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Abstract

We compute four-loop corrections to the hadronic decay of the Standard Model Higgs boson which are 
induced by effective couplings to bottom quarks and gluons, mediated by the top quark. Our numerical 
results are comparable in size to the purely massless contributions which have been known for a few years. 
The results presented in this paper complete the order α4

s corrections to the hadronic Higgs boson decay.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In particle physics, one of the most important tasks in the coming years is the precise mea-
surement of the couplings of the Higgs boson to fermions and bosons. An important ingredient 
in this context is the decay rate of the Higgs boson into bottom quarks, which has the by far 
largest branching ratio. Together with the decay rate into gluons it constitutes almost 70% of the 
hadronic decay width and it thus has a major influence on all Higgs boson branching ratios.

One-loop1 QCD corrections to �(H → bb̄) have been known for a long time, including the 
full bottom quark-mass dependence [1]. The massless approximation2 at order α2

s has been 
computed in Ref. [2] and the full bottom quark-mass dependence is known from Ref. [3–5]. 
Three- and four-loop corrections, of order α3

s and α4
s , have been computed in the massless 
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1 In the following we count the number of loops needed for the virtual corrections.
2 Here “massless” refers to the bottom quark mass in the propagators; the bottom quark Yukawa coupling remains 

non-zero.
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limit in Refs. [6–8]. A summary of further corrections, including top quark-mass-suppressed 
terms and electroweak effects can be found in recent review articles [9,10] (see also the program 
HDECAY [11]).

The main aim of this paper is to complete the corrections of order α4
s to the total decay rate 

of the Higgs boson into hadrons. In Ref. [8] only the contribution involving the bottom quark 
Yukawa coupling was considered. We compute the contributions induced by effective Higgs–
bottom quark and Higgs–gluon couplings. The corresponding three-loop calculation, which was 
performed in Ref. [7], produces a similarly-sized contribution to the α3

s coefficient as that of 
the purely massless contribution. It is therefore necessary also to evaluate the top quark-induced 
contributions at order α4

s .
For the calculation performed in this paper the relevant part the Standard Model (SM) La-

grange density is given by the Yukawa terms supplemented by the strong interaction terms. For 
the production and decay of the SM Higgs boson it turns out that the effective theory in which 
the top quark is integrated out provides a good approximation to the full theory. This leads to the 
following effective Lagrangian [12–14]3

Leff = −H 0

v0

(
C1[O′

1] + C2[O′
2]

) +L′
QCD , (1)

where the primed quantities are defined in the five-flavor theory. H 0 and v0 are the bare Higgs 
boson field and vacuum expectation value which can be identified with their renormalized coun-
terparts if, as in this paper, electroweak effects are neglected. In Eq. (1) all dependence on the 
top quark is contained in the coefficient functions (or effective couplings) C1 and C2. [O′

1] and 
[O′

2] are renormalized effective operators constructed from the light degrees of freedom. Their 
bare versions read

O′
1 =

(
G0′

a,μν

)2
,

O′
2 = m0′

b b̄0′b0′ , (2)

where G0′
a,μν is the bare gluon field strength tensor and b̄0′ is the bare bottom quark field.

Further corrections to Leff are suppressed by the inverse top quark mass, contributing terms 
of order M 2

H /M 2
t to the decay rate. These terms are available to order α3

s [15–17] and are known 
to be small. For example, at order α2

s the M 2
H /M 2

t term changes the coefficient by less than 
1% and thus induces a correction which is of the same order of magnitude as non-suppressed 
contributions of order α4

s . We also restrict ourselves to the leading m 2
b term and neglect higher 

powers in the bottom quark mass which are numerically even smaller than the 1/Mt terms.
On the basis of the Lagrange density of Eq. (1) we define correlators formed by the operators 

O′
1 and O′

2,

�ij (q
2) = i

∫
dxeiqx〈0|T [O′

i ,O′
j ]|0〉. (3)

Sample Feynman diagrams contributing to �11, �12 and �22 are shown in Fig. 1.
Using the optical theorem, the total decay rate can be obtained from the imaginary part of �ij . 

In this context it is convenient to introduce the quantities

�ii = Kii Im
[
�ii(M

2
H )

]
,

�12 = K12 Im
[
�12(M

2
H ) + �21(M

2
H )

]
, (4)

3 We follow the notation of Ref. [7].
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Fig. 1. Sample Feynman diagrams contributing to �11, �12 and �22. The curly and straight lines represent gluons and 
quarks, respectively. The blobs stand for the effective operators O′

1 and O′
2.

with 1/K11 = 32πM 4
H and 1/K12 = 1/K22 = 6πM 2

H m 2
b . Note that �12(M

2
H ) = �21(M

2
H ). The 

total decay width is then given by

�(H → hadrons) = Abb̄

[
(C2)

2 (1 + �22) + C1C2�12

]
+ Agg (C1)

2 �11 , (5)

where

Abb̄ = 3GF MH m 2
b (μ)

4π
√

2
,

Agg = 4GF M 3
H

π
√

2
. (6)

Note that for clarity, we restrict ourselves in Eq. (5) to the QCD corrections that we compute in 
this paper; we neglect both electroweak effects and power corrections suppressed by M 2

H/M 2
t . 

Furthermore, we concentrate on the decay of the Higgs boson only to bottom quarks and to glu-
ons. The results can easily be extended to include the decay to additional light quark flavors, if 
necessary. For example, if one wants to consider also the decay to charm quarks, the term pro-
portional to Abb̄ in Eq. (5) must be duplicated with its coefficient replaced by Acc̄ = Abb̄|mb→mc . 
A more complete formula can be found in Eq. (10) of Ref. [7]. Note that in Eq. (6), mb(μ) refers 
to the MS bottom quark mass evaluated at the renormalization scale μ.

In Ref. [8] �22 has been computed to five-loop order, yielding order α4
s corrections to the 

Higgs boson decay. For these corrections we have that C2 = 1 and therefore refer to them in the 
following as “massless contributions”, despite the fact that there is an overall factor of m 2

b from 
the bottom quark Yukawa coupling.

The leading-order term of �11 describes the decay of the Higgs boson into gluons. Starting 
from next-to-leading order (two loops) the gluonic and fermionic decay cannot be separated 
in the approach based on the optical theorem, since there are diagrams containing both purely 
gluonic cuts and cuts involving both gluons and quark–antiquark pairs.

The main result of this paper is the extension of [7]. We compute the four-loop correction to 
�12 which contributes to the hadronic Higgs boson decay at order α4

s , along with the five-loop 
calculation of Ref. [8]. This is because the leading term of C1 contains a factor αs .

Note that �22 has an overall prefactor m 2
b , which comes from the two operators O′

2. �12 is 
also proportional to m 2; one factor arises from O′ the other from the trace of the bottom quark 
b 2
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loop. In the limit mb → 0 the correlator �11 has a non-zero contribution. Terms proportional to 
m 2

b appear for the first time at two-loop order, due to the presence of closed bottom quark loops. 
We compute such terms up to three loops, which give rise to order α4

s corrections to the Higgs 
boson decay. We want to remark that the mb-independent terms of �11 have been computed to 
four-loop order in Ref. [18] leading to corrections of order α5

s to the hadronic Higgs boson decay.
In the next section we provide several technical details of our calculation. In particular, we 

discuss the computation of the four-loop integrals and explain the operator mixing and renormal-
ization. We additionally provide explicit expressions for the effective couplings C1 and C2. We 
present analytic results in Section 3 and discuss the numerical impact of our new corrections. 
Our conclusions are given in Section 4.

2. Calculation

For the calculation of the Feynman diagrams we use a well-tested automated setup which 
uses qgraf [19] for the generation of the Feynman amplitudes, and q2e and exp [20–22]
for the mapping to one of eleven pre-defined four-loop integral families. The Dirac algebra is 
performed with FORM [23], which also re-writes the amplitude of each diagram as a linear com-
bination of scalar integrals. Next we generate, using FIRE 5.2 [24,25], tables for the reduction 
of the integrals of all eleven families to master integrals. We then apply tsort [26], in the 
form of the FIRE command FindRules, to minimize the number of master integrals among 
all eleven families and end up with 28 four-loop master integrals, which have been computed in 
Refs. [27–29].

We have re-computed the one-, two- and three-loop corrections to all correlators using both 
the setup described above and, as a cross check of our approach, MINCER [30]. Both calculations 
produce identical results, which agree with the literature. As a further check we have performed 
our calculations using a generic gauge parameter ξ . Our four-loop expressions have been ex-
panded to linear order in ξ which drops out after reducing the master integrals to a minimal 
set.

We have used this method to compute the four-loop corrections to �12 and the three-loop 
corrections to �11 which, after taking the imaginary part, lead to the bare quantities �0

12 and �0
11. 

At this point we perform the renormalization of the strong coupling constant and the quark mass 
in the MS scheme where the renormalization constants are introduced via

α0
s = Zαs αs ,

m0
b = Zmmb . (7)

Zαs and Zm are required to third order in αs and can be found in, e.g., Ref. [31].
Afterwards, we have to take into account that the operators O′

1 and O′
2 mix under renormal-

ization according to [32,7]

[O′
1] = Z11O′

1 + Z12O′
2 ,

[O′
2] =O′

2 . (8)

The renormalization constants Z11 and Z12 are obtained from Zαs and Zm as follows,

Z11 = 1 + αs∂

∂αs

logZαs ,

Z12 = −4
αs∂ logZm . (9)

∂αs
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In terms of these renormalization constants, the renormalized correlators �ij are given by

�11 = (Z11)
2�0

11 + 2Z11Z12�
0
12 + (Z12)

2�0
22 ,

�12 = Z11�
0
12 + Z12�

0
22 ,

�22 = �0
22 . (10)

Note that the contributions of �0
12 and �0

22 are proportional to m 2
b whereas �0

11 contains both 
m 2

b and mb-independent terms. Since Z12 ∝ αs only the (n − 1)-loop terms of �0
12 and the 

(n − 2)-loop terms of �0
22 enter the n-loop renormalization of �11. Similarly, the n-loop renor-

malization of �12 requires the (n − 1)-loop terms of �0
22.

For completeness we also provide explicit expressions for the effective couplings C1 and C2, 
which are available in the literature up to fifth order [33–35]. It is convenient to parametrize the 
perturbative expansion in terms of

as ≡ α
(5)
s (μ)

π
, (11)

where the superscript indicates the number of active quark flavors used for the running, and the 
on-shell top quark mass. To obtain corrections of order a4

s to the decay rate, C1 is needed to third 
order and C2 to fourth order. In the following we present C1 to order a4

s since we include a5
s

corrections when evaluating the decay rate numerically. The analytic results read

C1 = − as

1

12
− a2

s

11

48
− a3

s

[
2777

3456
+ 19

192
Lt − nl

( 67

1152
− 1

36
Lt

)]

+ a4
s

[
2761331

497664
− 897943

110592
ζ3 − 2417

3456
Lt − 209

768
L 2

t

− nl

( 58723

248832
− 110779

165888
ζ3 + 91

648
Lt + 23

384
L 2

t

)

+ n 2
l

( 6865

373248
− 77

20736
Lt + 1

216
L 2

t

)]
+O

(
a5
s

)
, (12)

≈ − 0.08333as − 0.2292a2
s − a3

s

[
0.7391 − 0.07624nl

]
− a4

s

[
3.8715 − 0.6328nl − 0.02277n 2

l

]
+O

(
a5
s

)
, (13)

C2 = 1 + a2
s

[
5

18
− 1

3
Lt

]
+ a3

s

[
− 841

1296
+ 5

3
ζ3 − 79

36
Lt − 11

12
L 2

t + nl

( 53

216
+ 1

18
L 2

t

)]

+ a4
s

[
609215

186624
− 4

3
ζ2 + 374797

13824
ζ3 − 4123

144
ζ4 − 575

36
ζ5 + 62

9
Li4

(
1

2

)
− 4

9
ln 2 ζ2

− 31

18
(ln 2)2 ζ2 + 31

108
(ln 2)4 −

[4645

144
− 55

4
ζ3

]
Lt − 91

8
L 2

t − 121

48
L 3

t

+ nl

(
− 11557

15552
+ 2

9
ζ2 − 221

288
ζ3 + 163

72
ζ4 − 4

9
Li4

(
1

2

)
+ 1

9
(ln 2)2 ζ2

− 1

54
(ln 2)4 + 9535

2592
Lt + 109

144
L 2

t + 11

36
L 3

t

)

+ n 2
l

( 3401 − 7
ζ3 − 31

Lt − 1
L3

t

)]
+O

(
a5
s

)
, (14)
23328 54 324 108
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≈ 1 + 0.494759a2
s + a3

s

[
2.3946 + 0.2689nl

]
− a4

s

[
6.0125 + 1.1543nl − 0.05480n 2

l

]
+O

(
a5
s

)
, (15)

where ζn is the Riemann Zeta function, Lin(z) is the Polylogarithm function and we have defined 
Lt = log(μ2/M 2

t ). The numerical expressions are given at the renormalization scale μ2 = M 2
H , 

for nl = 5 massless flavors running in fermion loops, and for MH = 125.09 GeV and Mt =
173.21 GeV [36]. Since μ is of the order of the Higgs boson mass one generates potentially large 
logarithms which should be resummed [14]. In practice, however, the numerical effect is small 
and we have decided to consider only the fixed-order result here.

3. Results

We use this section to present our results. The new ingredients of Eq. (5) required to complete 
the order α4

s corrections to �(H → hadrons) are the four-loop corrections to �12 and the bottom 
mass-dependent three-loop corrections to �11. For convenience we also present the lower-order 
contributions. The general expressions in terms of the Casimir invariant color factors can be 
found in Appendix A. For the SU(3) case, for which CA = 3 and CF = 4/3, we obtain

�11 = 1 + as

[
73

4
+ 11

2
LH − nl

(7

6
+ 1

3
LH

)]

+ a2
s

[
37631

96
− 363

8
ζ2 − 495

8
ζ3 + 2817

16
LH + 363

16
L 2

H

+ nl

(
− 7189

144
+ 11

2
ζ2 + 5

4
ζ3 − 263

12
LH − 11

4
L 2

H

)

+ n 2
l

(127

108
− 1

6
ζ2 + 7

12
LH + 1

12
L 2

H

)]

+
(

m 2
b

M 2
H

) {
6as + a2

s

[
697

3
− 6 ζ2 + 6 ζ3 + 169

2
LH + 3L 2

H − nl

(15

2
+ 3LH

)]}

+O
(
a3
s

)
(16)

≈ 1 + as

[
18.2500 − 1.1667nl

]
+ a2

s

[
242.9734 − 39.3739nl + 0.9018n 2

l

]

+
(

m 2
b

M 2
H

) {
6as + a2

s

[
229.6761 − 7.5000nl

]}
+O

(
a3
s

)
(17)

and

�12 = + as

[
− 92

3
− 8LH

]

+ a2
s

[
− 15073

18
+ 76 ζ2 + 156 ζ3 − 1028

3
LH − 38L 2

H

+ nl

(283

9
− 8

3
ζ2 − 16

3
ζ3 + 112

9
LH + 4

3
L 2

H

)]

+ a3
s

[
− 8957453 + 4150 ζ2 + 131389

ζ3 − 815 ζ5

432 18
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−
[65267

6
− 855 ζ2 − 1755 ζ3

]
LH − 2075L 2

H − 285

2
L 3

H

+ nl

(279451

162
− 1003

3
ζ2 − 446 ζ3 + 10 ζ4 + 100

3
ζ5

+
[15973

18
− 68 ζ2 − 118 ζ3

]
LH + 1003

6
L 2

H + 34

3
L 3

H

)

+ n 2
l

(
− 25627

972
+ 56

9
ζ2 + 20

3
ζ3 −

[407

27
− 4

3
ζ2 − 8

3
ζ3

]
LH

− 28

9
L 2

H − 2

9
L 3

H

)]
+O

(
a4
s

)
(18)

≈ − 30.6667as + a2
s

[
− 524.8530 + 20.6470nl

]
+ a3

s

[
− 5979.1838 + 684.320nl − 8.1164n 2

l

]
+O

(
a4
s

)
, (19)

where LH = log(μ2/M 2
H ). As above, nl counts the number of light quarks running in fermion 

loops. For the numerical evaluation we have set μ2 = M 2
H and nl = 5. For both �11 and �12 we 

observe a rapid growth of the coefficients, however, we postpone discussion of the convergence 
properties to the decay rate, since �11 and �12 do not themselves represent physical quantities.

For the numerical evaluation of the decay rate it is convenient to cast Eq. (5) in the form

�(H → hadrons) = Abb̄

(
1 + �light + �top + �mb=0

gg

)
, (20)

where we have chosen Abb̄ as a common prefactor so that we can easily compare the relative sizes 
of the individual contributions. �light contains all corrections obtained for C1 = 0 and C2 = 1. 
They have already been presented and discussed in Ref. [8]. �top contains the top quark-induced 
corrections obtained from the contributions proportional to C1 and (C2 − 1). For completeness 
we also list the corrections from �11 which have no factor m 2

b . They are collected in �mb=0
gg . 

Note that these terms have already been computed in Ref. [37]. For convenience we provide the 
formulae which relate the quantities in Eq. (20) to the ones in Eq. (5):

�light = �22 ,

�top =
[
(C2)

2 − 1
]
(1 + �22) + C1C2�12 + 16M 2

H

3m 2
b

(C1)
2 �

m 2
b

11 ,

�mb=0
gg = 16M 2

H

3m 2
b

(C1)
2 �

mb=0
11 . (21)

For the numerical evaluation we use α(5)
s (MZ) = 0.1181 [36] and mb(mb) = 4.163 GeV [38]

which leads to mb(MH ) = 2.773 GeV and α(5)
s (MH ) = 0.1127 using RunDec [39,40] with 

four-loop accuracy. Numerical values for MH and Mt are already given at the end of Section 2. 
We expand the expressions of Eq. (21) in as and obtain

�light ≈ 5.6667as + 29.1467a2
s + 41.7576a3

s − 825.7466a4
s

≈ 0.2033 + 0.03752 + 0.001929 − 0.001368, (22)

�top ≈ a2
s [2.555612 + 0.989522]
+ a3 [0.222211 + 42.162612 + 13.085522]
s
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+ a4
s [8.339911 + 338.902112 + 50.634622]

≈ 0.00329012 + 0.00127422

+ 0.0000102611 + 0.00194712 + 0.000604322

+ 0.0000138211 + 0.000561612 + 0.0000839022, (23)

�mb=0
gg ≈ M 2

H

27m 2
b

(
a2
s + 17.9167a3

s + 153.0921a4
s + 392.6176a5

s

)
,

≈ 0.09699 + 0.06235 + 0.01911 + 0.001759 , (24)

where the subscripts in the expression for �top indicate the origin of each term. For �mb=0
gg we 

have included the corrections of order a5
s from Ref. [18].

From Eqs. (22), (23) and (24) we observe that the a2
s term of �mb=0

gg amounts to almost 50% 
of the as term in �light. Furthermore, the a5

s term of �mb=0
gg has the same order of magnitude 

as the a4
s term of �light. Note that the latter is only about twice as large as the a4

s contribution 
to �top, obtained from the sum of the three numbers in the last line of Eq. (23); this amounts to 
0.0006593.

It is a disturbing feature of �light that the a3
s and a4

s terms deviate by less than 30%. Further-
more they have opposite signs. Therefore, it is interesting to add �light and �top which leads 
to

1 + �light + �top ≈ 1 + 0.2033 + 0.04208 + 0.004490 − 0.0007090 , (25)

where the different loop orders are kept separate. We observe a reduction by a factor of about six 
between the three- and four-loop contributions; the convergence of the sum is significantly better 
than that of the individual expressions.

In Fig. 2 we show the dependence of �(H → hadrons) on the renormalization scale μ. We 
plot �(H → hadrons)/Abb̄(μ = MH ), which means that for the leading order (short-dashed) 
curve we have �(H → hadrons)/Abb̄(μ = MH ) = 1 for μ = MH . The six curves represent (from 
bottom to top, i.e. from the short-dashed to the solid curve) the predictions of order α0

s , . . . , α5
s , 

where α5
s terms are only included for �mb=0

gg . μ is varied between 10 GeV and 500 GeV which 

Fig. 2. �(H → hadrons)/Abb̄(μ = MH ) as a function of the renormalization scale μ.
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Fig. 3. Abb̄(μ)�top/Abb̄(μ = MH ) as a function of the renormalization scale μ.

is significantly larger than the usual range spanned between MH/2 and 2MH . Nevertheless, one 
observes a steady flattening of the curves when including higher order corrections; the result 
represented by solid line is almost μ-independent.

Finally, Fig. 3 shows the contributions to �top, which start at order α2
s and are separately 

renormalization-scale independent (up to higher non-calculated orders). �top is dominated by 
�12 as can be seen from Eq. (23). From bottom to top the lines include α2

s , α3
s and α4

s correc-
tions. One again observes that the dependence on μ becomes weaker after including higher-order 
corrections.

4. Conclusions

We complete the corrections of order α4
s to the hadronic decay rate of the Standard Model 

Higgs boson by computing the top quark-induced contributions in an effective field-theory frame-
work. This requires the calculation of four-loop propagator-type integrals. The new results of this 
paper are the order α3

s terms of �12 in Eq. (18) and the m2
b/M

2
H terms of �11 in Eq. (16). Both 

terms are required to complete the order α4
s contribution to the hadronic decay rate of the Stan-

dard Model Higgs boson given in Eq. (5). Our new corrections are numerically of the same order 
of magnitude as the purely massless contribution [8], however they have an opposite sign. We 
provide all analytic results presented in this paper in a computer-readable format [41], making 
it straightforward to implement the corrections in existing computer codes which evaluate de-
cay rates of the Higgs boson. Finally, we want to mention that �(H → hadrons) is one of very 
few physical quantities for which five terms of the perturbative expansion are known and the 
perturbative expansion can be studied, see Eq. (25).
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Appendix A. �11 and �12 in terms of Casimir color factors

In terms of the Casimir invariants of SU(N ), �11 is given by

�11 = 1 + as

[
CA

(73

12
+ 11

6
LH

)
− nl

(7

6
+ 1

3
LH

)]

+ a2
s

[
C 2

A

(37631

864
− 121

24
ζ2 − 55
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+O
(
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s

)
, (26)

where CA = N and CF = (N2 − 1)/(2N). �12 reads

�12 = + as
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+ nl C
2
F
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. (27)
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