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Abstract 

The increasing complexity of electric/electronic architectures (EEA) 

in the automotive domain raised the necessity of model-based 

development processes for the design of such heterogeneous systems, 

which combine different engineering principles with different 

viewpoints. High-level simulation is a great means to evaluate the EEA 

in the concept phase of the design, since it reduces costly real-world 

experiments. However, model-based EEA design and analysis as well 

as its simulation are often separate processes in the development 

lifecycle. In this paper, we present a novel approach that extends state-

of-the-art model-based systems engineering principles of EEA by a 

behavior specification reusing library components. The specification 

is seamlessly integrated in the development process of a single source 

EEA model. Therewith, the starting point is the abstract logical 

function architecture of the EEA. Based on this single source EEA 

model we synthesize a unified high-level simulation model, which is 

capable of linking the behavioral model with lower level 

implementation details of other domains, e.g. the network 

communication of the underlying hardware topology. This cross-layer 

simulation enables an early but holistic system’s behavior analysis of 

the dynamic changes which typically depend on the scenarios applied. 

Moreover, the integrated approach enables the potential to feedback 

the simulation results into suitable EEA metrics and benchmarks for 

further analysis and optimization as well as the seamless traceability 

of the behavioral specification to requirements and other abstraction 

layers. A driver assistance system use case demonstrates the proof-of-

concept and the benefits of our methodology. 

Introduction 

The increasing complexity of automotive and avionic 

electric/electronic architectures (EEA) due to the integration of 

evermore features required the need of model-based development 

principles in the last years in order to cope with that complexity. 

Nowadays modern high-class vehicles are a distributed system of up 

to 100 ECUs communicating over different bus systems [1]. Latest 

communication technology like Car-2-X communication, safety 

standards like ISO26262, various innovations like driver assistance 

systems or autonomous driving as well as integrating multi-core 

technology into ECUs [2] makes the development of an EEA an even 

more difficult endeavor.  

A successful concept phase determines about 80% of the costs of 

further lifecycle process steps in the development of EEA [3]. The 

concept phase is an iterative process that deals with the overall 

functionality, convenience, risks and costs of the vehicle that have to 

meet its requirements. Hence, early stage analysis and evaluation at 

system-level is necessary in order to avoid subsequent changes in the 

EEA which incur enormous costs, because of extensive re-designs. 

For system modelling of EEA several approaches and methodologies 

have emerged in the last years, either based on general purpose 

modelling languages like SysML/MARTE [4] [5] or on domain-

specific architecture description languages like EEA-ADL [6], EAST-

ADL [7], or the AUTOSAR [8] meta-model. The named domain-

specific ones all have a layered architecture where each layer 

represents a different abstraction level and view on the system. 

AUTOSAR is also based on abstraction layers and complements the 

implementation level e.g. of the EAST-ADL specification [7].  

However, the major drawback of these approaches is the poor support 

for modelling the dynamic system behavior, which is a necessary 

prerequisite to perform system level simulation and evaluation. 

Specifically, they only specify end-to-end flows (what the system 

does) without defining the semantics for the model execution. 

Simulation is a great means to evaluate and test a system, since it 

provides an early feedback on the system dynamics and especially of 

non-functional properties which typically depend on the simulation 

scenario applied. Additionally, it reduces costly real-world 

experiments and time-to-market.  Hence, there is a need to have a 

behavioral specification that not only captures the temporal end-to-end 

flows of the system functions (what the system does), but also one that 

is executable and shows how the system dynamics behave based on the 

implemented behavior. 

Furthermore, there is a lack in state-of-the-art methodologies and tools 

covering both, modelling the system architecture and simulating the 

system’s dynamic behavior linked with implementation details in an 

integrated development process. Simulation of functional behavior, 

controls or plants and domain-specific implementation details (e.g. the 

distributed execution of the function and the used bus protocol between 

the hardware) is typically done in separate domain-specific tools like 

MATLAB/Simulink [9] or Modelica [10]. They are following different 

abstraction levels, meta-models and Models of Computations (MoC) 

[11] which represent the individual domains. This makes it hard to 
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integrate them in a holistic manner or yields to fragile tool chains [12]. 

Hence, the heterogeneous nature of EEA would benefit from an 

integrated and holistic approach, where the focus lies on the 

interoperation of semantics of heterogeneous domains in a 

deterministic and unified manner [12] [13]. 

In this paper, we address this issue and present a generic approach for 

the cross-domain simulation of model-based EEA. We introduce an 

additional modelling layer, which specifies the functional behavior, 

control or plant models reusing an actor library. The specification is 

seamlessly integrated in the development process of a single source 

EEA model [6]. The novelties and contributions are 1. the executable 

behavioral system model specification at a high abstraction level 

integrated in the EEA model design flow, 2. the synthesis and 

integrated conduction of a unified simulation model, which links the 

behavioral models to more detailed domain-specific information from 

lower abstraction levels (e.g. bus communication), 3. the reuse of 

library-based simulation components, 4. the extension of existing 

EEA’s logical function descriptions by the behavioral specification via 

layer mapping principles and 5. the application to an Adaptive Cruise 

Control (ACC) use case as proof-of-concept. The simulation model is 

synthesized for the heterogeneous modelling and simulation 

framework Ptolemy II [14] (PtII) and conducted within the EEA design 

and analysis tool PREEvision [15] from Vector which is based on [6]. 

The remainder of the paper is organized as follows: first, we present 

some related works and give background information about the used 

approaches and tools in this work. Afterwards, we detail our model-

based simulation model synthesis methodology and its individual 

components. Then we present our ACC case study and discuss our 

approach before we finally conclude the work. 

Related Work 

The benefits of general purpose approaches based on SysML and/or 

MARTE are the possibility to reuse existing tools and the capability to 

model behavioral end-to-end flows including timings. However, 

SysML only specifies the syntax of the behavioral models and not their 

semantics in order to execute them. Thus they are not suitable for high-

level simulation. Similarly, the domain-specific approaches like the 

EAST-ADL and also the EEA-ADL used in this work do not support 

the explicit modelling of executable behavior, but only what the 

system does. Specifically, e.g. the EAST-ADL is referencing their 

FunctionBehavior blocks to an external behavior description in a tool-

dependent format [7] without integrating it into the development 

process like it is done in our approach.  

There are several previous works dealing with the generation of 

simulation models out of model-based EEA. Autonomie [16] is a tool 

which supports GUI based vehicle level modelling. It is capable of 

automatically assembling the vehicle model consisting of several 

Simulink sub-systems by means of a set of XML meta-data files.  

Although it provides similar features like an automatic model 

assembly, it is done on a different granularity. Moreover, non-

functional properties in simulation and traceability features across all 

EEA abstraction layers due to the lack of integrated cross-layer 

mappings are not mentioned.  

Works which address the generation of simulation models from EAST-

ADL models are [17] [18] [19]. In [17] the authors use the 

SystemC/TLM [20] system level programming language to specify the 

behavior and map them to EAST-ADL layers. An automotive use case 

is used in their work. However, the approach only works well with 

discrete digital systems and lacks for the support of other domains, e.g. 

the continuous domain for modelling analogue components or plants. 

The authors in [18] proposed a mechanism to simulate EAST-ADL 

FunctionBehavior blocks by linking them to Functional Mock-up 

Units (FMUs) or Simulink models. The approach suffers from the poor 

behavior specification of the EAST-ADL by referencing the functions 

to external descriptions. Hence, in contrast to our approach, it is not 

integrated in the development process of the whole EEA model. 

Moreover, Simulink requires expensive licenses and supports only one 

MoC, namely continuous time with support for discrete time signals, 

whereas we benefit from the wide range of MoCs provided by PtII (see 

Background section for more details). This also applies for [16].  

A recent approach relating to EAST-ADL was reported by the authors 

in [19], which is similar to the one in [17]. They additionally provide 

support for SystemC-AMS [21] to model and simulate analog/mixed-

signal systems. Similar to our approach, they provide a library called 

SystemComponentLibrary for assembling the simulation model to 

increase development productivity. A text-to-model converter 

transforms the SystemC components into EAST-ADL behavioral 

FunctionBehavior and structural HWComponentType blocks. They 

apply their methodology to a brake-by-wire system. However, the 

generated EAST-ADL blocks still need to have a link to the external 

SystemC descriptions. Thus it is only partially integrated, but 

supported by the transformations. Moreover, the approach only covers 

the Design Level of EAST-ADL and does not mention links to lower 

levels. Our approach starts at a higher abstraction layer, linking the 

abstract Logical Architecture (LA, cp. Background section) 

description (what the system does) to the behavioral specification and 

more detailed lower level implementation layers, e.g. network 

topology and execution times. The Logical Architecture can be 

compared to the Functional Analysis Architecture layer above the 

Design Level of the EAST-ADL. We automatically synthesize the 

simulation model starting from this level, whereas the approach in [19] 

basically maps SystemC components to EAST-ADL blocks at the 

Design Level and finally parse the EAST-ADL model to construct the 

SystemC model.  

The authors in [22] present an approach to synthesize component-

based high-level and multi-domain AMESim [23] simulation models 

from a functional description based on the Functional Model 

Language. A set of available architectures is analyzed, which fit to the 

functional model and fulfil a set of requirements. Based on the 

specified flows, the proper simulation components of a given library 

are chosen. However, the work does not address the synthesis of lower 

level implementation details like network communication, execution 

time of components or the detailed algorithmic specification (how the 

components work).  
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Overall, none of the works presented support a fully integrated 

modelling process covering all levels of abstraction, synthesizing a 

high-level simulation model which covers several domains and 

considers lower level implementation details as well as non-functional 

properties at the same time. Furthermore, traceability across all 

abstraction levels in the EEA model is enabled as well as the reuse of 

existing LA descriptions by introducing a separate behavior 

specification layer. 

Background 

EEA-ADL 

The Electric/Electronic Architecture – Analysis Design Language 

(EEA-ADL) [6] is another approach to holistically model EEA. This 

approach combines the EAST-ADL and AUTOSAR approaches in a 

single source EEA data model and also allows an ISO26262 compliant 

design. This is realized in the architecture design and analysis tool 

PREEvision [15], which is used for the proof-of-concept 

implementation described in this work. PREEvision v7.5 provides 

seven abstraction layers: 1. Requirements, Customer Features and 

Feature-Functionality Network which contain atomic requirements, 

features and their interaction. 2. The Logical Architecture is the 

starting point of the methodology presented in this work. It describes 

the vehicle’s abstract logical function network and serves as a system 

decomposition of the later implementation in hardware (HW) and/or 

software (SW). It encompasses the specification of logical artifacts, 

e.g. Sense, Actuation and Logical Functions as well as their 

interconnection via Logical Ports and Logical Assembly Connectors. 

It also offers abstraction by introducing hierarchy via Building Block 

composites. Additionally, Signal definitions are performed describing 

which signals are exchanged between the logical blocks and later 

physically between the HW components 3. The System Software 

Architecture specifies AUTOSAR SW components as well as their 

interconnections via ports and their interfaces and complies with the 

AUTOSAR methodology. The components can be mapped to LA and 

HW components. 4. The Hardware Component and Network Topology 

describes all ECUs, sensors, actuators and their networking via bus 

systems used in the EEA. This layer also allows communication with 

conventional connections and the design of the abstract power 

distribution network. Here one connection abstracts from several wires 

or cables in the lower layers. 5. The Electrical Circuit and 6. Wiring 

Harness layers can be automatically synthesized from the network 

layer and contain the physical connections between the HW artifacts 

like wire types, schematic pin types, cable types and their physical 

properties like specific wire resistance. 7. The last layer realizes the 

Geometrical Topology of the EEA. Cross-layer links (mappings) 

between artifacts enable the comprehensive and consistent back-

traceability across all modelling layers. A product line approach is 

used to support the complex EEA variant management.  In addition to 

the EEA modelling, an integrated Metric Framework [24] is provided 

which enables the analysis and evaluation of architecture alternatives 

by customized metrics for non-functional properties like weight, cost 

or wiring harness diameter. This framework is also used for the 

implementation of the simulation synthesis methodology of this work. 

More details about the artifacts used for the implementation can be 

found in the Case Study section. 

Heterogeneous Modelling and Simulation - Ptolemy II 

Ptolemy II [14] is an open-source modelling and simulation framework 

for heterogeneous embedded systems with focus on concurrent 

components as well as the deterministic use and composition of 

heterogeneous MoCs. Deterministic in the sense that the same inputs 

always result in the same outputs. PtII follows an actor-oriented 

approach [25]. Actors are components that execute concurrently and 

communicate with each other via ports and relations. They can be 

atomic or composite. Atomic actors cannot be refined whereby 

composites enable hierarchical nesting of actors. The semantics for the 

execution of and communication between actors is governed by a 

specific MoC. The MoC within the model or a composite actor (sub-

model) is realized by a component called Director. Distinct directors 

can be composed hierarchically in a single model at each level of the 

hierarchy. A sub-model controlled by an individual director is also 

called domain [12]. There are a variety of MoCs supported by PtII 

including discrete event (DE), which is especially suitable to model 

discrete systems like hardware architectures or communication 

networks. Besides DE, there exist other MoCs like continuous-time 

(CT) which is suitable for analogous components like sensors or 

physical dynamics, various dataflow MoCs for signal processing, finite 

state machines (FSMs), process networks for asynchronous distributed 

systems or synchronous/reactive for safety-critical concurrent 

software modelling. The hierarchical combination of MoCs with FSMs 

enables modal models [26]. These basically contain a FSM where each 

state can be refined with a sub-model containing a distinct director or 

again a FSM interoperating with the FSM director using well-defined 

interfaces. This allows the construction of hybrid system models, 

which capture discrete behavior with continuous physical processes 

with rigorous deterministic semantics. Furthermore, event based 

situations such as environmental uncertainties or faults and reactions 

to them can be handled by modal models [12]. This is especially true 

for the heterogeneous nature of EEA, which additionally adds a 

distributed communication network and the interaction with its 

environment. All these domains are covered by PtII and it provides an 

easily extensible actor library through its open-source nature and well-

defined interfaces as well as documentation. A concrete syntax to 

represent models in PtII is the XML-based MoML (Modelling Mark-

up Language), which provides a human readable format though eases 

portability, reuse, verbosity and model transformations. The abstract 

syntax [14] [27] of hierarchical actors with ports and interconnections 

is close to the LA of the EEA-ADL which makes it intuitive to map a 

PtII model to an LA model. All the previously described features are 

the reasons why we chose PtII as integrated simulation backbone of 

model-based EEA, e.g. instead of Simulink, which supports only one 

but sophisticated CT MoC but lacks for heterogeneous MoC 

composition.  
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Model-Based EEA Simulation Model Synthesis 

Methodology 

The starting point for cross-domain simulation of model-based EEA is 

an EEA data model, which captures all relevant information necessary 

to synthesize an executable simulation model. This can be achieved 

with e.g. the EAST-ADL or the EEA-ADL previously described. In 

the following we provide an overview of our proposed methodology 

and necessary extensions to state-of-the-art domain-specific EEA 

description languages in order to enable early but holistic cross-

domain simulation. We detail the individual components using the 

example of the EEA-ADL. 

Overview 

Because of the poor support for modelling behavior in the presented 

ADLs, an opportunity to explicitly specify the behavior is a necessary 

prerequisite in order to enable simulation. Therefore, we introduce a 

new layer, called Behavioral Logical Architecture (BLA), that refines 

the abstract LA’s logical blocks (what the system does) with detailed 

behavior (how the abstract functions are working) by reusing actors 

from the PtII Actor Library. Mappings of BLA artifacts to the LA layer 

and from the LA layer to requirements or artifacts of lower layers 

enable the seamless traceability across all EEA layers. Additionally, it 

is a prerequisite to enable cross-domain simulation synthesis, because 

the mappings establish the links to the lower layers providing detailed 

domain-specific information. 

The E/E-Model Interpreter extracts all necessary information from the 

relevant layers of the underlying EEA data model including the 

mappings as well as signal routing information in order to synthesize 

the simulation model. It serves as a front-end to interpret the 

underlying EEA data model and stores the meta-info such as artifact 

mappings in a database.  

The Generic Simulation Model Builder uses the extracted E/E meta-

info, translates/maps them to the target simulation model and 

synthesizes the unified cross-domain simulation model. It serves as a 

back-end for the target simulation model to be built. In this work this 

is a single XML file containing the MoML description for PtII.  

The synthesized Cross-Domain Simulation Model is executed using 

PtII. It is twofold: it contains the behavioral simulation specified at the 

BLA layer. Beyond that it performs the domain-specific simulation of 

the lower layers, e.g. the mapping dependent network communication 

between the logical functions or physical/electrical processes as well 

as non-functional properties like execution time of the logical 

functions. The domain-specific and non-functional simulations are 

performed in an aspect-oriented way in combination with the 

behavioral simulation. 

Finally, the integrated approach enables the feedback of the simulation 

results into suitable EEA metrics or benchmarks enabling iterative 

optimizations. It also enables the integrated visualization of the 

simulation data. The described methodology is shown in Figure 1. In 

the following we detail the components of our contributions with green 

background. 

 

Figure 1. Overview of the proposed cross-domain simulation synthesis 

methodology of EEA. 

Behavioral Logical Architecture Layer 

This new layer called BLA introduces a refinement of the LA layer in 

the development process of the EEA by explicitly specifying the 

detailed functional behavior, plant and control models. Therewith, the 

same artifacts used to model the LA are reused, mainly Sense, Logical 

Function, Actuation and Building Block and their interconnection via 

Logical Ports and Logical Assembly Connectors. This has the 

advantage that the underlying EEA meta-model need not to be changed 

or extended by behavioral specific classes of the target simulation 

model. The LA’s logical blocks are refined by instances of the PtII 

Actor Library (see PtII Actor Library section) which are encapsulated 

in a Building Block. Additional introduced mappings between the LA 

and BLA artifacts establish cross-layer links. In this way, the BLA 

layer together with the mappings enable a modular architecture where 

the LA can exist independently of the BLA but can be refined by the 

BLA where necessary. Additionally, several implementations of a 

single LA logical function can be exchanged by simply changing the 

mappings. 

PtII Actor Library 

The goal of this library is to increase productivity by reusing tested PtII 

actors ensuring that an engineer does not need to develop functions 

from scratch. The shipped PtII library contains a variety of actors 

necessary to model the detailed behavior, e.g. basic arithmetic, 

mathematical, logical actors but also domain-specific complex actors 

like FFT, filters, controllers, actuators like DC motors and many more. 

In addition, source actors to model stimuli for the behavior and sink 

actors to visualize, monitor or record/store simulation data are 

available as well. Recorded data can be used, e.g. in metrics in a later 

stage after the simulation to further evaluate the results or by using 

them in benchmarks. The library is extensible by either writing own 

Java actors or creating composite actors made of atomic and/or again 

composite actors and storing them in a MoML description file. 
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In order to use the actors at the BLA layer and to properly synthesize 

the MoML out of the BLA specification, the BLA artifacts have to be 

mapped to PtII artifacts. PtII follows a class-instance principle similar 

to object-oriented programming languages. The LA and hence the 

BLA follows a similar approach called type-instance principle. 

Therefore, actors are stored as logical function types, which define the 

actor class of the instance modeled at the BLA.  

An AbstractLogicalFunction is an instance of a logical Sense, Function 

or Actuation block and represents an actor instance of a specific type 

in the BLA model. A Building Block represents an instance of a 

composite actor, independent on its defined type - except for Modal 

Models. Since the Building Block type defines only the interfaces and 

can have different implementations, it is useful to distinguish the same 

behavioral sub-system in the model with different realizations. This is 

also shown in our case study. Once a Building Block has been modeled 

at the BLA realizing a specific function it can be stored back in the 

library. This increases reuse of already created artifacts among 

engineers and across LA sub-systems. 

Logical Provided-/Required Ports and Logical Assembly Connectors 

are straightforward mapped to output/input ports and to relations in 

PtII, respectively. Since most of the PtII actors offer parameters to 

configure them and also customized parameters can be added to a 

model or sub-model (composite), this possibility should also be present 

in the BLA. This is done via Generic Attributes of the EEA-ADL, 

which can be configured with at least a name, type and value and 

complies with PtII parameters. As directors are also a kind of 

attributes, but are only valid for a complete model or sub-models 

(composites) they should not be specified for a single actor. A different 

mapping compared to the parameters is necessary. Therefore, we 

introduce a custom defined Domain Attribute in the BLA, which is 

only valid for logical block owners to specify the director, i.e. the 

MoC, used to simulate the enclosing building block. Common 

attributes like start and stop time can be defined as well. 

As stated previously, a building block type can be custom defined, 

except for Modal Models. As these are a special type of composites we 

interpret a building block of the type 

ptolemy.domains.modal.ModalModel as a modal model. Therewith, 

logical functions do not represent ordinary actors anymore, but states 

of the FSM. Their interconnection via ports and logical assembly 

connectors define the transitions between the states. A label of a logical 

assembly connector is then interpreted as the transition conditions and 

actions between the connected states. If a building block is used as a 

state, it represents a refinement state, either of a customized type or 

again a modal model type. That refinement then realizes a sub-model 

with a distinct domain or a hierarchical FSM respectively. The 

described mappings are summarized in Table 1., except for the modal 

model specific instance mappings. 

Transition between LA and BLA 

The refinement of LA artifacts and the modular approach of the 

behavioral specification at the BLA requires the establishment of 

cross-layer mappings to relate the LA and BLA artifacts to each other. 

For the transition from the LA to the BLA layer we introduce two kinds 

of artifact mappings: port prototype and block mappings.  

Table 1. Mapping of BLA artifacts to PtII artifacts. 

EEA-ADL::BLA Ptolemy II 

Artifact Purpose Artifact 

Abstract Logical 

Function 

Sense, Function or 

Actuation logical blocks  

Atomic or Composite 

Actor Instance 

Abstract Logical 

Function Type 

Specifies the type of a 

logical function 
Actor Class 

Building Block 

Encapsulates atomic 

logical functions or again 

building blocks 

Composite Actor 

Building Block 

Type 

Specifies the type of a 

building block 

Composite Actor or 

Modal Model class 

Logical Provided 

Port 
Sender port Output Port 

Logical Required 

Port 
Receiver port Input Port 

Logical Block 

Owner Domain 

Attribute 

Custom attribute;  

specifies the MoC used to 

simulate this building 

block 

Director 

Logical 

Assembly 

Connector 

Connects logical ports relation 

Generic Attribute 
Provides parameters to 

logical blocks 
Attribute / Parameter 

Basically, each atomic logical block (Sense, Logical Function or 

Actuation) of the LA represents a borderline to the BLA and can be 

mapped to a building block, i.e. a composite actor, at the BLA 

comprising one or more interconnected (composite) actors. Therewith, 

it is possible to either perform a 1-to-1 or n-to-1 mapping of LA atomic 

block(s) to one BLA building block. In addition, the BLA building 

block need to provide at least the number of input/output ports of the 

corresponding LA block(s). Building blocks of the LA are not allowed 

to be mapped, because they serve as an abstraction of the overall 

logical system decomposition. The port prototype mappings follow a 

1-to-1 mapping principle exclusively in order to ensure the interface 

consistency between the LA atomic block(s) and the BLA building 

block. Another benefit of the 1-to-1 port prototype mappings is that it 

enables the automatic connection of the top-level target BLA building 

blocks, i.e. the top-level composite actors in the synthesized behavioral 

MoML, based on the connections of the corresponding LA atomic 

block(s). Hence only the internal actors and its interconnections have 

to be modeled as well as the port prototypes have to be mapped only 

once as long as the LA block’s interfaces do not change. This 

automatic approach increases the reusability of already mapped 

building blocks in possibly several LA sub-systems or even in other 

product lines of the EEA-ADL without creating manual connections 

of the corresponding BLA top-level building blocks in that sub-

systems. For simplicity reasons we refer to the port prototype 

mappings simply as port mappings. The described mappings are 

illustrated in Figure 2. and Figure 3. 
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Figure 2. Illustration of the 1-to-1 block and port mapping. 

 

Figure 3. Illustration of the 1-to-1 port and n-to-1 block mapping. 

Links to other Layers 

By exploiting the previously introduced LA-BLA mappings together 

with the mapping of the LA to lower layers, it is possible to extract 

more detailed domain-specific information in order to decorate the 

pure behavioral BLA building blocks with it. We outline this with the 

help of Figure 4. Therewith, the dotted red lines represent the cross-

layer mappings between the LA, BLA, Hardware Network Topology 

and Topology layers. For simplicity reasons, the port mappings are not 

shown and we assume that the LA logical block’s port are properly 

mapped to the BLA building block’s counterparts. Note that the shown 

model is not fully mapped and we are focusing on the LA Building 

Block, which contains two logical functions, namely Logical Function 

(LA-LF) and Logical Function 2 (LA-LF2). LA-LF is mapped to the 

BLA Building Block 2 (BLA-BB2), whereas LA-LF2 is mapped to the 

BLA Building Block 3 (BLA-BB3).  

LA-LF is additionally mapped to the ECU1 at the HW layer. In 

contrast, LA-LF2 and therefore BLA-BF3, is distributed among ECU2 

and ECU3. ECU1 is connected to ECU2 and ECU3 via two separate 

CAN bus systems, namely CAN1 and CAN2. Because of these 

mappings it follows, that BLA-BB2 has to communicate with BLA-

BB3 via CAN1 and CAN2 (see green markers in Figure 4.). The 

direction of the communication is derived by the directed connection 

of LA-LF to LA-LF2. Moreover, we consider the LA Actuation block. 

This is mapped to the BLA Building Block4 (BLA-BB4) and to the 

HW Actuator block. In this case, BLA-BB4 is communicating with the 

Actuator via a conventional connection (see orange marker in Figure 

4.). Thereby, a conventional connection not only transports 

information but also energy, or more concrete, currents. The capability 

of the EEA-ADL to model the power distribution network additionally 

enables the possibility to derive electrical properties of the whole HW 

network. 

 

Figure 4. Cross-layer links between the BLA and lower layers. 

Overall, logical assembly connections represent not only pure data 

flow. As previously described they are decorated with domain-specific 

aspects, which need to be extracted in order to enable cross-domain 

simulation of the EEA. The extraction of these aspects is performed 

within the E/E-Model Interpreter.  

E/E-Model Interpreter 

The E/E-Model Interpreter serves as a front-end interpreter of the 

underlying EEA data model that extracts and collects all necessary 

information as E/E meta-info. This meta-info comprises mainly those 

shown in Figure 1. The LA together with the BLA layer and its 

mappings to each other provide the behavioral specification which is 

synthesized according to the modeled instances of PtII actors (see 

section PtII Actor Library). The LA additionally provides information 

about latency times of the logical blocks as well as the signals which 

are exchanged between the logical blocks and later between the 

mapped HW components (signal routing). Note that the LA-BLA 

mappings ensure that all meta-info valid for the LA artifacts do also 

apply for the corresponding BLA artifacts. The proper extraction of the 

domain-specific information like bus communication or 

electrical/physical properties requires two input prerequisites for the 

E/E-Model Interpreter to be performed by the EEA-ADL on the EEA 

data model: 1. The Signal Router and 2. The HW Network Synthesis. 

These are described briefly in the next sub-section. Afterwards we 

detail the extraction of these domain- specific meta-info. Finally, note 

that we intentionally not considered mappings to and information from 

the System Software Layer, as we are starting from the high-level 

logical system decomposition and focusing on a behavioral logical 

simulation, independent on the realization of a function in HW or SW.  

Input Prerequisites 

In order to be able to extract the network communication information, 

the signals defined at the LA have to be transformed into physical 

Signal Transmissions (STs) which in turn have to be routed between 

the hardware components. This is done via a Signal Router. It 

automatically calculates the necessary route of a ST based on the LA-

to-HW mappings and a configurable target cost function, inserts 
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necessary Gateways (GWs) and creates the corresponding Independent 

Protocol Data Units (IPDU) and finally the Frames to be transmitted. 

This is sketched on the right-hand side of Figure 4. 

The extraction of electrical and physical properties such as pin types, 

wire types etc. requires the synthesis of the abstract HW Network layer 

into the more detailed Electrical Circuit and Wiring Harness layers. 

This is illustrated by the three stacked layers in Figure 4. 

Execution Time 

If there is a possibility to specify latency or execution times of artifacts, 

this can be used as additional non-functional simulation property. The 

EEA-ADL supports this with an object Latency Time comprising three 

kinds of latencies on its core artifacts including LA artifacts: minimum, 

nominal and maximum latency time. Hence, we can annotate and 

extract this latency time object from our behavioral BLA building 

blocks to synthesize execution times of actors into our simulation 

model. Since we allow an n-to-1 mapping of LA logical blocks to one 

BLA building block, the execution time of a single building block is 

the sum of the execution times of a specific kind of all mapped LA 

logical blocks. 

Bus Communication Extraction 

The Signal Router additionally creates a special kind of mapping, 

which links the logical provided ports of the source LA logical block 

and the connected required ports of target LA logical blocks with the 

created set of STs at the HW layer. This is necessary because the same 

logical function could be mapped to several instances of a specific 

ECU, e.g. four wheel ECUs. Then, the signal router has to infer and 

map four STs, one for each wheel ECU, for the signal specified at the 

logical provided port. The same holds for logical required ports.  

As discussed with Figure 4., assemblies between two logical ports not 

only represent pure data flow, but can contain bus communications. 

This is the case if a logical port has a mapping to a ST, which belongs 

to a bus system. This is true for the example used in Figure 4, where 

the mapped source and target ECUs are directly connected. Hence, 

each of the logical port to ST mappings directly contains a ST, which 

belong to the CAN1 and CAN2 bus system. However, that example is 

a simplified one. Because it is possible that the source and target ECU 

are not directly connected, a ST has to pass through one or more 

Gateway ECUs to reach its target. In this case, the mapped STs are 

routed by the Gateways towards the target ECU with the help of 

Gateway Routing Entries (GREs) in a Gateway, which define the 

incoming ST and the corresponding outgoing ST. The latter can belong 

to the same bus system as the incoming ST, a different bus system or 

a conventional connection. This is shown in Figure 5. The mapped ST1 

of the LF’s provided port has to pass the two Gateways GW1 and GW2 

until it reaches the ST3, which is mapped to the target required port of 

LF2.  

  

Figure 5. Example ECU network to extract bus communication information 

between two logical ports. 

Hence, to find all possible bus communications, we first have to 

analyze the directly mapped STs of connected logical ports. 

Additionally, we need to traverse the ECU network over all possible 

GWs, more concrete, all GREs, starting from a provided port’s ST until 

one of the target STs are reached. All intermediate STs which are found 

in between and belong to a bus system are extracted together with its 

bus system as a bus communication to be simulated between the two 

logical ports of the mapped BLA building blocks. We use a multi-

source breadth first search (BFS) algorithm to extract these 

intermediate STs with its bus systems for all STs which are not directly 

mapped to the logical ports. Therewith, the GREs represent the vertices 

and the STs the edges. The source vertices are the GREs, which contain 

the directly mapped STs as incoming ST. In Figure 5., these are the 

GREs of ST1. The target STs serve as abort criterion. The extraction 

of bus communications between a logical provided port (pPort) and a 

logical required port (rPort) is shown in Algorithm 1. 

Lines 1-3 in Algorithm 1. filter the given sets of mapped STs of the 

given pPort and rPort for STs which belong to bus systems and unifies 

them as exclusive disjunction in a new set 𝑺𝑻𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕
𝑩𝒖𝒔 .  Lines 4-21 

represent the extraction of the intermediate STs and their belonging 

bus systems as described previously. The function call 

BFS_GREs( 𝑮𝑹𝑬𝒔_𝑰𝒏 , 𝑺𝑻𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅𝑷𝒐𝒓𝒕 ) represents the multi-source 

BFS for all GREs of those pPort’s directly mapped STs which are 

incoming STs. It returns a set 𝑺𝑻𝒊𝒏𝒕𝒆𝒓𝒎𝒆𝒅𝒊𝒂𝒕𝒆
𝑩𝒖𝒔  of all STs belonging to 

intermediate bus systems until a target ST is reached as well as the set 

of corresponding bus systems 𝑩𝒖𝒔𝑺𝒚𝒔𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕.  
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Algorithm 1. ExtractBusCommunications 

 Input: pPort: Logical Provided Port 

 Input: rPort: Logical Required Port 

 Input: 𝑆𝑇𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑃𝑜𝑟𝑡: Set of mapped STs of rPort 

 Input: 𝑆𝑇𝑃𝑟𝑜𝑣𝑃𝑜𝑟𝑡: Set of mapped STs of pPort 

 Output: 𝐵𝑢𝑠𝑆𝑦𝑠𝑝𝑃𝑜𝑟𝑡,𝑟𝑃𝑜𝑟𝑡: Set of bus systems  

 between pPort and rPort 

Output: 𝑆𝑇𝑝𝑃𝑜𝑟𝑡,𝑟𝑃𝑜𝑟𝑡
𝐵𝑢𝑠 : Set of STs belonging to bus  

 systems between rPort and pPort 

1: 𝑺𝑻𝑷𝒓𝒐𝒗𝑷𝒐𝒓𝒕 
𝑩𝒖𝒔 ← filter 𝑺𝑻𝑷𝒓𝒐𝒗𝑷𝒐𝒓𝒕 belonging to bus  

 communications 

2: 𝑺𝑻𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅𝑷𝒐𝒓𝒕 
𝑩𝒖𝒔 ← filter 𝑺𝑻𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅𝑷𝒐𝒓𝒕 belonging to bus  

 communications 

3: 𝑺𝑻𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕
𝑩𝒖𝒔 ← 𝑺𝑻𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅𝑷𝒐𝒓𝒕 

𝑩𝒖𝒔  ⨁   𝑺𝑻𝑷𝒓𝒐𝒗𝑷𝒐𝒓𝒕 
𝑩𝒖𝒔   

4: for each 𝑠𝑡 ∈ 𝑺𝑻𝑷𝒓𝒐𝒗𝑷𝒐𝒓𝒕  

5:  𝐵𝑢𝑠𝑆𝑦𝑠𝑠𝑡  ← getBusSystem(st) 

6:  if 𝐵𝑢𝑠𝑆𝑦𝑠𝑠𝑡 ≠ ∅ and ∄ 𝐵𝑢𝑠𝑆𝑦𝑠𝑠𝑡 in 𝑩𝒖𝒔𝑺𝒚𝒔𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕 then 

7:   Add 𝐵𝑢𝑠𝑆𝑦𝑠𝑠𝑡 to 𝑩𝒖𝒔𝑺𝒚𝒔𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕 

8:  endif 

9:  𝑮𝑹𝑬𝒔_𝑰𝒏 ← getRoutingEntriesIn(st) 

10: 𝑺𝑻𝒊𝒏𝒕𝒆𝒓𝒎𝒆𝒅𝒊𝒂𝒕𝒆
𝑩𝒖𝒔 ← BFS_GREs(𝑮𝑹𝑬𝒔_𝑰𝒏, 𝑺𝑻𝑹𝒆𝒒𝒖𝒊𝒓𝒆𝒅𝑷𝒐𝒓𝒕) 

11: for each 𝑠𝑡𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝐵𝑢𝑠 ∈ 𝑺𝑻𝒊𝒏𝒕𝒆𝒓𝒎𝒆𝒅𝒊𝒂𝒕𝒆

𝑩𝒖𝒔  

12:  if ∄ 𝑠𝑡𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝐵𝑢𝑠   in 𝑺𝑻𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕

𝑩𝒖𝒔  then 

13:   Add  𝑠𝑡𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝐵𝑢𝑠  to 𝑺𝑻𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕

𝑩𝒖𝒔    

14:  endif 

15:  𝐵𝑢𝑠𝑆𝑦𝑠𝑠𝑡   ← getBusSystem(𝑠𝑡𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝐵𝑢𝑠 ) 

16:  if  ∄ 𝐵𝑢𝑠𝑆𝑦𝑠𝑠𝑡 in 𝑩𝒖𝒔𝑺𝒚𝒔𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕  then 

17:   Add 𝐵𝑢𝑠𝑆𝑦𝑠𝑠𝑡 to 𝑩𝒖𝒔𝑺𝒚𝒔𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕  

18:  endif 

19: endfor 

20: endfor 

21: return 𝑩𝒖𝒔𝑺𝒚𝒔𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕 and 𝑺𝑻𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕
𝑩𝒖𝒔  

Without loss of generality, we are focusing on extracted CAN bus 

systems in this work. If there are CAN bus systems found between the 

two logical ports rPort and pPort, the CAN specific bus properties like 

baud rate, frame format, transmitting policies etc. are extracted. The 

corresponding STs in the set 𝑺𝑻𝒑𝑷𝒐𝒓𝒕,𝒓𝑷𝒐𝒓𝒕
𝑩𝒖𝒔  are used to extract the 

contained CAN frames which in turn are used to extract their frame 

size and priority. 

Electrical and Physical Properties 

The HW network layer represents only abstract connections between 

ECUs or within the power distribution network. In combination with 

the tool-support by synthesizing the electrical and wiring harness layer, 

more detailed information about the connections can be extracted (see 

section Background). The mappings to the HW network layer are 

automatically propagated to the synthesized artifacts. The power 

distribution network model contains components like Power Supply, 

e.g. battery, Fuse Relay Boxes (FRBs), Ground Points as well as 

internal passive components like resistors, capacitors or inductors. The 

combination of both enables the possibility for analog current and 

voltage simulations of conventional connections or parts of the wiring 

harness. Exploiting the mappings to the Geometrical Topology layer, 

physical properties like the realized wire/cable lengths or cross-section 

of a specific conventional connection can be determined as well. With 

this, the current simulation can be even more detailed by taking wiring 

losses into account. However, we will investigate this in future work 

and is not further addressed in this work. 

Generic Simulation Model Builder  

This component serves as a back-end, which uses the behavioral 

specification as well as the extracted domain-specific and non-

functional E/E meta-info to build the unified cross-domain target 

simulation model, i.e. the PtII model. A single XML file containing 

the PtII MoML is synthesized. Therewith, the synthesis is twofold:  

1. Synthesis of the behavioral simulation as specified in the BLA 

according to the LA-BLA cross-layer links and the mappings of 

BLA artifacts to PtII artifacts. 

2. Synthesis of aspect-oriented domain-specific simulation 

decorating the behavioral actors and/or the data flow between 

them. 

This synthesis flow is depicted in Figure 6. After the selected LA sub-

model is interpreted and the E/E meta-info is available, the BLA 

synthesis of the detailed behavioral simulation model is performed. 

Each of the top-level building blocks of the BLA including all its 

children together with their parameters are built according to the 

mapping rules described in section PtII Actor Library. This stage is a 

recursive procedure. If a child is another building block, a possible 

containing director is built and a recursive call is performed on this 

building block. This is repeated until the bottom of the current building 

block’s hierarchy is reached. After all children at a certain recursive 

stage are built, they are connected according to the logical assembly 

connections in the BLA. This purely behavioral synthesis is illustrated 

by the blue procedure in Figure 6. 

The synthesis of the domain-specific and non-functional simulation 

sub-models are based on a unique feature of PtII. Actors and/or ports 

can be decorated by so called aspects [14], which are based on quantity 

managers introduced in [28]. These are components in a model serving 

as a mediator to another model in order to refine the original one with 

a specific aspect, e.g. with a communication aspect. This decoration of 

actors with aspects is covered by the Decorate BLA Top-Level Artifacts 

process depicted in Figure 6. Note that these aspects are only necessary 

for the top-level BLA building blocks, i.e. composite actors. The 

reason is that the domain-specific and non-functional properties are 

valid for the LA logical blocks and therefore for the entire mapped 

BLA building block. 
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Figure 6. Synthesis flow of the unified PtII MoML simulation model. 

PtII provides capabilities for communication and execution aspects, 

which can be, like ordinary actors, atomic or composite. We leverage 

composite aspects in order to encapsulate the domain-specific or non-

functional aspects. This allows an arbitrary refinement of the 

composite aspect with atomic aspects, complete sub-models or a 

combination of both. These aspects typically represent timed 

simulations in order to respect execution and communication delays. 

Concerning the communication aspect, i.e. in our case the CAN 

communication, we leverage an abstract CAN atomic aspect provided 

by the PtII actor library. We encapsulate it in a composite 

communication aspect actor which is built for each CAN bus system 

extracted by the E/E-Model Interpreter. The individual bus system 

properties like baud rate are set as parameters on the atomic CAN 

aspect. A DE director is used within the composite aspects, as a timed 

simulation is required. The identified logical connections which 

belong to the bus systems, more concrete, the receiving ports, are 

decorated with the appropriate CAN aspect. The receiving data at the 

appropriate input port is mediated to the CAN composite aspects. 

Therewith, the ports are decorated with the frame priority (ID) and 

frame size of the CAN frame extracted from the EEA data model. We 

extended the base composite communication aspect of the actor library 

by a composite CAN communication aspect, which adds the frame ID 

and size as parameters to the mediated data in order to use them in the 

composite aspect. So far, the CAN atomic aspect of PtII only supports 

frames with fixed frame sizes of 108 𝑏𝑖𝑡𝑠 and 128 𝑏𝑖𝑡𝑠 according to the 

standard and extended frame format, respectively. However, a variable 

frame size is possible to extend in the aspect implementation of the PtII 

actor library. 

Regarding the execution aspects, the execution of an actor which has 

an annotated latency time greater than zero is mediated to a composite 

execution aspect. The latter delays the received data sent by the source 

actor according to the maximum latency time annotated to that source 

before the functional behavior simulation proceeds. 

In addition, concerning the possible current and voltage simulations of 

the wiring harness, we introduce the notion of a physical composite 

aspect, which, analogues to the other aspects, encapsulates these 

continuous simulations. Therefore, this can be extended in a modular 

way without touching the functional behavior model. We will 

investigate this aspect in future work. 

Finally, after all top-level building blocks are built and decorated by 

the aspects, they are automatically connected by means of the 

introduced automatic approach described in section Transition 

between LA and BLA. After that, the simulation model is fully 

synthesized and ready to run. 

Case Study  

The performed case study presented in this section serves as a proof-

of-concept of our methodology. We implemented our approach and the 

case study in terms of a simplified ACC application within 

PREEvision. Two goals are pursued within the case study: 1. 

Demonstration of the correct synthesis of the PtII MoML containing 

the modeled ACC application as well as the extracted E/E meta-info 

across the LA, BLA and HW network layers. This especially includes 

the automatic connection of the top-level composite actors as well as 

the CAN communication and execution aspects; 2. Demonstration of 

the benefits of the separate BLA layer by exploring realization 

alternatives of the ACC application with low effort.  

Implementation 

The E/E-Model Interpreter and the Simulation Model Builder each are 

implemented as an additional Eclipse plug-in within the Metric 

Framework of PREEvision. The main metric used artifacts are Model 

Query and Calculation blocks. The Model Query block has access to 

all artifacts in the EEA data model and is used to fetch the LA model 

of interest to be synthesized. They have output ports to transfer the 

artifacts to other blocks using data flow semantics. The benefit is a 

selective choice of the LA (sub-) model of interest. The plug-in 

containing the E/E-Model Interpreter and the Simulation Model 

Builder is realized as a customized metric calculation block. The latter 

contains Java code implementing its behavior and can provide I/O 

ports as well. It receives the selected LA artifacts of the model query 

and sends the synthesized MoML to the simulation executer. The 

execution of the simulation model is realized in an additional 

customized calculation block plug-in, which receives the synthesized 

MoML file, executes the simulation and opens a PtII simulation view. 

The latter contains possible visualizations, if the corresponding sink 

actors are modeled, as well as a run control panel. 

EEA Model Synthesis 

The ACC use case is modeled at the LA, BLA and HW network layer. 

The setup is depicted in Figure 7. Thereby, the LA contains the abstract 

ACC system behavior made up of four blocks: the two sense functions 

GetRadarSpeed and GetWheelSpeed provide the velocities of the 

leading vehicle and the measured speed of the modeled vehicle, 
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respectively, to the ACC controller function. The latter calculates the 

necessary acceleration and provides it to the setWheelSpeed actuation 

function which drives the input acceleration to the appropriate speed. 

GetWheelSpeed and setWheelSpeed have additionally set the latency 

time attribute, each equals to 0.05𝑠. 

The Sense, Function and Actuation blocks of the LA are mapped to the 

corresponding Sensor, ECU and Actuator HW components as shown 

in Figure 7. Note that Sensor and Actuator blocks can contain both 

hardware components and processing units. It shows, that the sensor 

blocks WheelSpeed and RadarSpeed have to communicate over the 

two bus systems HS-CAN (High-Speed-CAN) at 500𝑘𝑏𝑝𝑠 and LS-CAN 

(Low-Speed-CAN) at 125𝑘𝑏𝑝𝑠 to reach the target ECU ACC. These 

bus communications together with its appropriate frames RadarSpeed 

and WheelSpeed are synthesized by the Signal Router. 

The BLA layer contains a logical function package called ACC which 

contains the detailed functional behavior refinement of the individual 

LA blocks. The LeadingPlatoon building block simulates a single 

leading vehicle or platoon with a CT director as domain attribute. It 

provides three outputs, its current speed, position and acceleration. 

Therefore it is mapped to the LA block GetRadarSpeed, which 

provides the measured radar speed of the leading vehicle. Here 

especially, the introduced port mapping is important, as the target BLA 

block provides more ports than the one of the LA block. Hence, the 

only port of GetRadarSpeed is mapped to the appropriate speedLeader 

port of the building block (cp. Figure 7.). The WheelControllerDE 

block implements both driving the received acceleration to the 

appropriate speed and providing the measured speed. Thus, the 

GetWheelSpeed and setWheelSpeed blocks are mapped to the building 

block in an n-to-1 mapping fashion providing the ports of both former 

blocks, which in turn are mapped accordingly to the LA ports (cp. 

Figure 7.). The ACC function is implemented as a building block of 

type AccController. Here we exploit the possibility to provide 

alternative realizations of the same building block type, but with the 

same interface, namely P_Controller and IDM_Controller. They 

require the speed of the leading vehicle as desiredSpeed (from 

GetRadarSpeed) and the own measuredSpeed (from GetWheelSpeed) 

to calculate the provided acceleration.  

Since the synthesized MoML is a purely textual XML description, we 

visualized the top-level MoML by means of the PtII GUI Vergil in 

order to illustrate and verify the synthesis result. It is depicted in Figure 

8. Because of the port mappings and the connections between the LA 

blocks it follows that WheelControllerDE and AccController will build 

a closed feedback loop, which is synthesized and automatically 

connected. The speedLeader port is connected to the desiredSpeed 

port. From the HW network mappings it follows, that the 

communication of both the LeadingPlatoon and the 

WheelControllerDE between the P_Controller has to be mediated by a 

communication aspect for the HS- and LS-CAN bus. This information 

is extracted by means of Algorithm 1. The synthesized result is 

represented by the LS-CAN and HS-CAN composite aspects at the top 

of Figure 8. They each contain the CAN atomic aspect with a baud rate 

parameter set to 125𝑘𝑏𝑝𝑠  and 500𝑘𝑏𝑝𝑠  respectively. The 

communication mediation is highlighted by the orange input ports 

decorated with the frame ID and size of the corresponding frames of 

each CAN bus.  In addition, the WheelControllerDE is decorated with 

an execution aspect delay of 0.1𝑠, because each of the mapped LA 

blocks specifies a latency time of 0.05𝑠. The green shape highlights the 

enabled execution aspect WheelControllerDE_ExecutionAspect at the 

top of Figure 8. Finally, the top-level DE director with a simulation 

stopTime parameter as well as parameters for max. and min. 

acceleration limiting the P_Controller are shown. They were set 

properly as specified with the generic attributes at the BLA layer.  

 

Figure 7. ACC case study setup showing the abstract LA model (middle), the 

BLA model (top) and the HW network model (bottom) as well as the cross-

layer mappings (dotted red lines).  

 

Figure 8 Synthesized PtII MoML of the BLA containing CAN communi-

cation, execution aspects and parameters. Visualized in the PtII GUI Vergil. 

In the next sections, we simulate the ACC behavior with both the 

P_Controller and the IDM_Controller by simply changing the 

mappings. The influence of the communication and execution aspects 

on the different realizations is also analyzed. 

ACC Simulation: Realization I – P_Controller 

In the first case, we simulate the ACC with the P_Controller, a simple 

proportional controller with a loop gain of 10, based on a tested PtII 

Car Tracking demo model. The main parameters and attributes 
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relevant for the following conducted ACC simulations (also for the 

IDM_Controller) are summarized in Table 2. Note that in contrast to 

the synthesized MoML in Figure 8. we only simulate the CAN aspects 

in this first simulation scenario and set the latency times to zero. In the 

implementation of the P_Controller we modeled TimedPlotter and 

TimedDisplay actors in order to visually verify and monitor the 

receiving speed values of the leading vehicle and the measured speed 

resulting from the calculated acceleration value of the P_Controller. 

Additionally, the distance is calculated by means of the received speed 

values, but does not has an impact on the acceleration calculation. We 

set an initial distance of 100𝑚 . The speed values (excerpt for 

illustration reasons) and the distance are plotted in Figure 9. and Figure 

10., respectively. Despite the two LS- and HS-CAN communications 

of both the desired speed of the leading vehicle and the measured speed 

in the feedback path to the P_Controller, the speed values are 

calculated correctly. This is clearly shown in Figure 9., where the 

measured speed inside the P_Controller is closely following the one of 

the leading vehicle. The reason is that only a small delay caused by the 

CAN communication impacts the controller, which is compensated 

after an initial swinging. We monitored a first event of the desired 

speed of the leading vehicle at 1.08𝑚𝑠, which exactly matches the 

delay of the 108 𝑏𝑖𝑡𝑠 sized frame RadarSpeed over both CAN busses: 

∆𝑡𝑅𝑎𝑑𝑎𝑟𝑆𝑝𝑒𝑒𝑑 = 108 𝑏𝑖𝑡 ∗ (1
500𝑘𝑏𝑝𝑠⁄ + 1

125𝑘𝑏𝑝𝑠⁄ ) = 1.08𝑚𝑠 (1) 

The first event of the measured speed in the feedback path raised at 

1.944𝑚𝑠. This delay is greater, because frame collisions occurred on 

both busses. This is the case, since the frame IDs of both frames are 

identical (cp. Table 2) and both the RadarSpeed and WheelSpeed 

frames requested a CAN communication on both busses at simulation 

time 0.0𝑠 . However, because the LeadingPlatoon actor is executed 

before the WheelControllerDE in the execution order (determined by 

a topological sort of a directed acyclic graph of the actors [14]), the 

RadarFrame is served first. The distance depicted in Figure 10. closely 

alternates around the initial distance of 100𝑚 between about −0.5𝑚 

and +2.6𝑚, because the P_Controller simply tries to reach the desired 

speed without taking the distance into account. 

Figure 9. Plotted speed of the simulated leading vehicle (red) and the follower 

(blue) calculated by the P_Controller and WheelControllerDE (excerpt). 

ACC Simulation: Realization II – IDM_Controller 

In this simulation scenario, we exchanged the P_Controller with the 

IDM_Controller by simply changing the mapping and running the 

simulation synthesis once again. It realizes the Intelligent Driver 

Model (IDM) [29] car following model, which additionally takes the 

gap to the leading vehicle by means of coupled ordinary differential 

equations into account. The used parameters are shown in Table 2. 

Note that the parameter v0 is the desired speed of the IDM on a free 

road and not the input port to the IDM_Controller. In this scenario, we 

simulate the impact of the execution time delay of the 

WheelControllerDE, and compare the results with an additional run of 

the P_Controller considering the execution time, too. 

 

Figure 10. Plotted distance between the simulated leading vehicle and the 

follower. 

Table 2. Artifact attributes used in the case study. 

Artifact Attribute Value 

LA 

GetRadarSpeed 
Latency Time 

0.05s 

setWheelSpeed 0.05s 

HW Network Layer 

HS-CAN Bus 
Baud Rate 

500kbps 

LS-CAN Bus 125kbps 

CAN-Frame 

RadarSpeed 
Frame ID 

0x123 

CAN-Frame 

WheelSpeed 
0x123 

BLA 

P_Controller 
aMax 

3.0m/s² 

IDM_Controller 3.0m/s² 

P_Controller 
aMin 

-9.0m/s² 

IDM_Controller -9.0m/s² 

P_Controller 

Domain 

CT Director 

IDM_Controller DE Director 

WheelControllerDE DE Director 

LeadingPlatoon CT Director 

IDM_Controller 

Acceleration acc 3.0m/s² 

Deceleration dec 4.0m/s² 

Headway Time T 1.5s 

Initial Distance d 100m 

Minimum Gap s0 2m 

Desired Velocity v0 50m/s 

Acceleration Exponent δ 4 
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In Figure 11., an excerpt of the accelerations calculated by the 

P_Controller and IDM_Controller are plotted. It clearly shows the 

impact of the additional execution delay of 0.1𝑠 in the feedback path 

of the P_Controller, which is heavily swinging. In contrast, the IDM is 

much more robust against the additional delay and calculates the 

proper acceleration values to smoothly follow the leading vehicle. This 

is underlined by the speed values depicted on the left-hand side of 

Figure 12. On the right-hand side the distance is illustrated. It shows, 

that the IDM tries to approach the leading vehicle starting from the 

initial distance of 100𝑚  until a certain distance (dependent on the 

headway time parameter T), while the P_Controller simply tries to 

match the input speed of the leading vehicle. 

 

Figure 11. Comparison of the accelerations (excerpt) calculated by the 

P_Controller (dotted red) and IDM_Controller (blue) with impact of CAN and 

execution time delay. 

 

Figure 12. Left:  Speed of the leading vehicle (red) and the IDM controlled 

follower (blue). Right: Distance between the leading vehicle and the follower 

using the IDM_Controller. 

Discussion 

To verify the synthesized MoML it was visualized in the PtII GUI 

Vergil and compared across all hierarchy levels to the modeled EEA 

artifacts, attributes and the information derived from the cross-layer 

mappings, e.g. CAN communication and execution times. For space 

reasons, only the synthesized top-level model is depicted in Figure 8. 

The presented case studies showed that the EEA model is synthesized 

correctly containing all information specified across the layers LA, 

BLA and HW network including the automatic connection of the top-

level BLA composite actors as well as the composite aspects. To verify 

the ACC simulation results of the synthesized MoML we used 

equivalent models manually created within Vergil which represent the 

reference models of the expected synthesis outcome derived from the 

EEA model as described in the EEA Model Synthesis sub-section. We 

compared the produced plot data and especially the CAN and 

execution time delays. Therewith, no deviations could be observed and 

thus verified the simulation results of the synthesized MoML. Hence, 

an early but holistic view on the system dynamics is provided by 

performing the cross-domain simulation. The case studies also showed 

the flexibility of our approach in terms of design space exploration. By 

simply changing the mapping of the ACC logical function between the 

P_Controller and IDM_Controller an early analysis of the different 

delay impacts showed, that the IDM controller is the more reliable and 

suitable solution. Note, that although we modeled a simple 

WheelController without looking at detailed dynamics of a wheel drive 

model, the BLA leverages the heterogeneous model composition 

capabilities of PtII to capture more elaborate hybrid system models 

including plant models. Beyond that, model changes inferred by the 

underlying EEA model (e.g. CAN parameters such as baud rate, frame 

IDs or ECU mappings yielding in possibly different used bus systems) 

are automatically synthesized and do not need to be adjusted manually 

in the target simulation model. This strongly decreases model 

maintenance efforts compared to separate running modelling and 

simulation processes.  

Furthermore, despite our methodology is presented using the example 

of the EEA-ADL, it is more generic and transferrable to other EEA 

ADLs, for two reasons: 1. the reuse of the same artifacts at the BLA 

layer to refine those from the more abstract higher logical layer avoids 

changes of the underlying EEA meta-model. 2. the meta-model 

artifacts from the source EEA model are widely abstracted via 

templates in the E/E-Model Interpreter front-end. Thus, it eases the 

portability to other meta-model classes of ADL layers comparable to 

the LA layer, e.g. the Functional Analysis Architecture of the EAST-

ADL. The transfer to other domains like avionics is also possible. A 

necessary prerequisite is that the source meta-model supports the 

notion of actor-oriented design made up of hierarchical blocks 

communicating via ports. Similarly, in case of the simulation model 

builder, different back-ends for the target model can be used, since we 

are providing a reference to a generic model builder object in the 

interpreter, which implements the appropriate back-end. Thus, target 

models different to the MoML, e.g. SystemC, could be implemented. 

Moreover, the encapsulation of aspects in composite aspects allows an 

arbitrary refinement of the composites down to possible co-simulation 

of the abstract model with detailed domain-specific tools. This is done 

by exploiting HlaComposites in PtII developed and used within our 

previous works [30] [31] [32]. The used IDM model in the case study, 

for instance, was verified within [30] by means of a co-simulation of 

PtII with a traffic simulator and an implementation of the IDM running 

on a SystemC multi-core model. 

One drawback currently is the necessity of the manual creation of 

mappings and thus performing the iterative optimization (cp. Figure 

1.). This can be addressed by model metrics which automatically find 

proper (re-) mappings and perform the model operations. The PtII 

actors used in the BLA currently are created manually in the library. 

To further increase the development productivity, we will implement 

an import/export functionality of PtII actors. Additionally, we will add 

the support for modal models as described in the PtII Actor Library 
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section. The latter in combination with aspect actors will both enable 

the creation of and reaction to event based situations and greatly help 

handling their complexity in a modular way. E.g. the detection and 

reaction to a factually flawed ACC information can be encapsulated in 

composite aspect containing a modal model not touching the structure 

of the original behavioral model. Another drawback is the 

dependability on the signal router and frame synthesis as input for the 

bus communication extraction. This can be addressed by a more 

generic signal tracing and frame synthesis algorithm directly integrated 

in the E/E-Model Interpreter. Thus the approach gets more 

independent on the underlying EEA data model, since the routing is no 

input to the front-end anymore. 

Conclusion and Future Work 

Current domain-specific ADLs for modelling EEA lack for the 

possibility to explicitly specify an executable behavior in an integrated 

manner. Additionally, the modelling and simulation of EEA are often 

separate running processes. Within this work we presented a novel 

integrated approach to synthesize an executable high-level simulation 

model starting with an abstract logical function architecture of a single 

source EEA model. We introduced a new abstraction layer called BLA 

which refines the LA and specifies the functional behavior, control and 

plant models by means of an extensible PtII actor library. The BLA 

layer is seamlessly integrated within the development process of the 

state-of-the-art EEA-ADL. We extended existing cross-layer 

mappings and leveraged the latter as well as a signal router and HW 

network synthesis of the EEA-ADL to link the BLA model with lower 

layer implementation details like bus communication, execution time 

delays and electrical properties. This enables the synthesis and 

integrated conduction of a unified cross-domain simulation model. An 

ACC case study proved the concept of synthesizing the unified 

simulation model with CAN bus communications and execution times. 

Early but holistic analysis by means of integrated high-level 

simulations of different ACC controllers which are influenced by CAN 

and execution time delays allowed an early decision on the most 

suitable realization by simply changing the cross-layer mappings. The 

latter additionally enable the seamless traceability e.g. of the BLA 

behavioral artifacts to the executive ECUs or the respective 

requirements. Finally, the modular approach enables the transfer to 

other EEA ADLs and application domains. 

We will further develop our approach by considering the synthesis of 

electrical and physical properties and performing electrical simulations 

of the wiring harness. Suitable metrics using the simulation results for 

iterative optimizations can be addressed. The support and integration 

of domain-specific models specified in external expert tools will also 

be investigated by means of the PtII co-simulation capabilities 

developed in our previous works in order to further increase reuse and 

productivity. We will also extend our case studies, e.g. by integrating 

more elaborate wheel drive plant models incorporating with the 

WheelController or considering event based situations with the help of 

modal models. 
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ACC Adaptive Cruise Control 

ADL Architecture Description 

Language 

BB Building Block 

BFS Breadth First Search 

BLA Behavioral Logical 

Architecture 

CAN Controller Area Network 

CT Continuous Time 

DE Discrete Event 

EAST-ADL Electronics Architecture and 

Software Technology-ADL 

ECU Electronic Control Unit 

EEA Electric/Electronic 

Architecture 

EEA-ADL Electric/Electronic 

Architecture - Analysis 

Design Language 

FRB Fuse Relay Box 

FSM Finite State Machine 

GRE Gateway Routing Entry 

GUI Graphical User Interface 

GW Gateway 

IDM Intelligent Driver Model 

LA Logical Architecture 

LF Logical Function 

MoC Model of Computation 

MoML Modelling Mark-up Language 

PtII Ptolemy II 

ST Signal Transmission 

XML eXtensible Mark-up Language 
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