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Abstract Neutrino mass sum rules have recently gained
again more attention as a powerful tool to discriminate and
test various flavour models in the near future. A related ques-
tion which has not yet been discussed fully satisfactorily was
the origin of these sum rules and if they are related to any
residual or accidental symmetry. We will address this open
issue here systematically and find previous statements con-
firmed. Namely, the sum rules are not related to any enhanced
symmetry of the Lagrangian after family symmetry breaking
but they are simply the result of a reduction of free parameters
due to skillful model building.

1 Introduction

The origin of flavour is still an open issue in the Standard
Model of particle physics (SM) and most of its extensions. In
the recent past a very popular approach is based on (discrete)
family symmetries which can easily explain the number of
generations and gives a very good leading order description
of the neutrino mixing angles; for recent reviews, see, e.g.,
[1–5].

One particular prediction in plenty of these models is a so-
called neutrino mass sum rule, which relates the three com-
plex neutrino eigenvalues with each other. That means that
the three masses can be described by two complex parame-
ters only.1 In Table 1 we have given a list of all 12 sum rules
known in the literature. For recent detailed phenomenolog-
ical studies of the mass sum rules, see [6–9]. All mass sum
rules can be parametrised according to [6,7] as

1 In principle, one could imagine that the three masses are described
by one complex parameter only, but we are not aware of any such
model with phenomenologically viable predictions.
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s(m1,m2,m3, φ1, φ2; c1, c2, d,�χ13,�χ23)

≡ c1(m1e−iφ1)dei�χ13 + c2(m2e−iφ2)dei�χ23 + md
3 = 0,

(1.1)

where φ1 and φ2 are the Majorana phases. The quantities c1,
c2, d, �χ13, and �χ23 are parameters which characterise the
sum rule.

Since in these models we have less free parameters than
observables one might wonder if there is some underly-
ing symmetry behind the mass sum rules. This is particu-
larly tempting since they emerge usually in models which
have much more symmetry than the SM including neutrino
masses so that it could well be that the full symmetry of
the Lagrangian is actually not completely broken. A residual
(or accidental) symmetry could then be responsible for the
reduction of free parameters in the mass matrix and result in
a sum rule.2

On the other hand this intriguing idea is challenged by the
fact that the same sum rule emerges in models with differ-
ent symmetries. For instance, sum rule 6 from Table 1 with
1/m̃1 + 1/m̃2 − 1/m̃3 = 0, where m̃i are the three com-
plex neutrino masses, is realised in models with A4 [21],
S4 [13] and A5 [49–51] symmetry. Furthermore, in [7] we
have already tried to argue against some more fundamen-
tal principle behind the mass sum rules by emphasizing that
the only common feature of all this models is a reduction
of parameters in the neutrino mass matrix. To be more pre-
cise the reduction of free parameters comes from an interplay
of the choice of the family symmetry, the choice of particle
representations under this symmetry, and the way the family
symmetry is broken. Nevertheless, there is no general com-

2 In this letter we only discuss mass sum rules. There are also the well-
known mixing sum rules which originate from an additional breaking
of the residual symmetries in the charged lepton or neutrino sector. For
a recent very detailed account of all the possibilities, see, e.g., [76] and
references therein.
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Table 1 Summary table of the
sum rules present in the
literature. The parameters
c1, c2, d,�χ13, and �χ23,
which characterise them, are
defined in Eq. (1.1). In sum
rules 9 and 10 two possible
signs appear which lead to two
possible values of �χi3

Sum rule References c1 c2 d �χ13 �χ23

1 [10–21] 1 1 1 π π

2 [22] 1 2 1 π π

3 [15–21,23–43] 1 2 1 π 0

4 [44–46] 1/2 1/2 1 π π

5 [47] 2√
3+1

√
3−1√
3+1

1 0 π

6 [13,14,21,48–51] 1 1 −1 π π

7 [21,41–43,52–66] 1 2 −1 π 0

8 [67–70] 1 2 −1 0 π

9 [71] 1 2 −1 π π/2, 3π/2

10 [72,73] 1 2 1/2 π, 0, π/2 0, π, π/2

11 [74] 1/3 1 1/2 π 0

12 [75] 1/2 1/2 −1/2 π π

mon recipe simply due to the fact that there is no underlying
symmetry argument as we will show in the following. In
a sense mass sum rules are a mere result of skillful model
building. Note that this implies that they can appear in direct,
semi-direct and indirect models (for this classification see,
e.g., [5]) since they can never be mapped to any subgroup of
the family symmetry.

In this short letter we want to extend this previous dis-
cussion by giving more formal arguments to show that the
symmetry of the Lagrangian is not enhanced by a neutrino
mass sum rule after symmetry breaking and that the presence
of a neutrino mass sum rule cannot be directly related to any
symmetry. This is different from the case of the mixing angle
predictions where the Klein symmetry of the neutrino mass
matrix can be identified with some of the generators of the
family symmetry, for explanations and references, see [1–4].
Hence, the claim that neutrino mass sum rules have no deeper
reason than sophisticated model building is confirmed.

2 Symmetries of Majorana mass terms

We will start by considering a Majorana mass term in the
Lagrangian for the neutrinos

Lν ⊃ 1

2
νLC

−1MMνL + H.c., (2.1)

where νL contains the three left-handed neutrino fields, C
is the charge conjugation matrix and MM is the symmetric,
complex neutrino Majorana mass matrix. The recent success
of flavour model building with (discrete) symmetries is based
on the assumption that the Klein symmetry of the neutrino
Majorana mass term is the remnant of a bigger family symme-
try; see, e.g., [1–4]. The generators of the residual symmetry
G of the mass matrix fulfill the symmetry condition

STMMS = MM, (2.2)

with unitary matrices S ∈ G. Note that we restrict ourselves
here to unitary representations to keep the kinetic term canon-
ical. The question is now, if there are additional possibilities
for S if a mass sum rule is present which enhances the sym-
metry G. In the following we will work in a basis, where MM

is diagonal since an enhanced symmetry should be present
in any basis and we are only interested in the masses here.
The advantage is that in this basis the sum rule is most sim-
ple and obvious. Note also that the characteristic polynomial
of the mass matrix is the same in the flavour and the mass
basis.

We will begin our considerations with a more intuitive
perturbative approach and later discuss a general calculation.

In our setup G could be maximallyU (3) and we can write
S = exp(i αi Ti ), i = 1, . . . , 9 with the common eight gen-
erators Ta (a = 1, . . . , 8) of SU (3) and T9 the generator of
U (1) [77].

If there is any continuous symmetry G this would be
expressed in conditions on the generators Ti . For a contin-
uous Lie group we can expand Eq. (2.2) in αi to get up to
O(α2

i )

i αi ((Ti )
TMM + MMTi ) = 0 for i = 1, . . . , 9. (2.3)

Using the explicit forms of the generators and M =
diag(m̃1, m̃2, m̃3) we obtain the following conditions:

i α1(m̃1 + m̃2) + α2(m̃1 − m̃2) = 0, (2.4)

i α4(m̃1 + m̃3) + α5(m̃1 − m̃3) = 0, (2.5)

i α6(m̃2 + m̃3) + α7(m̃2 − m̃3) = 0, (2.6)

2 i m̃1

(
α3 + α8√

3
+ α9

)
= 0, (2.7)
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2 i m̃2

(
−α3 + α8√

3
+ α9

)
= 0, (2.8)

2 i m̃3

(
−2α8√

3
+ α9

)
= 0. (2.9)

Before we discuss the sum rule case we briefly want to
review some well-known cases. In the case of three distinct,
independent mass eigenvalues we get from Eq. (2.3) αi = 0
and we have no continuous symmetry apart from the trivial
one in this case.

If one of the masses vanishes while the two other are inde-
pendent and non-zero we obtain a relation between the diago-
nal generators which leads to aU (1) symmetry for the mass-
less state. For example, if m̃3 = 0 we have the enhanced sym-
metry G = exp(i α T ) with T = Diag(0, 0, 1) as expected.

In the case of two equal masses (and the third different
and non-zero) we obtain, for instance, if m̃2 = m̃3 only the
SO(2) generator in the 1–2 block as again expected

Now for the interesting case, that m̃3 is a function depend-
ing on the two other masses we have explicitly checked that
for all 12 sum rules in Table 1 all αi = 0 as in the case for
three distinct, independent masses.

Another approach is to start now from a point in the param-
eter space which has a well-known enhanced symmetry. If
there would be an enhanced symmetry in the case of a mass
sum rule it should still be there after a small perturbation.
For instance, setting m̃3 ≡ m̃2 will fix m̃1 for a given sum
rule. But for this particular point we have a SO(2) symmetry.
If there is any non-trivial residual symmetry G for a small
perturbation of the symmetric points it must be related to a
small perturbation to the elements of SO(2).

In the concrete case of m̃3 = m̃1 + 2m̃2 we take m̃3 =
m̃2(1 + ε) with ε a small perturbation from the enhanced
symmetry point. The mass matrix is then

MM = Diag(−m̃2(1 − ε), m̃2, m̃2(1 + ε)). (2.10)

Now we can expand in all αi , i �= 6, in Eq. (2.3) and set the
αi to be of O(ε). The only solution to this equation is again
αi = 0, i = 1, . . . 9. This is also true in the case of other sum
rules with different coefficients as can easily be understood
from considering only the 2–3 block of MM which exhibits
a SO(2) symmetry for ε = 0. In the case of ε �= 0 the
eigenvalues are different and we find no symmetry anymore.

We have also expanded around the other symmetry points
for all sum rules and around the well-known non-trivial Z3

2
symmetry of the Majorana mass matrix (which corresponds
to expanding α3, α8 and α9 around π ) but never found any
non-trivial solution for the αi .

Up to now we have only considered continuous symme-
tries where we can expand in small αi around the elements
of Z3

2 and concluded that the presence of a sum rule does not
enhance the symmetry of the mass matrix. One might wonder

if the residual symmetry we are looking for is not anywhere
near these points – which would be surprising but cannot be
completely ruled out at this point.

To rule this out as well we also did the general calculation
for an arbitrary S ∈ U (3) which is nevertheless tedious and
not very insightful compared to the perturbative approach.
We will discuss here how to do this for sum rule 1, cf. Table 1,
as an example. For the other sum rules similar calculations
give the same result as we have checked. An element S ∈
U (3) can be written as S = P1U23U13U12, for notation and
conventions; see Appendix A of [8]. Since S is unitary we
can rewrite Eq. (2.2)

MMS = S∗MM. (2.11)

The 1–1 element of this equation reads

m1 cos θ12 cos θ13

(
e2 i ω1 − 1

)
= 0, (2.12)

which has four possible solutions. Let us discuss first θ13 =
π/2 (note that in our conventions θi j ∈ [0, π ]). From the 1–3
element of Eq. (2.11) we find that

δ13 = ω1 and m2 = 2m1 cos(φ2 − φ1), (2.13)

which is in general not satisfied and we exclude the solution
with θ13 = π/2. For the same reason we have to discard
θ12 = π/2. From the remaining two solutions ω2 = 0 or π it
is sufficient to discuss ω2 = 0. At this point they are related
by a global sign.

From the 1–2 element of Eq. (2.11) we derive

(m1ei φ2 − m2ei(φ1+2δ12)) cos θ13 sin θ12 = 0. (2.14)

As we have discussed above we have to discard the solution
θ13 = π/2 and the only two remaining solutions are θ12 = 0
or π . For simplicity, we will only discuss here θ12 = 0. From
the 1–3 element of Eq. (2.11) we then find that

(m1(e
2 i δ13 − 1) − m2ei(φ1−φ2+2δ13)) sin θ13 = 0. (2.15)

Again θ13 = 0 or π and we discuss only θ13 = 0. From the
3–2 element of Eq. (2.11) we find

(m1ei(φ2+2δ23+2ω3) + m2ei(φ1+2δ23+2ω3) − m2ei φ1) sin θ23 =0.

(2.16)

Hence θ23 = 0 or π .
Now we know that S has to be diagonal, it is trivial to see

that the remaining phases have to take trivial values. So we
have shown without resorting to any expansion that S can be
only an element of Z3

2, i.e. it must be a diagonal matrix with
±1 on the diagonal. For the other sum rules we have checked
with similar calculations that S can be only an element of Z3

2.
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Hence, we conclude that there is no particular residual
(continuous or discrete) symmetry in the case of a neutrino
mass sum rule. This is actually not surprising. Apart from
the ubiquitous symmetric points where masses are equal or
vanish even in the case of neutrino mass sum rules the three
neutrino masses are different, which is known to have no
other symmetry than the Z3

2 (physically the Klein symmetry
Z

2
2 after absorbing an unphysical sign corresponding to one

of the Z2 factors).

3 Symmetries of Dirac mass terms

We turn now to the case of Dirac mass matrices which is
nevertheless only realised in one of the known flavour models
exhibiting a mass sum rule [78] in the literature (this sum rule
can also be realised in models with Majorana neutrinos [79]).

One has to be careful since in the mass sum rule for Dirac
neutrinos the Majorana phases are unphysical. Nevertheless,
these sum rules still lead to one of the major predictions of
mass sum rules, the lower bound on the lightest mass.

We will show that also in the case of Dirac neutrinos a
mass sum rule does not lead to any particular symmetry of
the mass matrix.

A Dirac mass term reads

Lν ⊃ −ν̄LMDνR (3.1)

with the left- and right-handed neutrino fields νL and νR.
For a Dirac mass matrix MD the relation for an enhanced

residual or accidental symmetry H is

R†M†
DMDR = M†

DMD (3.2)

with unitary matrices R ∈ H . Again H can be maximally
U (3) and we set R = exp(i βi Ti ), i = 1, . . . , 9. Now we
have to find the solution for

i (−βi (Ti )
†M†

DMD + M†
DMDβi Ti ) = 0. (3.3)

In the case of three distinct eigenvalues we see that β3, β8

and β9 are undetermined, which leads to a U (1)3 symmetry
corresponding to individual neutrino flavour numbers. This
also does not change for a vanishing mass this time.

For two equal masses we get additionally that β1 and
β2 �= 0 are undetermined for m̃1 = m̃2 which corresponds
to U (2) ×U (1) rotations.

In the case of a sum rule we find again that the symme-
try group is not enhanced for phenomenologically relevant
parameter points. This is true also in the vicinity of symme-
try points as discussed above. And for definiteness we have
also checked here our statement for an arbitrary element of
U (3). So again neutrino mass sum rules do not lead to any

particular residual symmetry of the Lagrangian also in the
case of Dirac neutrino masses.

4 Summary and conclusions

Neutrino mass sum rules are a powerful way to test more than
60 flavour models. Although the phenomenology of these
models has been studied already in great detail [6–9] the
exact origin of the neutrino mass sum rules had not been
addressed systematically yet.

Since they usually appear in the context of non-Abelian
discrete family symmetries it is tempting to think of them
in the same framework and try to connect the neutrino mass
sum rules to any residual symmetry of the Lagrangian (the
neutrino mass terms). We have demonstrated here that this
is not the case. From the viewpoint of residual symmetries
there is no difference between a mass matrix which ful-
fills a neutrino mass sum rule and a mass matrix which
does not. In that sense mass sum rules present themselves
as a model-building artifact found in many flavour models
which have no one-to-one mapping to any definite prop-
erty of the flavour model in the unbroken phase. Despite
that they still offer robust predictions for the neutrino mass
ordering and scale, for instance, which can be tested in the
future.

Starting from the symmetry conditions, Eqs. (2.2) and
(3.2), we have provided perturbative arguments and shown an
explicit (non-perturbative) example calculation which prove
our statement. We have checked that the given statements and
calculations indeed extend to all sum rules and we conclude
that a neutrino mass sum rule is not related to an enhanced or
particular residual symmetry of the Lagrangian as long as all
the masses are distinct. This is in complete agreement with
the widely used claim that non-Abelian family symmetries
cannot determine the neutrino masses. In fact, our proof is
equally valid for the case without any mass sum rule (three
completely independent masses). To our knowledge, this is
the first formal proof of this widely held conviction in the
literature.

These considerations clarify and settle an open question
in the literature and prove that neutrino mass sum rules are
simply related to some minimal breaking of the symmetries
in flavour models in the sense that only the minimal set of
parameters is introduced in the neutrino mass matrix to allow
for three non-vanishing eigenvalues.
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