HPC Predictions of Primary Atomization with SPH:
Challenges and Lessons Learned

Samuel Braun, Lars Wieth, Thilo Dauch, Marc Keller, Geoffroy Chaussonnet,
Corina Hofler, Rainer Koch, Hans-J6rg Bauer
Institut fiir Thermische Stromungsmaschinen
Karlsruhe Institute of Technology
Karlsruhe, Germany
samuel.braun @kit.edu

Abstract—Up to now, numerical predictions of fuel preparation
in the context of aircraft engines were not feasible due to the
enormous computational costs. Thanks to the steadily improving
availability of High Performance Computing (HPC) resources,
such simulations have come into reach. In this paper we present
the transition to such large scale simulations and the associated
implications. An exemplary 3D simulation of a planar prefilming
airblast atomizer, which is modeled by 1.2 billion particles,
helps to illustrate the workflow, necessary code modifications and
possible ways to assess the simulation data. Several aspects, which
are prerequisites for successfully conducting the simulation and
a beneficial usage of the results, are discussed. Most importantly,
a massive improvement of the serial code performance has been
achieved by changing the data structure and by ensuring a
cache efficient order of the particle interactions. A reduction
of the memory requirement during the pre- and post-processing
steps has been realized using disassembled datasets. This allows
the handling and analysis of large computational domains on
standard desktop computers. By applying the a.-shape algorithm,
a descriptive and memory-saving visualization of the liquid
surface is possible.

I. INTRODUCTION

Proper atomization of the liquid fuel in aircraft engines is
the key issue for controlling emissions. At the same time,
any numerical prediction of the spray formation process was
prohibitive due to the enormous computational costs which
are associated to air assisted atomization. The spatial and
temporal scales to be resolved cover at least 4 orders of
magnitude. The lower bound of the length scales is defined by
the smallest droplets with about 1 um in diameter, the upper
bound is defined by the geometry of the atomizer, which is in
the order of 1cm. Recently, first attempts have been made
to numerically predict an atomizer configuration which is
representative for aircraft applications [12]. These simulations
are based on the Finite Volume approach, the multi-phase
flow is modeled by the Volume of Fluid (VoF) method. The
simulation did reflect many experimentally observed features,
however, the VoF method inherits some disadvantages. Most
importantly, the predicted droplet sizes strongly depend on the
choice of the volume fraction, which is used to distinguish
between gaseous and liquid phase. Furthermore, despite a
moderate number of cells of approximately 80 million, the
computational runtime was rather long.

hinlet

;Ehﬁiﬁg edge

1preﬁlmer

1[()1

Fig. 1: Planar prefilming airblast atomizer, experimental setup
(left) and numerical abstraction.

The SPH method shows a great potential to a more
efficient use of the computer hardware. Applying a weakly
compressible, explicit formulation leads to very low memory
requirements and an excellent computing to communication
ratio, when it comes to parallelization. Concerning multi-
phase flows, the Lagrangian description avoids the complex
interface tracking or reconstruction, which is necessary in grid
based Eulerian methods. In the present paper we describe the
application of SPH to problem sizes of more than 1 billion
particles. Compared to today’s largest Molecular Dynamics
or CFD simulations, this represents only a medium sized
problem. However, in order to achieve reasonable computing
runtimes, a highly efficient use of HPC resources is indis-
pensable. Furthermore, the pre- and post-processing tools must
handle big data sizes, which in general do not fit on standard
desktop computers.

The structure of the paper is as follows. In section II we
introduce the setup of the computational domain, which is
used to perform the prediction of primary atomization as well
as scalability tests. In section III we briefly summarize our
considerations regarding the optimization of the serial code
performance. Especially the trade-off between vectorization
and cache optimization is addressed. Furthermore, a detailed
examination of the strong scalability of our code is discussed.
In section IV an overview is given on how large data files can

mailto:samuel.braun@kit.edu

11*" international SPHERIC workshop

Munich, Germany, June, 14-16 2016

TABLE I: Fluid properties and geometrical dimensions

Property air liquid
p [kgm=3] 1.0 770.0
1 [Pas) 1.8 x 1075 | 1.56 x 10~3
velocity@inlet [ms™*] | 0.0 - 50.0 0.617
Gair-liquid [Nm™1] 0.0275
contact angleyi_jiquid [°] 60.0

hiailing edge [H1D] 230.0

hinlet [mm] 3.0

hijm [Hm)] 80.0
hpoundary layer [mm] 0.5

liot [mm] 6.0

1trailing edge [mm] 2.0
depthyypy [mm] 4.0

al’] 4.29

dz [pum)] 5.0

be handled and assessed even on standard desktop hardware.
A very important, yet overlooked subject is the visualization of
the particle data. We present our strategy for visualizing liquid
surfaces. Furthermore, the assessment of the spray properties
is described. In section V we present the 3D simulation of an
experimentally investigated airblast atomizer. The modeling
approaches, the required computational resources as well as
the physical findings are illustrated and discussed. In sec-
tion VI the results are summarized.

II. NUMERICAL SETUP

The numerical setup for the scalability tests and for the
spray prediction is derived from an experimentally investi-
gated generic planar atomizer, which is a two-dimensional
abstraction of an annular airblast atomizer [5]. Figure 1 and
Table I give an overview of the geometric features of the
experimental setup, the fluid properties and the numerical
model. The experimental setup consists of an airfoil shaped
prefilmer, which is exposed to an air stream. A liquid film
is applied to the upper side of the prefilmer surface. High
aerodynamic forces pull the liquid film to the trailing edge,
where the liquid is accumulated and forms flapping ligaments.
Finally it detaches from the prefilmer lip. The detachment and
disintegration of the ligaments is called primary atomization.

The domain of the numerical predictions covers the region
in the vicinity of the trailing edge. At the inlet, the air velocity
is prescribed by a piecewise linear profile. The liquid phase
enters the domain with a constant velocity. On top and on
bottom the computational domain is confined by static walls.
In two dimensions, the computational domain consists of
roughly 1.5 x 10 particles with an inter-particle spacing of
dx = 5 pm. During preliminary parametric studies, this spatial
resolution has been found to be the coarsest acceptable for
the given flow configuration. The 2D domain was used for the
performance tests and for generating an initial solution for the
3D simulation. Here, an established 2D flow state is extruded

in spanwise direction, with the lateral faces being confined
by periodic boundary conditions. The lateral extent of 4 mm
yields 1.2 x 10? particles.

Concerning the physical models, we apply the density
equation as proposed by Hu and Adams [9], in order to handle
the interfacial discontinuities. Viscosity is modeled by the
formulation of Szewc [13]. The interaction between the liquid
phase and the prefilmer lip plays an important role. Therefore,
wall wetting effects have are taken into account using the
extended surface tension model proposed by Wieth et al. [14].
Walls are represented by fixed wall particles.

III. COMPUTATIONAL PERFORMANCE
A. Serial Optimization

Our SPH code framework as presented previously [2]
showed a decent scalability (c.f. Fig. 3, gray line). There-
fore, in order to further accelerate simulations, the serial
performance had to be improved. Within this paper we dis-
tinguish between hard optimizations and soft optimizations.
Hard optimization denote a real code improvement like e.g.
vectorization or more cache friendly algorithms, whereas soft
optimization denotes the use of e.g. a less expensive kernel,
smaller smoothing lengths or relaxed CFL conditions. In the
following, both optimization types are discussed.

In order to identify the problematic passages of the
code, different instrumentation and sampling tools like e.g.
gprof [6] have been applied. Furthermore, the code has
been inspected in order to find unnecessary or redundant
calculations. Those simple optimizations, as e.g. described
by Hager and Wellein [7], already resulted in measurable
performance gains. However, in order to massively improve
the serial performance, at a first glance vectorization seemed
to be the solution of choice. Modern processors usually have
special registers, which allow to execute SIMD instructions
(Single Instruction Multiple Data). Depending on the data
type, 4 or more identical simple operations can be performed
on multiple data objects within one processor cycle. Using
the SIMD instruction sets is generally called vectorization.
However, vectorizing particle-interaction calculations is not
straightforward, since the particles are scattered across the
three dimensional space (even if they are sorted), whereas
memory is one dimensional. In order be able to perform
vectorized calculations, the data has to be packed, e.g. in
groups of 4, as described by Alonso [1]. However, this data
shuffling (gather/scatter operations) generates a large overhead
and the symmetry of the interactions can not be exploited. For
Molecular Dynamics simulations, Pall and Hess [10] proposed
a remedy by creating spatial particle clusters. However, the
overhead introduced by their method is only compensated,
if the interactions are based on very simple operations. This
is not the case for SPH. Our implementations of vectorized
interaction loops were faster than the non-vectorized ones,
however, the overhead due to data preparation compensated
this effort in terms of a global view.

As vectorization was not suitable to substantially improve

11*" international SPHERIC workshop

Munich, Germany, June, 14-16 2016

the serial performance, we examined the code concerning
its cache efficiency. Cache means different levels of buffer
memory, which have higher access bandwidths and a lower
latencies than the main memory. However, the closer these
cache levels are located to the processing units, the smaller
they are. The usage of cache is beneficial, if data is to be
reused. This is the case for particle interactions, as every
particle does interact with a certain number of other particles
and, therefore, has to be reread from memory during the
interaction calculations. The two most important modifications
for maximizing cache efficiency are the change of the data
layout and a spatial sorting of the particles. In the original
code, a particle has been stored in a derived data structure,
containing all particle attributes. The data of all particles has
been stored in a list of particle structures. This type of data
layout is called array of structures (AoS). When it comes to the
calculation of e.g. the density, only the particle location and
its mass are of interest. However, the cache-line, i.e. the data
block containing the needed information, which is loaded to a
faster cache level or to the processor registers, is flooded with
unnecessary supplementary data, like e.g. velocities, pressures,
IDs et cetera. This causes the cache to be replaced and
reloaded very frequently. A remedy consists of switching to
a so called structure of arrays (SoA) data layout. Here, the
particle attributes of all particles are stored in separate arrays.
When performing calculations on the data, only the required
data of the particles under concern is loaded. The caches have
to be refreshed much less frequently, more data fits into the
fast, low latency memory buffers. The switch from AoS to
SoA required every single line of source code to be revised.

A further important step for improving the cache efficiency
is to increase the spatial locality of data. This is achieved
by sorting the particles in such a way, that particles assigned
to the same cell of the list search are positioned adjacent in
memory, as described e.g. by Alonso [1]. However, instead
of applying an expensive sorting algorithm, we modified the
particle deletion routine which is carried out at the end of each
time step. This deletion step is required anyway, as particles
might have crossed an outlet boundary or they might have
left the computational sub-domain. The deletion consists of
copying the particles to be kept into a new SoA-container and
deleting the old container. Instead of accessing the particles
sequentially, they are accessed according to their assignment
to the search cubes. Consequently, the particles are sorted
automatically with no extra cost. Additional particle sorting,
e.g. the application of a Morton order (Lebesque curve) for the
data traversal, did not show any improvements at all. Switching
to the SoA layout and sorting the particles with respect to their
position in the search grid increased the code performance by
approximately a factor of 2 to 3.

As vectorization has been excluded from our optimization
considerations, we could exploit the symmetry of the particle
interactions. Identical to the findings described by Alonso [1],
the gain in terms of speedup was approximately 50 %.

Our last consideration for increasing the cache efficiency

a) p_ipj b) pip]

|
2

order
in memory

2
2
3
4
3
4

Fig. 2: 9 spatially sorted particles (gray circles) are assigned
to 6 cells of the search grid (left). The corresponding Verlet
lists for the particle interaction pairs are depicted on the
right. Comparison of a) particle-centered and b) cube-centered
creation of the lists. Particles within a colored block are
adjacent in memory.

3
4
5
2
3
4

was to improve the temporal locality of data. This means, that
operations on the same data objects should be temporarily
close to each other. This increases the probability, that the
cache line, which holds the required data, is still persistent
in the fastest cache. We addressed the demand for temporal
locality by modifying the creation of the Verlet lists.

In the original code version, the creation of the Verlet lists
was particle-centered. This is illustrated in Fig. 2a, where
the interactions of particle ¢ and particle j are stored within
the integer arrays p_i and p_7j. The colors of the blocks
denote the index of the containing search cubes. Because the
particles are sorted spatially, the color also indicates the order
of the particle data in memory. Particle-centered creation of the
Verlet list means, that first all interaction partners of particle
0 are determined, before proceeding to particle 1 as regarded
center particle. If during the interaction calculations the center
particle p_1i changes from particle O to particle 1, the memory
controller has to jump (eventually far) backwards in order to
fetch the p_ 7 particle data. This renders the currently loaded
cache obsolete and the entire cache line has to be replaced.

In Fig. 2b the result of a cube-centerd creation of the
Verlet list is depicted. A cube-centered creation means, that
all interactions between particles of adjacent search cubes (e.g.
cube 0 and cube 1) are determined, before proceeding to the
next search cube (e.g. 0 and cube 3). When performing the
interaction calculations, p_i jumps forward and backward
in memory. However, the maximum width of the jumps
corresponds to the number of particles inside a search cube. It
is very likely, that the corresponding data is contained in a fast
cache level. Concerning the p_ 7 data, there are no far reaching
backward jumps anymore. The maximum backward jump is
also defined by the number of particles within one search cube.
Due to the fact, that the cache is loaded in blocks in forward
direction with a certain size, chances are high that there are
only very few cache misses, once the first particle attribute
of a new memory block has been loaded. Depending on the
problem size, the performance gain of using this temporal

11*" international SPHERIC workshop

Munich, Germany, June, 14-16 2016

locality aware approach is in the order of 50 %.

Concerning the soft optimizations, switching from a quintic
kernel with a smoothing length of h = 1.0-dx (dr = 3.0-dx)
to the Wendland kernel with A = 1.3 - dz (dr = 2.6 - dx)
resulted in a massive improvement of the simulation speed.
This is due to the fact, that the Wendland kernel function
can be realized without conditional branching and, therefore,
is computationally less expensive. Furthermore, the reduced
kernel cut-off radius naturally reduces the computational costs.
Finally, as & is bigger, larger time steps are possible, as long as
the flow is limited by the numerical speed of sound. A further
increase of the time step size has been realized by relaxing
the factors of the CFL conditions.

The overall performance gain of the serial code optimiza-
tions is in the order of 5 with respect to the number of
computed time steps per hour. With respect to the physical
time, which can be computed per hour, the performance gain
is above a factor of 10.

B. PFarallel Performance

Strong scalability tests have been performed on the cluster
ForHLR I', which is equipped with 2 Deca-Core Intel® Xeon®
E5-2670 v2 processors per compute node. Each of the 512 thin
nodes is connected via an InfiniBand 4X FDR interconnect.
The operating system is RHEL Server release 6.7 with the
2.6.32 Linux kernel. The SPH code has been compiled with
the GNU Compiler Collection 4.9.3 with auto-vectorization
enabled, Profile Guided Optimization (PGO) and using fast
math optimizations. The computational domain for the scala-
bility tests consists of the 2D domain, described in section II.
It has been decomposed into 1 to 1000 sub-domains, assuring
an even distribution of particles. The termination criterion of
the scalability tests was 1 hour wall clock time. This renders
a scalability test over 3 orders of magnitude easily feasible,
however, temporal changes of the computational load may
falsify the results. The speedup has been calculated using
the computed time steps within one hour. In order to assess
the performance of the SPH code, comparative simulations
with commonly used multi-phase solvers have been conducted,
applying the same initial and boundary conditions. The number
of cells of the Cartesian grid corresponds to the number of
particles. The two tools to be compared to SPH were the VoF
solvers of the CFD toolkits OpenFOAM® 2.3.0 (interFoam)
and another commercially available CFD software. Turbulence
modeling has been disabled.

It is to be emphasized that the following results might not be
representative for the maximum achievable performance of the
commercial software and OpenFOAM. Both codes have been
used to the best of the author’s knowledge. The multi-phase
solver settings correspond to production run settings, which
are typically used at our institute. Furthermore, small domain

IForschungshochleistungsrechner ForHLR (Phase) T
http://www.top500.org/system/178424
http://www.bwhpc-c5.de/wiki/index.php/ForHLR_Phase_I_-_Hardware_and_
Architecture

sizes of only 1.5 x 10 cells are usually not considered to be
run on more than 2 nodes.

In Fig. 5 the speedup and the parallel efficiency are depicted
for the original SPH implementation (gray line), the serially
optimized version, the commercial software and OpenFOAM.
The reference speed was defined by the performance of one
compute node with 20 cores. The termination criterion is one
hour wall clock time. OpenFOAM shows a decent scalability
till 40 cores (2 nodes), where it especially profits from the
fast intra-socket communication. The serial performance of the
commercial software is questionable, however, it scales very
well till 5 nodes. However, above 100 cores, saturation of the
speedup is reached for both grid based tools. Furthermore, the
efficiency shows a severe breakdown. A further increase of
computational resources would not accelerate the simulation
anymore. The parallel efficiency of the old SPH version does
not show any degradation at all. The efficiency of the new
SPH code starts to show a slight decrease for core numbers
greater than 200. However, there is no sudden performance
drop.

At a low number of processors, OpenFOAM seems to
outperform the other codes. The old SPH version seems to
perform better than the new version. Therefore, in order to
assess the real world performance of the different codes, the
actual reduction of the simulation time is considered. In Fig. 4
the simulated physical time, which can be computed with one
hour wall clock time (left) or by spending one CPU-hour
(right) is depicted over the number of cores. The simulations
with the commercial solver used a fixed time step size of
2.5 x 10785, SPH and OpenFOAM used an adaptive time
stepping with mean time increments of 1.6 x 10~%s (SPH)
and 4.3 x 10~8s (OpenFOAM), respectively. Looking at the
grid based methods and the old SPH code, the commercial
software clearly outperforms the other codes within a wide
range of cores. Due to its perfect scalability, the old SPH code
was able to catch up with OpenFOAM at 100 cores and with
the commercial code at 400 cores.

The serially optimized SPH code outperforms all other
codes by far. At the best, OpenFOAM achieves 0.19ms
physical time per hour wall clock time and the commercial
code achieves 0.63 ms per hour. SPH achieves 6.2 ms per hour
using 400 cores. By using 1000 cores, the SPH code achieves
12.4ms per hour. The simulation could even be accelerated
further, as the speedup has not yet reached saturation. The
physical time, which can be computed per CPU-hour, can be
interpreted as a measure for the cost- or energy-effectiveness
of the code. Even at 1000 cores, SPH shows a better cost-
benefit ratio than the other codes at their respective optimal
number of cores.

In order to check, whether the use of the wall clock time as
termination criterion substantially affects the speedup results,
further scalability tests have been run with the serially opti-
mized SPH code. Using a fixed number of time steps (20 000)
as termination criterion, a time dependent computational load
will not affect the results. The speedup has been determined

http://www.top500.org/system/178424
http://www.bwhpc-c5.de/wiki/index.php/ForHLR_Phase_I_-_Hardware_and_Architecture
http://www.bwhpc-c5.de/wiki/index.php/ForHLR_Phase_I_-_Hardware_and_Architecture

11*" international SPHERIC workshop

Munich, Germany, June, 14-16 2016

1200 ‘ ‘
T 1000 SPH —e -
[SPH old —e— P
o] . s
Zo 800 = Commercial —a— L
g 600 |- OpenFOAM SR b
- YL
3 400 — - ’
N 200 —
0
1 200 400 1000

Number of Cores

ideal - -

Efficiency per Node [-]

1 11 ILLIJl

100

1 IJILIIJ[

1 10

1000

Number of Cores

Fig. 3: Speedup and parallel efficiency for SPH, OpenFOAM and a commercial solver. The graphs are normalized by the

performance of a single node with 20 cores.

=z 12.5 ‘
% SPH —e—
2 0F SsPHod —o—
T .
— Commercial —&—~
1) 75 —
3 OpenFOAM
B st
&= ‘ :
Toask
2 : : b
~ 0

1 200 400 1000

Number of Cores

Physical Time per CPUh [us]

Number of Cores

Fig. 4: Physical time per hour and per CPU-hour for SPH, OpenFOAM and a commercial solver.

evaluating the required runtimes. In Fig. 5 the resulting parallel
efficiencies are compared. The red line and the gray line result
from the wall clock time termination, the blue line and the
green line result from the time step based termination. The
wall clock time for 20 000 time steps varied between 12 h for
1 core and 97s for 1000 cores. The reference performance is
given by 1 node. The green line has been obtained starting
with an established flow regime as initial condition. The other
graphs are obtained with initially all particles at rest.

The effect of the fast intra-socket communication is clearly
perceptible for the step based termination criterion. For the
time based termination, this effect is reduced. This could be
due to an increased computational load at the beginning of the
simulation. As the established flow and the non-established
flow (green and blue line) show a very similar behavior, this
increased computational load must be attributed to a non-
physically determined time dependent load. One explanation
could be the required time for memory allocation, which
mainly takes place at the beginning of the simulation. The
SoA data layout of the new SPH implementation requires more
arrays to be allocated, than the old AoS approach. Therefore,
the old implementation shows a better efficiency at an intra-
socket basis. Using more than one node, all three scalability

tests with the new SPH implementation show an identical
behavior. The efficiency increase for large numbers of cores
of the old implementation is most likely due to cache effects.
The smaller the sub-domains, the more data fits into the small
but fast lower cache levels. This compensates the increasing
effort for communication.

In summary it can be stated, that the new SPH implemen-
tation shows a massively improved performance. In contrast
to the old implementation, the inter-processor communication
cannot be hidden by the bad serial performance anymore.
However, the code still shows a decent strong scalability over
3 orders of magnitude, with sub-domain sizes ranging from
1.5 x 10% down to 1500 particles.

IV. PRE- AND POST-PROCESSING
A. Data Handling

Usually, computational domains consisting of more than
Nparticle = 1 X 10® particles cannot be handled using regular
desktop computers, due to the limited main memory. However,
it would be convenient to create the computational domain and
to do the post-processing apart from HPC facilities. Therefore,
we modified all our pre- and post-processing tools in such
a way, that the particle attributes are loaded and processed

11*" international SPHERIC workshop

Munich, Germany, June, 14-16 2016

2 ‘ ‘
1h wall time —eo—
™ 1h wall time old —e—
3 L5 |- 20k steps —=—
Z 20k steps established
P X ;
& 1
oy
<]
2
Q '
E 0.5 Intra-Socket ‘
Intra-Node:! InfiniBand
0 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII
1 10 100 1000

Number of Cores

Fig. 5: Comparison of different scalability termination criteria.
The graphs are normalized by the performance of a single node
with 20 cores.

separately. Consequently, at most 3 float or double arrays
(position) and one boolean array (bookkeeping, filtering) with
the length of npaicle have to be kept in memory simulta-
neously. This approach is easily applicable using the binary
data format H5Part [8]. A further advantage of H5Part is the
fact, that the size of one file is not limited and that read
and write accesses can be performed close to the hardware
speed limits [3]. After the modification of the tools, the
3D simulation to be presented in the following (1.2 billion
particles, 62 GB per time step) could be pre-processed (domain
creation, domain decomposition) and post-processed (domain
reconstruction, filtering, spray analysis) on a desktop computer
with 24 GB RAM (XServer not running). However, during
the post-processing of the data, it became obvious, that for
future simulations with more than 10000 cores, a per-node
data output should be considered, instead of the current per-
process output. This will reduce the number of necessary file
accesses.

B. Visualization

In order to understand the breakup process, an appropri-
ate visualization of the liquid phase is required. However,
most post-processing tools rely on computational meshes or
tessellated data. The direct depiction of particles generally
compromises the visual sensation of depth or creates a wrong
impression of surface texture. This can be seen in Figs. 6a and
6b, where a three dimensional liquid structure is visualized by
particles. Triangulated surfaces improve the sensation of depth
substantially. Furthermore, the data sizes to be handled are
reduced dramatically, if only the surface mesh is visualized.
The depiction of the liquid surface in Fig. 6¢ has been obtained
by interpolating the particle data on a Cartesian grid and
by extracting a certain iso-surface level. This approach is
computationally very inexpensive, but it generates visible grid
artifacts at the inclined surfaces.

(b) Particles as spheres.
/)
/ N

L) @0

(a) Particles as points.

/)

=

N
o 3 3

(c) Grid based iso-surface. (d) Tessellated interfacial particles with

simple smoothing.
Fig. 6: Different visualization types for a three dimensional
liquid structure.

By the a-shape algorithm [4], the liquid surface is directly
tessellated. The utmost particles serve as supporting points
of the tessellating triangles. Figure 6d has been obtained by
applying this algorithm and additionally performing a slight
surface smoothing. Despite the higher computational effort
with respect to a interpolation based iso-surface reconstruction,
the a-shape algorithm seems to be the most appropriate
method for the visualization of phase interfaces.

In order to further facilitate the sensual comprehensibility
and, therefore, increase the benefit of 3D simulation data, the
upcoming virtual reality (VR) methods are a great opportunity.
Currently, our simulation results can be read and displayed on
mobile devices in combination with Google Cardboard. More
advanced VR systems will be applied in the near future.

C. Spray-Analysis

When doing simulations of atomizing devices, the quantities
of interest are mainly the spray characteristics, such as droplet
size distributions, breakup frequencies and trajectories. These
characteristics can be used for quantitative comparisons with
experimental findings, but they also may serve as initial and
boundary conditions for combustion simulations. In order to
extract the spray characteristics, the droplets and detached
ligaments have to be detected. Hence, we implemented a
cluster detection tool, which is based on the Connected
Component Labeling (CCL) technique proposed by Rosenfeld
and Pfaltz [11]. The first step of droplet recognition consists
of discarding the gaseous phase and the walls, which would
not be possible using grid based methods. For the given test
case, the amount of data can be reduced by approximately
99 %. In order to perform the CCL algorithm, a connectiv-
ity list for the remaining particles has to be build. As the
computational domain is only sparsely filled, a tree based
neighbor search algorithm is applied. By only taking into

11*" international SPHERIC workshop

Munich, Germany, June, 14-16 2016

account a 10-connectivity, this can be done with a minimum
computational effort. The CCL algorithm basically assigns
the same ID to every element inside a connected cluster of
particles. Connectivity is assumed, if the inter-particle distance
is smaller than 1.5 times the mean particle spacing. As a
result, every detected cluster of particles can be distinguished
by its ID and it can be characterized by e.g. the center of
gravity, the number of associated particles, a bounding box, a
representative volume and velocity and a deformation index.
By replacing all particles of a cluster by a single representative
droplet, the data size is further reduced from several gigabytes
to a couple of kilobytes. A subsequent statistical analysis is
then easily feasible.

V. SIMULATION OF A GENERIC ATOMIZER
A. Computational details

The 3D computational domain described in section II has
been split into 2560 sub-domains. With the given number
of 1.2 billion particles for the entire domain, this yields
roughly 5 x 10° particles per sub-domain. The simulations
have been performed on the compute cluster ForHLR I, which
is described in section III-B. During the first 490 hours a
quintic interpolation function with a smoothing length of 5 um
has been applied. Within 305 522 time steps 3.17 ms physical
time could be simulated. Afterwards, a Wendland kernel with
a smoothing length of 6.5um has been implemented and
used, due to its lower computational costs. Within 960 hours,
790160 time steps have been simulated. This corresponds
to 11.43ms of physical time. On average 43 000 time steps
could be calculated within 2 days. Using the Wendland
kernel, the computational effort for one particle iteration is
8.5 x 107¢ CPUs/step/particle.

Altogether, 1095 682 time steps have been calculated within
60 days. This corresponds to 3.71 x 105 CPUh. 1113 time
steps have been dumped to the file system. The data size of
one time step is approximately 62 GB, the entire simulation
data has a size of 69 TB.

B. Results

In Fig. 7 a snapshot of a breakup event is represented. Only
a slice of the gaseous phase is depicted, where the colors
correspond to the velocity magnitude. The image shows the
instant in time, when a bubble shaped liquid structure starts
to burst. This feature of the atomization process has also been
experimentally observed. It is phenomenological related to
the bag breakup regime of secondary atomization [5]. The
present simulation is one of the first numerical simulations
ever to correctly capture this type of atomization process.
The accumulation of liquid at the trailing edge, the periodic
flapping of the attached liquid and the breakup of these
ligaments can be predicted with 2D simulations. However,
only 3D simulations are able to capture those bubble shaped
structures. The high temporal resolution of the simulation
allows for a thorough investigation of the breakup process,
which even phenomenologically is not yet understood in detail.

velocity
[m/s]

r75

Fig. 7: 3D view of the computational domain. Only a slice of
the gaseous phase is depicted, the coloring denotes the velocity
magnitude. The upper wall is not depicted.

(c) (d)
Fig. 8: Sequence of a bag breakup event.

In Fig. 8 a time series of such a breakup event is depicted. The
time increment between two consecutive images is 74.5 s,
which corresponds to 5 times the data output increment.
Beside the bag breakup, a Rayleigh breakup of elongated
ligaments can be observed. These elongated ligaments either
stem from the remaining rims of the bubble structures or are
directly pulled out of the liquid film. In Fig. 9 experimentally
obtained consecutive top view snapshots are compared to the
simulation results. Both, bag breakup processes and Rayleigh
breakups can be identified. At a first glance, the qualitative
comparison reveals very similar breakup structures and length

11*" international SPHERIC workshop

Munich, Germany, June, 14-16 2016

simulation simulation

experiment

Fig. 9: Comparison of experiment (left half) and simulation.
The displayed experimental section is 8mm X 4 mm. The
simulation data is duplicated in span-wise direction. Images
of the experimental investigations: courtesy of S. Gepperth.

scales. At the same time, it is clearly visible that the very thin
skin of the bursting bubbles (estimated thickness: 1 um) could
not be predicted by the simulations, due to the restricted spatial
resolution of approximately 5um. Quantitative comparisons
of the experiment and the simulation are currently ongoing.
However, it is worthwhile to mention, that the comparison
of the droplet spectra have to be limited to droplets larger
than 14um in diameter, as this corresponds to the spatial
resolution of the high speed camera used for image recording.
Furthermore, statistically significant statements will not be
conceivable, due to the limited amount of simulated breakup
events.

VI. CONCLUSION

The successful prediction of primary atomization inherently
requires massive computing power. SPH offers the great
opportunity, to efficiently make use of the available resources.
Depending on the regarded physical problem, SPH can outper-
form commonly used grid based methods by far. However, in
order to achieve the highest possible computing effectiveness,
a relatively detailed understanding of the computer hardware
is necessary, which helps to estimate the implications of the
implemented algorithms. In the present paper we conclude,
that cache aware algorithms seem to outweigh the advantages
of vectorization. The Lagrangian nature of SPH not only
facilitates multi-phase handling, but also can be exploited
for memory efficient pre- and post-processing. By separately
handling the particle attributes, even very large simulation
data sets can be conveniently processed on standard desktop
computers. Concerning the visualization of multi-phase flows

involving several length scales, the tessellation of the phase
interfaces is advantageous with respect to a reasonable sensa-
tion of depth. The algorithm of choice seems to be the a-shape
method. Further advantages of using tessellated surfaces are
the massive data reduction and the possibility to reuse the
mesh with sophisticated rendering software.

Primary atomization is now within the range of CFD
simulations. We successfully predicted the bag breakup regime
of an air assisted atomizer. 1.2 billion seems to be the lowest
possible number of particles required for physically meaning-
ful results of this 3D multi-scale phenomenon. Quantitative
comparisons to experiments are currently ongoing. However,
statistically significant quantitative comparisons will not be
feasible due to the limited amount of predicted breakup events.

ACKNOWLEDGMENT

This work was performed on the computational resource
ForHLR Phase I funded by the Ministry of Science, Re-
search and the Arts Baden-Wiirttemberg and DFG (“Deutsche
Forschungsgemeinschaft”) within the framework program
bwHPC.

REFERENCES

[1] José Manuel Dominguez Alonso. DualSPHysics: Towards High Perfor-
mance Computing using SPH technique. PhD thesis, University of Vigo,
September 2014.

[2] S. Braun, L. Wieth, R. Koch, and H.-J. Bauer. A Framework for
Permeable Boundary Conditions in SPH: Inlet, Outlet, Periodicity. 70
th International SPHERIC Workshop, 2015.

[3] Suren Byna, A. Uselton, D. Knaak Prabhat, and Y He. Trillion particles,
120,000 cores, and 350 TBs: Lessons learned from a hero I/O run on
Hopper. In Cray User Group meeting, 2013.

[4] Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. On
the shape of a set of points in the plane. Information Theory, IEEE
Transactions on, 29(4):551-559, 1983.

[5] S. Gepperth, R. Koch, and H.-J. Bauer. Analysis and comparison of
primary droplet characteristics in the near field of a prefilming airblast
atomizer. In ASME Turbo Expo 2013: Turbine Technical Conference
and Exposition. American Society of Mechanical Engineers, 2013.

[6] Susan L Graham, Peter B Kessler, and Marshall K Mckusick. Gprof:
A call graph execution profiler. In ACM Sigplan Notices, volume 17,
pages 120-126. ACM, 1982.

[71 Georg Hager and Gerhard Wellein. Introduction to high performance
computing for scientists and engineers. CRC Press, 2010.

[8] Mark Howison, Andreas Adelmann, E Bethel, Achim Gsell, Benedikt
Oswald, et al. H5hut: A high-performance 1/O library for particle-based
simulations. In Cluster Computing Workshops and Posters (CLUSTER
WORKSHOPS), 2010 IEEE International Conference on, pages 1-8.
IEEE, 2010.

[9] X.Y. Hu and N.A. Adams. A multi-phase SPH method for macroscopic
and mesoscopic flows. Journal of Computational Physics, 213(2):844—
861, 2006.

[10] Szilard Pall and Berk Hess. A flexible algorithm for calculating pair
interactions on SIMD architectures. Computer Physics Communications,
184(12):2641-2650, 2013.

[11] Azriel Rosenfeld and John L. Pfaltz. Sequential operations in digital
picture processing. Journal of the ACM (JACM), 13(4):471-494, 1966.

[12] B. Sauer, A. Sadiki, and J. Janicka. Numerical analysis of the primary
breakup applying the embedded dns approach to a generic prefilming
airblast atomizer. The Journal of Computational Multiphase Flows,
6(3):179-192, 2014.

[13] K. Szewc. Smoothed Particles Hydrodynamics — the implementations
of the incompressibility. Copernican Letters, 1(0):141-154, 2010.

[14] L. Wieth, S. Braun, R. Koch, and H.-J. Bauer. Modeling of liquid-
wall interaction using the meshless Smoothed Particle Hydrodynamics
(SPH) method. 26th Annual Conference on Liquid Atomization and
Spray Systems, Bremen, Germany, 2014.

	Introduction
	Numerical Setup
	Computational Performance
	Serial Optimization
	Parallel Performance

	Pre- and Post-Processing
	Data Handling
	Visualization
	Spray-Analysis

	Simulation of a Generic Atomizer
	Computational details
	Results

	Conclusion
	Acknowledgment
	References

