which address the generation of simulation models from EAST-

ADL models are [17] [18] [19]. In [17] the authors use the

SystemC/TLM [20] system level programming language to specify the

behavior and map them to EAST-ADL layers. An automotive use case

is used in their work. However, the approach only works well with

discrete digital systems and lacks for the support of other domains, e.g.

the continuous domain for modelling analogue components or plants.

The authors in [18] proposed a mechanism to simulate EAST-ADL

FunctionBehavior blocks by linking them to Functional Mock-up

Units (FMUs) or Simulink models. The approach suffers from the poor

behavior specification of the EAST-ADL by referencing the functions

to external descriptions. Hence, in contrast to our approach, it is not

integrated in the development process of the whole EEA model.

Moreover, Simulink requires expensive licenses and supports only one

MoC, namely continuous time with support for discrete time signals,

whereas we benefit from the wide range of MoCs provided by PtII (see

Background section for more details). This also applies for [16].

A recent approach relating to EAST-ADL was reported by the authors

in [19], which is similar to the one in [17]. They additionally provide

support for SystemC-AMS [21] to model and simulate analog/mixed-

signal systems. Similar to our approach, they provide a library called

SystemComponentLibrary for assembling the simulation model to

increase development productivity. A text-to-model converter

transforms the SystemC components into EAST-ADL behavioral

FunctionBehavior and structural HWComponentType blocks. They

apply their methodology to a brake-by-wire system. However, the

generated EAST-ADL blocks still need to have a link to the external

SystemC descriptions. Thus it is only partially integrated, but

supported by the transformations. Moreover, the approach only covers

the Design Level of EAST-ADL and does not mention links to lower

levels. Our approach starts at a higher abstraction layer, linking the

abstract Logical Architecture (LA, cp. Background section)

description (what the system does) to the behavioral specification and

more detailed lower level implementation layers, e.g. network

topology and execution times. The Logical Architecture can be

compared to the Functional Analysis Architecture layer above the

Design Level of the EAST-ADL. We automatically synthesize the

simulation model starting from this level, whereas the approach in [19]

basically maps SystemC components to EAST-ADL blocks at the

Design Level and finally parse the EAST-ADL model to construct the

SystemC model.

The authors in [22] present an approach to synthesize component-

based high-level and multi-domain AMESim [23] simulation models

from a functional description based on the Functional Model

Language. A set of available architectures is analyzed, which fit to the

functional model and fulfil a set of requirements. Based on the

specified flows, the proper simulation components of a given library

are chosen. However, the work does not address the synthesis of lower

level implementation details like network communication, execution

time of components or the detailed algorithmic specification (how the

components work).

An Integrated Approach Enabling Cross-Domain Simulation of Model-Based E/E-Architectures H. Bucher et al.

3

Overall, none of the works presented support a fully integrated

modelling process covering all levels of abstraction, synthesizing a

high-level simulation model which covers several domains and

considers lower level implementation details as well as non-functional

properties at the same time. Furthermore, traceability across all

abstraction levels in the EEA model is enabled as well as the reuse of

existing LA descriptions by introducing a separate behavior

specification layer.

Background

EEA-ADL

The Electric/Electronic Architecture – Analysis Design Language

(EEA-ADL) [6] is another approach to holistically model EEA. This

approach combines the EAST-ADL and AUTOSAR approaches in a

single source EEA data model and also allows an ISO26262 compliant

design. This is realized in the architecture design and analysis tool

PREEvision [15], which is used for the proof-of-concept

implementation described in this work. PREEvision v7.5 provides

seven abstraction layers: 1. Requirements, Customer Features and

Feature-Functionality Network which contain atomic requirements,

features and their interaction. 2. The Logical Architecture is the

starting point of the methodology presented in this work. It describes

the vehicle’s abstract logical function network and serves as a system

decomposition of the later implementation in hardware (HW) and/or

software (SW). It encompasses the specification of logical artifacts,

e.g. Sense, Actuation and Logical Functions as well as their

interconnection via Logical Ports and Logical Assembly Connectors.

It also offers abstraction by introducing hierarchy via Building Block

composites. Additionally, Signal definitions are performed describing

which signals are exchanged between the logical blocks and later

physically between the HW components 3. The System Software

Architecture specifies AUTOSAR SW components as well as their

interconnections via ports and their interfaces and complies with the

AUTOSAR methodology. The components can be mapped to LA and

HW components. 4. The Hardware Component and Network Topology

describes all ECUs, sensors, actuators and their networking via bus

systems used in the EEA. This layer also allows communication with

conventional connections and the design of the abstract power

distribution network. Here one connection abstracts from several wires

or cables in the lower layers. 5. The Electrical Circuit and 6. Wiring

Harness layers can be automatically synthesized from the network

layer and contain the physical connections between the HW artifacts

like wire types, schematic pin types, cable types and their physical

properties like specific wire resistance. 7. The last layer realizes the

Geometrical Topology of the EEA. Cross-layer links (mappings)

between artifacts enable the comprehensive and consistent back-

traceability across all modelling layers. A product line approach is

used to support the complex EEA variant management. In addition to

the EEA modelling, an integrated Metric Framework [24] is provided

which enables the analysis and evaluation of architecture alternatives

by customized metrics for non-functional properties like weight, cost

or wiring harness diameter. This framework is also used for the

implementation of the simulation synthesis methodology of this work.

More details about the artifacts used for the implementation can be

found in the Case Study section.

Heterogeneous Modelling and Simulation - Ptolemy II

Ptolemy II [14] is an open-source modelling and simulation framework

for heterogeneous embedded systems with focus on concurrent

components as well as the deterministic use and composition of

heterogeneous MoCs. Deterministic in the sense that the same inputs

always result in the same outputs. PtII follows an actor-oriented

approach [25]. Actors are components that execute concurrently and

communicate with each other via ports and relations. They can be

atomic or composite. Atomic actors cannot be refined whereby

composites enable hierarchical nesting of actors. The semantics for the

execution of and communication between actors is governed by a

specific MoC. The MoC within the model or a composite actor (sub-

model) is realized by a component called Director. Distinct directors

can be composed hierarchically in a single model at each level of the

hierarchy. A sub-model controlled by an individual director is also

called domain [12]. There are a variety of MoCs supported by PtII

including discrete event (DE), which is especially suitable to model

discrete systems like hardware architectures or communication

networks. Besides DE, there exist other MoCs like continuous-time

(CT) which is suitable for analogous components like sensors or

physical dynamics, various dataflow MoCs for signal processing, finite

state machines (FSMs), process networks for asynchronous distributed

systems or synchronous/reactive for safety-critical concurrent

software modelling. The hierarchical combination of MoCs with FSMs

enables modal models [26]. These basically contain a FSM where each

state can be refined with a sub-model containing a distinct director or

again a FSM interoperating with the FSM director using well-defined

interfaces. This allows the construction of hybrid system models,

which capture discrete behavior with continuous physical processes

with rigorous deterministic semantics. Furthermore, event based

situations such as environmental uncertainties or faults and reactions

to them can be handled by modal models [12]. This is especially true

for the heterogeneous nature of EEA, which additionally adds a

distributed communication network and the interaction with its

environment. All these domains are covered by PtII and it provides an

easily extensible actor library through its open-source nature and well-

defined interfaces as well as documentation. A concrete syntax to

represent models in PtII is the XML-based MoML (Modelling Mark-

up Language), which provides a human readable format though eases

portability, reuse, verbosity and model transformations. The abstract

syntax [14] [27] of hierarchical actors with ports and interconnections

is close to the LA of the EEA-ADL which makes it intuitive to map a

PtII model to an LA model. All the previously described features are

the reasons why we chose PtII as integrated simulation backbone of

model-based EEA, e.g. instead of Simulink, which supports only one

but sophisticated CT MoC but lacks for heterogeneous MoC

composition.

An Integrated Approach Enabling Cross-Domain Simulation of Model-Based E/E-Architectures H. Bucher et al.

4

Model-Based EEA Simulation Model Synthesis

Methodology

The starting point for cross-domain simulation of model-based EEA is

an EEA data model, which captures all relevant information necessary

to synthesize an executable simulation model. This can be achieved

with e.g. the EAST-ADL or the EEA-ADL previously described. In

the following we provide an overview of our proposed methodology

and necessary extensions to state-of-the-art domain-specific EEA

description languages in order to enable early but holistic cross-

domain simulation. We detail the individual components using the

example of the EEA-ADL.

Overview

Because of the poor support for modelling behavior in the presented

ADLs, an opportunity to explicitly specify the behavior is a necessary

prerequisite in order to enable simulation. Therefore, we introduce a

new layer, called Behavioral Logical Architecture (BLA), that refines

the abstract LA’s logical blocks (what the system does) with detailed

behavior (how the abstract functions are working) by reusing actors

from the PtII Actor Library. Mappings of BLA artifacts to the LA layer

and from the LA layer to requirements or artifacts of lower layers

enable the seamless traceability across all EEA layers. Additionally, it

is a prerequisite to enable cross-domain simulation synthesis, because

the mappings establish the links to the lower layers providing detailed

domain-specific information.

The E/E-Model Interpreter extracts all necessary information from the

relevant layers of the underlying EEA data model including the

mappings as well as signal routing information in order to synthesize

the simulation model. It serves as a front-end to interpret the

underlying EEA data model and stores the meta-info such as artifact

mappings in a database.

The Generic Simulation Model Builder uses the extracted E/E meta-

info, translates/maps them to the target simulation model and

synthesizes the unified cross-domain simulation model. It serves as a

back-end for the target simulation model to be built. In this work this

is a single XML file containing the MoML description for PtII.

The synthesized Cross-Domain Simulation Model is executed using

PtII. It is twofold: it contains the behavioral simulation specified at the

BLA layer. Beyond that it performs the domain-specific simulation of

the lower layers, e.g. the mapping dependent network communication

between the logical functions or physical/electrical processes as well

as non-functional properties like execution time of the logical

functions. The domain-specific and non-functional simulations are

performed in an aspect-oriented way in combination with the

behavioral simulation.

Finally, the integrated approach enables the feedback of the simulation

results into suitable EEA metrics or benchmarks enabling iterative

optimizations. It also enables the integrated visualization of the

simulation data. The described methodology is shown in Figure 1. In

the following we detail the components of our contributions with green

background.

Figure 1. Overview of the proposed cross-domain simulation synthesis

methodology of EEA.

Behavioral Logical Architecture Layer

This new layer called BLA introduces a refinement of the LA layer in

the development process of the EEA by explicitly specifying the

detailed functional behavior, plant and control models. Therewith, the

same artifacts used to model the LA are reused, mainly Sense, Logical

Function, Actuation and Building Block and their interconnection via

Logical Ports and Logical Assembly Connectors. This has the

advantage that the underlying EEA meta-model need not to be changed

or extended by behavioral specific classes of the target simulation

model. The LA’s logical blocks are refined by instances of the PtII

Actor Library (see PtII Actor Library section) which are encapsulated

in a Building Block. Additional introduced mappings between the LA

and BLA artifacts establish cross-layer links. In this way, the BLA

layer together with the mappings enable a modular architecture where

the LA can exist independently of the BLA but can be refined by the

BLA where necessary. Additionally, several implementations of a

single LA logical function can be exchanged by simply changing the

mappings.

PtII Actor Library

The goal of this library is to increase productivity by reusing tested PtII

actors ensuring that an engineer does not need to develop functions

from scratch. The shipped PtII library contains a variety of actors

necessary to model the detailed behavior, e.g. basic arithmetic,

mathematical, logical actors but also domain-specific complex actors

like FFT, filters, controllers, actuators like DC motors and many more.

In addition, source actors to model stimuli for the behavior and sink

actors to visualize, monitor or record/store simulation data are

available as well. Recorded data can be used, e.g. in metrics in a later

stage after the simulation to further evaluate the results or by using

them in benchmarks. The library is extensible by either writing own

Java actors or creating composite actors made of atomic and/or again

composite actors and storing them in a MoML description file.

E/E-Model Interpreter

System Software Architecture

Requirements and Customer Features

Ptolemy II Cross-Layer Simulation Model

XML

Extracted E/E
Model Meta-Info

Behavioral Logical Architecture Simulation

Aspect-Oriented Domain-Specific Simulation

PtII Actor Lib

Model-Based E/E-ADL: EEA Data-Model

E/E Metrics,
Comparison,
Visualising, ...

Signals, Signal
Routing, Timing

Behavioral Spec.
(actors, directors, ...)

Electrical Properties
(power, wire res., …)

Hardware Network
(bus systems, frames, …)

Physical Properties
(wire length, …)

Simulation
Results

Iterative
Optimization

Mappings

Contributions

Generic Simulation
Model Builder

Topology

Behavioral Logical Architecture

Component Architecture &
Hardware Network Topology

Electrical Circuit

Wiring Harness

Logical Architecture

M
ap

p
in

gs

Sy
n

th
es

is

Synthesis

An Integrated Approach Enabling Cross-Domain Simulation of Model-Based E/E-Architectures H. Bucher et al.

5

In order to use the actors at the BLA layer and to properly synthesize

the MoML out of the BLA specification, the BLA artifacts have to be

mapped to PtII artifacts. PtII follows a class-instance principle similar

to object-oriented programming languages. The LA and hence the

BLA follows a similar approach called type-instance principle.

Therefore, actors are stored as logical function types, which define the

actor class of the instance modeled at the BLA.

An AbstractLogicalFunction is an instance of a logical Sense, Function

or Actuation block and represents an actor instance of a specific type

in the BLA model. A Building Block represents an instance of a

composite actor, independent on its defined type - except for Modal

Models. Since the Building Block type defines only the interfaces and

can have different implementations, it is useful to distinguish the same

behavioral sub-system in the model with different realizations. This is

also shown in our case study. Once a Building Block has been modeled

at the BLA realizing a specific function it can be stored back in the

library. This increases reuse of already created artifacts among

engineers and across LA sub-systems.

Logical Provided-/Required Ports and Logical Assembly Connectors

are straightforward mapped to output/input ports and to relations in

PtII, respectively. Since most of the PtII actors offer parameters to

configure them and also customized parameters can be added to a

model or sub-model (composite), this possibility should also be present

in the BLA. This is done via Generic Attributes of the EEA-ADL,

which can be configured with at least a name, type and value and

complies with PtII parameters. As directors are also a kind of

attributes, but are only valid for a complete model or sub-models

(composites) they should not be specified for a single actor. A different

mapping compared to the parameters is necessary. Therefore, we

introduce a custom defined Domain Attribute in the BLA, which is

only valid for logical block owners to specify the director, i.e. the

MoC, used to simulate the enclosing building block. Common

attributes like start and stop time can be defined as well.

As stated previously, a building block type can be custom defined,

except for Modal Models. As these are a special type of composites we

interpret a building block of the type

ptolemy.domains.modal.ModalModel as a modal model. Therewith,

logical functions do not represent ordinary actors anymore, but states

of the FSM. Their interconnection via ports and logical assembly

connectors define the transitions between the states. A label of a logical

assembly connector is then interpreted as the transition conditions and

actions between the connected states. If a building block is used as a

state, it represents a refinement state, either of a customized type or

again a modal model type. That refinement then realizes a sub-model

with a distinct domain or a hierarchical FSM respectively. The

described mappings are summarized in Table 1., except for the modal

model specific instance mappings.

Transition between LA and BLA

The refinement of LA artifacts and the modular approach of the

behavioral specification at the BLA requires the establishment of

cross-layer mappings to relate the LA and BLA artifacts to each other.

For the transition from the LA to the BLA layer we introduce two kinds

of artifact mappings: port prototype and block mappings.

Table 1. Mapping of BLA artifacts to PtII artifacts.

EEA-ADL::BLA Ptolemy II

Artifact Purpose Artifact

Abstract Logical

Function

Sense, Function or

Actuation logical blocks

Atomic or Composite

Actor Instance

Abstract Logical

Function Type

Specifies the type of a

logical function
Actor Class

Building Block

Encapsulates atomic

logical functions or again

building blocks

Composite Actor

Building Block

Type

Specifies the type of a

building block

Composite Actor or

Modal Model class

Logical Provided

Port
Sender port Output Port

Logical Required

Port
Receiver port Input Port

Logical Block

Owner Domain

Attribute

Custom attribute;

specifies the MoC used to

simulate this building

block

Director

Logical

Assembly

Connector

Connects logical ports relation

Generic Attribute
Provides parameters to

logical blocks
Attribute / Parameter

Basically, each atomic logical block (Sense, Logical Function or

Actuation) of the LA represents a borderline to the BLA and can be

mapped to a building block, i.e. a composite actor, at the BLA

comprising one or more interconnected (composite) actors. Therewith,

it is possible to either perform a 1-to-1 or n-to-1 mapping of LA atomic

block(s) to one BLA building block. In addition, the BLA building

block need to provide at least the number of input/output ports of the

corresponding LA block(s). Building blocks of the LA are not allowed

to be mapped, because they serve as an abstraction of the overall

logical system decomposition. The port prototype mappings follow a

1-to-1 mapping principle exclusively in order to ensure the interface

consistency between the LA atomic block(s) and the BLA building

block. Another benefit of the 1-to-1 port prototype mappings is that it

enables the automatic connection of the top-level target BLA building

blocks, i.e. the top-level composite actors in the synthesized behavioral

MoML, based on the connections of the corresponding LA atomic

block(s). Hence only the internal actors and its interconnections have

to be modeled as well as the port prototypes have to be mapped only

once as long as the LA block’s interfaces do not change. This

automatic approach increases the reusability of already mapped

building blocks in possibly several LA sub-systems or even in other

product lines of the EEA-ADL without creating manual connections

of the corresponding BLA top-level building blocks in that sub-

systems. For simplicity reasons we refer to the port prototype

mappings simply as port mappings. The described mappings are

illustrated in Figure 2. and Figure 3.

An Integrated Approach Enabling Cross-Domain Simulation of Model-Based E/E-Architectures H. Bucher et al.

6

Figure 2. Illustration of the 1-to-1 block and port mapping.

Figure 3. Illustration of the 1-to-1 port and n-to-1 block mapping.

Links to other Layers

By exploiting the previously introduced LA-BLA mappings together

with the mapping of the LA to lower layers, it is possible to extract

more detailed domain-specific information in order to decorate the

pure behavioral BLA building blocks with it. We outline this with the

help of Figure 4. Therewith, the dotted red lines represent the cross-

layer mappings between the LA, BLA, Hardware Network Topology

and Topology layers. For simplicity reasons, the port mappings are not

shown and we assume that the LA logical block’s port are properly

mapped to the BLA building block’s counterparts. Note that the shown

model is not fully mapped and we are focusing on the LA Building

Block, which contains two logical functions, namely Logical Function

(LA-LF) and Logical Function 2 (LA-LF2). LA-LF is mapped to the

BLA Building Block 2 (BLA-BB2), whereas LA-LF2 is mapped to the

BLA Building Block 3 (BLA-BB3).

LA-LF is additionally mapped to the ECU1 at the HW layer. In

contrast, LA-LF2 and therefore BLA-BF3, is distributed among ECU2

and ECU3. ECU1 is connected to ECU2 and ECU3 via two separate

CAN bus systems, namely CAN1 and CAN2. Because of these

mappings it follows, that BLA-BB2 has to communicate with BLA-

BB3 via CAN1 and CAN2 (see green markers in Figure 4.). The

direction of the communication is derived by the directed connection

of LA-LF to LA-LF2. Moreover, we consider the LA Actuation block.

This is mapped to the BLA Building Block4 (BLA-BB4) and to the

HW Actuator block. In this case, BLA-BB4 is communicating with the

Actuator via a conventional connection (see orange marker in Figure

4.). Thereby, a conventional connection not only transports

information but also energy, or more concrete, currents. The capability

of the EEA-ADL to model the power distribution network additionally

enables the possibility to derive electrical properties of the whole HW

network.

Figure 4. Cross-layer links between the BLA and lower layers.

Overall, logical assembly connections represent not only pure data

flow. As previously described they are decorated with domain-specific

aspects, which need to be extracted in order to enable cross-domain

simulation of the EEA. The extraction of these aspects is performed

within the E/E-Model Interpreter.

E/E-Model Interpreter

The E/E-Model Interpreter serves as a front-end interpreter of the

underlying EEA data model that extracts and collects all necessary

information as E/E meta-info. This meta-info comprises mainly those

shown in Figure 1. The LA together with the BLA layer and its

mappings to each other provide the behavioral specification which is

synthesized according to the modeled instances of PtII actors (see

section PtII Actor Library). The LA additionally provides information

about latency times of the logical blocks as well as the signals which

are exchanged between the logical blocks and later between the

mapped HW components (signal routing). Note that the LA-BLA

mappings ensure that all meta-info valid for the LA artifacts do also

apply for the corresponding BLA artifacts. The proper extraction of the

domain-specific information like bus communication or

electrical/physical properties requires two input prerequisites for the

E/E-Model Interpreter to be performed by the EEA-ADL on the EEA

data model: 1. The Signal Router and 2. The HW Network Synthesis.

These are described briefly in the next sub-section. Afterwards we

detail the extraction of these domain- specific meta-info. Finally, note

that we intentionally not considered mappings to and information from

the System Software Layer, as we are starting from the high-level

logical system decomposition and focusing on a behavioral logical

simulation, independent on the realization of a function in HW or SW.

Input Prerequisites

In order to be able to extract the network communication information,

the signals defined at the LA have to be transformed into physical

Signal Transmissions (STs) which in turn have to be routed between

the hardware components. This is done via a Signal Router. It

automatically calculates the necessary route of a ST based on the LA-

to-HW mappings and a configurable target cost function, inserts

Logical
Function

Logical
Function 2

Building Block

Building Block

Building
Block

Logical
Function

Building Block

Logical
Function 2

Logical
Function

1-to-1 Mapping

LA Layer

BLA Layer

Building Block

Logical
Function

Building
Block

n-to-1 Mapping

Logical
Function2

LA Layer

BLA Layer

Logical
Function

Logical
Function 2

Building Block

Sense
Logical

Function
Logical

Function 2
Actuation

Building Block

Signals Signal 1

Signal 2

Signal n

Frames

Signal IPDU

LA Layer

DoorTopology Body

Installation
Location Installation

Location

Installation
Location

ECU1 ActuatorSensor

CAN2 ECU3

CAN1 Power
Supply

FRB

Pt2 Actor Lib

Behavioral LA
Layer (BLA)

Signal Router
ECU2

Building Block 3

Logical
Function

Logical
Function

Building Block 4

Actuation C
o

m
m

u
n

ic
at

io
n

HW Network Layer

Building Block 1

Sense 1

Sense 2

Building Block 2

Logical
Function

Building
Block

SynthesisElectrical Circuit Layer
Wiring Harness Layer

Frame PDU Synthesis

An Integrated Approach Enabling Cross-Domain Simulation of Model-Based E/E-Architectures H. Bucher et al.

7

necessary Gateways (GWs) and creates the corresponding Independent

Protocol Data Units (IPDU) and finally the Frames to be transmitted.

This is sketched on the right-hand side of Figure 4.

The extraction of electrical and physical properties such as pin types,

wire types etc. requires the synthesis of the abstract HW Network layer

into the more detailed Electrical Circuit and Wiring Harness layers.

This is illustrated by the three stacked layers in Figure 4.

Execution Time

If there is a possibility to specify latency or execution times of artifacts,

this can be used as additional non-functional simulation property. The

EEA-ADL supports this with an object Latency Time comprising three

kinds of latencies on its core artifacts including LA artifacts: minimum,

nominal and maximum latency time. Hence, we can annotate and

extract this latency time object from our behavioral BLA building

blocks to synthesize execution times of actors into our simulation

model. Since we allow an n-to-1 mapping of LA logical blocks to one

BLA building block, the execution time of a single building block is

the sum of the execution times of a specific kind of all mapped LA

logical blocks.

Bus Communication Extraction

The Signal Router additionally creates a special kind of mapping,

which links the logical provided ports of the source LA logical block

and the connected required ports of target LA logical blocks with the

created set of STs at the HW layer. This is necessary because the same

logical function could be mapped to several instances of a specific

ECU, e.g. four wheel ECUs. Then, the signal router has to infer and

map four STs, one for each wheel ECU, for the signal specified at the

logical provided port. The same holds for logical required ports.

As discussed with Figure 4., assemblies between two logical ports not

only represent pure data flow, but can contain bus communications.

This is the case if a logical port has a mapping to a ST, which belongs

to a bus system. This is true for the example used in Figure 4, where

the mapped source and target ECUs are directly connected. Hence,

each of the logical port to ST mappings directly contains a ST, which

belong to the CAN1 and CAN2 bus system. However, that example is

a simplified one. Because it is possible that the source and target ECU

are not directly connected, a ST has to pass through one or more

Gateway ECUs to reach its target. In this case, the mapped STs are

routed by the Gateways towards the target ECU with the help of

Gateway Routing Entries (GREs) in a Gateway, which define the

incoming ST and the corresponding outgoing ST. The latter can belong

to the same bus system as the incoming ST, a different bus system or

a conventional connection. This is shown in Figure 5. The mapped ST1

of the LF’s provided port has to pass the two Gateways GW1 and GW2

until it reaches the ST3, which is mapped to the target required port of

LF2.

Figure 5. Example ECU network to extract bus communication information

between two logical ports.

Hence, to find all possible bus communications, we first have to

analyze the directly mapped STs of connected logical ports.

Additionally, we need to traverse the ECU network over all possible

GWs, more concrete, all GREs, starting from a provided port’s ST until

one of the target STs are reached. All intermediate STs which are found

in between and belong to a bus system are extracted together with its

bus system as a bus communication to be simulated between the two

logical ports of the mapped BLA building blocks. We use a multi-

source breadth first search (BFS) algorithm to extract these

intermediate STs with its bus systems for all STs which are not directly

mapped to the logical ports. Therewith, the GREs represent the vertices

and the STs the edges. The source vertices are the GREs, which contain

the directly mapped STs as incoming ST. In Figure 5., these are the

GREs of ST1. The target STs serve as abort criterion. The extraction

of bus communications between a logical provided port (pPort) and a

logical required port (rPort) is shown in Algorithm 1.

Lines 1-3 in Algorithm 1. filter the given sets of mapped STs of the

given pPort and rPort for STs which belong to bus systems and unifies

them as exclusive disjunction in a new set 𝑺𝑻𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕
𝑩𝒖𝒔 . Lines 4-21

represent the extraction of the intermediate STs and their belonging

bus systems as described previously. The function call

BFS_GREs(𝑮𝑹𝑬𝒔_𝑰𝒏 , 𝑺𝑻𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅𝑷𝒐𝒓𝒕) represents the multi-source

BFS for all GREs of those pPort’s directly mapped STs which are

incoming STs. It returns a set 𝑺𝑻𝒊𝒏𝒕𝒆𝒓𝒎𝒆𝒅𝒊𝒂𝒕𝒆
𝑩𝒖𝒔 of all STs belonging to

intermediate bus systems until a target ST is reached as well as the set

of corresponding bus systems 𝑩𝒖𝒔𝑺𝒚𝒔𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕.

Logical
Function 2

Logical
Function

GW1 GW2ECU1 ECU2
ST1 ST2 ST3

ST4
GW3

ECU3ST5

ProvidedPort
-ST-Mapping

RequiredPort
-ST-Mapping

Conventional
Connection

Bus System

GREsIN OUT GREsIN OUT

ST: Signal Transmission
GW: Gateway
GRE: Gateway Routing Entry

Legend

An Integrated Approach Enabling Cross-Domain Simulation of Model-Based E/E-Architectures H. Bucher et al.

8

Algorithm 1. ExtractBusCommunications

 Input: pPort: Logical Provided Port

 Input: rPort: Logical Required Port

 Input: 𝑆𝑇𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑃𝑜𝑟𝑡: Set of mapped STs of rPort

 Input: 𝑆𝑇𝑃𝑟𝑜𝑣𝑃𝑜𝑟𝑡: Set of mapped STs of pPort

 Output: 𝐵𝑢𝑠𝑆𝑦𝑠𝑝𝑃𝑜𝑟𝑡,𝑟𝑃𝑜𝑟𝑡: Set of bus systems

 between pPort and rPort

Output: 𝑆𝑇𝑝𝑃𝑜𝑟𝑡,𝑟𝑃𝑜𝑟𝑡
𝐵𝑢𝑠 : Set of STs belonging to bus

 systems between rPort and pPort

1: 𝑺𝑻𝑷𝒓𝒐𝒗𝑷𝒐𝒓𝒕
𝑩𝒖𝒔 ← filter 𝑺𝑻𝑷𝒓𝒐𝒗𝑷𝒐𝒓𝒕 belonging to bus

 communications

2: 𝑺𝑻𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅𝑷𝒐𝒓𝒕
𝑩𝒖𝒔 ← filter 𝑺𝑻𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅𝑷𝒐𝒓𝒕 belonging to bus

 communications

3: 𝑺𝑻𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕
𝑩𝒖𝒔 ← 𝑺𝑻𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅𝑷𝒐𝒓𝒕

𝑩𝒖𝒔 ⨁ 𝑺𝑻𝑷𝒓𝒐𝒗𝑷𝒐𝒓𝒕
𝑩𝒖𝒔

4: for each 𝑠𝑡 ∈ 𝑺𝑻𝑷𝒓𝒐𝒗𝑷𝒐𝒓𝒕

5: 𝐵𝑢𝑠𝑆𝑦𝑠𝑠𝑡 ← getBusSystem(st)

6: if 𝐵𝑢𝑠𝑆𝑦𝑠𝑠𝑡 ≠ ∅ and ∄ 𝐵𝑢𝑠𝑆𝑦𝑠𝑠𝑡 in 𝑩𝒖𝒔𝑺𝒚𝒔𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕 then

7: Add 𝐵𝑢𝑠𝑆𝑦𝑠𝑠𝑡 to 𝑩𝒖𝒔𝑺𝒚𝒔𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕

8: endif

9: 𝑮𝑹𝑬𝒔_𝑰𝒏 ← getRoutingEntriesIn(st)

10: 𝑺𝑻𝒊𝒏𝒕𝒆𝒓𝒎𝒆𝒅𝒊𝒂𝒕𝒆
𝑩𝒖𝒔 ← BFS_GREs(𝑮𝑹𝑬𝒔_𝑰𝒏, 𝑺𝑻𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅𝑷𝒐𝒓𝒕)

11: for each 𝑠𝑡𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝐵𝑢𝑠 ∈ 𝑺𝑻𝒊𝒏𝒕𝒆𝒓𝒎𝒆𝒅𝒊𝒂𝒕𝒆

𝑩𝒖𝒔

12: if ∄ 𝑠𝑡𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝐵𝑢𝑠 in 𝑺𝑻𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕

𝑩𝒖𝒔 then

13: Add 𝑠𝑡𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝐵𝑢𝑠 to 𝑺𝑻𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕

𝑩𝒖𝒔

14: endif

15: 𝐵𝑢𝑠𝑆𝑦𝑠𝑠𝑡 ← getBusSystem(𝑠𝑡𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝐵𝑢𝑠)

16: if ∄ 𝐵𝑢𝑠𝑆𝑦𝑠𝑠𝑡 in 𝑩𝒖𝒔𝑺𝒚𝒔𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕 then

17: Add 𝐵𝑢𝑠𝑆𝑦𝑠𝑠𝑡 to 𝑩𝒖𝒔𝑺𝒚𝒔𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕

18: endif

19: endfor

20: endfor

21: return 𝑩𝒖𝒔𝑺𝒚𝒔𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕 and 𝑺𝑻𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕
𝑩𝒖𝒔

Without loss of generality, we are focusing on extracted CAN bus

systems in this work. If there are CAN bus systems found between the

two logical ports rPort and pPort, the CAN specific bus properties like

baud rate, frame format, transmitting policies etc. are extracted. The

corresponding STs in the set 𝑺𝑻𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕
𝑩𝒖𝒔 are used to extract the

contained CAN frames which in turn are used to extract their frame

size and priority.

Electrical and Physical Properties

The HW network layer represents only abstract connections between

ECUs or within the power distribution network. In combination with

the tool-support by synthesizing the electrical and wiring harness layer,

more detailed information about the connections can be extracted (see

section Background). The mappings to the HW network layer are

automatically propagated to the synthesized artifacts. The power

distribution network model contains components like Power Supply,

e.g. battery, Fuse Relay Boxes (FRBs), Ground Points as well as

internal passive components like resistors, capacitors or inductors. The

combination of both enables the possibility for analog current and

voltage simulations of conventional connections or parts of the wiring

harness. Exploiting the mappings to the Geometrical Topology layer,

physical properties like the realized wire/cable lengths or cross-section

of a specific conventional connection can be determined as well. With

this, the current simulation can be even more detailed by taking wiring

losses into account. However, we will investigate this in future work

and is not further addressed in this work.

Generic Simulation Model Builder

This component serves as a back-end, which uses the behavioral

specification as well as the extracted domain-specific and non-

functional E/E meta-info to build the unified cross-domain target

simulation model, i.e. the PtII model. A single XML file containing

the PtII MoML is synthesized. Therewith, the synthesis is twofold:

1. Synthesis of the behavioral simulation as specified in the BLA

according to the LA-BLA cross-layer links and the mappings of

BLA artifacts to PtII artifacts.

2. Synthesis of aspect-oriented domain-specific simulation

decorating the behavioral actors and/or the data flow between

them.

This synthesis flow is depicted in Figure 6. After the selected LA sub-

model is interpreted and the E/E meta-info is available, the BLA

synthesis of the detailed behavioral simulation model is performed.

Each of the top-level building blocks of the BLA including all its

children together with their parameters are built according to the

mapping rules described in section PtII Actor Library. This stage is a

recursive procedure. If a child is another building block, a possible

containing director is built and a recursive call is performed on this

building block. This is repeated until the bottom of the current building

block’s hierarchy is reached. After all children at a certain recursive

stage are built, they are connected according to the logical assembly

connections in the BLA. This purely behavioral synthesis is illustrated

by the blue procedure in Figure 6.

The synthesis of the domain-specific and non-functional simulation

sub-models are based on a unique feature of PtII. Actors and/or ports

can be decorated by so called aspects [14], which are based on quantity

managers introduced in [28]. These are components in a model serving

as a mediator to another model in order to refine the original one with

a specific aspect, e.g. with a communication aspect. This decoration of

actors with aspects is covered by the Decorate BLA Top-Level Artifacts

process depicted in Figure 6. Note that these aspects are only necessary

for the top-level BLA building blocks, i.e. composite actors. The

reason is that the domain-specific and non-functional properties are

valid for the LA logical blocks and therefore for the entire mapped

BLA building block.

An Integrated Approach Enabling Cross-Domain Simulation of Model-Based E/E-Architectures H. Bucher et al.

9

Figure 6. Synthesis flow of the unified PtII MoML simulation model.

PtII provides capabilities for communication and execution aspects,

which can be, like ordinary actors, atomic or composite. We leverage

composite aspects in order to encapsulate the domain-specific or non-

functional aspects. This allows an arbitrary refinement of the

composite aspect with atomic aspects, complete sub-models or a

combination of both. These aspects typically represent timed

simulations in order to respect execution and communication delays.

Concerning the communication aspect, i.e. in our case the CAN

communication, we leverage an abstract CAN atomic aspect provided

by the PtII actor library. We encapsulate it in a composite

communication aspect actor which is built for each CAN bus system

extracted by the E/E-Model Interpreter. The individual bus system

properties like baud rate are set as parameters on the atomic CAN

aspect. A DE director is used within the composite aspects, as a timed

simulation is required. The identified logical connections which

belong to the bus systems, more concrete, the receiving ports, are

decorated with the appropriate CAN aspect. The receiving data at the

appropriate input port is mediated to the CAN composite aspects.

Therewith, the ports are decorated with the frame priority (ID) and

frame size of the CAN frame extracted from the EEA data model. We

extended the base composite communication aspect of the actor library

by a composite CAN communication aspect, which adds the frame ID

and size as parameters to the mediated data in order to use them in the

composite aspect. So far, the CAN atomic aspect of PtII only supports

frames with fixed frame sizes of 108 𝑏𝑖𝑡𝑠 and 128 𝑏𝑖𝑡𝑠 according to the

standard and extended frame format, respectively. However, a variable

frame size is possible to extend in the aspect implementation of the PtII

actor library.

Regarding the execution aspects, the execution of an actor which has

an annotated latency time greater than zero is mediated to a composite

execution aspect. The latter delays the received data sent by the source

actor according to the maximum latency time annotated to that source

before the functional behavior simulation proceeds.

In addition, concerning the possible current and voltage simulations of

the wiring harness, we introduce the notion of a physical composite

aspect, which, analogues to the other aspects, encapsulates these

continuous simulations. Therefore, this can be extended in a modular

way without touching the functional behavior model. We will

investigate this aspect in future work.

Finally, after all top-level building blocks are built and decorated by

the aspects, they are automatically connected by means of the

introduced automatic approach described in section Transition

between LA and BLA. After that, the simulation model is fully

synthesized and ready to run.

Case Study

The performed case study presented in this section serves as a proof-

of-concept of our methodology. We implemented our approach and the

case study in terms of a simplified ACC application within

PREEvision. Two goals are pursued within the case study: 1.

Demonstration of the correct synthesis of the PtII MoML containing

the modeled ACC application as well as the extracted E/E meta-info

across the LA, BLA and HW network layers. This especially includes

the automatic connection of the top-level composite actors as well as

the CAN communication and execution aspects; 2. Demonstration of

the benefits of the separate BLA layer by exploring realization

alternatives of the ACC application with low effort.

Implementation

The E/E-Model Interpreter and the Simulation Model Builder each are

implemented as an additional Eclipse plug-in within the Metric

Framework of PREEvision. The main metric used artifacts are Model

Query and Calculation blocks. The Model Query block has access to

all artifacts in the EEA data model and is used to fetch the LA model

of interest to be synthesized. They have output ports to transfer the

artifacts to other blocks using data flow semantics. The benefit is a

selective choice of the LA (sub-) model of interest. The plug-in

containing the E/E-Model Interpreter and the Simulation Model

Builder is realized as a customized metric calculation block. The latter

contains Java code implementing its behavior and can provide I/O

ports as well. It receives the selected LA artifacts of the model query

and sends the synthesized MoML to the simulation executer. The

execution of the simulation model is realized in an additional

customized calculation block plug-in, which receives the synthesized

MoML file, executes the simulation and opens a PtII simulation view.

The latter contains possible visualizations, if the corresponding sink

actors are modeled, as well as a run control panel.

EEA Model Synthesis

The ACC use case is modeled at the LA, BLA and HW network layer.

The setup is depicted in Figure 7. Thereby, the LA contains the abstract

ACC system behavior made up of four blocks: the two sense functions

GetRadarSpeed and GetWheelSpeed provide the velocities of the

leading vehicle and the measured speed of the modeled vehicle,

Run Simulation
Model Synthesis

Interpret
selected E/E
sub-model

Run Simulation

 is Building
Block?

Connect BLA
Top-Level
Artifacts

Decorate BLA
Top-Level
Artifacts

Build Sub-Entity

Build BLA Top-
Level Artifacts

Connect Sub-
Entities

Build Director

yes

all built?

no

E/E
Meta-
Info

Start

no

no

yes

End

all built?

Start

End

has Director?

yes

yes

no

Recursive call with
current building block

An Integrated Approach Enabling Cross-Domain Simulation of Model-Based E/E-Architectures H. Bucher et al.

10

respectively, to the ACC controller function. The latter calculates the

necessary acceleration and provides it to the setWheelSpeed actuation

function which drives the input acceleration to the appropriate speed.

GetWheelSpeed and setWheelSpeed have additionally set the latency

time attribute, each equals to 0.05𝑠.

The Sense, Function and Actuation blocks of the LA are mapped to the

corresponding Sensor, ECU and Actuator HW components as shown

in Figure 7. Note that Sensor and Actuator blocks can contain both

hardware components and processing units. It shows, that the sensor

blocks WheelSpeed and RadarSpeed have to communicate over the

two bus systems HS-CAN (High-Speed-CAN) at 500𝑘𝑏𝑝𝑠 and LS-CAN

(Low-Speed-CAN) at 125𝑘𝑏𝑝𝑠 to reach the target ECU ACC. These

bus communications together with its appropriate frames RadarSpeed

and WheelSpeed are synthesized by the Signal Router.

The BLA layer contains a logical function package called ACC which

contains the detailed functional behavior refinement of the individual

LA blocks. The LeadingPlatoon building block simulates a single

leading vehicle or platoon with a CT director as domain attribute. It

provides three outputs, its current speed, position and acceleration.

Therefore it is mapped to the LA block GetRadarSpeed, which

provides the measured radar speed of the leading vehicle. Here

especially, the introduced port mapping is important, as the target BLA

block provides more ports than the one of the LA block. Hence, the

only port of GetRadarSpeed is mapped to the appropriate speedLeader

port of the building block (cp. Figure 7.). The WheelControllerDE

block implements both driving the received acceleration to the

appropriate speed and providing the measured speed. Thus, the

GetWheelSpeed and setWheelSpeed blocks are mapped to the building

block in an n-to-1 mapping fashion providing the ports of both former

blocks, which in turn are mapped accordingly to the LA ports (cp.

Figure 7.). The ACC function is implemented as a building block of

type AccController. Here we exploit the possibility to provide

alternative realizations of the same building block type, but with the

same interface, namely P_Controller and IDM_Controller. They

require the speed of the leading vehicle as desiredSpeed (from

GetRadarSpeed) and the own measuredSpeed (from GetWheelSpeed)

to calculate the provided acceleration.

Since the synthesized MoML is a purely textual XML description, we

visualized the top-level MoML by means of the PtII GUI Vergil in

order to illustrate and verify the synthesis result. It is depicted in Figure

8. Because of the port mappings and the connections between the LA

blocks it follows that WheelControllerDE and AccController will build

a closed feedback loop, which is synthesized and automatically

connected. The speedLeader port is connected to the desiredSpeed

port. From the HW network mappings it follows, that the

communication of both the LeadingPlatoon and the

WheelControllerDE between the P_Controller has to be mediated by a

communication aspect for the HS- and LS-CAN bus. This information

is extracted by means of Algorithm 1. The synthesized result is

represented by the LS-CAN and HS-CAN composite aspects at the top

of Figure 8. They each contain the CAN atomic aspect with a baud rate

parameter set to 125𝑘𝑏𝑝𝑠 and 500𝑘𝑏𝑝𝑠 respectively. The

communication mediation is highlighted by the orange input ports

decorated with the frame ID and size of the corresponding frames of

each CAN bus. In addition, the WheelControllerDE is decorated with

an execution aspect delay of 0.1𝑠, because each of the mapped LA

blocks specifies a latency time of 0.05𝑠. The green shape highlights the

enabled execution aspect WheelControllerDE_ExecutionAspect at the

top of Figure 8. Finally, the top-level DE director with a simulation

stopTime parameter as well as parameters for max. and min.

acceleration limiting the P_Controller are shown. They were set

properly as specified with the generic attributes at the BLA layer.

Figure 7. ACC case study setup showing the abstract LA model (middle), the

BLA model (top) and the HW network model (bottom) as well as the cross-

layer mappings (dotted red lines).

Figure 8 Synthesized PtII MoML of the BLA containing CAN communi-

cation, execution aspects and parameters. Visualized in the PtII GUI Vergil.

In the next sections, we simulate the ACC behavior with both the

P_Controller and the IDM_Controller by simply changing the

mappings. The influence of the communication and execution aspects

on the different realizations is also analyzed.

ACC Simulation: Realization I – P_Controller

In the first case, we simulate the ACC with the P_Controller, a simple

proportional controller with a loop gain of 10, based on a tested PtII

Car Tracking demo model. The main parameters and attributes

An Integrated Approach Enabling Cross-Domain Simulation of Model-Based E/E-Architectures H. Bucher et al.

11

relevant for the following conducted ACC simulations (also for the

IDM_Controller) are summarized in Table 2. Note that in contrast to

the synthesized MoML in Figure 8. we only simulate the CAN aspects

in this first simulation scenario and set the latency times to zero. In the

implementation of the P_Controller we modeled TimedPlotter and

TimedDisplay actors in order to visually verify and monitor the

receiving speed values of the leading vehicle and the measured speed

resulting from the calculated acceleration value of the P_Controller.

Additionally, the distance is calculated by means of the received speed

values, but does not has an impact on the acceleration calculation. We

set an initial distance of 100𝑚 . The speed values (excerpt for

illustration reasons) and the distance are plotted in Figure 9. and Figure

10., respectively. Despite the two LS- and HS-CAN communications

of both the desired speed of the leading vehicle and the measured speed

in the feedback path to the P_Controller, the speed values are

calculated correctly. This is clearly shown in Figure 9., where the

measured speed inside the P_Controller is closely following the one of

the leading vehicle. The reason is that only a small delay caused by the

CAN communication impacts the controller, which is compensated

after an initial swinging. We monitored a first event of the desired

speed of the leading vehicle at 1.08𝑚𝑠, which exactly matches the

delay of the 108 𝑏𝑖𝑡𝑠 sized frame RadarSpeed over both CAN busses:

∆𝑡𝑅𝑎𝑑𝑎𝑟𝑆𝑝𝑒𝑒𝑑 = 108 𝑏𝑖𝑡 ∗ (1
500𝑘𝑏𝑝𝑠⁄ + 1

125𝑘𝑏𝑝𝑠⁄) = 1.08𝑚𝑠 (1)

The first event of the measured speed in the feedback path raised at

1.944𝑚𝑠. This delay is greater, because frame collisions occurred on

both busses. This is the case, since the frame IDs of both frames are

identical (cp. Table 2) and both the RadarSpeed and WheelSpeed

frames requested a CAN communication on both busses at simulation

time 0.0𝑠 . However, because the LeadingPlatoon actor is executed

before the WheelControllerDE in the execution order (determined by

a topological sort of a directed acyclic graph of the actors [14]), the

RadarFrame is served first. The distance depicted in Figure 10. closely

alternates around the initial distance of 100𝑚 between about −0.5𝑚

and +2.6𝑚, because the P_Controller simply tries to reach the desired

speed without taking the distance into account.

Figure 9. Plotted speed of the simulated leading vehicle (red) and the follower

(blue) calculated by the P_Controller and WheelControllerDE (excerpt).

ACC Simulation: Realization II – IDM_Controller

In this simulation scenario, we exchanged the P_Controller with the

IDM_Controller by simply changing the mapping and running the

simulation synthesis once again. It realizes the Intelligent Driver

Model (IDM) [29] car following model, which additionally takes the

gap to the leading vehicle by means of coupled ordinary differential

equations into account. The used parameters are shown in Table 2.

Note that the parameter v0 is the desired speed of the IDM on a free

road and not the input port to the IDM_Controller. In this scenario, we

simulate the impact of the execution time delay of the

WheelControllerDE, and compare the results with an additional run of

the P_Controller considering the execution time, too.

Figure 10. Plotted distance between the simulated leading vehicle and the

follower.

Table 2. Artifact attributes used in the case study.

Artifact Attribute Value

LA

GetRadarSpeed
Latency Time

0.05s

setWheelSpeed 0.05s

HW Network Layer

HS-CAN Bus
Baud Rate

500kbps

LS-CAN Bus 125kbps

CAN-Frame

RadarSpeed
Frame ID

0x123

CAN-Frame

WheelSpeed
0x123

BLA

P_Controller
aMax

3.0m/s²

IDM_Controller 3.0m/s²

P_Controller
aMin

-9.0m/s²

IDM_Controller -9.0m/s²

P_Controller

Domain

CT Director

IDM_Controller DE Director

WheelControllerDE DE Director

LeadingPlatoon CT Director

IDM_Controller

Acceleration acc 3.0m/s²

Deceleration dec 4.0m/s²

Headway Time T 1.5s

Initial Distance d 100m

Minimum Gap s0 2m

Desired Velocity v0 50m/s

Acceleration Exponent δ 4

An Integrated Approach Enabling Cross-Domain Simulation of Model-Based E/E-Architectures H. Bucher et al.

12

In Figure 11., an excerpt of the accelerations calculated by the

P_Controller and IDM_Controller are plotted. It clearly shows the

impact of the additional execution delay of 0.1𝑠 in the feedback path

of the P_Controller, which is heavily swinging. In contrast, the IDM is

much more robust against the additional delay and calculates the

proper acceleration values to smoothly follow the leading vehicle. This

is underlined by the speed values depicted on the left-hand side of

Figure 12. On the right-hand side the distance is illustrated. It shows,

that the IDM tries to approach the leading vehicle starting from the

initial distance of 100𝑚 until a certain distance (dependent on the

headway time parameter T), while the P_Controller simply tries to

match the input speed of the leading vehicle.

Figure 11. Comparison of the accelerations (excerpt) calculated by the

P_Controller (dotted red) and IDM_Controller (blue) with impact of CAN and

execution time delay.

Figure 12. Left: Speed of the leading vehicle (red) and the IDM controlled

follower (blue). Right: Distance between the leading vehicle and the follower

using the IDM_Controller.

Discussion

To verify the synthesized MoML it was visualized in the PtII GUI

Vergil and compared across all hierarchy levels to the modeled EEA

artifacts, attributes and the information derived from the cross-layer

mappings, e.g. CAN communication and execution times. For space

reasons, only the synthesized top-level model is depicted in Figure 8.

The presented case studies showed that the EEA model is synthesized

correctly containing all information specified across the layers LA,

BLA and HW network including the automatic connection of the top-

level BLA composite actors as well as the composite aspects. To verify

the ACC simulation results of the synthesized MoML we used

equivalent models manually created within Vergil which represent the

reference models of the expected synthesis outcome derived from the

EEA model as described in the EEA Model Synthesis sub-section. We

compared the produced plot data and especially the CAN and

execution time delays. Therewith, no deviations could be observed and

thus verified the simulation results of the synthesized MoML. Hence,

an early but holistic view on the system dynamics is provided by

performing the cross-domain simulation. The case studies also showed

the flexibility of our approach in terms of design space exploration. By

simply changing the mapping of the ACC logical function between the

P_Controller and IDM_Controller an early analysis of the different

delay impacts showed, that the IDM controller is the more reliable and

suitable solution. Note, that although we modeled a simple

WheelController without looking at detailed dynamics of a wheel drive

model, the BLA leverages the heterogeneous model composition

capabilities of PtII to capture more elaborate hybrid system models

including plant models. Beyond that, model changes inferred by the

underlying EEA model (e.g. CAN parameters such as baud rate, frame

IDs or ECU mappings yielding in possibly different used bus systems)

are automatically synthesized and do not need to be adjusted manually

in the target simulation model. This strongly decreases model

maintenance efforts compared to separate running modelling and

simulation processes.

Furthermore, despite our methodology is presented using the example

of the EEA-ADL, it is more generic and transferrable to other EEA

ADLs, for two reasons: 1. the reuse of the same artifacts at the BLA

layer to refine those from the more abstract higher logical layer avoids

changes of the underlying EEA meta-model. 2. the meta-model

artifacts from the source EEA model are widely abstracted via

templates in the E/E-Model Interpreter front-end. Thus, it eases the

portability to other meta-model classes of ADL layers comparable to

the LA layer, e.g. the Functional Analysis Architecture of the EAST-

ADL. The transfer to other domains like avionics is also possible. A

necessary prerequisite is that the source meta-model supports the

notion of actor-oriented design made up of hierarchical blocks

communicating via ports. Similarly, in case of the simulation model

builder, different back-ends for the target model can be used, since we

are providing a reference to a generic model builder object in the

interpreter, which implements the appropriate back-end. Thus, target

models different to the MoML, e.g. SystemC, could be implemented.

Moreover, the encapsulation of aspects in composite aspects allows an

arbitrary refinement of the composites down to possible co-simulation

of the abstract model with detailed domain-specific tools. This is done

by exploiting HlaComposites in PtII developed and used within our

previous works [30] [31] [32]. The used IDM model in the case study,

for instance, was verified within [30] by means of a co-simulation of

PtII with a traffic simulator and an implementation of the IDM running

on a SystemC multi-core model.

One drawback currently is the necessity of the manual creation of

mappings and thus performing the iterative optimization (cp. Figure

1.). This can be addressed by model metrics which automatically find

proper (re-) mappings and perform the model operations. The PtII

actors used in the BLA currently are created manually in the library.

To further increase the development productivity, we will implement

an import/export functionality of PtII actors. Additionally, we will add

the support for modal models as described in the PtII Actor Library

An Integrated Approach Enabling Cross-Domain Simulation of Model-Based E/E-Architectures H. Bucher et al.

13

section. The latter in combination with aspect actors will both enable

the creation of and reaction to event based situations and greatly help

handling their complexity in a modular way. E.g. the detection and

reaction to a factually flawed ACC information can be encapsulated in

composite aspect containing a modal model not touching the structure

of the original behavioral model. Another drawback is the

dependability on the signal router and frame synthesis as input for the

bus communication extraction. This can be addressed by a more

generic signal tracing and frame synthesis algorithm directly integrated

in the E/E-Model Interpreter. Thus the approach gets more

independent on the underlying EEA data model, since the routing is no

input to the front-end anymore.

Conclusion and Future Work

Current domain-specific ADLs for modelling EEA lack for the

possibility to explicitly specify an executable behavior in an integrated

manner. Additionally, the modelling and simulation of EEA are often

separate running processes. Within this work we presented a novel

integrated approach to synthesize an executable high-level simulation

model starting with an abstract logical function architecture of a single

source EEA model. We introduced a new abstraction layer called BLA

which refines the LA and specifies the functional behavior, control and

plant models by means of an extensible PtII actor library. The BLA

layer is seamlessly integrated within the development process of the

state-of-the-art EEA-ADL. We extended existing cross-layer

mappings and leveraged the latter as well as a signal router and HW

network synthesis of the EEA-ADL to link the BLA model with lower

layer implementation details like bus communication, execution time

delays and electrical properties. This enables the synthesis and

integrated conduction of a unified cross-domain simulation model. An

ACC case study proved the concept of synthesizing the unified

simulation model with CAN bus communications and execution times.

Early but holistic analysis by means of integrated high-level

simulations of different ACC controllers which are influenced by CAN

and execution time delays allowed an early decision on the most

suitable realization by simply changing the cross-layer mappings. The

latter additionally enable the seamless traceability e.g. of the BLA

behavioral artifacts to the executive ECUs or the respective

requirements. Finally, the modular approach enables the transfer to

other EEA ADLs and application domains.

We will further develop our approach by considering the synthesis of

electrical and physical properties and performing electrical simulations

of the wiring harness. Suitable metrics using the simulation results for

iterative optimizations can be addressed. The support and integration

of domain-specific models specified in external expert tools will also

be investigated by means of the PtII co-simulation capabilities

developed in our previous works in order to further increase reuse and

productivity. We will also extend our case studies, e.g. by integrating

more elaborate wheel drive plant models incorporating with the

WheelController or considering event based situations with the help of

modal models.

References

1. C. Buckl et al., "The software car: Building ICT architectures for

future electric vehicles," in Electric Vehicle Conference (IEVC),

2012 IEEE International, March 2012, pp. 1-8.

2. F. K. Bapp et al., "Adapting Commercial Off-The-Shelf

Multicore Processors for Safety-Related Automotive Systems

Using Online Monitoring," in SAE Technical Paper, Apr. 2015.

[Online]. http://dx.doi.org/10.4271/2015-01-0280

3. K.I. Voigt, Industrielles Management - Industriebetriebslehre

aus prozessorientierter Sicht. Berlin Heidelberg, Germany:

Springer Verlag, 2008.

4. OMG. Systems Modeling Language SysML®, formal/2015-06-

03. [Online]. http://www.omg.org/spec/SysML/1.4/PDF

5. OMG. UML Profile for MARTE: Modeling and Analysis of

Real-time and Embedded Systems, formal/2011-06-02. [Online].

http://www.omg.org/spec/MARTE/1.1/PDF

6. J. Matheis, "Abstraktionsebenenübergreifende Darstellung von

Elektrik/Elektronik-Architekturen in Kraftfahrzeugen zur

Ableitung von Sicherheitszielen nach ISO 26262," Karlsruhe

Institute of Technology, Ph.D. thesis ISBN: 978-3-8322-8968-3,

2010.

7. EAST-ADL Association. (2016) EAST-ADL Association.

[Online]. http://www.east-adl.info/Specification/V2.1.12/EAST-

ADL-Specification_V2.1.12.pdf

8. AUTOSAR. AUTOSAR 4.2 (Automotive Open System

Architecture) Specifications. [Online]. http://www.autosar.org

9. The Mathworks, Inc. Simulink 2016. [Online].

http://www.mathworks.com/products/simulink/

10. Modelica Association. Modelica Standard Library. [Online].

https://modelica.org/libraries/Modelica/

11. J. Eker et al., "Taming Heterogeneity—The Ptolemy Approach,"

Proceedings of the IEEE, Vol. 91, No. 1, pp. 127-144, 2003.

12. P. Derler, E. A. Lee, and A. Sangiovanni-Vincentelli, "Modeling

Cyber-Physical Systems," Proceedings of the IEEE (special

issue on CPS), vol. 100, no. 1, pp. 13-28, January 2012. [Online].

https://doi.org/10.1109/JPROC.2011.2160929

13. E.A. Lee and A.L. Sangiovanni-Vincentelli, "Component-based

design for the future," in Design, Automation Test in Europe

Conference Exhibition (DATE), 2011, March 2011, pp. 1-5.

14. C. Ptolemaeus, System Design, Modeling, and Simulation using

Ptolemy II.: Ptolemy.org, 2014. [Online].

http://ptolemy.org/books/Systems

15. Vector Informatik GmbH, "PREEvision Version 7.5 Manual,"

2016.

16. S. Halbach et al., "Model Architecture, Methods, and Interfaces

for Efficient Math-Based Design and Simulation of Automotive

Control Systems," in SAE Technical Paper, Apr. 2010. [Online].

http://dx.doi.org/10.4271/2010-01-0241

17. G. Weiss, M. Zeller, D. Eilers, and R. Knorr, "Approach for

Iterative Validation of Automotive Embedded Systems," in

http://dx.doi.org/10.4271/2015-01-0280
http://www.omg.org/spec/SysML/1.4/PDF
http://www.omg.org/spec/MARTE/1.1/PDF
http://www.east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
http://www.east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
http://www.autosar.org/
http://www.mathworks.com/products/simulink/
https://modelica.org/libraries/Modelica/
https://doi.org/10.1109/JPROC.2011.2160929
http://ptolemy.org/books/Systems
http://dx.doi.org/10.4271/2010-01-0241

An Integrated Approach Enabling Cross-Domain Simulation of Model-Based E/E-Architectures H. Bucher et al.

14

Models 2010 ACES-MB Workshop Proceedings, 2010, pp. 69–

83.

18. R. Marinescu et al., "Analyzing Industrial Architectural Models

by Simulation and Model-Checking," in Formal Techniques for

Safety-Critical Systems.: Springer International Publishing, 2015,

vol. 476, pp. 189-205. [Online]. http://dx.doi.org/10.1007/978-3-

319-17581-2_13

19. R. Weissnegger et al., "Simulation-based Verification of

Automotive Safety-critical Systems Based on EAST-ADL,"

Procedia Computer Science, vol. 83, pp. 245-252, 2016.

[Online]. http://dx.doi.org/10.1016/j.procs.2016.04.122

20. IEEE, "IEEE Standard for Standard SystemC Language

Reference Manual," IEEE Std 1666-2011 (Revision of IEEE Std

1666-2005, pp. 1-638, Jan. 2012. [Online].

http://standards.ieee.org/getieee/1666/download/1666-2011.pdf

21. IEEE, "IEEE Standard for Standard SystemC-Analog/Mixed-

Signal Extensions Language Reference Manual," IEEE Std

1666.1-2016, 2016. [Online].

http://standards.ieee.org/getieee/1666_1/download/1666_1-

2016.pdf

22. J. Wan, A. Canedo, and M. A.A. Faruque, "Functional Model-

Based Design Methodology for Automotive Cyber-Physical

Systems," IEEE Systems Journal, vol. PP, no. 99, pp. 1-12, 2015.

23. LMS Imagine.Lab. AMESim 2016. [Online].

http://www.plm.automation.siemens.com/en_us/products/lms/im

agine-lab/amesim

24. D. Gebauer, J. Matheis, M. Kühl, and K. D. Müller-Glaser,

"Integrierter, graphisch notierter Ansatz zur Bewertung von

Elektrik/Elektronik- Architekturen im Fahrzeug," in Moderne

Elektronik im Kraftfahrzeug, IV.: HDT (Haus der Technik),

2009, ch. 2.1, pp. 49-62.

25. E. A. Lee, S. Neuendorffer, and M. J. Wirthlin, "Actor-Oriented

Design Of Embedded Hardware And Software Systems,"

Journal of Circuits, Systems, and Computers, vol. 12, pp. 231-

260, 2003.

26. E. A. Lee and S. Tripakis, "Modal Models in Ptolemy," in

Proceedings of 3rd International Workshop on Equation-Based

Object-Oriented Modeling Languages and Tools (EOOLT 2010),

October 2010, pp. 11-22.

27. X. Liu, Y. Xiong, and E. A. Lee, "The Ptolemy II Framework for

Visual Languages," in Proceedings of the IEEE 2001 Symposia

on Human Centric Computing Languages and Environments

(HCC'01), Washington, DC, USA, 2001, p. 50.

28. A. Davare et al., "A Next-Generation Design Framework for

Platform-based Design," in DVCon 2007, February 2007.

[Online]. http://chess.eecs.berkeley.edu/pubs/228.html

29. M. Treiber, A. Hennecke, and D. Helbing, "Congested Traffic

States in Empirical Observations and Microscopic Simulations,"

Physical Rev. E, vol. 62, no. 2, pp. 1805-1824, 2000. [Online].

https://doi.org/10.1103/PhysRevE.62.1805

30. C. Roth et al., "A Simulation Tool Chain for Investigating Future

V2X-based Automotive E/E-Architectures," in 7th European

Congress on Embedded Real-Time Software and Systems

(ERTS²), Toulouse, France, 2014, pp. 1739-1748.

31. H. Bucher, A. Klimm, O. Sander, and J. Becker, "Power

Estimation of an ECDSA Core Applied in V2X Scenarios Using

Heterogeneous Distributed Simulation," in 2015 IEEE/ACM 19th

International Symposium on Distributed Simulation and Real

Time Applications (DS-RT), Chengdu, China, October 2015, pp.

187-194. [Online]. https://doi.org/10.1109/DS-RT.2015.35

32. H. Bucher et al., "A V2X Message Evaluation Methodology and

Cross-Domain Modelling of Safety Applications in V2X-enabled

E/E-Architectures," EAI Endorsed Transactions on Security and

Safety, vol. 16, no. 8, 2016. [Online].

http://dx.doi.org/10.4108/eai.24-8-2015.2261038

Contact Information

Harald Bucher

Karlsruhe Institute of Technology (KIT)

Institute for Information Processing Technologies (ITIV)

Engesserstr. 5

76131 Karlsruhe, Germany

bucher@kit.edu

Abbreviations

ACC Adaptive Cruise Control

ADL Architecture Description

Language

BB Building Block

BFS Breadth First Search

BLA Behavioral Logical

Architecture

CAN Controller Area Network

CT Continuous Time

DE Discrete Event

EAST-ADL Electronics Architecture and

Software Technology-ADL

ECU Electronic Control Unit

EEA Electric/Electronic

Architecture

EEA-ADL Electric/Electronic

Architecture - Analysis

Design Language

FRB Fuse Relay Box

FSM Finite State Machine

GRE Gateway Routing Entry

GUI Graphical User Interface

GW Gateway

IDM Intelligent Driver Model

LA Logical Architecture

LF Logical Function

MoC Model of Computation

MoML Modelling Mark-up Language

PtII Ptolemy II

ST Signal Transmission

XML eXtensible Mark-up Language

http://dx.doi.org/10.1007/978-3-319-17581-2_13
http://dx.doi.org/10.1007/978-3-319-17581-2_13
http://dx.doi.org/10.1016/j.procs.2016.04.122
http://standards.ieee.org/getieee/1666/download/1666-2011.pdf
http://standards.ieee.org/getieee/1666_1/download/1666_1-2016.pdf
http://standards.ieee.org/getieee/1666_1/download/1666_1-2016.pdf
http://www.plm.automation.siemens.com/en_us/products/lms/imagine-lab/amesim
http://www.plm.automation.siemens.com/en_us/products/lms/imagine-lab/amesim
http://chess.eecs.berkeley.edu/pubs/228.html
https://doi.org/10.1103/PhysRevE.62.1805
https://doi.org/10.1109/DS-RT.2015.35
http://dx.doi.org/10.4108/eai.24-8-2015.2261038
mailto:bucher@kit.edu

