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UPWIND DISCONTINUOUS GALERKIN SPACE

DISCRETIZATION AND LOCALLY IMPLICIT TIME

INTEGRATION FOR LINEAR MAXWELL’S EQUATIONS

MARLIS HOCHBRUCK AND ANDREAS STURM

Abstract. This paper is dedicated to the full discretization of linear Maxwell’s
equations, where the space discretization is carried out with a discontinuous

Galerkin (dG) method on a locally refined spatial grid. For such problems

explicit time integrators are inefficient due to their strict CFL condition stem-
ming from the fine grid elements. In the last years this issue of so-called

grid-induced stiffness was successfully tackled with locally implicit time inte-

grators. So far, these methods were limited to unstabilized (central fluxes) dG
methods. However, stabilized (upwind fluxes) dG schemes provide many ben-

efits and thus are a popular choice in applications. In this paper we construct

a new variant of a locally implicit time integrator using an upwind fluxes dG
discretization on the coarse part of the grid. The construction is based on a

rigorous error analysis which shows that the stabilization operators have to be
split differently than the Maxwell operator. Moreover, our earlier analysis of a

central fluxes locally implicit method based on semigroup theory applies but

does not yield optimal convergence rates. In this paper we rigorously prove the
stability and provide error bounds of the new method with optimal rates in

space and time by means of an energy technique for a suitably defined modified

error.

1. Introduction

We consider the full discretization of Maxwell’s equations following the method
of lines technique. In this approach the continuous problem is first discretized in
space and subsequently integrated in time. For the space discretization discontinu-
ous Galerkin (dG) methods are a popular choice since they exhibit many attractive
features, cf. [7, 17]. For example, they easily allow one to handle complex geome-
tries and composite media by using unstructured, possibly locally refined meshes.
In addition, dG methods lead to block diagonal mass matrices which in combination
with an explicit time integrator result in a fully explicit scheme.

However, the spatial discretization of Maxwell’s equations results in a system of
stiff ODEs. For such problems explicit time integrators suffer from severe stability
issues. In fact, in order to guarantee stability, the time step of these methods is
subject to a strong limitation (CFL condition). For Maxwell’s equations we have
to ensure that the time step satisfies τ . hmin, where hmin denotes the smallest
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diameter of the elements in the spatial grid. Because of this limitation explicit time
integrators perform poorly when the space discretization is carried out on a locally
refined grid, i.e., a grid that consists of only a few fine elements with a very small
diameter but a large number of coarse elements. This occurs for example if the
underlying continuous problem is given on a complex geometry or if the solution
locally lacks regularity in a small part of the domain (e.g., in corners). The few fine
elements lead to a strong CFL condition (grid-induced stiffness) which enforces a
small time step size. The large number of tiny time steps yields an approximation
with temporal error being much smaller than the space discretization error, since
the dominant part of the latter stems from the coarse elements. This renders explicit
time integrators inefficient. Applying suitable implicit time integrators eliminates
this restriction. However, in each time step, implicit methods require the solution
of a linear system of equations involving all degrees of freedom in the spatial grid.
A single time step with an implicit scheme is significantly more expensive than for
explicit methods. For large 3d problems implicit methods might even be unfeasible.

As a remedy to the shortcomings of both explicit and implicit time integrators
locally implicit time integration schemes have been proposed [4, 5, 6, 11, 20, 24, 26,
27]. These methods apply an implicit time integrator for the fine mesh elements –
thus avoiding a restrictive CFL condition – while retaining an explicit time inte-
gration for the coarse mesh elements. An alternative is to use local time stepping
methods, cf. [1, 3, 8, 9, 13, 14, 15, 21].

So far, locally implicit time integrators were limited to an unstabilized spatial
discretization of Maxwell’s equations, a so-called central fluxes dG discretization.
However, a stabilized dG discretization (upwind fluxes dG method) provides many
benefits such as an improved stability behavior and a higher spatial convergence
rate. The purpose of this paper is to construct a new locally implicit time integrator
based on an upwind fluxes dG space discretization comprising the explicit Verlet
(or leap frog) method and the implicit Crank–Nicolson method.

Although some ideas (and also the notation) are taken from [20], the extension
of the central fluxes method to upwind fluxes is by far not obvious. It is based
on a rigorous error analysis which shows that the splitting of the stabilization
operators has to be done differently than the splitting of the Maxwell operator
presented in [20]. Moreover, it turns out that the techniques developed in [20]
are not appropriate to show the improved stability and convergence of the full
discretization of the locally implicit upwind fluxes scheme. In fact, in order to
reveal the benefits of an upwind fluxes dG method our analysis is based on an
energy technique as presented in [18] for fully implicit Runge–Kutta discretizations
of the linear Maxwell’s equations. This technique renders the analysis far more
involved compared to the discrete variation-of-constants techniques we used in [20].
For instance, the analysis involves additional defects arising from the incorporation
of the stabilization operators and has to be applied to a carefully chosen modified
error instead of the error itself. Last, we point out that as a byproduct we obtain
a stability and error analysis for an upwind fluxes Verlet-type fully explicit time
integrator.

Our main contributions are as follows: We show that this novel method retains
the efficiency of the underlying locally implicit time integrator while gaining the
benefits of an upwind fluxes space discretization. In particular, we provide a rigor-
ous stability and error analysis of the full discretization and prove that
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(a) the method is stable under a CFL condition that solely depends on the
coarse elements in the spatial grid, and

(b) that the full discretization error is of order two in the time step and of order
k + 1/2 and k in the space discretization parameter in the coarse elements
and in the fine elements, respectively, if we use polynomials of order k (and
in a few elements of order k + 1).

We organize our paper as follows. In Section 2 we present the main ideas of the
construction and the results of the locally implicit method which we elaborate in
the remaining paper. We begin in Section 3 with a short overview of the continuous
linear Maxwell’s equations and their well-posedness. Section 4 is dedicated to the
spatial discretization of Maxwell’s equations. In particular, we decompose the spa-
tial mesh into explicitly and implicitly treated elements. On this basis we construct
split discrete operators that we use in Section 5 to derive our locally implicit time
integrator. Subsequently, we examine the stability behavior of the method and
carry out its error analysis. Combining these results leads to our main result which
is given in short form in Theorem 2.1 and with all details in Theorem 5.10. Last,
in Section 6 we present numerical experiments verifying our theoretical results. A
careful study of the efficiency of the locally implicit method for large problems, in
particular in comparison with local time stepping methods, is ongoing work and
will be presented elsewhere.

2. Locally implicit scheme

In this section we present the main ideas of this paper and elaborate the details
in the subsequent sections.

Let Ω ⊂ Rd, d = 1, 2, 3, be an open, bounded Lipschitz domain and let T > 0 be
a finite time. We consider the linear Maxwell’s equations in a composite medium
with permeability µ : Ω → R, permittivity ε : Ω → R and a perfect conduction
boundary,

(2.1)

µ∂tH = − curl E, (0, T )× Ω,

ε∂tE = curl H− J, (0, T )× Ω,

H(0) = H0, E(0) = E0, Ω,

n×E = 0, (0, T )× ∂Ω.

Here, the unknowns H,E : (0, T )×Ω→ Rd are the magnetic and electric field, re-
spectively, and J : (0, T )×Ω→ Rd is a given electric current density. Furthermore,
n denotes the unit outer normal vector of the domain Ω. It is well-known that the
solution (H(t),E(t)) of (2.1) preserves the electromagnetic energy

(2.2) E(H,E) =
1

2

(
‖H‖2µ + ‖E‖2ε

)
,

i.e., for vanishing source term J(t) ≡ 0 we have E
(
H(t),E(t)

)
= E

(
H0,E0

)
for

t ≥ 0.
We discretize (2.1) in space using a dG method. This results in the semidiscrete

problem,

(2.3)

∂tHh(t) = −CEEh(t)− αSHHh(t), (0, T ),

∂tEh(t) = CHHh(t)− αSEEh(t)− Jh(t), (0, T ),

Hh(0) = H0
h, Eh(0) = E0

h,



4 MARLIS HOCHBRUCK AND ANDREAS STURM

where CE and CH denote the spatially discretized curl-operators, SH and SE are
stabilization operators and α ∈ [0, 1] is the parameter controlling the stabilization.
The boundary condition (n×Eh(t))|∂Ω = 0 is weakly enforced within the definition
of CE, see (4.8b) below.

For α = 0 our dG method is not stabilized, which renders it a central fluxes dG
discretization. Such a method is convergent with order k, if we employ polynomi-
als of degree k in our spatial discretization. Similar to the continuous Maxwell’s
equations the semidiscrete Maxwell’s equations (2.3) preserve the electromagnetic
energy E(Hh,Eh) in the case of a central fluxes dG discretization. On the other
hand, if we choose α ∈ (0, 1], we obtain a stabilized dG space discretization, which
is usually referred to as an upwind fluxes dG method. In contrary to the central
fluxes method such a space discretization is dissipative, i.e., it decreases the electro-
magnetic energy E(Hh,Eh) if time evolves. This dissipative behavior is beneficial
in view of enhanced stability and a higher convergence rate k + 1/2 of the upwind
fluxes method.

In this paper we consider the case where the space discretization is carried out
with a locally refined mesh Th, i.e., a mesh that consists of mostly coarse elements
and a few fine elements. We collect the coarse elements in Th,c and the fine elements
in Th,f so that

(2.4) Th = Th,c ∪̇ Th,f , card(Th,f )� card(Th,c).

In order to obtain a fully discrete numerical scheme, the semidiscrete problem
(2.3) has further to be integrated in time. If the space discretization relies on a
locally refined grid, locally implicit time integrators are an appealing choice. For
these schemes we decompose the mesh Th subject to

Th = Th,e ∪̇ Th,i, Th,f ⊂ Th,i, Th,e ⊂ Th,c,

where Th,e contains the explicitly treated elements and Th,i contains the implicitly
treated ones. Based on this decomposition we constructed in [20] explicit and
implicit discrete curl-operators CeH and CiH, respectively, which enabled us to merge
the explicit Verlet (or leap frog) method and the implicit Crank–Nicolson method
following an idea of [27] to a locally implicit time integrator. The resulting locally
implicit scheme agrees with the scheme (2.5) below with α = 0. Here, τ denotes
the time step size. However, this method could not treat the stabilization operators
SH and SE from (2.3). We extend it with the following two ideas: First, in order
to inherit the efficiency of the central fluxes locally implicit scheme, we integrate
the stabilization operators explicitely (i.e., we do not include them into the Crank–
Nicolson scheme). Second, we retain a CFL condition independent of the fine part
of the mesh by stabilizing only on the explicitly treated elements. We realize these
ideas by using explicit stabilization operators SeH, SeE instead of the full stabilization
operators SH, SE. This results in the following locally implicit scheme:

H
n+1/2
h −Hn

h = − τ

2
CEEn

h −
τ

2
αSeHHn

h,(2.5a)

En+1
h −En

h = τCeHH
n+1/2
h +

τ

2
CiH
(
Hn+1
h + Hn

h

)
− ταSeEEn

h(2.5b)

− τ

2

(
Jn+1
h + Jnh

)
,

Hn+1
h −H

n+1/2
h = − τ

2
CEEn+1

h − τ

2
αSeHHn

h.(2.5c)
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The details of the construction of the stabilization operators will be given below.
Our main result is the following error bound for the fully discrete scheme.

Theorem 2.1. Let the solution (H,E) of (2.1) be sufficiently smooth. Then, for
α ∈ (0, 1] the error the numerical scheme (2.5) satisfies

‖(Hn
h,E

n
h)− (H(tn),E(tn))‖ ≤ CT

(
τ2 + max

K∈Th,e

h
k+1/2
K + max

K∈Th,i

hkK
)
,

if τ satisfies a CFL condition depending on the coarse mesh only.

The precise formulation of this theorem including the regularity assumptions
together with its proof is given in Theorem 5.10 below. Here, we only stress that
the technique to prove these bounds cannot be transfered directly from [20] and is
considerably more involved. Last, let us mention that dG methods easily allow one
to choose the polynomial degree differently in every mesh element. As we will show
below by using polynomials of order k + 1 for a small set of elements (the coarse
neighbors of the fine elements) we can obtain the more favorable bound

‖(Hn
h,E

n
h)− (H(tn),E(tn))‖ ≤ CT

(
τ2 + max

K∈Th,c

h
k+1/2
K + max

K∈Th,f

hkK
)
,

which shows convergence of order k + 1/2 on all coarse elements.

3. Analytic setting

We begin by introducing some notations. For a set K ⊂ Ω and vector fields

U, Û,V, V̂ (in R3) we denote the L2(K)-inner product and the L2(F )-inner prod-
uct, F ⊂ ∂K, by(

U, Û
)
K

=

∫
K

U · Û dx,
(
U, Û

)
F

=

∫
F

U|F · Û|F dσ,

respectively. For u = (U,V), û = (Û, V̂) and uniformly positive weight functions
ω1, ω2 : Ω→ R>0 we write the weighted inner products as

(3.1)
(
U, Û

)
ω1,K

=
(
ω1U, Û

)
K
,

(
u, û

)
ω1×ω2,K

=
(
U, Û

)
ω1,K

+
(
V, V̂

)
ω2,K

.

By ‖ · ‖ω1
and ‖ · ‖ω1×ω2

we denote the corresponding norms. We abbreviate(
·, ·
)

=
(
·, ·
)

Ω
and ‖ · ‖ = ‖ · ‖Ω and analogously for the weighted inner products

and norms.
Next, we cast Maxwell’s equations (2.1) into a more compact form. In fact, by

introducing the combined field u = (H,E) we can write (2.1) equivalently as

(3.2) ∂tu(t) = Cu(t) + j(t), u(0) = u0,

where the source term is j = (0,−ε−1J) and where C is the so-called Maxwell
operator given by

(3.3a) C : D(C)→ L2(Ω)6, C =

(
0 −CE
CH 0

)
=

(
0 −µ−1 curl

ε−1 curl 0

)
,

and endowed with the domain

(3.3b) D(C) = D(CH)×D(CE) = H(curl,Ω)×H0(curl,Ω).

In both (2.1) and (3.2) we omitted the so-called divergence conditions and the
boundary condition for H since they can be neglected in examining the time evolu-
tion of Maxwell’s equations. In fact, they only have to ensured for the initial values
H0, E0, cf. [22].
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We make the following assumptions on the data: For the initial value and the
current density we assume

(3.4) u0 ∈ D(C), J ∈ C1(0, T ;L2(Ω)3) or J ∈ C(0, T ;D(CE)),

respectively, and for the material coefficients we demand

(3.5) µ, ε ∈ L∞(Ω), µ, ε ≥ δ > 0,

for a constant δ > 0. These assumptions guarantee that there exists a unique
solution u = (H,E) ∈ C1(0, T ;L2(Ω)6)∩C(0, T ;D(C)) of (3.2) [25, Corollaries 2.5,
2.6] which is bounded by

(3.6) ‖u(t)‖2µ×ε ≤ e1

(
‖u0‖2µ×ε +

T + 1

δ

∫ t

0

‖J(s)‖2 ds
)
.

It is well-known that the Maxwell operator C is skew-adjoint w.r.t.
(
·, ·
)
µ×ε,

which can be expressed in terms of the curl-operators CH, CE as

(3.7)
(
CHH,E

)
ε

=
(
H, CEE

)
µ
, H ∈ D(CH), E ∈ D(CE).

4. Spatial discretization

In this section we discretize (2.1) in space with a dG method, see the textbooks
[7, 17]. As a first step, we give the discrete setting in which the dG discretization
can be formulated.

4.1. Discrete setting. We assume that Ω is approximated by a polyhedron in Rd
which we denote by Ω again, for simplicity. We equip Ω with a simplicial mesh
Th = {K} consisting of elements K. We point out that the restriction to simplicial
meshes can be dropped and all following results hold true for more general meshes
satisfying the shape and contact regularity assumptions from [7, Section 1.4.1].
We denote with hK the diameter of a mesh element K and refer to the maximal
diameter by h = maxK∈Th hK . Moreover, we collect the faces of the mesh elements
in Fh = F int

h ∪ Fbnd
h , where the first set collects the interior faces and the second

set the boundary faces. By

N∂ = max
K∈Th

card{F ∈ Fh | F ⊂ ∂K}

we denote the maximum number of mesh faces composing the boundary of a mesh
element. For simplicial meshes N∂ is a constant. For every interior face F ∈ F int

h we
choose arbitrarily one of the outer unit normals of the two mesh elements composing
the face F . We fix this normal and denote it with nF . For the remaining paper we
will refer to the two neighboring elements sharing the face F by K and KF whereby
the unit normal nF points from K to KF . For a boundary face the orientation of
nF is always outwards.

We use the discrete approximation space

(4.1) Vh =
{
vh ∈ L2(Ω) | vh|K ∈ Pk(K) for all K ∈ Th

}3
,

where Pk denotes the set of polynomials of degree at most k. Because we have
V 2
h 6⊂ D(C) our space discretization is non-conforming. Similarly, we write

(4.2) Hq(Th) =
{
v ∈ L2(Ω) | v|K ∈ Hq(K) for all K ∈ Th

}
, q ∈ N,
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for the broken Sobolev spaces fitting to the mesh Th. These spaces are Hilbert
spaces when endowed with the norm

(4.3) ‖v‖2q =

q∑
j=0

|v|2j , |v|2q =
∑
K∈Th

|v|2q,K =
∑
K∈Th

|v|2Hq(K).

Furthermore, we define the spaces

V H
? = D(CH) ∩H1(Th)3, V E

? = D(CE) ∩H1(Th)3, V? = V H
? × V E

? ,(4.4a)

and

V H
?,h = V H

? + Vh, V E
?,h = V E

? + Vh, V?,h = V H
?,h × V E

?,h.(4.4b)

Assumption 4.1. We suppose that the coefficients µ and ε are piecewise constant
and that the mesh Th is matched to them such that µ|K ≡ µK and ε|K ≡ εK are
constant for each K ∈ Th.

The L2-orthogonal projection πh : L2(Ω)3 → Vh onto Vh is defined such that for
V ∈ L2(Ω)3

(4.5)
(
V − πhV, ϕh

)
= 0 for all ϕh ∈ Vh.

For piecewise constant coefficients we then have

(4.6)
(
V − πhV, ϕh

)
µ

=
(
V − πhV, ϕh

)
ε

= 0, for all ϕh ∈ Vh.

For the data in (2.3) we use the L2-projection of the continuous initial value and
of the source term, i.e., H0

h = πhH
0, E0

h = πhE
0 and Jh = πh(ε−1J).

Given a piecewise constant weight function ω, ω|K ≡ ωK for all K ∈ Th, we
define the weighted average of a function v over an interior face F ∈ F int

h as

{{v}}ωF =
ωK(v|K)|F + ωKF

(v|KF
)|F

ωK + ωKF

,

and the jump of v over F as

JvKF = (v|KF
)|F − (v|K)|F .

For vector fields these operations act componentwise.

4.2. Discrete curl and stabilization operators. We follow [16, 19] for the suc-
ceeding definitions. Let

aF =
1

εKcK + εKF
cKF

, bF =
1

µKcK + µKF
cKF

for all F ∈ F int
h ,(4.7a)

bF =
1

µKcK
for all F ∈ Fbnd

h .(4.7b)

For (Hh,Eh) ∈ V 2
h and (φh, ψh) ∈ V 2

h we define the discrete curl-operators CH,CE :
Vh → Vh as

(4.8a)
(
CHHh, ψh

)
ε

=
∑
K∈Th

(
curl Hh, ψh

)
K

+
∑

F∈F int
h

(
nF × JHhKF , {{ψh}}εcF

)
F
,
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and
(4.8b)(

CEEh, φh
)
µ

=
∑
K∈Th

(
curl Eh, φh

)
K

+
∑

F∈F int
h

(
nF × JEhKF , {{φh}}µcF

)
F
−

∑
F∈Fbnd

h

(
nF ×Eh, φh

)
F
.

Moreover, we introduce the stabilization operators SH,SE : Vh → Vh by

(4.9a)
(
SHHh, φh

)
µ

=
∑

F∈F int
h

aF
(
nF × JHhKF , nF × JφhKF

)
F
,

and

(4.9b)

(
SEEh, ψh

)
ε

=
∑

F∈F int
h

bF
(
nF × JEhKF , nF × JψhKF

)
F

+
∑

F∈Fbnd
h

bF
(
nF ×Eh, nF × ψh

)
F
.

We collect the above introduced operators in

C =

(
0 −CE

CH 0

)
, S =

(
SH 0
0 SE

)
.

The operators given in (4.8), (4.9) are also well-defined on V H
? and V E

? , respectively,
i.e., CH,SH : V H

? → Vh, CE,SE : V E
? → Vh. Since functions in these spaces have

vanishing tangential jumps,

nF × JHKF = nF × JEKF = 0, H ∈ V H
? , E ∈ V E

? ,(4.10)

the following consistency properties hold true
(4.11)

CHH = πhCHH, CEE = πhCEE, SHH = SEE = 0, H ∈ V H
? , E ∈ V E

? .

The next lemma gives a partial integration formula for the discrete curl-operators
CH and CE.

Lemma 4.2. Let (H,E) ∈ V H
?,h × V E

?,h and (φh, ψh) ∈ V 2
h . Then, we have that

(4.12a)(
CHH, ψh

)
ε

=
∑
K∈Th

(
curlψh,H

)
K

+
∑

F∈F int
h

(
nF × JψhKF , {{H}}µcF

)
F
−

∑
F∈Fbnd

h

(
nF × ψh,H

)
F
,

and

(4.12b)
(
CEE, φh

)
µ

=
∑
K∈Th

(
curlφh,E

)
K

+
∑

F∈F int
h

(
nF × JφhKF , {{E}}εcF

)
F
.

Proof. Partial integration (see the proof of [20, Lemma 2.2]). �

This lemma and (4.8) show that the discrete curl-operator C preserves (on the
space V 2

h ) the skew-adjointness of the continuous Maxwell operator (3.7). In fact,
for uh = (Hh,Eh) ∈ V 2

h we have(
CHHh,Eh

)
ε

=
(
Hh,CEEh

)
µ
,

(
Cuh,uh

)
µ×ε = 0.(4.13)
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The stabilization operators SH, SE are symmetric and positive semidefinite on Vh,

i.e., for Hh,Eh, Ĥh, Êh ∈ Vh we have(
SHHh, Ĥh

)
µ

=
(
Hh,SHĤh

)
µ
,

(
SEEh, Êh

)
ε

=
(
Eh,SEÊh

)
ε
,(4.14a)

and

(4.14b)
(
SHHh,Hh

)
µ
≥ 0,

(
SEEh,Eh

)
ε
≥ 0.

4.3. Splitting of discrete operators. Recall that we are interested in the situa-
tion where the mesh is split into a coarse and a fine part, and where the number of
fine elements is small compared to the number of coarse ones, see (2.4). As pointed
out in [20] it is necessary to treat the fine elements and their neighbors implicitly
in order to obtain a scheme with a CFL condition independent of the fine part Th,f .
This lead to the decomposition of Th = Th,i ∪̇ Th,e, where

Th,i = {K ∈ Th | ∃Kf ∈ Th,f : vold−1(∂K ∩ ∂Kf ) 6= 0}, Th,e = Th \ Th,i,
see [20, Definition 2.3]. The elements in Th,i are treated implicitly and the ones
from Th,e can be integrated explicitly. In the following we will frequently use the
set of implicitly treated elements which share a face with at least one explicitly
treated element

Th,ci = {Ki ∈ Th,i | ∃Ke ∈ Th,e : vold−1(∂Ke ∩ ∂Ki) 6= 0}.
We note the following relations between the sets of mesh elements:

Th,e ⊂ Th,c, Th,f ⊂ Th,i, Th,i ∩ Th,c 6= ∅, Th,ci ⊂ Th,c ∩ Th,i.
Analog to [20, Definition 2.4] we decompose the interior mesh faces into

(4.15a) F int
h = F int

h,i ∪̇ F int
h,e ∪̇ F int

h,ci,

where F int
h,i contains the faces between implicitly treated elements, F int

h,e the faces

between explicitly treated elements and F int
h,ci the faces bordering an explicitly and

an implicitly treated element. We use the convention that for a face F ∈ F int
h,ci the

normal nF is directed from the implicit element Ki towards the explicit element
Ke. Similar to the decomposition of F int

h the set Fbnd
h is partitioned into

(4.15b) Fbnd
h = Fbnd

h,i ∪̇ Fbnd
h,e ,

so that Fbnd
h,i contains the boundary faces of implicitly integrated elements and

Fbnd
h,e the boundary faces of explicitly treated elements. Moreover, we set

(4.15c) F int
h,c = F int

h,e ∪̇ F int
h,ci,

Observe that the set F int
h,c only contains faces bordering two coarse elements.

We denote by χi and χe the indicator functions on Th,i and Th,e, respectively.
As proposed in [20, Definition 2.6] we use these indicator functions to define split
versions of the discrete curl-operators CeH,CiH : V H

?,h → Vh and CeE,CiE : V E
?,h → Vh

by

(4.16) CbH = CH ◦ χb, CbE = χb ◦ CE, b ∈ {i, e}.
For the definition of the split discrete curl-operators the usage of the indicator
functions is a convenient choice. However, it is not appropriate to split the sta-
bilization operators. From (4.9) we observe that the stabilization operators solely
take values of the functions on faces into account. Hence, it is natural to construct
explicit stabilization operators by replacing the sums over all faces by sums over
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faces belonging to explicitly treated elements, i.e., by the sets F int
h,c and Fbnd

h,e . This
motivates the following definition.

Definition 4.3. We define the explicit stabilization operators SeH : V H
?,h → Vh such

that for all φh ∈ Vh,

(4.17a)
(
SeHH, φh

)
µ

=
∑

F∈F int
h,c

aF
(
nF × JHKF , nF × JφhKF

)
F
,

and SeE : V E
?,h → Vh such that for all ψh ∈ Vh,

(4.17b)

(
SeEE, ψh

)
ε

=
∑

F∈F int
h,c

bF
(
nF × JEKF , nF × JψhKF

)
F

+
∑

F∈Fbnd
h,e

bF
(
nF ×E, nF × ψh

)
F
,

where aF and bF were defined in (4.7). Moreover, we define

(4.17c) Se : V?,h → V 2
h , Se =

(
SeH 0
0 SeE

)
.

Let us give some properties of the above introduced operators: For the split
curl-operators we have that

(4.18) CH = CiH + CeH, CE = CiE + CeE, CbHCE = CbHCbE, b ∈ {e, i}.

Furthermore, observe that by (4.10) the operators CeE, CiE and SeH, SeE preserve the
consistency of the full operators (4.11). In particular, for the stabilization operators
we have

SeHH = SeEE = 0, H ∈ V H
? , E ∈ V E

? .(4.19)

Last, all operators preseve the adjointness and the symmetry properties on Vh of

the full operators (4.13) and (4.14a), respectively, i.e., for Hh,Eh, Ĥh, Êh ∈ Vh we
have (

CeHHh,Eh

)
ε

=
(
Hh,CeEEh

)
µ
,

(
CiHHh,Eh

)
ε

=
(
Hh,CiEEh

)
µ
,(4.20a) (

SeHHh, Ĥh

)
µ

=
(
Hh,SeHĤh

)
µ
,

(
SeEEh, Êh

)
ε

=
(
Eh,SeEÊh

)
ε
.(4.20b)

Moreover, SeH and SeE also inherit the positive semi-definiteness of SH and SE,
respectively. This motivates to introduce seminorms associated with the explicit
stabilization operators.

Definition 4.4. For u = (H,E) ∈ V?,h we define the seminorms

|H|2Se
H

=
∑

F∈F int
h,c

aF ‖nF × JHKF ‖2F ,(4.21a)

|E|2Se
E

=
∑

F∈F int
h,c

bF ‖nF × JEKF ‖2F +
∑

F∈Fbnd
h,e

bF ‖nF ×E‖2F .(4.21b)

Moreover, we set

(4.21c) |u|2Se = |H|2Se
H

+ |E|2Se
E
.
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For uh = (Hh,Eh) ∈ V 2
h we have that

(4.22)
|Hh|2Se

H
=
(
SeHHh,Hh

)
µ
, |Eh|2Se

E
=
(
SeEEh,Eh

)
ε
,

|uh|2Se =
(
Seuh,uh

)
µ×ε .

4.4. Bounds on discrete operators. We end this section by providing bounds on
the explicit split discrete curl-operators and on the explicit stabilization operators.
Both operators act on the mesh elements and on the mesh faces of the spatial grid,
so these bounds will require a certain quality of our spatial mesh [7, Definition
1.38].

Assumption 4.5. We assume that the mesh Th is shape regular, which means
that there exist constants ρ, ρc > 0 independent of h such that

hK
rK
≤ ρ, K ∈ Th,

hK
rK
≤ ρc, K ∈ Th,c,

where rK denotes the radius of the largest ball inscribed in K.

We have ρ ≥ ρc and for locally refined meshes we might have ρ � ρc. By
Assumption 4.5 we can bound the average of the diameters of the neighboring
elements by the maximum and the minimum diameter of the elements,

ρ−1 max(hK , hKF
) ≤ hK + hKF

2
≤ ρmin(hK , hKF

), K,KF ∈ Th.(4.23)

On the coarse grid Th,c this inequality holds true with ρc instead of ρ. Two crucial
inequalities for functions in Vh are the inverse inequality

‖ curl Uh‖K ≤ Cinvh
−1
K ‖Uh‖K , K ∈ Th, Uh ∈ Vh,(4.24)

and the discrete trace inequality

‖Uh‖F ≤ Ctrh
−1/2
K ‖Uh‖K , F ∈ Fh, Uh ∈ Vh,(4.25)

see [7, Lemmas 1.44, 1.46]. The bound (4.25) also holds for KF . The constants
Cinv and Ctr depend on the mesh regularity constant ρ, the polynomial degree k
and the dimension d. On the coarse mesh Th,c these inequalities hold true with
dependency on ρc, k and d. We denote the corresponding constants by Cinv,c and
Ctr,c.

Let
c∞,c = max

K∈Th,c

cK , c∞ = max
K∈Th

cK

be the maximum speed of light in the coarse grid and in the whole grid, respectively.
For uh = (Hh,Eh) we introduce the following `p-L2-norms scaled with the order q
of the approximation

‖Hh‖pµ,Th,p,q =
∑
K∈Th

hpqK ‖Hh‖pµ,K , ‖Eh‖pε,Th,p,q =
∑
K∈Th

hpqK ‖Eh‖pε,K ,(4.26a)

‖uh‖pµ×ε,Th,p,q = ‖Hh‖pµ,Th,p,q + ‖Eh‖pε,Th,p,q.(4.26b)

Moreover, for v ∈ Hm(Th) we define the weighted broken `p-Hm-seminorm as

|v|pm,Th,p,q =
∑
K∈Th

hpqK |v|
p
m,K .(4.26c)

Note that for our Hm(Th)-seminorm we have |v|m = |v|m,Th,2,0, see (4.3). Now,
we give two boundedness results, one for the L2-norm of the explicit curl-operators
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CeH and CeE, and one for the explicit stabilization seminorm | · |Se . It is crucial to
observe that these bounds hold true independent of the fine mesh Th,f .

Theorem 4.6. For Hh,Eh ∈ Vh we have the bounds

‖CeHHh‖ε ≤ Cbnd,cc∞,c‖Hh‖µ,Th,c,2,−1,(4.27a)

‖CeEEh‖µ ≤ Cbnd,cc∞,c‖Eh‖ε,Th,c,2,−1.(4.27b)

Furthermore, for uh ∈ V 2
h we have

(4.28) |uh|Se ≤
(
Ĉbnd,cc∞,c

)1/2‖uh‖µ×ε,Th,c,2,− 1
2
.

The constants are given by Cbnd,c = Cinv,c + 2C2
tr,cN∂ρc and Ĉbnd,c = 2C2

tr,cN∂ .

Proof. The bounds (4.27) are shown in [20, Theorem 2.7] and (4.28) is proven in
the appendix. �

Last, we provide a bound on terms involving an inner product of a projection
error eπ = u− πhu, u ∈ V?, with a dG function ϕh ∈ V 2

h .

Theorem 4.7. Let u ∈ V? ∩Hk+1(Th)6. Then, for all ϕh ∈ V 2
h we have

(4.29)

(
Ceπ, ϕh

)
µ×ε ≤Cπ,c|ϕh|Se |u|k+1,Th,e∪Th,ci,2,k+ 1

2

+ Ĉπ‖ϕh‖µ×ε,Th,i
|u|k+1,Th,i,2,k,

and

(4.30)
(
Seeπ, ϕh

)
µ×ε ≤ Cπ,c|ϕh|Se |u|k+1,Th,e∪Th,ci,2,k+ 1

2
.

The constants are given by Cπ,c =
(
2N∂c∞,c

)1/2
Ĉapp and Ĉπ = 2ĈappCtrN∂c∞ρ.

Remark 4.8. The bound (4.29) yields only the convergence rate k on the (few)
coarse elements in Th,ci. It also might happen that a small amount of coarse mesh
elements belongs to Th,i \ Th,ci (e.g. if a coarse mesh element possesses only fine
neighbors). However, an advantage of dG methods is their flexibility in choosing a
different polynomial degree on each mesh element. As a consequence, if we choose
the polynomial degree k+ 1 on the (small number of) mesh elements in Th,c ∩Th,i,
we obtain the rate k + 1/2 on the whole coarse set. Particularly, we obtain
(4.31)(

Ceπ, ϕh
)
µ×ε ≤ Cπ,c|ϕh|Se |u|k+1,Th,c,2,k+ 1

2
+ Ĉπ‖ϕh‖µ×ε,Th,i

|u|k+1,Th,f ,2,k,

and

(4.32)
(
Seeπ, ϕh

)
µ×ε ≤ Cπ,c|ϕh|Se |u|k+1,Th,c,2,k+ 1

2
.

In the following we will use (for a shorter notation) the bounds (4.29) and (4.30)
w.r.t. the set Th,c instead of Th,e ∪Th,ci, and leave it to the reader to recall that by
the above idea they can be sharpened to (4.31) and (4.32), respectively.

Proof. Appendix �
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5. Full discretization

In the last section we established the space discretization of Maxwell’s equations
(2.1). So it remains to discuss the time integration. We base our time integrator on
a dissection of the time interval [0, T ] into equidistant intervals [tn, tn+1] of length
τ , where tn = nτ . We refer to τ as the time step. Now, we have all ingredients such
that the fully discrete scheme (2.5) is well-defined. The aim of this section is to give
a stability and convergence analysis for this scheme. We point out that by choosing
Th,e = Th the locally implicit scheme (2.5) transfers to a fully stabilized, fully
explicit Verlet-type method. Related ideas for the Verlet method on a staggered
time grid have been presented in [2, 23]. However, the stability and convergence
analysis are – to the best of our knowledge – new.

5.1. Stability and energy dissipation. Our first step in the analysis of the
upwind fluxes locally implicit scheme (2.5) consists in casting it into a more compact
form.

Lemma 5.1. The numerical scheme (2.5) can be written as

(5.1a) RLun+1
h = RRunh − ταSeunh +

τ

2

(
jn+1
h + jnh

)
,

where jnh = (0,Jnh) = (0,Jh(tn)) and where the operators RL, RR are defined as

(5.1b) RL = I − τ

2
C− τ2

4
De, RR = I +

τ

2
C− τ2

4
De, De =

(
0 0
0 CeHCE

)
.

Proof. Adding (2.5a) and (2.5c) yields

Hn+1
h −Hn

h = −τ
2
CE

(
En+1
h + En

h

)
− ταSeHHn

h,

which is the first component of (5.1a). For the second component we subtract (2.5c)
from (2.5a):

H
n+1/2
h =

1

2

(
Hn+1
h + Hn

h

)
+
τ

4
CE

(
En+1
h −En

h

)
.

Inserting this into (2.5b) we infer

En+1
h −En

h =
τ

2
CH(Hn+1

h +Hn
h)+

τ2

4
CeHCE(En+1

h −En
h)−ταSeEEn

h−
τ

2
(Jn+1
h +Jnh),

by using CeH + CiH = CH, see (4.18). �

In [20, Lemma 3.2] we already elaborated the following properties of the opera-
tors RL and RR:(

RLuh, ûh
)
µ×ε =

(
uh,RRûh

)
µ×ε, for uh, ûh ∈ V 2

h ,(5.2a) (
RLuh,uh

)
µ×ε = ‖uh‖2µ×ε −

τ2

4
‖CeEEh‖2µ, for uh = (Hh,Eh) ∈ V 2

h .(5.2b)

Next, we give an energy identity which allows us to prove the stability of (5.1a)
under the following CFL condition:

(5.3a) τ ≤ 2θ

Cbnd,cc∞,c
min

K∈Th,c

hK ,

where 0 < θ < 1 is a fixed parameter which satisfies

(5.3b) θ̃ := θ2 + αθ < 1.
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Note that the CFL condition depends on the stabilization parameter α. For larger
α we obtain a method with a stricter CFL condition.

Lemma 5.2. The approximation unh = (Hn
h,E

n
h) obtained from (5.1a) satisfies the

energy identity
(5.4)

‖un+1
h ‖2µ×ε −

τ2

4
‖CeEEn+1

h ‖2µ − α
τ

2
|un+1
h |2Se + α

τ

2

n∑
m=0

|um+1
h + umh |2Se

= ‖u0
h‖2µ×ε −

τ2

4
‖CeEE0

h‖2µ − α
τ

2
|u0
h|2Se +

τ

2

n∑
m=0

(
jm+1
h + jmh ,u

m+1
h + umh

)
µ×ε.

If we assume that the CFL condition (5.3) is satisfied, the following stability result
holds true
(5.5)

(1− θ̃)‖un+1
h ‖2µ×ε + α

τ

2

n∑
m=0

|um+1
h + umh |2Se

≤ e3/2

(
‖u0‖2µ×ε +

T + 1

δ(1− θ̃)
τ

4

n∑
m=0

‖Jm+1 + Jm‖2
)
,

for n = 1, 2, . . . , N .

Observe that the bound deteriorates for θ̃ ↗ 1.

Remark 5.3. In case of the central fluxes locally implicit scheme from [20] the CFL
condition only requires the condition θ2 < 1. The additional term αθ entering
(5.3b) stems from the (explicit) integration of the stabilization operators.

Proof. We take the µ× ε-inner product of (5.1a) with un+1
h + unh and obtain(

RLun+1
h −RRunh,u

n+1
h + unh

)
µ×ε =

(
−ταSeunh +

τ

2
(jn+1
h + jnh),un+1

h + unh
)
µ×ε.

The adjointness of RL, RR from (5.2a) and furthermore (5.2b) imply(
RLun+1

h −RRunh,u
n+1
h + unh

)
µ×ε = ‖un+1

h ‖2µ×ε − ‖unh‖2µ×ε.

Thus, we conclude
(5.6)

‖un+1
h ‖2µ×ε − ‖unh‖2µ×ε + τα

(
Seunh,un+1

h + unh
)
µ×ε =

τ

2

(
jn+1
h + jnh,u

n+1
h + unh

)
µ×ε .

Moreover, we have that(
Seunh,un+1

h + unh
)
µ×ε =

(1

2
Se(un+1

h + unh)− 1

2
Se(un+1

h − unh),un+1
h + unh

)
µ×ε

=
1

2
|un+1
h + unh|2Se − 1

2

(
|un+1
h |2Se − |unh|2Se

)
.

Here, we used the definition of |·|Se and the symmetry of Se, see (4.22) and (4.20b),
for the second equality. Inserting this identity into (5.6) and summing yields the
energy identity (5.4).

For the stability bound (5.5) we use the boundedness results for Ce and | · |Se

obtained in Theorem 4.6 in combination with the CFL condition (5.3) to infer

(5.7)
τ2

4
‖CeEEn+1

h ‖2µ + α
τ

2
|un+1
h |2Se ≤ θ2‖En+1

h ‖2ε + αθ‖un+1
h ‖2µ×ε ≤ θ̃‖un+1

h ‖2µ×ε.
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Here, we further used Ĉbnd,c ≤ Cbnd,c. Using this bound in (5.4) and moreover
applying the Cauchy–Schwarz inequality and the weighted Young’s inequality with
weight γ > 0 gives

(1− θ̃)‖un+1
h ‖2µ×ε + α

τ

2

n∑
m=0

|um+1
h + umh |2Se ≤ ‖u0

h‖2µ×ε +
τ

4γ

n∑
m=0

‖jm+1
h + jmh ‖2µ×ε

+ γ
τ

2

n∑
m=0

(
‖um+1

h ‖2µ×ε + ‖umh ‖2µ×ε
)
.

We choose the weight γ = (1− θ̃)/(T + 1), so that the discrete Gronwall lemma is
applicable (Lemma A.1 with λ = 1/(T + 1)). This yields the result. �

Besides the stability of our numerical scheme the energy identity (5.4) also im-
plies that it is dissipative w.r.t. the following perturbed electromagnetic energy

Ẽ(Hh,Eh) = E(Hh,Eh)− τ2

8
‖CeEEh‖2µ − α

τ

4
|uh|2Se .

Indeed, we have that

(5.8) Ẽ(Hn
h,E

n
h) = Ẽ(H0

h,E
0
h)− ατ

4

n−1∑
m=0

|um+1
h + umh |2Se , n = 1, 2, . . . N.

5.2. Error analysis. In this section we prove the convergence of the scheme (2.5)
using an energy technique. The main result is stated in Theorem 5.10.

For the exact solution un = (Hn,En) = (H(tn),E(tn)) of (2.1) at time tn
and its discretization unh = (Hn

h,E
n
h) ≈ un given by (2.5) we introduce the full

discretization error

(5.9a) en = un − unh = (enH, e
n
E) = (Hn −Hn

h,E
n −En

h),

and split it into

(5.9b) en = enπ − enh = (un − πhun)− (unh − πhun).

Assumption 4.5 implies that our mesh Th has optimal polynomial approximation
properties in the sense of [7, Definition 1.55]. Thus, for H,E ∈ Hk+1(K)3, K ∈ Th,
F ∈ Fh, F ⊂ ∂K, we have

‖eπ,H‖µ,K ≤ Capph
k+1
K |H|k+1,K , ‖eπ,E‖ε,K ≤ Capph

k+1
K |E|k+1,K ,(5.10a)

‖eπ,H‖µ,F ≤ Ĉapph
k+1/2
K |H|k+1,K , ‖eπ,E‖ε,F ≤ Ĉapph

k+1/2
K |E|k+1,K ,(5.10b)

with constants Capp, Ĉapp which depend on ρ but are independent of both the mesh
element K and its size hK , cf. [7, Lemmas 1.58, 1.59]. Thus it remains to examine
enh.

5.2.1. Error recursion. In the next lemma we prove that the error enh satisfies the

recursion (5.1a) of the approximation unh where the source term τ
2 (jn+1

h + jnh) is
substituted by a defect.

Lemma 5.4. Let u ∈ C
(
0, T ;V?

)
∩C3

(
0, T ;L2(Ω)6

)
be the exact solution of (2.1).

The error enh definied in (5.9b) satisfies

(5.11a) RLen+1
h = RRenh − ταSeenh + dn, e0

h = 0.
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The defect dn = dnπ + dnh is given by

(5.11b) dnπ = −τ
2
C
(
en+1
π + enπ

)
+ ταSeenπ −

τ2

4

(
0

CeHCE

(
en+1
π,E − enπ,E

)) ,
and

(5.11c) dnh = τ2πhδ
n − τ2

4

(
0

CeHπh∆n
H

)
,

where

(5.11d) δn =

∫ tn+1

tn

(t− tn)(tn+1 − t)
2τ2

∂3
t u(t) dt, ∆n

H =

∫ tn+1

tn

∂2
tH(t) dt.

Proof. First, we observe that the recursion (5.1a) can be written as

un+1
h −unh =

τ

2
C
(
un+1
h +unh

)
−ταSeunh+

τ

2
(jn+1
h + jnh)+

τ2

4

(
0

CeHCE(En+1
h −En

h)

)
.

Next, we insert the projected exact solution into this recursion,

πh(un+1 − un) =
τ

2
Cπh

(
un+1 + un

)
− ταSeπhun

+
τ

2
(jn+1
h + jnh) +

τ2

4

(
0

CeHCEπh(En+1 −En)

)
− dn.(5.12)

Subtracting these two equations yields (5.11a). It remains to determine the defect
dn. By using a Taylor expansion of un+1/2 around tn and around tn+1 we deduce
that

un+1 − un =
τ

2

(
∂tu

n+1 + ∂tu
n
)
− τ2δn,(5.13)

where the remainder is given in (5.11d). Projecting Maxwell’s equations (3.2) onto
V 2
h and applying the consistency property (4.11) of the discrete curl-operators we

obtain

πh∂tu(t) = Cu(t) + jh(t).

Using this identity and Seun = 0, which follows from the consistency of the explicit
stabilization operators (4.19), the projection of (5.13) onto V 2

h can be written as

πh(un+1 − un) =
τ

2
C(un+1 + un)− ταSeun +

τ

2
(jn+1
h + jnh)− τ2πhδ

n.(5.14)

Comparing (5.12) and (5.14) we infer

dn = −τ
2
C(en+1

π + enπ) + ταSeenπ + τ2πhδ
n +

τ2

4

(
0

CeHCEπh(En+1 −En)

)
.

As in [20, Proof of Lemma 5.1] one can show

CeHCEπh(En+1 −En) = −CeHπh∆n
H − CeHCE(en+1

π,E − enπ,E),

which finishes the proof. �

For the central fluxes case we pointed out in [20] that a naive convergence proof
involving the recursion (5.11) only leads to an error bound of order 1.5. The

problem lies in the defect τ2

4 CeHπh∆n
H, which suffers from an order reduction from
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τ3 to τ2.5. This problem also occurs in the here considered uwpind fluxes case. In
[20] we resolved this problem by splitting the quadrature defect dnh into

(5.15) dnh = τ2πhδ
n + (RL −RR)ξn, ξn =

(
ξnH
ξnE

)
=
τ

4

(
χeπh∆n

H

0

)
.

Here, (RL−RR)ξn contains the problematic defect τ2

4 CeHπh∆n
H. Then, using this

particular representation of the defect we could show that its contribution to the
global error is of order two in time. However, the error analysis provided in [20]
does not rely on an energy technique that is needed in the upwind fluxes case
to show the improved spatial convergence order k + 1/2. Unfortunately, it turns
out that even the energy technique applied directly to (5.11), (5.15) fails to give
the desired temporal convergence order. The essential idea – besides the energy
technique – is to consider a modified error ẽnh instead of enh. A related idea has
been presented in [27]. In the following lemma we introduce this modified error and
give the associated error recursion.

Lemma 5.5. Under the assumptions of Lemma 5.4 the modified error

(5.16a) ẽnh = enh − ξn−1, n ≥ 1, ẽ0
h = e0

h = 0,

satisfies

RLẽn+1
h = RRẽnh − ταSeẽnh + d̃n, n ≥ 0,(5.16b)

with defect

(5.16c) d̃n =

{
d0
π + τ2πhδ

0 −RRξ
0, n = 0,

dnπ + τ2πhδ
n −RR(ξn − ξn−1)− ταSeξn−1, n ≥ 1.

Moreover, if the CFL condition (5.3) is satisfied, we have that

(5.17)

(1− θ̃)‖ẽn+1
h ‖2µ×ε+ α

τ

2

n∑
m=0

|ẽm+1
h + ẽmh |2Se

≤
(
d̃0, ẽ1

h

)
µ×ε +

n∑
m=1

(
d̃m, ẽm+1

h + ẽmh
)
µ×ε.

Since the indicator function χe is matched to the spatial mesh we have ξn ∈ V 2
h

and thus ẽnh ∈ V 2
h .

We observe that in (5.16c), except for n = 0, the problematic defect (RL−RR)ξn

could be replaced by the difference ξn − ξn−1. This allows us to gain an additional
factor τ and to avoid an order reduction.

Proof. The error recursion (5.16a) follows by employing the splitting (5.15) of dnh
in (5.11a).

The error ẽnh satisfies the recursion (5.1a) of the locally implicit scheme with

defect d̃n instead of the source terms. Hence, the energy identity Lemma 5.2 holds
true for ẽnh. A computation analog to (5.7) and the fact that ẽ0

h = 0 yields the
bound (5.17). �
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5.3. Bounds on defects. It remains to bound the defects. This requires the
following regularity on the exact solution u = (H,E) of Maxwell’s equations (2.1),
which we assume for the remaining paper:

(5.18)
u ∈ C

(
0, T ;D(C) ∩Hk+1(Th)6

)
∩ C3

(
0, T ;L2(Ω)6

)
,

E ∈ C1
(
0, T ;Hk+1(Th,c)3

)
, H ∈ C2

(
0, T ;Hmax(1,k−1)(Th,e)3

)
.

Moreover, from now on we assume that the CFL condition (5.3) is satisfied with

θ̃ ∈ (0, 1), and that nτ ≤ T . For the sake of readability we give the following

bounds with respect to a generic constant C, which depends on Cπ,c, Ĉπ, Cctr,

Ĉapp, Cbnd,c and c∞,c, but is independent of τ , hK and α. Moreover, we introduce
two weights γ1, γ2 > 0 which we will choose in our main Theorem 5.10.

We start with the projection defect dnπ.

Lemma 5.6. For all ϕh ∈ V 2
h we have the bound(

dnπ, ϕh
)
µ×ε ≤ (1 + α2)γ1τ |ϕh|2Se + 2γ2τ‖ϕh‖2µ×ε

+
C

γ1
τ
( ∣∣un+1 + un

∣∣2
k+1,Th,c,2,k+ 1

2

+ |un|2k+1,Th,c,2,k+ 1
2

)
+
C

γ2
τ
( ∣∣un+1 + un

∣∣2
k+1,Th,i,2,k

+

∫ tn+1

tn

|∂tE(t)|2k+1,Th,c,2,k+ 1
2
dt
)
.

Proof. The first two terms of dnπ are bounded by applying Young’s inequality with
weights γ1, γ2 to (4.29) ,(4.30). For the third term we use the Cauchy–Schwarz
inequality and the weighted Young’s inequality to obtain

τ2

4

((
0

CeHCE

(
en+1
π,E − enπ,E

)) , ϕh)
µ×ε
≤γ2τ‖ϕh‖2µ×ε +

C

γ2
τ3‖CeHCE

(
en+1
π,E − enπ,E

)
‖2ε

≤γ2τ‖ϕh‖2µ×ε +
C

γ2
τ‖CeE

(
en+1
π,E − enπ,E

)
‖2µ.(5.19)

Here, we used CeHCE = CeHCeE, the boundedness result for CeH from Theorem 4.6,
and the CFL condition (5.3) for the second inequality. Moreover, we have

τ‖CeE
(
en+1
π,E − enπ,E

)
‖2µ ≤ τ2

∫ tn+1

tn

‖CeE∂teπ,E(t)‖2µ dt

≤ Cτ
∫ tn+1

tn

|∂tE(t)|2k+1,Th,c,2,k+ 1
2
dt,

where we used ‖CeEeπ,E‖µ ≤ C|E|k+1,Th,c,2,k, see [20, Equation (5.4b)], and the
CFL condition. �

Next, we address the defect RR(ξn − ξn−1).

Lemma 5.7. For all ϕh ∈ V 2
h and all n ≥ 1 we have

(
RR(ξn − ξn−1), ϕh

)
µ×ε ≤ γ2τ‖ϕh‖2µ×ε +

C

γ2
τ4

∫ tn+1

tn−1

‖∂3
tH(t)‖2µ,Th,c

dt.
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Proof. For dG functions Hh ∈ Vh and ϕh = (φh, ψh) ∈ V 2
h we have by the defini-

tions of RL in (5.1b) and of CeH in (4.16) that(
RR

(
χeHh

0

)
, ϕh

)
µ×ε

=
(
χeHh, φh

)
µ

+
τ

2

(
CeHHh, ψh

)
ε

≤ γ2τ‖ϕh‖2µ×ε +
C

γ2τ

(
‖Hh‖2µ,Th,e

+
τ2

4
‖CeHHh‖2ε

)
≤ γ2τ‖ϕh‖2µ×ε +

C

γ2τ
‖Hh‖2µ,Th,c

.(5.20)

Here, the first inequality is obtained by the Cauchy–Schwarz inequality and the
weighted Young’s inequality, and the second inequality follows from the bound-
edness result for CeH, i.e., (4.27a), and the CFL condition (5.3). Using this, we
have (

RR(ξn − ξn−1), ϕh
)
µ×ε ≤ γ2τ‖ϕh‖2µ×ε +

C

γ2τ
‖ξnH − ξn−1

H ‖2µ

≤ γ2τ‖ϕh‖2µ×ε +
Cτ4

γ2

∫ tn+1

tn−1

‖∂3
tH(t)‖2µ,Th,c

dt.

Here, the second inequality follows via a Taylor expansion of ∂tH
m+1 around tm

and around tm+2, which yields

ξnH − ξn−1
H =

τ

4
χeπh

(
∂tH

n+1 − 2∂tH
n + ∂tH

n−1
)

=
τ2

4

∫ tn+1

tn−1

(
1− |tn − t|

τ

)
χeπh

(
∂3
tH(t)

)
dt.

This finishes the proof. �

In the subsequent lemma we provide a bound on ταSeξn−1.

Lemma 5.8. For all ϕh ∈ V 2
h and all n ≥ 1 the following bound holds(

ταSeξn−1, ϕh
)
µ×ε ≤ γ1α

2τ |ϕh|2S

+
C

γ1
τ4

∫ tn

tn−1

‖µ∂2
tH(t)‖21,Th,e

dt

+
C

γ1

∫ tn

tn−1

|∂2
tH(t)|2max(1,k−1),Th,e,2,k+ 1

2
dt.

Proof. By using the Cauchy–Schwarz inequality and Young’s inequality we obtain

τα
(
Seξn−1, ϕh

)
µ×ε ≤ τα|ξ

n−1|Se |ϕh|Se ≤ γ1α
2τ |ϕh|2Se +

Cτ3

γ1
|χeπh∆n−1

H |2Se
H
.

In the second term we decompose πh∆n−1
H = ∆n−1

H −∆n−1
π , where

∆n−1
H =

∫ tn

tn−1

∂2
tH(t) dt, ∆n−1

π =

∫ tn

tn−1

∂2
t eπ,H(t) dt .
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By the definition of | · |Se
H

in (4.21a) we have

τ3

γ1
|χeπh∆n−1

H |2Se
H

=
τ3

γ1

∑
F∈F int

h,c

aF ‖nF × Jχeπh∆n−1
H KF ‖2F

≤ Cτ3

γ1

∑
F∈F int

h,c

aF

(
‖Jχe∆n−1

H KF ‖2F + ‖Jχe∆n−1
π KF ‖2F

)
.(5.21)

Here, the inequality is obtained via the splitting of πh∆n−1
H , the triangle inequality,

Young’s inequality and |nF | = 1. We bound the two terms separately. For the
subsequent calculations it is important to recall that the set F int

h,c only contains

faces bordering coarse elements. So, for the remaining proof let F ∈ F int
h,c, which

yields K,KF ∈ Th,c.
(a) For the first term the Cauchy–Schwarz inequality in L2 yields

aF ‖Jχe∆n−1
H KF ‖2F ≤ aF τ

∫ tn

tn−1

‖Jχe∂2
tH(t)KF ‖2F dt

≤ CaF τ

∫ tn

tn−1

µ−1
K ‖χe(µ∂

2
tH(t))‖21,K dt

+ CaF τ

∫ tn

tn−1

µ−1
KF
‖χe(µ∂2

tH(t))‖21,KF
dt

≤ Cτ

∫ tn

tn−1

‖χe(µ∂2
tH(t))‖21,K∪KF

dt.

Here, we used the triangle inequality, Young’s inequality and the continuous trace
inequality [7, Section 1.1.3] for the second inequality, and

(5.22) aF ≤ cKµK , aF ≤ cKF
µKF

,

for the third inequality.
(b) For the second term we have

aF ‖Jχe∆n−1
π KF ‖2F ≤ aF τ

∫ tn

tn−1

‖Jχe∂2
t eπ,H(t)KF ‖2F dt

≤ Cτ
∫ tn

tn−1

‖χe∂2
t eπ,H(t)|K‖2µ,F + ‖χe∂2

t eπ,H(t)|KF
‖2µ,F dt,

where the second inequality is obtained via the triangle inequality, Young’s in-

equality and (5.22). Let k̃ = max(1, k − 1), then the regularity assumptions on
∂2
tH together with (5.10b) imply

‖∂2
t eπ,H|K‖2µ,F ≤ Ch2k̃−1

K |∂2
tH|2k̃,K ≤ Cτ

−4h2k̃+3
K |∂2

tH|2k̃,K .

For the last inequality we used the CFL condition (5.3). Hence, we end up with

aF ‖Jχe∆n−1
π KF ‖2F ≤ Cτ−3

∫ tn

tn−1

h2k+1
K |χe∂2

tH(t)|2
k̃,K

+ h2k+1
KF
|χe∂2

tH(t)|2
k̃,KF

dt,

where we used h2k̃+3
K ≤ h2k+1

K . (This holds true with in the case k > 1 and in the
case k = 1 for hK ≤ 1, i.e., the relevant case for a convergence proof. If hK > 1,
an additionally constant vold(Ω)2 enters this bound.)

Inserting the results from (a) and (b) in (5.21) yields the desired bound. �
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It remains to establish a bound on d̃0.

Lemma 5.9. We have the bound

(1− θ2)
(
d̃0, ẽ1

h

)
µ×ε ≤C|u

1 + u0|2k+1,Th,2,k+1

+ Cτ4 max
t∈[0,τ ]

‖∂2
tH(t)‖2µ,Th,e

+ Cτ4

∫ τ

0

‖∂3
t u(t)‖2µ×ε dt

+ Cτ
∣∣u0
∣∣2
k+1,Th,c,2,k+ 1

2

+ Cτ
∣∣u1 − u0

∣∣2
k+1,Th,c,2,k+ 1

2

.

Proof. This proof needs the following two results shown in [20, Lemma 4.1,4.2]:
Under the CFL condition (5.3) the operator RL is invertible and we have the
following bounds:

(5.23) ‖R−1
L ‖µ×ε ≤

1

1− θ2
, ‖(R−1

L RR)m‖µ×ε ≤
1√

1− θ2
.

By (5.16b), ẽ0
h = 0 and subsequently (5.2b) we have(

d̃0, ẽ1
h

)
µ×ε =

(
RLẽ1

h, ẽ
1
h

)
µ×ε ≤ ‖ẽ

1
h‖2µ×ε.

From (5.16b) we obtain

ẽ1
h = R−1

L (d0
π + d0

h) + R−1
L RRξ

0.

Using RL −RR = − τ2C and (4.16) we can write

d0
π =

1

2
(RL −RR)(e1

π + e0
π) + ταSee0

π +
τ

4
(RL −RR)

(
CeE(e1

π,E − e0
π,E)

0

)
.

Using the bounds (5.23) we infer

(1− θ2)‖ẽ1
h‖µ×ε ≤ C

(
‖ξ0‖µ×ε + ‖δ0‖µ×ε

)
+ C

(
τ‖See0

π‖µ×ε + ‖e1
π + e0

π‖µ×ε + τ‖CeE(e1
π,E − e0

π,E)‖µ
)
.

The bound on the first two terms are clear. The fourth term can be bounded with
(5.10a) and the last one as in the proof of Lemma 5.6. For the remaining defect we
use (4.30) and subsequently (4.28) and the CFL condition

τ
(
Seeπ, ϕh

)
µ×ε ≤ Cπ,cτ |ϕh|Se |u|k+1,Th,c,2,k+ 1

2

≤ Cπ,c(Ĉbnd,cc∞,c)
1/2τ‖ϕh‖µ×ε,Th,e∪Th,ci,2,−1/2|u|k+1,Th,c,2,k+ 1

2

≤
√

2Cπ,cτ
1/2‖ϕh‖µ×ε|u|k+1,Th,c,2,k+ 1

2
.

As a consequence, we have

τ‖See0
π‖µ×ε ≤ Cτ1/2|u0|k+1,Th,c,2,k+ 1

2
.

This concludes the proof. �

5.4. Main result. Using the stability results and the bounds on the defects, we
now have all ingredients to show our main result.

Theorem 5.10. Assume that the exact solution u = (H,E) of Maxwell’s equations
(2.1) satisfies

u ∈ C
(
0, T ;D(C) ∩Hk+1(Th)6

)
∩ C3

(
0, T ;L2(Ω)6

)
,

E ∈ C1
(
0, T ;Hk+1(Th,c)3

)
, H ∈ C2

(
0, T ;Hmax(1,k−1)(Th,e)3

)
.
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Moreover, assume that the CFL condition (5.3) is satisfied with θ̃ ∈ (0, 1), and
assume that nτ ≤ T . Then, the error of the upwind fluxes locally implicit scheme
(2.5) is bounded by

‖un − unh‖2µ×ε + α
τ

4

n−1∑
m=0

|ẽm+1
h + ẽmh |2Se

≤C ′|un + u1 + u0|2k+1,Th,1,k+1 + C ′τ4 max
t∈[0,tn]

‖∂2
tH(t)‖2µ,Th,e

+ C ′τ4

∫ tn

0

‖∂3
t u(t)‖2µ×ε + ‖µ∂2

tH(t)‖21,Th,e
dt

+ C ′τ

n∑
m=0

(
|um|2k+1,Th,c,2,k+ 1

2
+ |um|2k+1,Th,i,2,k

)
+ C ′

∫ tn

0

|∂tE(t)|2k+1,Th,c,2,k+ 1
2

+ |∂2
tH(t)|2max(1,k−1),Th,e,2,k+ 1

2
dt

≤C ′′
(

max
K∈Th,e

h2k+1
K + max

K∈Th,i

h2k
K + τ4

)
.

The constant C ′ has the dependencies of C and additional involves 1/(1 − θ̃) and
(1 + α2)/α. The constant C ′′ depends on C ′ and on |u(t)|k+1,Th , |∂tE(t)|k+1,Th,c

,

|∂2
tH(t)|max(1,k−1),Th,e

, ‖∂2
tH(t)‖µ, and ‖∂3

t u(t)‖µ×ε, t ∈ [0, tn].

Remark 5.11. We recall from Remark 4.8 that by choosing degree k + 1 on the
(very few) elements in Th,c ∩ Th,i, we obtain the convergence rate

‖un − unh‖2µ×ε + α
τ

4

n−1∑
m=0

|ẽm+1
h + ẽmh |2Se ≤ C ′′

(
max
K∈Th,c

h2k+1
K + max

K∈Th,f

h2k
K + τ4

)
.

This is the desired rate k + 1/2 on the coarse elements and k on the fine elements.

Proof. The full discretization error is given by en = enπ − ẽnh − ξn−1. Using(
eπ, ϕh

)
µ×ε = 0, and the triangle inequality and Young’s inequality we infer

‖en‖2µ×ε ≤ ‖enπ‖2µ×ε + 2‖ẽnh‖2µ×ε + 2‖ξn−1‖2µ×ε.

The first and the last term can be bounded by

‖enπ‖2µ×ε ≤ C2
app|u|k+1,Th,2,k+1, ‖ξn−1‖2µ×ε ≤ Cτ4 max

t∈[tn−1,tn]
‖∂2
tH(t)‖2µ,Th,e

,

where the first bound stems from (5.10a). For the remaining error ẽnh we have the
bound (5.17) and inserting

(
dnh, ϕh

)
µ×ε ≤ γ2τ‖ϕh‖2µ×ε +

C

γ2
τ4

∫ tn+1

tn

‖∂3
t u(t)‖2µ×ε dt,
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and the results from Lemmas 5.6–5.9 with γ1 = α/2(1 + 2α2) we obtain

(1− θ̃)‖ẽn+1
h ‖2µ×ε+α

τ

4

n∑
m=0

|ẽm+1
h + ẽmh |2Se

≤ 3γ2τ

n∑
m=1

‖ẽm+1
h + ẽmh ‖2µ×ε

+ C|u1 + u0|2k+1,Th,2,k+1 + τ4 max
t∈[0,τ ]

‖∂2
tH(t)‖2µ,Th,c

+ C ′τ

n∑
m=0

∣∣um+1 + um
∣∣2
k+1,Th,i,2,k

+ C ′τ

n∑
m=0

∣∣um+1 + 2um
∣∣2
k+1,Th,c,2,k+ 1

2

+
C

γ2

∫ tn+1

0

τ4‖∂3
t u(t)‖2µ×ε + |∂tE(t)|2k+1,Th,c,2,k+ 1

2
dt

+ C ′
∫ tn

0

τ4‖µ∂2
tH(t)‖21,Th,e

+ |∂2
tH(t)|2max(1,k−1),Th,e,2,k+ 1

2
dt.

By the triangle inequality, Young’s inequality and by choosing the weight γ2 =
1−θ̃

12(T+1) we have

3γ2τ‖ẽm+1
h + ẽmh ‖2µ×ε ≤

1− θ̃
T + 1

τ

2

(
‖ẽm+1
h ‖2µ×ε + ‖ẽmh ‖2µ×ε

)
.

Finally applying the discrete Gronwall Lemma A.1 yields the result. �

6. Numerical results

We conclude this paper by giving numerical examples confirming our theoretical

results. As an example for locally refined grids we use the mesh sequence T (j)
h =

T (j,4)
h , 1 ≤ j ≤ 4, from [20, Section 6]. The mesh parameters, the decomposition of

the mesh into explicitly and implicitly treated elements, and all further details on
the example including a link to the mesh data can be found in this paper.

As a reference time integrator we use the Verlet method with a full stabilization
on the current iterates Hn

h, En
h. As already pointed out in Section 5 this scheme

can be obtained from the locally implicit scheme (2.5) by choosing Th,e = Th. In
fact, its recursion can be gained from (2.5) by changing CeH, CiH, SeH and SeE into
CH, 0, SH and SE, respectively. For all following results we ran our simulation
until the final time tN = T = 1 and its error eN = uN − uNh is always measured in
the L2(Ω) norm.

For a detailed discussion of the dependence of the CFL condition on the implicitly
and explicitly treated parts of the mesh we refer to [20], since it makes no difference
if we consider central or upwind fluxes. A new effect occurring for an upwind
fluxes space discretization is the dependence of the maximal stable time step and
of the error on the stabilization parameter α. We also refer to [10] for a related
discussion of such effects when working with (fully explicit) low-storage Runge–
Kutta schemes. The fact that the maximal stable time step is subject to α is seen
from the condition (5.3b). The dependence of the error on α follows since the
constant C ′ in Theorem 5.10 involves a factor (1 + α2)/α. Thus, for larger α we
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(a) Maximum stable time
step τ for the locally im-
plicit method.
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(b) Maximum stable time
step τ for the Verlet
method.
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(c) Error of the locally im-
plicit scheme for time step
size τ = 5 · 10−4 and final
time tN = T = 1.

Figure 1. Dependence of the maximal stable time step and the
error, respectively, on the stabilization parameter α. We used the

mesh T (1)
h and polynomial degrees k = 2 (blue), k = 3 (orange),

k = 4 (yellow), k = 5 (purple).

have two competing effects: on the one hand the error constant gets smaller and
on the other hand the CFL condition gets stricter. So, the optimal choice might
be α ∈ (0, 1) instead of α = 1 (depending on the application). We validate both

effects with the mesh T (1)
h . The maximal stable time step sizes we observe in our

simulation are given in Figure 1a for the locally implicit scheme and in Figure 1b
for the Verlet method. First of all, the results highlight the superior CFL condition
of the locally implicit method compared to the Verlet method. Moreover, they
confirm that a larger α or a higher polynomial degree (this dependence enters the
CFL condition through the constant Cbnd,c) require a smaller time step in order
to ensure stability. Figure 1c depicts the correlation between the error (for a small
time step τ = 5 · 10−4) and the stabilization parameter α. We confirm that for
larger α the error becomes smaller.

Next, we examine the spatial convergence. For this purpose we use a tiny time
step size τ = 10−5 which is chosen small enough such that the spatial error domi-
nates over the time discretization error. We give the results in Figures 2a and 2b for
the locally implicit method with α = 0 (central fluxes, see also Figure 2 from [20])
and with α = 1 (full upwind fluxes), respectively. We clearly observe the superior
convergence rate of the upwind fluxes scheme compared to the central fluxes case.
In fact, we even observe a higher convergence rate k + 1 for the stabilized method
compared to k+ 1/2 given in Theorem 5.10. This behavior is well-known [16]. The
convergence rate in the central fluxes is k as predicted in [20]. As comparison we
plotted in Figure 2c the error of the Verlet method with full upwind fluxes, i.e.,
with stabilization parameter α = 1. We observe that the Verlet method shows the

convergence rate k + 1 for all mesh levels T (1)
h , . . . , T (4)

h . For the locally implicit

method we observe the same rate for T (1)
h , . . . , T (3)

h and then a slight decrease in

the rate for T (4)
h . This confirms the spatial rate maxK∈Th,e

h
k+1/2
K + maxK∈Th,i

hkK
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(a) Error of the locally implicit
method with α = 0 (central
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(b) Error of the locally
implicit method with
α = 1 (upwind fluxes).
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(c) Error of the Verlet
method with α = 1 (up-
wind fluxes).

Figure 2. Spatial convergence. As final time we used tN = T = 1
and as time step τ = 10−5. We employed the polynomial degrees
k = 2 (blue), k = 3 (orange), k = 4 (yellow), k = 5 (purple). The
black dotted lines have slope maxK∈Th h

k
K for k = 2, . . . , 6.
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Figure 3. Temporal convergence. We used the final time tN =
T = 1 and the polynomial degree k = 5. Moreover, we used the

meshes T (1)
h (blue), T (2)

h (orange), T (3)
h (yellow) and T (4)

h (purple).

given in Theorem 5.10: For the meshes T (1)
h , . . . , T (3)

h the implicitly treated part of
the grid only consists of elements with a smaller diameter compared to those of the
explicitly treated part, see [20, Table 1]. Thus, the spatial error is dominated by

maxK∈Th,e
h
k+1/2
K which we observe in the figure. Contrary, for the mesh T (4)

h there
are implicitly treated elements with a larger diameter than those in the explicitly
treated part. Consequently, we also observe the rate maxK∈Th,i

hkK in the spatial
error.



26 MARLIS HOCHBRUCK AND ANDREAS STURM

Last, we verify the temporal convergence. For that purpose we use the poly-
nomial degree k = 5 since for this degree, at least for larger time step sizes, the
time integration error dominates the spatial error. The graphs of the errors of the
locally implicit scheme are given in Figure 3a and Figure 3b for α = 0 (see also
Figure 3a from [20]) and for α = 1, respectively. We clearly observe that both
methods converge with order two in the time step which substantiates the order
given in Theorem 5.10 and in [20, Theorem 5.3] for α = 1 and α = 0, respec-
tively. Furthermore, we again observe the slightly weaker CFL condition in the
case α = 0 (this method is stable for a larger time step size, see also Figure 1a) and
the superior space discretization error for α = 1 (the plateaus indicating the space
discretization errors are at a smaller size for this method, compare also Figure 1c).
As an additional comparison we give in Figure 3c the errors we observe for the
Verlet method with α = 1. This figure shows well that both the locally implicit
scheme and the Verlet method are of the same temporal convergence order, i.e., of
order two. Moreover, it again illustrates the considerably improved CFL condition
of the locally implicit method compared to the Verlet method.

Appendix A. Gronwall inequalities

Lemma A.1 ((Modified) discrete Gronwall lemma). Let λ ≥ 0, τ > 0 and λτ ≤ 3
2 .

Furthermore, let an, bn, cn ∈ R such that a0 ≤ b0, bn ≤ bn+1, cn ≥ 0, and

an+1 + cn+1 ≤ bn+1 + λ
τ

2

n∑
m=0

(am+1 + am), n ≥ 0.(A.1)

Then we have an + cn ≤ e
3
2λnτ bn, n ≥ 0.

Proof. Since cn ≥ 0 we obtain from (A.1)

an+1 + cn+1 ≤ bn+1 + λ
τ

2

n∑
m=0

(am+1 + cm+1 + am + cm),

whence the statement follows from [12, Proposition 4.1] and (1 + x)/(1− x) ≤ e3x

for x ∈ [0, 3/4]. �

Appendix B. Proofs postponed from Section 4

Proof of (4.28) from Theorem 4.6. For uh = (Hh,Eh) we have |uh|2Se = |Hh|2Se
H

+

|Eh|2Se
E

, where by Definition 4.4

(B.1) |Hh|2Se
H

=
∑

F∈F int
h,c

aF ‖nF × JHhKF ‖2F .

By |nF | = 1, the triangle inequality, Young’s inequality and the trace inequality
(4.25) on the coarse mesh Th,c we infer

aF ‖nF × JHhKF ‖2F ≤ 2C2
tr,caF

(
εKc

2
Kh
−1
K ‖Hh‖2µ,K + εKF

c2KF
h−1
KF
‖Hh‖2µ,KF

)
≤ 2C2

tr,cc∞,c
(
h−1
K ‖Hh‖2µ,K + h−1

KF
‖Hh‖2µ,KF

)
,

where the second inequality is obtained via

(B.2) aF εKcK ≤ 1, aF εKF
cKF

≤ 1,
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Inserting this bound into (B.1) gives

|Hh|2SH
≤ Ĉbnd,cc∞,c‖Hh‖2µ,Th,c,2,− 1

2
.

The proof of the bound for |Eh|2SE
is done analogously. �

Proof of Theorem 4.7 . This proof is done in four steps.
(a) We start with the proof of (4.29): For eπ = (eπ,H, eπ,E) and ϕh = (φh, ψh)

we have

(B.3)
(
Ceπ, ϕh

)
µ×ε =

(
CEeπ,E, φh

)
µ

+
(
CHeπ,H, ψh

)
ε
.

By the partial integration formular (4.12b) for CE and because the projection error
eπ,E is orthogonal to Vh, see (4.6), we have

(B.4)

(
CEeπ,E, φh

)
µ

=
∑

F∈F int
h

(
nF × JφhKF , {{eπ,E}}εcF

)
F

≤
∑

F∈F int
h,c

‖nF × JφhKF ‖F ‖{{eπ,E}}εcF ‖F

+
∑

F∈F int
h,i

‖nF × JφhKF ‖F ‖{{eπ,E}}εcF ‖F .

Here, we used the splitting of the mesh faces F int
h = F int

h,c ∪̇ F int
h,i from (4.15) and

the Cauchy–Schwarz inequality. Using (4.7) we have

(B.5)

‖{{eπ,E}}εcF ‖2F = a2
F ‖εKcKeπ,E|K + εKF

cKF
eπ,E|KF

‖2F

≤ 2a2
F

(
‖εKcKeπ,E|K‖2F + ‖εKF

cKF
eπ,E|KF

‖2F
)

= 2a2
F

(
εKc

2
K‖eπ,E|K‖2ε,F + εKF

c2KF
‖eπ,E|KF

‖2ε,F
)

≤ 2aF

(
cK‖eπ,E|K‖2ε,F + cKF

‖eπ,E|KF
‖2ε,F

)
≤ 2aF Ĉ

2
app

(
cKh

2k+1
K |E|2k+1,K + cKF

h2k+1
KF
|E|2k+1,KF

)
.

Here, we applied the triangle inequality, Young’s inequality, and (B.2) From now,
the two sums in (B.4) have to be treated differently.

(b) By the Cauchy–Schwarz inequality in Rcard(F int
h,c) with weight aF , we obtain

(B.6)∑
F∈F int

h,c

‖nF × JφhKF ‖F ‖{{eπ,E}}εcF ‖F

≤
( ∑
F∈F int

h,c

aF ‖nF × JφhKF ‖2F
)1/2( ∑

F∈F int
h,c

a−1
F ‖{{eπ,E}}

εc
F ‖2F

)1/2

≤
√

2Ĉapp|φh|Se
H

( ∑
F∈F int

h,c

cKh
2k+1
K |E|2k+1,K + cKF

h2k+1
KF
|E|2k+1,KF

)1/2

≤ (2N∂c∞,c)
1/2Ĉapp|φh|Se

H
|E|k+1,Th,e∪Th,ci,2,k+1/2.

For the second inequality we used the Definition 4.4 of the stabilization seminorm
and (B.5).
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(c) Again the Cauchy–Schwarz inequality in Rcard(F int
h,i) implies∑

F∈F int
h,i

‖nF × JφhKF ‖F ‖{{eπ,E}}εcF ‖F

≤
( ∑
F∈F int

h,i

ωF ‖nF × JφhKF ‖2F
)1/2( ∑

F∈F int
h,i

ω−1
F ‖{{eπ,E}}

εc
F ‖2F

)1/2

where we choose the weight ωF = aF (hK + hKF
)/2. From the shape- and contact-

regularity of the mesh Th, in fact by using (4.23), we deduce

(B.7) ρ−1aF ≤ ωFh−1
K , ωFh

−1
KF
≤ ρaF .

By |nF | = 1, the triangle inequality, Young’s inequality, and subsequently the trace
inequality (4.25), we infer

ωF ‖nF × JφhKF ‖2F ≤ 2ωF
(
‖φh|K‖2F + ‖φh|KF

‖2F
)

≤ 2C2
trωF

(
h−1
K ‖φh‖

2
K + h−1

KF
‖φh‖2KF

)
= 2C2

trωF
(
µ−1
K h−1

K ‖φh‖
2
µ,K + µ−1

KF
h−1
KF
‖φh‖2µ,KF

)
≤ 2C2

trρaF
(
µ−1
K ‖φh‖

2
µ,K + µ−1

KF
‖φh‖2µ,KF

)
≤ 2C2

trρc∞‖φh‖2µ,K∪KF
.(B.8)

Here, the third inequality was obtained via (B.7) and the last inequality follows by
(5.22). Last, we deduce from (B.5) with the aid of (B.7), that we have

ω−1
F ‖{{eπ,E}}

εc
F ‖2F ≤ 2Ĉ2

appρc∞
(
h2k
K |E|2k+1,K + h2k

KF
|E|2k+1,KF

)
.

This yields

(B.9)
∑

F∈F int
h,i

‖nF × JφhKF ‖F ‖{{eπ,E}}εcF ‖F ≤ Ĉπ‖φh‖µ,Th,i
|E|k+1,Th,i,2,k.

Inserting (B.6) and (B.9) into (B.4), we finally obtain(
CEeπ,E, φh

)
µ
≤ Cπ,c|φh|Se

H
|E|k+1,Th,e∪Th,ci,2,k+1/2 + Ĉπ‖φh‖µ,Th,i

|E|k+1,Th,i,2,k.

Analogous computations show(
CHeπ,H, ψh

)
ε
≤ Cπ,c|ψh|Se

E
|H|k+1,Th,e∪Th,ci,2,k+1/2 + Ĉπ‖ψh‖ε,Th,i

|H|k+1,Th,i,2,k,

whence the bound (4.29) follows by (B.3) and the Cauchy–Schwarz inequality in
R2.

(d) We proceed with proving the bound (4.30): By Definition 4.3, the Cauchy-

Schwarz inequalities in L2(F ) and in Rcard(F int
h,c) we have(

SeHeπ,H, φh
)
µ
≤ |φh|Se

H

( ∑
F∈F int

h,c

aF ‖nF × Jeπ,HKF ‖2F
)1/2

.

By |nF | = 1, the triangle inequality and Young’s inequality we infer

aF ‖nF × Jeπ,HKF ‖2F ≤ 2aF
(
‖eπ,H|K‖2F + ‖eπ,H|KF

‖2F
)

= 2aF
(
µ−1
K ‖eπ,H|K‖

2
µ,F + µ−1

KF
‖eπ,H|KF

‖2µ,F
)

≤ 2Ĉ2
app

(
cKh

2k+1
K |H|2k+1,K + cKF

h2k+1
KF
|H|2k+1,KF

)
.



A LOCALLY IMPLICIT METHOD FOR MAXWELL’s EQUATIONS 29

Here, the last inequality follows from (5.10b) and (5.22). Consequently, we have(
SeHeπ,H, φh

)
≤ Cπ,c|φh|SH

|H|k+1,Th,e∪Th,ci,2,k+1/2,

and analogously we obtain(
SeEeπ,E, ψh

)
≤ Cπ,c|ψh|SE

|E|k+1,Th,e∪Th,ci,2,k+1/2.

Finally, by the Cauchy-Schwarz inequality in R2 we get the desired bound (4.30).
�
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