
Predicting Errors in Concurrent
Systems

zur Erlangung des akademischen Grades eines

Doktors der
Ingenieurwissenschaften

der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Luis M. Carril Rodríguez
aus A Coruña, Spanien

Tag der mündlichen Prüfung: 04-05-2017
Erstgutachter: Prof. Dr. Walter F. Tichy
Zweitgutachter: Prof. Dr. Andreas Oberweis

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu



This work is licensed under a Creative Com-
mons “Attribution-NonCommercial-NoDerivatives
4.0 International” license

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract

The unstoppable popularity of multicore chips has made concurrent program-
ming ubiquitous. Parallel programming is difficult; multiple control flows and
non-determinism make the development error-prone. Additionally, it intro-
duces a new set of errors such as data races, deadlocks, or order violations.
These errors are difficult to find due to the large number of possible interleav-
ings in a parallel program.

Dynamic analysis techniques execute a program and perform some checks on
the observed execution. Dynamic analysis is precise, as it relates to an ac-
tual execution with real values and states. These approaches generate false
negatives due to non-explored paths and interleavings. The different interleav-
ings are manifested with varying frequency because of external factors such as
compilers, processors, or workloads.

In this work we present an approach that predicts errors from a single trace of
a parallel program. We compute alternative interleavings off-line to reduce the
timing effects of the observed execution. Using a process algebra, we build a
model that generalizes the ordering of the trace, extrapolating possible inter-
leavings. The model is explored for different concurrency errors. A predicted
error is accompanied by a schedule, which is enforced in the program to man-
ifest the error.

The approach has been evaluated for deadlock and data race detection, and
compared with other dynamic approaches. While maintaining or increasing
precision, between 50% and 86% fewer false warnings were produced. The
presented tool and its model are also customizable to support other kinds of
ordering failures. These failures require a specification that defines the relevant
events in the program and describes their valid or invalid orderings. This
feature is demonstrated in seven use cases.

iii





Kurzfassung

Die Verbreitung von Multikernprozessoren hat die parallele Programmierung
allgegenwärtig gemacht. Parallele Programmierung ist schwierig, da sie die
Entwicklung auf Grund vielfacher Kontrollflüsse und Nicht-Determinismus feh-
leranfällig macht. Zusätzlich gibt es neue Arten von Fehlern, wie z.B. Wett-
läufe, Verklemmungen oder Reihenfolgeverletzung. Diese Fehler sind wegen
der großen Anzahl von möglichen Verschränkungen schwer zu finden.

Dynamische Analyseansätze führen das Programm aus und untersuchen die
beobachtete Ausführung. Dynamische Analyse ist präzise, da sie eine tatsäch-
liche Ausführung mit realen Werten und Zuständen beobachtet. Diese Ansätze
erzeugen falsch Negative, wegen nicht erforschter Wege und Verschränkungen.
Die unterschiedlichen Verschränkungen treten mit unterschiedlicher Häufigkeit
auf, wegen externer Faktoren, wie z.B. Compiler, Prozessor oder Arbeitslast.

In dieser Arbeit präsentieren wir einen Ansatz, der Fehler aus einer einzigen
Spur eines parallelen Programms vorhersagt. Wir berechnen off-line alternative
Verschränkungen, um den Zeitmessungseffekt der beobachteten Ausführung
zu reduzieren. Wir bauen ein Modell mit Hilfe einer Prozessalgebra, das die
Reihenfolge der Spur verallgemeinert; es extrapoliert mögliche Verschränkun-
gen. Im Modell wird nach verschiedenen Nebenläufigkeitsfehlern gesucht. Ein
vorhergesagter Fehler wird von einer Verschränkung begleitet, die in dem Pro-
gramm erzwungen wird, um den Fehler zu reproduzieren.

Der Ansatz wurde für Verklemmungs- und Wettlauferkennung im Vergleich zu
anderen dynamischen Ansätzen evaluiert. Die Verringerung von falschen War-
nungen bewegt sich im Bereich von 50% bis 86%, mit gleicher oder höherer
Präzision. Das vorgestellte Werkzeug und sein Modell sind anpassbar für an-
dere Reihenfolgeverletzungen. Diese Fehler erfordern eine Spezifikation, die die
relevanten Ereignisse im Programm definiert und die gültigen oder ungültigen
Ordnungen beschreibt. Wir zeigen dieses Vorgehen an sieben Anwendungs-
beispielen.

v





Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3. Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4. Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . 9

2. Basic Concepts 11
2.1. Concurrent Systems . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1. Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2. Synchronization Mechanisms . . . . . . . . . . . . . . . 12
2.1.3. Ad-Hoc Synchronization . . . . . . . . . . . . . . . . . 17

2.2. Concurrency Failures . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1. Deadlock . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2. Data Race . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3. Atomicity Violation . . . . . . . . . . . . . . . . . . . . 20
2.2.4. Order Violation . . . . . . . . . . . . . . . . . . . . . . 22

2.3. Race Detection Algorithms . . . . . . . . . . . . . . . . . . . . 22
2.3.1. Happens-Before Algorithm . . . . . . . . . . . . . . . . 22
2.3.2. Lockset Algorithm . . . . . . . . . . . . . . . . . . . . 26

2.4. Communicating Sequential Processes . . . . . . . . . . . . . . 27
2.4.1. Sequential Operators . . . . . . . . . . . . . . . . . . . 30
2.4.2. Concurrency Operators . . . . . . . . . . . . . . . . . . 31
2.4.3. Expanding Event and Process Definitions . . . . . . . . 33
2.4.4. Semantic Models . . . . . . . . . . . . . . . . . . . . . 34
2.4.5. Refinement . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.6. Practicalities in Model Checking . . . . . . . . . . . . . 38

2.5. Aspect-Oriented Programming . . . . . . . . . . . . . . . . . . 38
2.6. LLVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



Contents

3. Related Work 41
3.1. Race Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1. Static Analysis . . . . . . . . . . . . . . . . . . . . . . 41
3.1.2. Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . 42
3.1.3. Influencing the Scheduler . . . . . . . . . . . . . . . . . 46

3.2. Deadlock Detection . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3. Runtime Verification . . . . . . . . . . . . . . . . . . . . . . . 48
3.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4. RaceQuest and Deadlock Detection 51
4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2. Motivational Deadlock Example . . . . . . . . . . . . . . . . . 52
4.3. Trace Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1. Example of a Non-Deadlocked Trace . . . . . . . . . . 57
4.3.2. Capturing the Trace . . . . . . . . . . . . . . . . . . . 57

4.4. CSP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1. CSP Model Example . . . . . . . . . . . . . . . . . . . 69

4.5. Error Checking . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.1. Deadlock Checking . . . . . . . . . . . . . . . . . . . . 71
4.5.2. Deadlock Check Example . . . . . . . . . . . . . . . . 72

4.6. Counterexample Reproduction . . . . . . . . . . . . . . . . . . 73
4.6.1. Deadlock Reproduction Example . . . . . . . . . . . . 74

4.7. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.7.1. Unsupported Concurrency Mechanisms . . . . . . . . . 76
4.7.2. Infeasible Reordering . . . . . . . . . . . . . . . . . . . 76
4.7.3. Scalability & Trace Windowing . . . . . . . . . . . . . 78

4.8. Deadlock Detection Evaluation . . . . . . . . . . . . . . . . . 79
4.8.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . 80
4.8.2. Benchmark & Results . . . . . . . . . . . . . . . . . . 80
4.8.3. Additional Detailed Examples . . . . . . . . . . . . . . 82
4.8.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . 90

5. Data Race Detection 91
5.1. Motivational Data Race Example . . . . . . . . . . . . . . . . 91
5.2. Incorporating Memory Accesses . . . . . . . . . . . . . . . . . 92

5.2.1. Capturing Memory Events . . . . . . . . . . . . . . . . 93
5.2.2. Memory Grouping in Intervals . . . . . . . . . . . . . . 95
5.2.3. Extending the Trace Model with Memory Events . . . 97
5.2.4. Example of a Trace . . . . . . . . . . . . . . . . . . . . 98

5.3. CSP Model & Data Race Checking . . . . . . . . . . . . . . . 98
5.3.1. Data Race Checking . . . . . . . . . . . . . . . . . . . 98

viii



Contents

5.3.2. Model Example . . . . . . . . . . . . . . . . . . . . . . 101
5.4. Counterexample and Reproduction . . . . . . . . . . . . . . . 101

5.4.1. Reproduction Example . . . . . . . . . . . . . . . . . . 103
5.4.2. No Race Under Feasible Reordering . . . . . . . . . . . 103

5.5. Reduction Techniques . . . . . . . . . . . . . . . . . . . . . . 105
5.5.1. On-Line Redundant Accesses Removal . . . . . . . . . 105
5.5.2. Hybrid Algorithm Data Race Filtering . . . . . . . . . 106
5.5.3. Same Thread Segment Reduction . . . . . . . . . . . . 109

5.6. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.6.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . 111
5.6.2. Unit Test Benchmark . . . . . . . . . . . . . . . . . . . 111
5.6.3. Application Benchmark . . . . . . . . . . . . . . . . . 112
5.6.4. Scalability Comparison . . . . . . . . . . . . . . . . . . 121

5.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6. Detection of Custom Ordering Errors 125
6.1. Motivational Example . . . . . . . . . . . . . . . . . . . . . . 125
6.2. Customizing the Trace Model . . . . . . . . . . . . . . . . . . 127

6.2.1. Example of a Custom Instrumentation . . . . . . . . . 130
6.3. CSP Model & Custom Properties . . . . . . . . . . . . . . . . 131

6.3.1. Custom Properties . . . . . . . . . . . . . . . . . . . . 131
6.3.2. Counterexample Reproduction . . . . . . . . . . . . . . 132
6.3.3. Example of a Custom Property . . . . . . . . . . . . . 133

6.4. Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.4.1. Deadlock . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.4.2. Custom Race Detector . . . . . . . . . . . . . . . . . . 135
6.4.3. Rover Uplink . . . . . . . . . . . . . . . . . . . . . . . 136
6.4.4. SQLite Core API . . . . . . . . . . . . . . . . . . . . . 137
6.4.5. Atomicity Violation . . . . . . . . . . . . . . . . . . . . 139
6.4.6. Resource Management System . . . . . . . . . . . . . . 141

6.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7. Conclusion 145
7.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Appendices 149

A. Example Models in CSPM 151
A.1. CSPM Language . . . . . . . . . . . . . . . . . . . . . . . . . 151

ix



Contents

A.2. Example Versions in CSPM . . . . . . . . . . . . . . . . . . . 153
A.2.1. Model with Deadlock in Figure 4.14 . . . . . . . . . . . 153
A.2.2. Model with Multiple Lock-Orders in Figure 4.20 . . . . 154
A.2.3. Model with Deadlock & Semaphore in Figure 4.23 . . . 156
A.2.4. Model with a Data Race in Figure 5.8 . . . . . . . . . 157
A.2.5. File Example in Figures 6.6 and 6.7 . . . . . . . . . . . 158
A.2.6. Custom Race Detector Example in Figure 6.10 . . . . . 159
A.2.7. Rover Example in Figure 6.13 . . . . . . . . . . . . . . 160
A.2.8. SQL Example in Figure 6.15 . . . . . . . . . . . . . . . 161
A.2.9. Atomicity Violation Example in Figure 6.18 . . . . . . 162
A.2.10.Resource Management Example in Figure 6.21 . . . . . 163

B. Data Race Unit Test Results 165

Bibliography 171

x



List of Figures

1.1. Non-deterministic and racy program . . . . . . . . . . . . . . 2
1.2. Protected non-deterministic increment example . . . . . . . . 3
1.3. Concurrent use of file API . . . . . . . . . . . . . . . . . . . . 4
1.4. Ordered use of file API . . . . . . . . . . . . . . . . . . . . . . 5
1.5. Interleaving with no happens-before detectable race . . . . . . 6
1.6. Interleaving with happens-before detectable race . . . . . . . . 6

2.1. Mutex example . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2. Condition variable example . . . . . . . . . . . . . . . . . . . 15
2.3. Barrier example . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4. Semaphore example . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5. Ad-hoc synchronization loop . . . . . . . . . . . . . . . . . . . 18
2.6. Deadlock example . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7. Data race example . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8. Atomicity violation example . . . . . . . . . . . . . . . . . . . 21
2.9. Order violation example . . . . . . . . . . . . . . . . . . . . . 22
2.10. Interleaving with a race . . . . . . . . . . . . . . . . . . . . . 25
2.11. Graph with vector clocks . . . . . . . . . . . . . . . . . . . . . 25
2.12. Basic lockset algorithm . . . . . . . . . . . . . . . . . . . . . . 26
2.13. Interleaving with inconsistent lockset . . . . . . . . . . . . . . 27
2.14. Update of candidate set C(x) . . . . . . . . . . . . . . . . . . 27
2.15. Summary of CSP grammar . . . . . . . . . . . . . . . . . . . . 28
2.16. ”Hello world” in LLVM IR . . . . . . . . . . . . . . . . . . . . 40

4.1. RaceQuest workflow . . . . . . . . . . . . . . . . . . . . . . . 53
4.2. Program with possible deadlock . . . . . . . . . . . . . . . . . 55
4.3. Different interleavings for program in Figure 4.2 . . . . . . . . 56
4.4. Trace with no deadlock . . . . . . . . . . . . . . . . . . . . . . 57
4.5. Program with instrumented wait loop . . . . . . . . . . . . . . 59
4.6. Wait loop instrumentation algorithm . . . . . . . . . . . . . . 60
4.7. Trace of a signal-wait program . . . . . . . . . . . . . . . . . . 61

xi



List of Figures

4.8. Labeled transition system for process MUTEXm . . . . . . . 64
4.9. Labeled transition system for process RWMUTEXm,max . . . 65
4.10. Labeled transition system for process SIGNALci . . . . . . . 66
4.11. Labeled transition system for process BARRIERb,max . . . . 67
4.12. Labeled transition system for process SEMAPHOREs,init,max 68
4.13. CSP model of the trace in Figure 4.4 . . . . . . . . . . . . . . 69
4.14. CSP model of the trace in Figure 4.4 with deadlock refinement 73
4.15. Scheduling point enforcing algorithm . . . . . . . . . . . . . . 75
4.16. Program with multiple control flow . . . . . . . . . . . . . . . 77
4.17. Different interleavings for program in Figure 4.16 . . . . . . . 78
4.18. Program with different lock orders and a barrier . . . . . . . . 84
4.19. Trace of program in Figure 4.18 . . . . . . . . . . . . . . . . . 85
4.20. CSP model of the trace in Figure 4.19 with multiple lock orders

and a barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.21. Program with different lock orders and a barrier . . . . . . . . 88
4.22. Trace of program in Figure 4.21 . . . . . . . . . . . . . . . . . 88
4.23. CSP model of the trace in Figure 4.22 with a semaphore . . . 89

5.1. Auxiliary steps in RaceQuest workflow . . . . . . . . . . . . . 92
5.2. Program with a data race . . . . . . . . . . . . . . . . . . . . 93
5.3. Different interleavings for program in Figure 5.2 . . . . . . . . 94
5.4. Memory interval algorithm . . . . . . . . . . . . . . . . . . . . 96
5.5. Memory interval example . . . . . . . . . . . . . . . . . . . . . 97
5.6. Trace of program in Figure 5.2 . . . . . . . . . . . . . . . . . . 98
5.7. Labeled transition system for process RACEk . . . . . . . . . 100
5.8. CSP model of the trace in Figure 5.6 . . . . . . . . . . . . . . 102
5.9. Feasible program with multiple control flow . . . . . . . . . . 104
5.10. Different interleavings for program in Figure 5.9 . . . . . . . . 105
5.11. Example with redundant accesses . . . . . . . . . . . . . . . . 106
5.12. Hybrid filtering algorithm . . . . . . . . . . . . . . . . . . . . 107
5.14. Hybrid filtering algorithm example . . . . . . . . . . . . . . . 108
5.15. Thread segment reduction algorithm . . . . . . . . . . . . . . 109
5.16. Thread segment reduction example . . . . . . . . . . . . . . . 110
5.17. Program with a race and N loop iterations . . . . . . . . . . . 122

6.1. Concurrent use of file API (again) . . . . . . . . . . . . . . . . 126
6.2. Different interleavings for program in Figure 6.1 . . . . . . . . 127
6.3. Summary of instrumentation specification grammar . . . . . . 128
6.4. Instrumentation specification for file API . . . . . . . . . . . . 130
6.5. Simplified trace in tuple format . . . . . . . . . . . . . . . . . 131
6.6. CSP model of the trace in Figure 6.5 . . . . . . . . . . . . . . 133

xii



List of Figures

6.7. File access property . . . . . . . . . . . . . . . . . . . . . . . . 134
6.8. Deadlock property . . . . . . . . . . . . . . . . . . . . . . . . 135
6.9. Instrumentation specification for custom race detector . . . . . 135
6.10. Data race property . . . . . . . . . . . . . . . . . . . . . . . . 136
6.11. Rover uplink API . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.12. Instrumentation specification for rover example . . . . . . . . 137
6.13. Rover example property . . . . . . . . . . . . . . . . . . . . . 138
6.14. Instrumentation specification for the SQLite core API. . . . . 139
6.15. SQLite example property . . . . . . . . . . . . . . . . . . . . . 140
6.16. Atomicity violation example . . . . . . . . . . . . . . . . . . . 141
6.17. Instrumentation specification for an atomicity violation check 142
6.18. Atomicity property . . . . . . . . . . . . . . . . . . . . . . . . 142
6.19. Resource management API . . . . . . . . . . . . . . . . . . . . 143
6.20. Resource management . . . . . . . . . . . . . . . . . . . . . . 143
6.21. Resource management property . . . . . . . . . . . . . . . . . 144

xiii





List of Tables

4.1. Synchronization events . . . . . . . . . . . . . . . . . . . . . . 54
4.2. Deadlock detection benchmark results . . . . . . . . . . . . . . 81

5.1. Memory access events . . . . . . . . . . . . . . . . . . . . . . 97
5.2. Data race detection unit test benchmark results . . . . . . . . 112
5.3. Application benchmark characteristics . . . . . . . . . . . . . 113
5.4. Number of racy locations . . . . . . . . . . . . . . . . . . . . . 114
5.5. Time and number of executions equivalent to a single RaceQuest

execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.6. Counterexample feasibility . . . . . . . . . . . . . . . . . . . . 117
5.7. Trace reduction: cache and memory intervals . . . . . . . . . . 119
5.8. Trace reduction: hybrid filter & segment merge . . . . . . . . 120
5.9. Detection time(s) with different number of iterations . . . . . 123

6.1. Valid field elements in each join-point . . . . . . . . . . . . . . 129

A.1. CSPM symbol equivalence . . . . . . . . . . . . . . . . . . . . 152

B.1. Data race detection unit test benchmark results - detailed . . 166

xv





1. Introduction

1.1. Motivation
In the past programmers relied on the ever increasing speed of new hardware to
make their sequential programs run faster without effort. Around 2005 several
issues started to limit that trend: dissipation issues due to power consumption
growth, limitations in instruction level parallelism, and mismatches between
processor speed and memory speed, as described in Sutter’s article [Sut05].
The industry switched from packaging a single powerful processor on a chip to
putting together multiple but slower processors.

To benefit from the new architecture, the programs need to execute their tasks
in parallel. But concurrent programs suffer from concurrency failures1, a new
class of errors, such as data races, deadlocks, atomicity violations, and order
violations. Program correctness means that a given program matches its spec-
ification. Some specifications are universal, e.g. no data races or no deadlocks,
and all programs should comply with them. These failures have a general de-
scription that can be used to detect them. However, there are failures such
as some atomicity and order violations, which are specific to a program or
domain. To detect them, the intended semantics of the program are needed.
In this case the developer provides a description of the desired behavior or of
the failure, which is checked against the program.

In general correctness is undecidable, and property checking tools rely on ap-
proximations, sacrificing precision or completeness for the sake of practicality.

1 A failure or fault is the deviation of the behavior of the software from the specification.
A defect or bug is a deficiency in the source code that can lead to a failure. A mistake
is a human action that causes a defect. An error can refer to any of these three terms.

1



1. Introduction

A sequential program requires the appropriate input, so in testing techniques
the responsibility to provide a set of relevant data rests with the developer. A
concurrent program also needs an interleaving that orders the tasks executed
in parallel under an input to observe a specific property. Concurrent programs
are naturally non-deterministic to make the most of a multicore processor, and
the number of interleavings grows exponentially with the number of instruc-
tions. For the developer it is very difficult to find or enforce an erroneous
interleaving.

Figure 1.1 presents an example of non-determinism and a data race in a pro-
gram.

1 int x = 0, y = 0, z = 0;
2 void main() {
3 fork(worker);
4 x = x + 2;
5 y = x;
6 join(worker);
7 assert(x == 3);
8 }
9

10 void worker() {
11 x = x + 1;
12 z = x;
13 }

Figure 1.1.: Non-deterministic and racy program

Two threads, main and worker, concurrently update variable x. Depending
on the executed interleaving, the result varies drastically. If we assume that
the thread main is executed completely (reaching the join) before the thread
worker starts, then y = 2 and z = 3. But if worker is faster, the end
values are y = 3 and z = 1. Other results are possible; if main is preempted
before executing the instruction y = x, and then worker is completed, we
obtain y = z = 3 at the end. In any of these cases the final value of x in
memory is always going to be 3. Here the developer expects that the values of
y and z are going to differ because of non-determinism, but the developer also
expects that the value of x is the same, independently of the interleaving.

A more intricate interleaving is the following: worker loads the value of x
from memory to execute the increment x = x + 1. But before the increment
stores the result, which is 1 in memory, main completely executes the incre-
ment x = x + 2, effectively storing a value of 2 in memory. Then worker

2



1.1. Motivation

overwrites x with its own result of 1, thanks to the store operation of x = x
+ 1. At the end the value of y, z and x is 1. A similar interleaving, but revers-
ing the order between the threads, would result in x = y = z = 2. These
outputs are completely unexpected and could be the cause of other failures in
the program.

This failure – a data race – is produced by a misunderstanding of the developer,
namely that the increments are executed atomically. The programmer must
explicitly ensure that they are executed without interruption by other threads.
A mechanism to solve this problem is to use locks to establish a mutually
exclusive area, as shown in Figure 1.2.

1 int x = 0, y = 0, z = 0;
2 mutex m;
3 void main() {
4 fork(worker);
5
6 lock(m);
7 x = x + 2;
8 y = x;
9 unlock(m);

10
11 join(worker);
12 assert(x == 3);
13 }
14
15 void worker() {
16 lock(m);
17 x = x + 1;
18 z = x;
19 unlock(m);
20 }

Figure 1.2.: Protected non-deterministic increment example

Both threads use the synchronization primitives lock and unlock on a vari-
able m. These primitives ensure that the instructions executed between a call
to lock and a call to unlock by one thread cannot be preempted by other
instructions in a similar block on another thread. In this case the final result of
x is always 3. Thanks to the use of the mutex, no data race happens. But the
non-determinism in thread execution stands, as the values of y and z can still
be 2 and 3, or 3 and 1. In fact the synchronization reduces the total number

3



1. Introduction

of possible interleavings in the program to two: main reaches the join first
or worker completes first.

Figure 1.3 shows a program with a domain-specific concurrency error.

1 file f;
2 void main() {
3 fork(worker);
4 f = open_file("foo");
5
6 some_work();
7
8 join(worker);
9 close_file(f);

10 }
11
12 void worker() {
13 char[] data = compute();
14 write_file(f, data);
15 clear(data);
16 }

Figure 1.3.: Concurrent use of file API

The thread main has the task of opening and closing a file, with the func-
tions open file and close file. Meanwhile at some point the thread
worker writes to the file with the function write file. The expected be-
havior by the programmer is that write file happens between the opening
and the closing of the file. The programmer relies on undefined time periods
between the three calls for a correct order. The correct order only occurs when
worker spends enough time in the function compute so main has time to
open the file. But no mechanism ensures that worker executes write file
in-between. The thread worker can be faster than the thread main and per-
form write file before the file is open. This situation could produce an
immediate failure or be the root of subsequent failures, e.g. data loss.

This failure is an order violation. The programmer assumes that due to the
amount of work done by both threads, the call to write file always occurs
in the middle. This error is also domain specific: the file-related API in this
example requires the file to be open and closed explicitly. Another API could
perform or check the opening and closing implicitly in write file. Thus,
the API developer needs to define the valid or invalid orders.

4



1.2. Problem Statement

The associated defect is solved defining an explicit order between the threads,
with a signal − wait mechanism, as in Figure 1.4.

1 file f;
2 cond v;
3 void main() {
4 fork(worker);
5 f = open_file("foo");
6 signal(v);
7 some_work();
8 join(worker);
9 close_file(f);

10 }
11
12 void worker() {
13 char[] data = compute();
14 wait(v);
15 write_file(f, data);
16 clear(data);
17 }

Figure 1.4.: Ordered use of file API

The thread executing a wait call is blocked until the other thread executes a
corresponding call to signal on the same variable v. This synchronization
forces the thread worker to execute the function write file at some point
after the file has been opened. In general all concurrency failures imply an
interleaving not expected by the developer.

1.2. Problem Statement

There are two fundamental techniques to detect concurrency failures. Static
techniques analyze the source code and perform diverse analyses to find defects,
such as control flow, data-flow, or problem specific algorithms, e.g. lockset for
data races. These techniques produce many false positives; they have to make
approximations, because the discovery of the required properties in a non-
running program is undecidable.

Dynamic analyses however execute a program and perform some checks on the
observed execution. They limit themselves to the observed execution, which
generates false negatives due to non-explored paths and interleavings, but they

5



1. Introduction

are less noisy as they relate to an actual execution with real values and states.
These analyses use a monitor to check the fulfillment or violation of a de-
sired property; data-race-specific algorithms are lockset and happens-before
algorithms. Lockset assumes that all shared accesses must be consistently
protected by the same lock, while happens-before establishes a logical order
between instructions based on synchronization primitives.

For example, the interleaving shown in Figure 1.5 is a specific observed execu-
tion of a program. Two threads access the two variables x and y, but only the
accesses to the second one are correctly protected by a lock.

thread 1 thread 2
x = 1
lock(m)
y = y + 2
unlock(m)

lock(m)
y = y + 1
unlock(m)
x = 2

Figure 1.5.: Interleaving with no happens-before detectable race

In the described interleaving a happens-before detector does not find the pos-
sible data race between both accesses to x. This happens because the critical
sections protected by the lock m are happens-before-ordered, and they extend
the order to the accesses on x, because the happens-before relationship is tran-
sitive. A happens-before detector finds the race if the observed interleaving is
the one in Figure 1.6.

thread 1 thread 2
lock(m)
y = y + 1
unlock(m)
x = 2

x = 1
lock(m)
y = y + 2
unlock(m)

Figure 1.6.: Interleaving with happens-before detectable race

6



1.2. Problem Statement

In this case the critical sections do not propagate the happens-before order to
the accesses on x, and the race is detected.

The problem here with a happens-before detector is its dependency on the tim-
ing of the observed interleaving. Different interleavings manifest with varying
frequency due to the influence of compilers, processor architectures, operating
systems, or workload in the machine. The developer can consistently observe
the same behavior across dozens of executions, but any change of any factor or
in the source code could lead the program to exhibit another set of interleav-
ings more frequently. Gait [Gai86] named this problem the probe effect. The
program during testing, or under a race detector, could exhibit the interleaving
in Figure 1.5 regularly; but in production the interleaving in Figure 1.6 could
be more frequent. Or the race detector executes the interleaving where the
race is easy to find, but when the developer tries to observe the race with de-
bugging techniques, the debugger influences the scheduling, making it difficult
to reproduce the race situation.

Two issues arise: one is the number of alternative interleavings observed by
the algorithm, the other is the reproducibility of the reported failure. For a
happens-before detector the reproducibility can be solved by storing the whole
trace, or at least the synchronization events, of each execution, so the order ob-
served by the detector can be replayed. If the detector explores the same set of
interleavings, the same traces are stored each time. Each analysis of an already
explored interleaving now suffers additional execution and storage overheads
due to the trace logging. More time spent per execution implies less time to
perform additional executions, which could increase the interleaving coverage.
The number of interleavings is still limited, and the race in Figure 1.5 would
not be found. The application of the lockset algorithm (alone or combined
with happens-before) in this case detects the race in both interleavings, but
does not build an order of events that can be used to reproduce the race.

Other failures, such as the order violation shown in Figure 1.3, require a spe-
cific monitor that tracks the desired events and describes the valid orderings.
Happens-before can be used to check if the observed event order is one of the
valid orders, but cannot reason about completely different interleavings. But
lockset offers a more limited utility, as the algorithm can only report if a pair
of events takes place without the protection of the same lock. The lockset
algorithm cannot be used to increase the number of explored interleavings on
general properties as in race detection.

7



1. Introduction

1.3. Thesis Objectives
The objective of this work is to present a dynamic automatic approach to
detect concurrency failures that:

• Covers non-observed interleavings, exploring reorderings of a trace and
maximizing the number of detected failures in a single recording.

• Enables reproduction of erroneous interleavings, so the developer can
re-execute the program and pinpoint causes.

• Does not produce false positives, relieving developers from chasing false
alarms.

• Minimizes the size of the trace, as size directly impacts the overhead. A
smaller trace also reduces the probe effect.

• Is extensible, allowing the definition of different failure patterns, so not
only generic failures can be detected, but also domain-specific ones.

With these requirements, we present our research hypothesis:

Model-based analysis can predict failures from a single observed
trace and generate reproducible witnesses without false positives
and few false negatives.

The key idea of this work is to execute a program under a defined input,
such as a test case, and record the minimum necessary events for the target
failure type, e.g. only the synchronization instructions for a deadlock. Then
we build a formal model using a process algebra to represent the partial orders
in the threads. A process algebra is naturally suited to describe a concurrent
system by its transitions, which are determined by the events performed in
the trace. The model represents all possible reorderings of the events in the
trace while maintaining the order of the synchronization instructions, such as
mutual exclusion for locks or a complete happens-before order for signal-wait.
The failures are also defined in terms of the process algebra; they are checked
against the model extracted from the program through model checking. We
provide the definitions of data races and deadlocks. For other types of failures
that depend on program semantics, the developer must provide a description of
the property to be checked – the erroneous or the correct behavior. The events
will be extracted automatically from the program. Model checking provides
examples of how the property was violated. The example is used to force the
program to follow the same scheduling.

The idea of this thesis has been introduced in our publications [CT15a] and
[CT15b]. We implemented the technique in our tool called RaceQuest. Race-
Quest performs the steps mentioned above automatically: trace capture, model

8



1.4. Structure of the Thesis

generation, checking, and reproduction. RaceQuest works on parallel programs
written in C/C++ using the POSIX threads library.

1.4. Structure of the Thesis

The rest of this thesis is structured in the following way: Chapter 2 presents
some concepts and algorithms, and introduces the CSP process algebra. Chap-
ter 3 describes prior work on concurrency error detection. Chapter 4 describes
the different steps of RaceQuest in detail: trace, model, checking, and repro-
duction; it also uses deadlock detection as a motivating example. Chapter 5
extends the trace and model used for deadlock detection to data race detec-
tion. Chapter 6 facilitates the extension of the trace, model, and check by the
user, to detect domain-specific failures. Finally, Chapter 7 concludes the thesis
along with ideas for future work.

9





2. Basic Concepts

In this chapter we introduce some concepts, e.g. synchronization constructs
and concurrency errors. We also describe several algorithms and technolo-
gies: data race detection algorithms, CSP process algebra, Aspect-Oriented
Programming, and LLVM.

2.1. Concurrent Systems

A concurrent system is one that performs multiple tasks simultaneously. In
a sequential system, only one task is performed at a given point, and it must
end before starting the next task. The most popular concurrency model is
multithreading with shared memory. Languages such as C/C++ or Java use
this model. In multithreading a program is composed of several instruction
flows, threads, that access the same data, the shared memory. Lee [Lee06]
states that it is difficult to reason about a multithreading program, hence
developers easily make mistakes. Multithreading suffers from new types of
failures, which are not present in sequential programs, such as data races and
deadlocks. There are alternative concurrency models, such as message-passing
or data parallelism. Adopting any of these other models prevents some of these
errors.

2.1.1. Trace

A trace is a record of the operations performed by an executed program. In a
sequential program a trace is a sequence of operations with a total order. But in
a parallel program a trace only provides a partial order of operations. For each

11



2. Basic Concepts

individual thread the order is total, but operations by different threads can
take place simultaneously. Synchronization primitives create an order among
operations in different threads.

Thread segment

A thread segment is the set of operations by a single thread in a trace between
two synchronization operations. Thread segments do not include any synchro-
nization operations; thread segments are the frontiers between segments. The
thread in the trace consists of a sequence of ordered thread segments, where
each segment is a sequence of ordered instructions. The synchronization oper-
ations define the order among thread segments in two different threads.

Thread segments are useful to group instructions with the same logical order-
ing in respect to instructions in other threads. If two thread segments are
concurrent, then all the instructions in both thread segments are concurrent.

2.1.2. Synchronization Mechanisms

Threads run concurrently and non-deterministically, and they work on the
same shared data. Threads can conflict in using the same data by overwriting
the work of other threads. To avoid such failures, the programmer must reg-
ulate the thread accesses to the shared memory, using synchronization mech-
anisms. A synchronization mechanism creates a logical order between source
code blocks. This order makes a set of instructions non-concurrent. Synchro-
nization reduces the non-determinism in the program.

Mutex

A critical section is a block of code that accesses a shared resource and must
not be concurrently accessed by more than one thread.

A mutex or lock is a synchronization mechanism that enforces mutual exclusion
on critical sections. A mutex starts in a free state. Any thread can acquire,
lock, the mutex, which goes into a locked state. While locked no other thread
is able to acquire it. Other threads trying to acquire the mutex are blocked.
A mutex becomes free again after a release operation, unlock. Only the thread
that has acquired the lock can release it. Once the mutex is free, another
thread can acquire it.

The source code located between the acquire-release calls for the same mutex
in a multithreaded program will never be executed in parallel. Mutexes are

12



2.1. Concurrent Systems

unaware of the operations done while they are being held, and they do not
check or enforce any behavior on the protected operations.

Figure 2.1 describes a program with two parallel functions and a mutex. The
calls to lock and unlock with the mutex m ensure that the lines 5 and 11
are never executed in parallel. The first thread reaching a lock acquires the
mutex. The other thread cannot complete its own call to lock until the mutex
is released by the other thread.

1 int x = 0;
2 mutex m;
3 void thread_1() {
4 lock(m);
5 x++;
6 unlock(m);
7 }
8
9 void thread_2() {

10 lock(m);
11 x = 3;
12 unlock(m);
13 }

Figure 2.1.: Mutex example

There are variations of mutexes and their primitives. A try lock primitive
is a variation of the acquire operation; if the mutex is already in the locked
state, the calling thread is notified and aborts the operation. A timed lock is
another acquire operation variant; the blocked thread will abort the acquire
operation after waiting for the specified time. A read-write mutex is a variation
of the mutex with the additional state read-locked. Threads can read-acquire
or acquire the read-write mutex. A normal acquire still transitions the mutex
to the locked state. But a read-acquire goes from the free state to the read-
locked state. In the read-locked state multiple threads can read-acquire the
mutex. It is not possible to go from read-locked state to normal lock without
going through the free state. The use case behind read-write mutexes is to
allow multiple threads to read shared data concurrently but to write them
exclusively. The read-write mutex avoids reading and writing happening in
parallel. It is the responsibility of the developer to ensure that only read
operations are executed while doing a read-acquire.

13



2. Basic Concepts

Ordering threads

A mutex does not specify which source code block must be executed first, it
allows any order. Another use case is when a specific operation must always
take place following another operation, such as the use of a variable after its
initialization. Several mechanisms impose such an order.

Thread creation and destruction operations impose an order between the in-
volved threads. A thread spawns a new thread, its child thread, with access to
the same memory with a fork operation. The operations of the parent thread
after the fork are parallel to all the instructions of the child thread. Parent
thread operations prior to the fork cannot be parallel to the child thread op-
erations, as the thread did not exist before that point. Matching the fork
operation there is the join operation. A parent thread waits in a join call until
the specified child thread ends. All instructions in the parent thread after the
join happen after the operations in the child thread, as that no longer exists.

Signal-wait

Arbitrary orderings between two threads, similar to those provided by a join,
can be specified with the signal-wait combination. A thread executing a wait
is blocked on a condition variable c until another thread wakes it up with a
signal on c. The operations in the signaler thread before the signal take place
before the operations in the waiter thread after the wait.

In practice the wait operation depends on a predicate; the signaling thread
must ensure that the predicate is satisfied. The wait call is preceded by a
conditional branch with the predicate as condition. If the predicate is already
met before reaching the wait call, then the wait call is skipped. Otherwise
the wait occurs. To achieve efficient implementation, the wait allows sporadic
wake-ups of blocked threads. The preceding conditional check must be re-
evaluated and, if the check is not passed, the thread must wait again. Multiple
threads could be blocked on the same condition variable c with the same or
different predicates.

Figure 2.2 contains a program with two parallel functions using the signal-wait
mechanism. We want to ensure that the function second task is always
executed after the function first task. The predicate is represented by the
variable flag. The thread waiter checks the variable flag and waits until
flag turns true. Concurrently to the wait, the thread signaler executes
the function first task, sets flag to true, and signals on c. Only then
will waiter continue and perform the function second task. Note that the
variable flag is accessed in parallel by both threads; it is protected by the

14



2.1. Concurrent Systems

mutex m. The function wait takes the mutex m as an argument and internally
unlocks and locks m before and after being blocked.

1 boolean flag = false;
2 mutex m;
3 cond_var c;
4 void waiter() {
5 lock(m);
6 while(flag == false) {
7 wait(c, m);
8 }
9 unlock(m);

10 second_task();
11 }
12
13 void signaler() {
14 first_task();
15 lock(m);
16 flag = true;
17 signal(c);
18 unlock(m);
19 }

Figure 2.2.: Condition variable example

A signal call wakes up a single thread waiting on c. A call to broadcast wakes up
all threads waiting on c. Signal and broadcast are not buffered; they only wake
up threads already waiting on c. A variant of the wait call is the timed wait,
where the waiting thread is automatically woken up after a specific period of
time.

Detecting signal-wait orders is not easy; the order between the threads exists
even if the wait call is not executed at all, i.e. the predicate is already met. We
use additional instrumentation to detect the signal-wait orderings, as described
in Section 4.3.2.

Barrier

A barrier is a multithread synchronization mechanism. A barrier allows mul-
tiple threads to synchronize together at a specific point, a call to barrier wait.
The threads are blocked in the barrier wait call. A barrier starts closed and
must be initialized with a number. The number indicates how many threads

15



2. Basic Concepts

must reach the barrier, call barrier wait, to open it. When the barrier opens
the threads return from the barrier wait primitive and resume their execution.
All operations of the threads before the barrier take place before all operations
after the barrier. After a barrier is used, it is automatically reset and can be
reused.

Figure 2.3 displays a program with two parallel functions and a barrier. Both
pre task functions are executed concurrently. When both threads have
reached the function barrier wait, the threads resume their execution.
The post task functions also run in parallel, but no pre task runs at the
same time as any post task.

1 barrier b = barrier_init(2);
2 void thread_1() {
3 pre_task();
4 barrier_wait(b);
5 post_task();
6 }
7
8 void thread_2() {
9 pre_task();

10 barrier_wait(b);
11 post_task();
12 }

Figure 2.3.: Barrier example

Semaphore

A semaphore is a counter with two operations, sem post and sem wait. If the
value of the semaphore is greater than zero, a thread executing a sem wait
will decrease the counter by one and go forward. But if the value is zero,
the thread will block on the sem wait call until the counter is increased. The
counter is only increased with sem post. A semaphore has an initial value for
the counter.

Figure 2.4 depicts a program with two parallel functions and a semaphore s.
The semaphore counter starts at zero. The thread waiter will be blocked
until the thread poster increases the value of the semaphore. The functions
pre task and post task never run in parallel.

The primitive sem try wait is a variation of the sem wait operation; if the
semaphore counter is zero, the calling thread does not wait, otherwise it be-

16



2.1. Concurrent Systems

1 semaphore s = sem_init(0,10);
2 void poster() {
3 pre_task();
4 sem_post(s);
5 }
6
7 void waiter() {
8 sem_wait(s);
9 post_task();

10 }

Figure 2.4.: Semaphore example

haves as sem wait. Another sem wait operation variant is sem timed wait :
the blocked thread will abort the wait operation after waiting the specified
time. A mutex is a special semaphore: it is initialized to zero, the maximum
value of the counter is one, and there is ownership associated with the counter.

Atomic operations

Atomic operations are indivisible operations that appear to the rest of the
threads to occur instantaneously. Atomic operations can be enforced in soft-
ware with the use of mutexes or in hardware with specific instructions, such
as test-and-set or fetch-and-add. Concurrent atomic operations on the same
memory address do not produce any data race.

2.1.3. Ad-Hoc Synchronization

Ad-hoc synchronization is a synchronization mechanism constructed by the de-
velopers. This synchronization is not part of any standard library or language,
but usually imitates some standard synchronization mechanism.

Ad-hoc synchronization commonly consists of a tight loop and a shared variable
that works as condition, as the example in Figure 2.5. The threads waiter
and signaler run in parallel. We define x as an atomic variable to avoid
races on x, as well as compiler and processor reorderings. The thread waiter
cannot leave the while-loop until the thread signaler modifies the value
of x. The ad-hoc synchronization works as a signal-wait, and the function
first task is always executed before the function second task.

Most concurrency error detection tools rely on standard synchronization primi-
tives to detect inter-thread communication. The use of ad-hoc synchronization

17



2. Basic Concepts

1 atomic x = 0;
2 void waiter() {
3 while(x == 0) {
4 yield();
5 }
6 second_task();
7 }
8
9 void signaler() {

10 first_task();
11 x = 1;
12 }

Figure 2.5.: Ad-hoc synchronization loop

is a challenge for these tools, and becomes a source of false warnings. Our work
does not detect ad-hoc synchronization. There are techniques to add support of
ad-hoc synchronization. Xiong et al. [XPZ+10] presented an automatic static
technique to annotate ad-hoc synchronization, together with a study about
its harmful effects. A runtime approach to detect ad-hoc synchronization was
presented by Janeesari et al. [JT10].

2.2. Concurrency Failures

2.2.1. Deadlock

A deadlock is a situation that occurs when two or more competing actions of
a program require the exclusive use of two or more resources. Each action
acquires a different resource, but they cannot acquire another because it is
already held by the other action. In this situation the actions cannot complete,
and the program cannot progress further. Coffman et al.[CES71] defined four
necessary and sufficient conditions for a deadlock:

1. Mutual exclusion: the resources involved cannot be shared; only one
action can use the same resource at the same time.

2. Hold and wait of resources: an action retains a requested resource while
requesting additional resources.

3. No preemption: a resource cannot be taken away from the current holder.

4. Circular wait: there is a circular chain of actions holding resources and
requesting other resources.

18



2.2. Concurrency Failures

Prevention of any of these four conditions is enough to avoid the deadlock
situation. In multithreaded systems the actions are usually, but not neces-
sarily, threads. A single thread can deadlock itself, e.g. request the same
non-recursive mutex twice.

A communication deadlock occurs where the shared resource is a communi-
cation channel: two or more threads are waiting to receive a message from
another thread. Communication deadlocks can occur while waiting for a lock
release or the opening of a semaphore. Our work detects this kind of deadlocks.

Figure 2.6 shows an example of a program that can exhibit a deadlock. The
two threads want to acquire the mutexes m and p. The thread main can be
preempted just after acquiring the mutex m by the thread worker. In this
case worker acquires the mutex p, but it is unable to acquire the mutex
m. Likewise, main wants to acquire the mutex p, which is already held by
worker. Both threads are deadlocked waiting for the release of the other
mutex. This situation does not always manifest itself in the program, only
under the described interleaving and a symmetric interleaving where the thread
worker acquires the mutex p first.

1 mutex m, p;
2 void main() {
3 fork(worker);
4
5 lock(m);
6 lock(p);
7 unlock(p);
8 unlock(m);
9

10 join(worker);
11 }
12
13 void worker() {
14 lock(p);
15 lock(m);
16 unlock(m);
17 unlock(p);
18 }

Figure 2.6.: Deadlock example

19



2. Basic Concepts

2.2.2. Data Race

A data race is a concurrent access by two threads to the same memory location
where at least one access is a write.

Figure 2.7 displays an example of a data race on variable x. Depending on the
interleaving, the final value of x can be 3. If the read and write on x by both
threads takes place concurrently, these instructions can overwrite each other’s
results, so x could be 1 or 2.

1 int x = 0;
2 void main() {
3 fork(worker);
4 x = x + 2;
5 join(worker);
6 }
7
8 void worker() {
9 x = x + 1;

10 }

Figure 2.7.: Data race example

Narayanasamy et al. [NWT+07] differentiate between benign and harmful data
races, based on the influence on program correctness. Boehm [Boe11] argues
against ‘benign’ races and considers that all data races are harmful at source
code level. Memory models of mainstream imperative languages, such as C
and Java, describe data races explicitly as undefined behavior. In this work we
look for data races originated by source code defects, so we side with Boehm
and aim for race-free programs.

A data race can be solved by transforming the racy accesses into atomic opera-
tions or protecting them with a common lock. These solutions do not guarantee
that there is no higher-level failure, such as an order violation or an atomicity
violation. A data race can be a symptom of any of these failures.

2.2.3. Atomicity Violation

An atomicity violation happens when a critical region is not executed atomi-
cally, and another thread concurrently executes a conflicting memory access.
This is caused by the developer overlooking the need of explicitly enforcing
atomicity for a set of instructions, e.g. with a lock.

20



2.2. Concurrency Failures

A data race can be seen as an atomicity violation, i.e. the developer assumed
atomicity of all memory instructions. Data races are dependent on the memory
model of the language. In this work atomicity violations are only related to
the intended semantics of the program, not the language. A race-freedom in a
program does not imply absence of atomicity violations.

Figure 2.8 shows an example of a program with an atomicity violation. The
intended operation is that both threads increment the value on x, but the
thread main uses an intermediate variable. If the thread worker executes
its critical section between the critical sections of main, its increment at line
22 will be overwritten by the assignment x=temp at line 14. Note that each
access to the shared variable x is correctly protected, so the program is race-
free. In this case the whole execution of the thread main needs to be atomic.
The intended operation is not explicit in the program. Without user assistance
it is difficult to define where an atomic region should start and end.

1 int x = 0;
2 mutex m;
3 void main() {
4 fork(worker);
5 int temp;
6
7 lock(m);
8 temp = x;
9 unlock(m);

10
11 temp++;
12
13 lock(m);
14 x = temp;
15 unlock(m);
16
17 join(worker);
18 }
19
20 void worker() {
21 lock(m);
22 x++;
23 unlock(m);
24 }

Figure 2.8.: Atomicity violation example

21



2. Basic Concepts

2.2.4. Order Violation

An order violation is the execution of two sets of instructions in an unexpected
order. Similar to atomicity violations, the developer overlooks the need to
explicitly define an order through synchronization primitives, such as a signal-
wait. Order violations are also dependent on the intended semantics on the
program.

Figure 2.9 shows an example of an order violation. The thread main initializes
a pointer x to a custom structure. The thread worker uses some content of
the structure referenced by x as an argument for the function compute. If
worker tries to dereference the pointer before its initialization, it will generate
a runtime fault, e.g. a segmentation fault. The developer assumed that the
structure would be initialized by the time worker uses the pointer. But there
is nothing to ensure this behavior. The solution would be a signal-wait pair
ordering both the initialization and the dereference.

1 my_struct *x;
2 void main() {
3 fork(tid, worker);
4
5 x = create_my_struct();
6
7 join(tid);
8 }
9

10 void worker() {
11 some_work();
12 compute(x->value);
13 }

Figure 2.9.: Order violation example

2.3. Race Detection Algorithms
In this section we describe the two main algorithms for race detection, the
happens-before algorithm and the lockset algorithm. We use both algorithms as
filters to reduce the number of candidates during race detection in Section 5.5.2.

2.3.1. Happens-Before Algorithm

We define a race as two parallel accesses to the same variable, and two events
occurring in parallel if the program does not define a specific order between

22



2.3. Race Detection Algorithms

them. Knowing the logical order of the events in a trace is useful for race
detection.

Lamport’s happens-before relationship [Lam78] establishes a partial order be-
tween events in a concurrent system. The events executed by a single thread
are naturally happens-before ordered by their execution order. In a message-
passing system, a message sending event a and its corresponding receiving
event b by another thread are happens-before ordered; the message cannot
arrive before being sent. In shared memory systems the ordering is defined
by the causal relationships of the thread synchronization constructs, such as
fork-start, end-join, and unlock-lock pairs. We define that event a happens

before event b as a
hb−→ b.

The happens-before relation has the following properties:

• Transitivity - ∀ a, b, c if a
hb−→ b and b

hb−→ c, then a
hb−→ c. The relationship

determines that if for three events a, b, c, a happens before b and b before
c, then a must happen before c.

• Irreflexivity - ∀ a, a 6 hb−→ a. An event cannot happen before itself.

• Antisymmetry - ∀ a, b a 6= b, if a
hb−→ b then b 6 hb−→ a. If event a happens

before another event b, then b does not happen before a.

Two events occur in parallel, a ‖ b, if they are not ordered, then based on the
happens-before relationship:

a ‖ b⇔ a 6 hb−→ b ∧ b 6 hb−→ a

Two events, such as two memory accesses, can happen concurrently if none of
the two happens-before relationships between the two events is true, i.e. one
relationship in each direction.

Vector clocks

The happens-before relationship can be computed using vector clocks. A vector
clock is a logical timestamp of an event, similar to Lamport timestamps. The
vector clocks of two events can be compared to determine the happens-before
relation between the events.

A vector clock V C is a vector of length N, where N is the number of threads
in the system. V C(x) denotes the vector clock for event x. Each of the N
positions of the vector is a clock, i.e. a counter that describes the last known

23



2. Basic Concepts

state of a particular thread. We reference the position z of a particular vector
clock as V C(x)z. Each thread t maintains an internal vector clock V Ct which
is updated with the following rules:

• Initially all positions of all thread vectors are initialized to zero: V Ct
z =

0∀ t, z.

• Each time a thread t performs an event, it increases the counter of its own
position on the clock array of its vector clock by one: V Ct

t = V Ct
t + 1.

• Each time a thread t sends a message, it sends its current vector clock
along with the message m: V C(m) = V Ct.

• Each time a thread t receives a message m, it updates each position of
its own vector clock with the maximum between its vector clock and the
vector clock sent along with the message for that position:
V Ct

z = max(V Ct
z, V C(m)z)∀ z.

From the vector clocks, we can derive if there is a happens-before relationship

between two events, a condition needed to avoid a data race. In general a
hb−→

b⇔ V C(a) < V C(b), and by extension two events are parallel:

a ‖ b⇔ V C(a) 6< V C(b) ∧ V C(b) 6< V C(a)

A vector clock is strictly smaller < than another if:

V C(a) < V C(b)⇔ V C(a)z ≤ V C(b)z ∀ z ∧ ∃ y|V C(a)y < V C(b)y

A vector V C(a) is strictly smaller than another vector V C(b), if all the values
in V C(a) are equal or smaller than the corresponding in V C(b) and at least
one value is strictly smaller. Intuitively this means that, for an event a to
happen before another event b, the known states at the execution of a cannot
be bigger that any known state at the execution of b, and at least the state of
one thread is smaller.

The interleaving in Figure 2.10 contains four write memory accesses on two
distinct variables, k and m. The graph in Figure 2.11 represents the internal
and inter-thread transitions in the interleaving with the corresponding vector
clocks. In this example the only send-receiving message equivalents in multi-
threading are fork-start and end-join synchronizations. We see the evolution
of the different values of the vector clocks for the different internal and inter-
thread events.

24



2.3. Race Detection Algorithms

With the calculated vector clocks, we can check the happens-before relationship
of the accesses to k and m. For k we have V C(k = 1) = (1, 0) and V C(k =
2) = (2, 1), where k=1 was performed by thread 1 and k=2 by thread 2.

As V C(k = 1) < V C(k = 2), then by the previous definition k=1
hb−→ k=2,

so both accesses are happens-before ordered and no race is possible. For m we
have V C(m = 1) = (3, 0) and V C(m = 2) = (2, 2), where m=1 was performed
by thread 1 and m=2 by thread 2. In this case V C(m = 1) 6< V C(m = 2)
and also V C(m = 2) 6< V C(m = 1), so there is no happens-before order in
any direction. Without any happens-before ordering both events take place in
parallel, which can lead to a data race.

thread 1 thread 2
k = 1
fork(thread 2)

start
k = 2
m = 2
end

m = 1
join(thread 2)

Figure 2.10.: Interleaving with a race

thread 1

k
=

1

f
o
r
k
(
t
h
r
e
a
d

2
)

m
=

1

s
t
a
r
t

thread 2

k
=

2

m
=

2

e
n
d

j
o
i
n
(
t
h
r
e
a
d

2
)

(1,0) (2,0) (3,0) (4,0)

(2,1) (2,2) (2,3)
(2,0) (2

,3
)

(5,3)

Figure 2.11.: Graph with vector clocks

25



2. Basic Concepts

2.3.2. Lockset Algorithm

The lockset algorithm, presented by Savage [SBN+97], assumes that all ac-
cesses to a shared variable v must always be protected by a common lock.
This algorithm only pays attention to lock/unlock synchronizations and does
not consider any other construct, which is a source of false positives in the algo-
rithm. The lockset algorithm can be applied dynamically or statically without
changes in the algorithm itself. The algorithm is show in Figure 2.12

Let locks heldt be the set of locks held by thread t
for each shared variable v do

initialize C(v) to the set of all locks
end for
for each access to variable v by thread t do

C(v) := C(v) ∩ locks heldt
if C(v) = ∅ then

issue a warning
end if

end for

Figure 2.12.: Basic lockset algorithm

The algorithm maintains a set C(v) of candidate common locks for each shared
variable v. At the beginning it is unknown which the common lock should be,
so C(v) is initialized with all locks. Each thread t maintains a set locks heldt
with the locks that it holds during a specific instruction. For each access to v,
the current thread updates C(v), intersecting it with the current locks heldt.
The intersection only reduces the candidate set, it cannot increase it. As long
as the resulting C(v) has at least one element, then all accesses seen until the
current instruction share at least this lock. If the set C(v) is empty, then the
last access does not share a common lock with the previous accesses, and the
algorithm emits a warning.

An example of the algorithm for the interleaving in Figure 2.13 is displayed in
Figure 2.14. At the start C(x) is composed of both locks m and n. The first
to access x is thread 1 with lock m. The update C(x) := C(x)∩ {m} leaves
the lock m as the content of C(x). When thread 2 accesses x with lock n,
then locks held(t2) = {n}; it is using a lock that is no longer part of C(x).
So C(x) := C(x) ∩ {n} = {m} ∩ {n} = ∅. With an empty C(x), a warning is
issued about the inconsistent access by thread 2.

There are further improvements of the algorithm to reduce the number of false
positives. One improvement removes false positives, adding a state machine

26



2.4. Communicating Sequential Processes

for each variable to differentiate the case of unprotected variable initialization.
Another adds support to read-write locks, using an additional candidate set
per variable to track the accesses under read-locks.

thread 1 thread 2
1 lock(m)
2 x++
3 unlock(m)
4 lock(n)
5 x++
6 unlock(n)

Figure 2.13.: Interleaving with inconsistent lockset

Access to x locks heldthread 1 locks heldthread 2 C(x)

0 - ∅ ∅ {m,n}
2 read {m} {m}
2 write {m} {m}
5 read {n} ∅
5 write {n} ∅

Figure 2.14.: Update of candidate set C(x)

2.4. Communicating Sequential Processes

Communicating Sequential Processes (CSP) is a formal system to describe con-
current systems and reason about them. CSP was first presented by Hoare in
1978 [Hoa78]; since then it has been expanded and studied. CSP has influ-
enced hardware architectures, e.g. the Transputer T9000, and programming
languages such as Go and Erlang. CSP is a process algebra, a mathematical
theory that describes a system by the interactions performed, without enumer-
ating its internal states. CSP is used to refine a system iteratively. The system
is described with the same syntax in all the iterations, independently of the
abstraction level. The formal semantics of CSP enable automatic checks on
whether a detailed description follows the behavior of a more abstract descrip-
tion, i.e. if the detailed behavior refines the abstract behavior.

The following presents a brief introduction to the blackboard CSP syntax used
in this work. Figure 2.15 depicts the relevant CSP grammar. The books by

27



2. Basic Concepts

〈Process〉 ::= STOP
| SKIP
| 〈event〉 → 〈Process〉
| 〈Process〉 2 〈Process〉
| 〈Process〉 \ 〈event-set〉
| 〈Process〉 |̀ 〈event-set〉
| 〈Process〉 ; 〈Process〉
| 〈Process〉 Θ〈event−set〉 〈Process〉
| 〈Process〉 ||| 〈Process〉
| 〈Process〉 ‖

〈event−set〉
〈Process〉

| 〈Process〉 4 〈Process〉

〈event〉 ::= identifier 〈field〉*

〈field〉 ::= . identifier
| ! identifier
| ? identifier [:〈event-set〉]

〈event-set〉 ::= { 〈event〉* }
| {|〈event〉|}

Figure 2.15.: Summary of CSP grammar

Roscoe [Ros10] and Schneider [Sch99] contain more in-depth descriptions of
modern CSP.

In CSP the system and each subcomponent is described as a process. CSP is
compositional; processes can be combined with different operators to generate
more complex processes. Each process performs events, which are atomic and
instantaneous. When a process emits or performs an event, we say that the
process communicates with the environment, i.e. the event can be observed
externally. Some operators enable communication between two processes. The
communication is done by a synchronous share of an event (rendezvous), i.e.
both processes must agree to execute the same event simultaneously. Processes
are denoted in uppercase and events in lowercase.

For example, we want to define a CSP description of a vending machine. The
process will be called V ENDING. This machine will only provide a chocolate
bar, the event choc, after receiving a coin, the event coin, afterwards the
machine will stop working. It only provides a single bar during its lifetime.

28



2.4. Communicating Sequential Processes

The description of this vending machine in CSP is as follows:

V ENDING = coin→ choc→ STOP

At the beginning only the event coin can happen. Afterwards only the event
choc is possible. After delivering the chocolate bar the process behaves like the
process STOP .

The process STOP is a process that does nothing. In CSP terms it is dead-
locked. It is the most basic process in CSP, the fixed point in the algebra.

The equivalent labeled transition system for V ENDING is as follows:

coin choc

The process V ENDING can be composed as a series of processes:

V ENDING = coin→MIDDLE

MIDDLE = choc→ STOP

The prefix operator→ composes an event a and a process P into a new process
Q, where Q = a → P . Q is a process that performs a and then behaves like
P .

The process V ENDING REC describes a vending machine that never stops.
It always serves a chocolate bar for a coin.

V ENDING REC = coin→ choc→ V ENDING REC

This process uses recursion. Instead of terminating with STOP , it returns to
the beginning and behaves like V ENDING REC again, offering the event
coin.

The set of events emitted by a process P is the alphabet of the process, and
it is denoted as α(P ). The set of all events in a system is denoted Σ. In our
example Σ = {coin, choc}.

29



2. Basic Concepts

2.4.1. Sequential Operators

Branching or letting the environment choose between two processes, is done
with the external choice operator 2. V ENDING GUM is a new vending
machine that offers a chocolate bar or a chewing gum, the event gum, for a
coin and then stops.

V ENDING GUM = coin→ (choc→ STOP

2 gum→ STOP )

The equivalent labeled transition system for V ENDING GUM is:

coin choc

gum

The external choice operator 2 composes two processes P and R into a new
process Q, where Q = P 2 R. Q is a process that behaves like P or behaves
like R. The process Q does not decide which branch to take; it offers the events
of P and R and lets the environment choose.

The choice between two processes can be dependent on the result of a Boolean
predicate b. The process P <I b>I R behaves like P if the predicate b is true,
otherwise it behaves like R.

We can abstract a process, making some events non-observable with the hid-
ing operator \. The process V ENDING CHOC builds upon the process
V ENDING, which conserves its internal behavior, but only shows us the
event choc.

V ENDING CHOC = V ENDING \ {coin}

The hiding operator P \ X creates a new process from P , where the new
process shows no events of the set X. The projection operator P |̀ X is a
shortcut for hiding all events except those specified in the set X, so P |̀ X ≡
P \ (Σ−X)

Processes can be directly concatenated with the sequential operator ; . In
Q = P ; S, Q behaves like P , and if P terminates successfully it behaves like

30



2.4. Communicating Sequential Processes

S. Successful termination is implemented with the pre-defined CSP process
SKIP . SKIP derives from STOP , and is defined as SKIP = X → STOP .
The event X is a special event that represents success.

The exception operator Θx, changes the behavior of a process after executing
an event in set x. In Q = PΘxR the process Q behaves initially as P . After
an event in set x is performed by P , Q changes its behavior from P to R.

2.4.2. Concurrency Operators

Processes can operate concurrently and communicate with several different op-
erators. Non-communicating concurrency is the simplest combination, and is
expressed with the interleaving operator |||. The process V ENDING 2 repre-
sents the common view of two independent vending machines, each operating
concurrently as in V ENDING.

V ENDING 2 = V ENDING ||| V ENDING

The global view includes all possible combinations of events of the compos-
ing processes. Each composing process follows its internal behavior indepen-
dently, no chocolate bar is offered before the correspondent coin. The equiv-
alent labeled transition system representing all the possible interleavings of
V ENDING 2 is:

coin

coin

coin

coin

coin

coin

choc

choc

choc

choc

choc

choc

31



2. Basic Concepts

Manual enumeration of all states can be extremely demanding. With a pro-
cess algebra the user only needs to identify the transitions of the components,
without worrying about individual states.

The interleaving operator ||| combines two processes, P and R, into a new pro-
cess Q, where Q = P ||| R. Q is a process that executes P and R concurrently
and independently.

The interrupt operator 4, as in Q = P 4 R, is similar to the interleaving
operator. Q behaves initially as P ||| R, but after any event of R is performed,
P is stopped and Q continues its execution as Q = R. With the interrupt op-
erator P and R are never really executed concurrently, because at the moment
an event in R is executed, P stops running. The interrupt operator is also
similar to the exception operator Θ.

Concurrency with communication is established with the interface parallel op-
erator ‖

x

, where x is the set of events with which the involved processes must

communicate. If the event set x is empty, then ‖
{}

is the same as |||, the pro-

cesses do not communicate but run concurrently. To execute any event of set
x, both processes must be in a state willing to execute it. When the shared
event is executed, both composing processes advance their internal state ac-
cordingly. The process V ENDING 2SHARED represents the common view
of two vending machines, each as in V ENDING, operating concurrently, sim-
ilar to V ENDING 2. In this case the machines share the coin slot, and both
will give a chocolate after a single coin is introduced.

V ENDING 2SHARED = V ENDING ‖
{coin}

V ENDING

A single coin event is enough to trigger both chocolate events, which will
happen concurrently. The equivalent labeled transition system representing all
the interleavings of V ENDING 2SHARED is:

32



2.4. Communicating Sequential Processes

coin

choc choc

choc choc

The interface operator ‖
X

combines two processes, P and R, into a new process

Q, where Q = P ‖
X

R. Q is a process that concurrently executes P and R.

When P or Q wants to perform any event of the set X, the other process,
Q or P , must also be able to perform this event. Both processes synchronize
on the event, they perform the event together, and continue their executions
concurrently. The interface operator is the main building block in CSP to
compose concurrent processes under communication.

Another example is the process INTERACTION , which combines a process
PERSON , representing a buyer, and the vending machine V ENDING.

INTERACTION = PERSON ‖
{coin,choc}

V ENDING

PERSON = choc→ STOP

The buyer wants the chocolate bar, but does not give a coin for it. Both
processes need to be able to perform the events coin and choc simultaneously,
as denoted by the event set in the parallel operator. While V ENDING is
willing to perform the coin event, PERSON is not. The whole system is
deadlocked and is equivalent to STOP , meaning that it does not perform any
event.

2.4.3. Expanding Event and Process Definitions

Event semantics can be expanded by giving structure to the events. Events
can be structured by concatenating identifiers with dots. An event, coin.10, is

33



2. Basic Concepts

composed of two identifiers, the first one, coin is called the channel, whereas 10
is called field. This dotted structure can be interpreted as the communication
of the value 10 on channel coin. Multiple fields can be concatenated with more
dots, e.g. x.y.z.

Instead of a dot we can use an exclamation mark ! to denote an output in the
channel, or a question mark ? for an input. For example, coin!10 sends the
value 10 to the channel coin, while coin?x accepts any value, such as 10 or 20,
on the channel coin and binds it to the identifier x. The use of ! or ? instead of a
dot does not alter the synchronous nature of event communication in CSP. An
output mark has the same formal meaning as using a dot, it is only a help for
the user. The input mark is the equivalent to writing an external choice with
all possible values for the event. The input mark can be restricted to a set of
events, e.g. coin?x : {10, 20} → P where the only valid bindings value for x are
10 or 20. It is equivalent to the external choice: coin.10→ P 2 coin.20→ P .
The use of dotted events, channels, and restricted inputs are shortcuts to have
multiple individual events represented as only one. Channels are also useful to
easily generate sets of events. The expansion set {|coin|} represents all events
that can take place on the channel coin.

A process can be parameterized as Pi or P (i), and its arguments used by its
events or processes:

Pi = count.i→ Pi+1

Pi is a process that emits the value of an ever increasing counter, represented
by i, in the channel count. Parameterized processes can also be used with
pattern matching. We can define multiple processes with the same name and
different values in the arguments, and the most fitting process is chosen at
runtime. The following example demonstrates this process:

Pi = count.i→ Pi+1

P10 = goal→ STOP

When an iteration of Pi should be executed for i=10, the process P10 is executed
instead, emitting the goal event and stopping. In this example the event goal
can only be reached if the initial value of i is smaller than 10. If the counter is
bigger than 10, the counter runs forever and the event goal is never reached.

2.4.4. Semantic Models

CSP has multiple formal semantics that provide meaning to a CSP expression.
CSP has defined multiple denotational, operational and algebraic semantics.

34



2.4. Communicating Sequential Processes

In this work we use two denotational models: the trace model and the failures
model.

Trace model

The trace model describes the set of sequences of events that a process is able
to perform. A sequence of events is called a trace, which is represented as
a sequence of CSP events enclosed by 〈〉. The set of traces for process P is
traces(P ). For example, for the process V ENDING:

traces(V ENDING) = {〈〉, 〈coin〉, 〈coin, choc〉}

V ENDING has a finite set of traces. It can exhibit the empty trace 〈〉 just at
the beginning, the trace 〈coin〉 after the first event, and the trace 〈coin, choc〉
after all the events have been executed. The process STOP only contains the
empty trace: traces(STOP ) = {〈〉}. The recursive process V ENDING REC
contains an infinite set of traces:

traces(V ENDING REC) = {〈〉, 〈coin〉, 〈coin, choc〉, 〈coin, choc, coin〉,
〈coin, choc, coin, choc〉, 〈coin, choc, coin, choc, coin〉, ...}

It is not possible to determine if the process is able to perform additional
events or not from a concrete trace in the trace model. We take the following
processes P and Q as an example:

P = a→ b→ c→ STOP

Q = a→ b→ STOP

The trace 〈a, b〉 is contained in both traces(P ) and traces(Q). After this trace
Q cannot perform any other event, while P may. We cannot distinguish P
from Q using this trace. To determine if a process is deadlocked, in CSP
terms, after a trace we need more information, such as which events can or
cannot be performed. We need a denotational semantic model that includes
more information than the trace model. The failures model provides us with
this additional information.

Failures model

The failures model is an extension of the trace model. This model includes for
each trace the set of events that the process cannot perform, called the refusal
set. The set failures(P ) for the process P is a set of tuples, where each tuple

35



2. Basic Concepts

is a pair composed of a trace of P and the corresponding refusal set. All the
traces in the set traces(P ) are also present in failures(P ). For example, the
V ENDING process has the following failures set:

failures(V ENDING) = {(〈〉, {choc}), (〈coin〉, {coin}),
(〈coin, choc〉, {coin, choc})}

At the beginning, V ENDING cannot perform choc, only coin is allowed.
After 〈coin〉, only choc is possible. Finally, after 〈coin, choc〉 the process cannot
perform any other event, so the refusal set contains both coin and choc. For
the recursive process V ENDING REC the infinite failure set is as follows:

failures(V ENDING REC) = {(〈〉, {choc}), (〈coin〉, {coin}),
(〈coin, choc〉, {choc}), (〈coin, choc, coin〉, {coin})...}

The previous processes P and Q were indistinguishable after the trace 〈a, b〉.
Now with the failures model, that is with failures(P ) and failures(Q), we can
see that both processes are different after this trace. For P the refusal set is
{a, b} and for Q is {a, b, c}. We see that after the trace 〈a, b〉 the process P
is willing to perform the event c, but Q is not, because c is not in the refusal
set of P after this trace. And then P and Q are not equivalent after the trace
〈a, b〉.

We can use the failures model to detect whether a process is deadlocked after
a concrete trace. If the corresponding refusal set contains all events possible in
the systems, then the process is deadlocked after that trace. In other words,
if the refusal set is equal to Σ, the set of all possible events in the system,
then the process is not able to perform any kind of event, which is exactly the
definition of deadlock in CSP. For example, after the trace 〈a, b〉 the process
P is not deadlocked, because the corresponding refusal set does not contain
all the events in the system, that is {a, b} 6= Σ while here Σ = {a, b, c}. On
the other hand the process Q is deadlocked because its refusal set for 〈a, b〉
contains all events in the system, {a, b, c} = Σ.

2.4.5. Refinement

CSP is used to describe systems with different levels of abstraction, using the
same syntax. It is possible to describe a high-level process representing the
specification of the system, and iteratively create a more detailed version of
it until the desired implementation level is reached. This process is called re-
finement. CSP allows automatic checking whether a process is a refinement of

36



2.4. Communicating Sequential Processes

another process, i.e. whether the detailed process exhibits the same behavior
as the abstract one. A refinement relationship S v I, between a specifica-
tion process S and a more detailed implementation process I, holds if and
only if behavior(I) ⊆ behavior(S). All observable behaviors of I are possi-
ble behaviors in the more abstract process S. The behavior of a process can
be any semantic model, such as the trace or failures model. For example, a
trace-refinement, using the trace model, is defined as follows:

S vT I ⇔ traces(I) ⊆ traces(S)

A concrete example of two processes and a refinement relationship is the fol-
lowing:

V ENDING = coin→ choc→ STOP

V ENDING REC = coin→ choc→ V ENDING REC

V ENDING REC vT V ENDING

We can say that V ENDING REC is refined by V ENDING. The three
traces contained in the set traces(V ENDING) are also present in the set
traces(V ENDING REC):

traces(V ENDING) ⊂ traces(V ENDING REC)

However, the opposite refinement does not hold. V ENDING REC contains
many traces not possible in V ENDING, such as 〈coin, choc, coin〉.

V ENDING 6vT V ENDING REC

If we change the semantic model, i.e. the criteria to compare behaviors, the
refinement result can change. As the failures mode is an extension of the trace
model, failures-refinement implies trace-refinement, but not the opposite. For
example, where V ENDING trace-refines the process V ENDING REC, for
a failures-refinement, it is no longer true:

V ENDING REC 6vF V ENDING

failures(V ENDING) 6⊆ failures(V ENDING REC)

The trace-refusal pair (〈coin, choc〉, {coin, choc}) of the process V ENDING
is not contained in failures(V ENDING REC). After the trace 〈coin, choc〉,
V ENDING REC cannot perform the event coin.

The refinement relationship is the main instrument in CSP to compare two
processes. The semantic model chosen defines which information is compared.

37



2. Basic Concepts

2.4.6. Practicalities in Model Checking

The Failures-Divergences Refinement Checker FDR3 from Oxford University
[GRABR14] is the main tool to check refinement relationships in CSP. FDR3
takes a description of CSP processes in the machine-readable format CSPM

along a set of refinement assertions. 1 Each assertion is a refinement rela-
tionship between two processes under a semantic model, such as the trace or
failures models. FDR3 explores the involved processes and checks if the refine-
ment relationship holds. If the relationship does not hold, then it provides a
counterexample. The counterexample is the trace performed by the involved
processes and the refusal set in the failures model. For composed processes it
is possible to observe the internal behavior of the component processes.

One of the main issues in model checking is the number of implicit states in the
system. As the number of states grows, more time and resources are needed.
This is a general issue in model checking called the state explosion problem.
To alleviate this problem we have to design our CSP models so they have as
few states as possible. We follow several general strategies in this work:

• Minimize the number of events in the model. We do not insert superfluous
events in the model if they are not needed for the current refinement
check. For example, in data races the memory accesses to y are not
needed when checking races on variable x.

• Limit the number of alternatives in choice operators or input fields. For
example, if a value of an input field can only be a 0 or a 1 in the whole
system, it is better to define the valid set of values than to allow any
integer value.

• The hiding operator makes events invisible for a new abstract level. These
events cannot cause new interactions and are confined to the internal be-
havior of the process. FDR can apply partial order reduction algorithms
to these internal events, thus reducing the state space.

2.5. Aspect-Oriented Programming

In Chapter 6 we extend our tool so it can verify properties defined by the
user. The extension requires the user defining custom events in the target
program. To facilitate and automate the task of capturing the relevant events,

1A brief introduction to CSPM , along with the CSPM version of the examples in this work
is available in Appendix A.

38



2.6. LLVM

we developed an Aspect-Oriented Programming framework. In this section we
introduce Aspect-Oriented Programming and its associated concepts.

Aspect-Oriented Programming (AOP) is a programming paradigm that ad-
dresses the problem of cross-cutting concerns and how they affect the modu-
larity of a system. A cross-cutting concern is code that is repeated and scat-
tered through diverse modules and cannot be isolated in a single module, such
as logging and authentication systems. These modules interact and introduce
dependencies in multiple parts of the code and ‘pollute’ the core concern, i.e.
the code of the main functionality of the program.

AOP solves this problem by defining these cross-cutting modules as an inde-
pendent set of functions, and describing at which points of the main program
these functions are inserted. The code from the cross-cutting concern is iso-
lated from the code of the core concern. For example, for a logging module,
the logging code includes the functions that emit a message to the log file.
These logging functions are inserted automatically into other functions of the
program.

An AOP system requires a join-point model which defines three components:

• Join-points - the points in the target language where an advice can be
inserted, such as function calls or accesses to global variables.

• Pointcuts - a set of concrete join-points in the target program. For
example, the concrete name of a function to be logged.

• Advice - pieces of code that run at a join-point. In the logging module,
this would be the actual code that emits the messages to a file.

An advice can be inserted at a pointcut in two ways: weaving it automatically
into the main program during compilation, or dynamically intercepting the
pointcut at runtime with a call to the correspondent advice. The last option
is usually done in languages executed by an interpreter.

2.6. LLVM

The LLVM project [LA04] is an infrastructure that provides reusable modules
to build compilers and toolchains. LLVM works as a common backend for
multiple compilers, such as C/C++, Java bytecode, or Haskell. The compilers
translate the source code to the LLVM intermediate representation (IR), which
is language agnostic.

The IR is a RISC like assembler language with a strong type system, and each
instruction is in static single assignment form (SSA). SSA is a refinement of a

39



2. Basic Concepts

three-address code, a combination of assignment and binary operation, where
each variable is assigned exactly once and afterwards becomes immutable. SSA
simplifies dependency analyses, e.g. use-def chains become explicit as they have
a single element. An example of the IR in human-readable format is shown in
Figure 2.16; the program is the translation of a ”Hello world”program originally
written in C.

1 @.str = private constant [14 x i8] c"hello, world\0A\00"
2
3 declare i32 @printf(i8*, ...)
4
5 define i32 @main(i32 %argc, i8** %argv) {
6 entry:
7 %1 = getelementptr [14 x i8]* @.str, i32 0, i32 0
8 %2 = call i32 (i8*, ...)* @printf( i8* %1 )
9 ret i32 0

10 }

Figure 2.16.: ”Hello world” in LLVM IR

Note that external calls, like printf in the example, are dependent on the
libraries used by the original program. Any analysis based on external calls is
language-dependent.

Code optimizations, such as loop normalization, hoisting, or vectorization need
to be implemented only once for the IR. All languages supported by LLVM
can benefit from these optimizations. Each IR optimization is a LLVM Pass.
Passes can be independent or depend on the result of previous passes.

In this work we target C/C++ programs using the POSIX threads library. We
perform program static analyses and instrumentation in LLVM IR as LLVM
Passes. As synchronization primitives are implemented through the external
POSIX library, additional support is needed to apply the current work to other
languages/libraries.

40



3. Related Work

In this chapter we review related work. The reviewed approaches make dif-
ferent compromises between precision (false positives), recall (false negatives),
scalability, reproducibility, and input requirements such as annotated source
code. We describe the main tools and algorithms related to data race and
deadlock detection. Furthermore, we also explain approaches that enable the
definition of error patterns that are tied to the domain of the program. The
characteristics of each method are also discussed, as well as how they relate to
our approach.

3.1. Race Detection

3.1.1. Static Analysis

Race detection can be performed at source code level using static analysis.
Static analysis is fundamentally limited, finding all data races is undecidable;
Miller describes it as an instance of the halting problem[NM92]. Race detection
requires knowing if at least two concurrent instructions operate on the same
address and whether one is a write. Not all conditions can be decided with
total precision without scalability limits. Aliasing, if two instructions operate
on the same address, is a classical and general problem in compiler theory.
Aliasing is undecidable, as stated by Ramalingam [Ram94], and is a source of
false positives.

Another source of false positives is the algorithms that detect if instructions
may be concurrent. May-Happen-in-Parallel (MHP) analyses are a family of
algorithms that search pairs of concurrent instructions. Barik [Bar06] presents

41



3. Related Work

a context and flow sensitive MHP algorithm to check if two Java threads may
happen in parallel, synchronization constructs are not considered. Other MHP
algorithms are restricted to some forms of parallelism, such as Sankar [SN16]
for async-finish parallelism in X10 languages. Bouajjani[BMT+05] proposed
dynamic pushdown networks (DPNs), an abstract model of multithreaded pro-
grams based on pushdown automata. DPNs are used to compute reachability
in a parallel program, as a race would be two conflicting memory accesses.
These algorithms have rarely been used for race detection, as they either have
limited scalability, or do not support the programming model (or synchroniza-
tion constructs) of mainstream imperative languages.

A commonly used heuristic is the assumption that instructions without a
shared lock can be executed concurrently, i.e. have disjoint locksets. Rac-
erX [EA03] uses a lockset analysis with an inter-procedural flow analysis. Re-
lay [VJL07] computes a relative lockset for each function independently, using
data-flow analysis. Afterwards the relative locksets are aggregated. The ap-
proach enables the parallelization of the analysis and scale to 4.5 million lines.
Locksmith [PFH11] uses a similar technique of summarization as Relay, but
also performs a global data-flow analysis. The global analysis improves the
precision of the tool, but limits its scalability to 20000 lines of code. Lockset
approaches ignore any kind of synchronization that is not based on mutexes.

Another approach to avoid or reduce the previous problems is the use of code
annotations, such as in Warlock [Ste93]. The developer must provide additional
information about expected locks, concurrent sets, or alias information. Tools
that rely heavily on specific annotations are disregarded by developers, as
they impose high adoption costs and the user can commit mistakes in the
annotations.

Static analysis tools are conservative, in that they produce many false warnings
without missing any errors. A high number of false positives causes developers
to lose interest, as they have to spend too much time triaging false warnings.
In our work, we want to avoid the generation of false positives and also obtain
a scheduling that leads to the error, so we focus on a dynamic analysis of the
program to avoid the ambiguities of static analysis. However, static analysis
can be used as a filter to remove race candidates before running a more precise
detector, as initially all memory accesses are candidates.

3.1.2. Dynamic Analysis

A dynamic analysis tool executes a given program under a specific workload
and analyzes the executed instruction stream. Observing the real behavior

42



3.1. Race Detection

of the program allows the analysis to overcome the aliasing problem of static
approaches, as real memory addresses and values are observed. Dynamic tools
instrument the program under test to observe the relevant events. It can
be done at source code level (program to program transformation), binary
level (with a binary level instrumentation framework like Valgrind [NS07]) or
with the help of specialized hardware, as in HARD [ZT07]. The analysis can
be executed on-line, simultaneously with program execution, or off-line, with
subsequent analysis of a trace. Both approaches impose different overheads on
program execution: CPU, memory, IO or storage.

On-Line Approaches

Eraser [SBN+97] originally presented the lockset algorithm, and implemented
it in a dynamic fashion. It monitors all shared memory accesses on-line and
lock acquisitions and releases. The algorithm checks the locking discipline; a
memory location must always be protected by the same lock. Eraser generates
false warnings as it is only aware of locks; other mechanisms such as fork-join
and signal-wait are completely ignored.

Using Lamport’s happens-before relationship [Lam78], race detectors, such as
DJIT [ISZBM99], Helgrind [Val07], and ThreadSanitizer [SI09], build a partial
order graph of the memory accesses on-line. If two memory accesses are not
ordered in the graph, then they could take place in parallel (in the observed
execution or a similar one) and produce a data race. The happens-before al-
gorithm allows the inclusion of non-lock primitives; fork-join, signal-wait or
barriers can produce happens-before edges in the graph. The algorithm is
implemented with the tracking of the vector clock at each memory access. Im-
plementations concerned with scalability and performance have specific opti-
mizations; FastTrack [FF09] introduces fewer vector clocks and uses additional
timestamps, while RaceTrack [YRC05] dynamically changes the granularity of
the detection at the cost of less precise reports. Although the on-line compu-
tation of the happens-before order produces precise reports, it costs more than
the use of the lockset algorithm, because vector clocks require more space and
take more time than locksets.

The happens-before algorithm is sensitive to the order of locking primitives.
Critical sections can often commute, which is not considered by the algorithm.
The happens-before ordering is propagated between two critical sections, and
false negatives arise as seen in Figure 1.6. The algorithm can be weakened to
not track the happens-before edges of lock and unlocking operations, trading
the false negatives for false positives. Smaragdakis et al. [SES+12] presented

43



3. Related Work

another variation of happens-before: the causally-precedes relationship. It ig-
nores the happens-before edges of two critical sections when they are conflict
free, i.e. do not share a write on the same variable. Causally-precedes does not
produce false positives, analyzes more interleavings than happens-before, and
can be evaluated in polynomial time. Another variant is hybrid approaches,
such as MultiRace [PS07] or Helgrind+ [JT08]. They combine the happens-
before relation with the tracking of the locking discipline. They explore more
schedulings because of the lockset agnosticism to critical sections, but similar
to what happens with the lockset, they cannot reconstruct an interleaving that
leads to the erroneous state.

Dynamic approaches are sensitive to execution order. Multiple re-executions
can generate different warnings or no warnings at all. This sensitivity also
increases the difficulty in reproducing the failures, due to the non-deterministic
decisions of the scheduler. The developer may not be able to reproduce a
similar state to understand which events led to a race. With the more relaxed
models, such as lockset or causally-precedes, the order in which the interleaving
happens is lost and the trace cannot be reproduced.

In RaceQuest we explore multiple different interleavings, i.e. fewer false nega-
tives, and conserve the order of synchronization events. We also use a weakened
happens-before and lockset algorithms as filters to discard some error candi-
dates from the trace before generating our CSP model. This filtering reduces
the number of events in the trace and generates a smaller CSP model.

Off-Line Approaches

Off-line, or post-mortem approaches generate a trace of a single execution of
the target program, usually perform some analysis on the trace, and enable the
replay of the program. The tools provide different levels of granularity. They
may only store and enforce the order of synchronization operations, or ensure
that all memory accesses of all threads occur in exactly the same order. Fine
granularity is more precise at the cost of higher logging overhead and trace
size, as in InstantReplay [LMC87]. With the reproduction the developer is
able to use a debugger or other common tools to observe the program behavior,
with higher consistency between executions than with dynamic on-line tools.
RecPlay [RB99] is an example with coarse granularity. During the recording
it only stores the synchronization primitives; later it detects races using a
happens-before analysis.

Plain record and replay systems only observe a single program interleaving.
Predictive trace analyses take a recorded execution and build an abstract

44



3.1. Race Detection

causal model that encompasses not only the observed but also alternative in-
terleavings, including reorderings of synchronization events not considered by
happens-before. The presented work belongs to this family of tools.

The approach of Said et al. [SWYS11] takes a trace with all synchronization and
shared memory accesses, including the read and written values, and encodes
the trace as a satisfiability problem. Each event is considered a single variable
in the formulas, with additional constraints to represent dependencies between
the operations, including semantics of synchronization operations. Read-write
consistency is also included; the formulas encode that a read operation must
happen after a write operation on the same variable with the same value. Then
a data race between two concrete events is an additional formula where two
events must happen one after the other, without any other event in-between.
This formula is added to the system, and the whole set of satisfiability equations
is fed to an SMT solver. If the equation system is satisfiable, then a total order
of the events that produce the data race exists. In this case it can be retrieved
and used to realize a fine-grained reproduction of the trace (although this
has not been implemented). The model presented is conservative and does
not generate false positives, so warnings are real and the counterexamples are
feasible.

Huang et al. [HMR14] extend the work of Said in a tool called RVPredict.
RVPredict takes branch instructions into account in the trace and the model.
The read-write consistency is reduced to only instructions that affect branch
conditions. For each branch a backward slice is computed. These extensions
generalize the Said et al. model, by containing a higher number of alternative
interleavings. Huang et al. prove that their extended model is maximal – it
encompasses all feasible interleavings from the trace for their criteria.

Said and Huang’s models pursue a sound analysis, and obtain no false posi-
tives. To accomplish this objective, the trace must contain all shared memory
accesses. This limits the application of static analysis, in order to reduce the
amount of instrumentation and the number of traced events. The models also
need the read and written values for all memory operations, further increasing
the size of the trace. Both models are designed for Java programs and are more
difficult to implement for C/C++ programs. In Java each element allocated
in memory cannot be accessed without a known reference and is accessed as
a whole, but in C/C++ each byte in program memory can be accessed at
any time with pointer arithmetic. The number of constraints in the model
increases as memory locations need to be split into individual bytes. A single
constraint for an integer would be transformed into four different constraints
with the corresponding part of the data for each byte, as each byte can be ad-

45



3. Related Work

dressed afterwards by different memory operations. The additional number of
constraints increases the workload of the solver and reduces scalability. Also,
C has a weaker type system than Java, limiting the effectiveness of alias and
static analysis, and more memory accesses need to be instrumented and stored.
Said and Huang’s evaluations do not take the costs of generating the trace into
consideration, but only the detection costs. The present work minimizes the
number of memory events logged with static and dynamic algorithms. Our
modeling step can generate false positives, so we execute the program under
test with the resulting interleavings to prune false positives. Additionally, Said
and Huang’s models only consider mutexes and signal-wait constructs, and do
not model the semantics of other constructs. We explicitly model barriers,
semaphores, and read-write mutexes to further reduce the number of false neg-
atives.

3.1.3. Influencing the Scheduler

As dynamic tools depend on the observed interleaving, some techniques build
upon enforcing different interleavings. They execute the program multiple
times modifying the decisions taken by the scheduler in each execution, and
simultaneously perform error detection with an available algorithm.

CalFuzzer [JNPS09] is a framework to find schedules in Java programs. It
uses the output of another static analysis tool about an error, such as a data
race or deadlock. It instruments the program accordingly to the type of the
error, and executes it under a biased random scheduler. The scheduler takes
random decisions, but tries to direct the program to a state where the error
would occur, for example by enforcing thread scheduling preemption points
just before a possibly racy access.

Systematic concurrency testing tools, such as CHESS [MQB07] and Inspect
[YCG08], go one step further and do not rely on a random scheduler. They
re-execute the program multiple times, each with the same workload but a
different thread scheduling. They systematically explore all possible interleav-
ings without repeating any. But as the number of interleavings grows expo-
nentially, they use several techniques to reduce the combinatorial explosion.
One technique is to not allow preemptions on each instruction, but only after
a determined number of instructions; this number is increased after all possi-
ble interleavings have been explored. Another technique is iterative schedule
bounding: the number of actual executed preemptions in a single execution
is limited. This limit is also increased iteratively after exhausting the current
search space. Dynamic partial order reduction techniques look for concurrent
and independent instructions during runtime and avoid exploring interleavings

46



3.2. Deadlock Detection

that only commute these instructions, as the program state is the same for all
these interleavings.

Tools that influence the scheduler can achieve a better coverage than multi-
ple executions of other dynamic on-line tools. These tools can also explore
more interleavings than off-line approaches, as they can see program paths not
available in a trace. In practice, these tools do not scale well with the size of a
program. All potential interleavings cannot be explored, as the number grows
exponentially, and the tool has to remember which interleavings have already
been explored. The exploration of an interleaving implies the execution of the
whole program, so the costs of sequential parts of code are paid each time.
Dynamic algorithms after one execution analyze an abstract model, which is
faster to explore than re-execution of the program for each interleaving.

3.2. Deadlock Detection

Deadlock detection due to lock acquisition is a field intertwined with data
race detection. Most race detection tools that track the lockset also perform
deadlock detection: RacerX [EA03] does it statically, while Eraser [SBN+97],
CHESS [MQB07], or ThreadSanitizer [SI09] do it dynamically. In addition to
locksets, they track the order in which locks are acquired. If two locks are
ever acquired in different orders, they report that as a warning of a possible
deadlock. This approach generates false positives when the locks are acquired
in different orders, e.g. in parts of the program that are not concurrent.

Most deadlock detectors, such as the work of Bensalem and Havelund [BH02],
or Dreadlocks [KH08], monitor the program and detect if the application dead-
locks at runtime. These tools build a wait-for graph; they annotate for each
lock which thread holds it, and which thread waits for it; if there is a cycle
in the graph then a deadlock exists. The cycle indicates in which order the
locks were acquired. Some tools use the cycle to guide the reproduction of the
deadlock.

There are other static approaches. Boyapati [BLR02] presents a type system
that guarantees deadlock freedom. Naik et al. [NPSG09] define six conditions
for deadlock freedom, and check each condition with a different set of static
analyses.

The most similar approach to our work is ConLock [CWC14], which performs
a constraint-based abstraction of a program trace to predict lock cycles. After-
wards ConLock guides the scheduler towards the suspicious deadlock. ConLock
also focuses on minimizing the number of scheduling points during reproduc-
tion. In contrast to our work, ConLock only searches for lock cycles and does

47



3. Related Work

not support deadlock prediction for other synchronization constructs, such as
barriers or semaphores.

3.3. Runtime Verification

There are specific algorithms to detect clearly defined concurrency failures,
such as data races and deadlocks. In dynamic analysis these algorithms work
as monitors that respond with an error report. When the failure is domain-
specific, no general monitor exists. Runtime Verification is a field that studies
the development and implementation of custom runtime monitors, first intro-
duced by Lee [LKK+99], Kim [KVBA+99], and Havelund [Hav00]. It is used for
multiple purposes: testing, verification, validation, fault protection, profiling,
policy monitoring, and for adaptive systems.

The monitor definition is composed of the events to observe and the property
to validate or refute. The events link the point during the program execution
and the property. The events are usually defined and extracted through in-
strumentation with Aspect-Oriented Programming. A pointcut specification
names the different events and ties them to points in the program, such as all
functions with a name that starts with print. The program is automatically
instrumented to generate the desired events and feed them to the monitor. The
property itself in the monitor is usually defined as a combination of defined
events through formalisms, such as state machines, linear temporal logic, or
regular expressions.

Most runtime verification tools examine only the actual execution or trace.
With additional information, such as vector clocks to establish happens-before
orderings, some tools predict failures in alternative reorderings, such as the
work by Sen et al. [SOA08] for general assertions in SystemC. Gpredict [HQR15]
is a tool based on the predictive trace analysis race detection by Huang et
al. [HMR14]. They extend their work with the definition of monitors for Java
programs, and they model the properties as regular expressions and custom
operators. Regular expressions are chosen, as the underlying model – a set of
satisfiability equations – is too awkward for user interaction. As our predic-
tive model is based on a process algebra, we can use the algebra to describe
the properties directly. We do not need to modify the algebra and it enables
more complex properties than regular expressions1, for example, counting the
number of occurrences of an event and reacting to them.

1CSP is Turing complete.

48



3.4. Summary

3.4. Summary

We reviewed the literature on the detection of three error types: data races,
deadlocks, and custom ordering errors through runtime verification. We showed
that static tools generate false positives due to their conservative approach,
which leads to wasted time and loss of interest by developers. These tools do
not produce a schedule to help identify the associated defect. Furthermore,
dynamic tools, such as RaceQuest, sacrifice coverage in order to avoid false
positives. These tools can reproduce the detected failure more easily. In Race-
Quest, we compensate the loss of coverage with off-line inference of alternative
interleavings. Off-line exploration of an abstract model takes less time than re-
executing the whole program under test multiple times. In difference to other
predictive approaches, our model needs fewer events, models more synchro-
nization constructs, and produces more interleavings. RaceQuest also handles
the three kinds of errors with a common approach: our CSP abstract model.

49





4. RaceQuest and Deadlock
Detection

In this chapter we present the main idea of this work as the RaceQuest tool,
introduced in our publications [CT15a] and [CT15b]. The core of the approach
is the interleaving generalization from a single trace by using the CSP process
algebra. Along the description of the approach, we use deadlock detection as
an example. Deadlock detection only requires the synchronization operations,
so the CSP model is the minimal model generated by RaceQuest for any kind
of concurrency failure. The chapter closes with an evaluation of deadlock
detection. The following chapters extend the model with more captured events
and with complimentary steps to detect other kinds of failures.

4.1. Overview

RaceQuest is an automatic tool that uses a trace of a parallel program to find
concurrency errors in alternative hypothetical interleavings. Each error, or
property, requires a description of which events are relevant and a description
of the erroneous or correct behavior. Deadlock and data race descriptions are
built-in, but the user can create a custom description, which is covered in
Chapter 6.

Figure 4.1 shows the workflow of RaceQuest. RaceQuest takes the source code
of a parallel program written in C/C++ using the POSIX threads library. The
source code is instrumented accordingly to capture the relevant events for the
error. We define the instrumentation specification as the set of events that are

51



4. RaceQuest and Deadlock Detection

relevant and how are they extracted from the source code. Synchronization op-
erations are always instrumented. The instrumentation is performed in LLVM
IR. The instrumented program is executed only once, under input provided
by the user. The instrumentation generates a trace of the running program,
with the operations executed by all threads. In the off-line prediction step, the
trace is decomposed and modeled using the process algebra CSP. The model
optimistically represents alternative interleavings of the trace along the same
control path. The erroneous or correct behavior is also described in CSP; we
call this description the property specification. The model is explored using the
FDR3 refinement checker. If the erroneous behavior is found, a counterexam-
ple is obtained. The instrumented program is re-executed with the same input,
but following the scheduling dictated by the counterexample. As the model
is optimistic, the counterexample can be feasible, enforceable in the program,
or infeasible. The reproduction removes infeasible counterexamples. The user
can also replay the program with the counterexample and observe the error
under the same scheduling. RaceQuest is a dynamic off-line approach. It is
only aware of the program events observed in the executed path, the trace. It
cannot infer errors in non-observed program paths.

4.2. Motivational Deadlock Example

A deadlock is a situation where two actions wait for the other to finish but none
of them do, as they cyclically compete for the same resources. In this work
we target deadlocks caused by competing actions on communication channels,
such as locking multiple mutexes. Most deadlock detection tools only detect
whether the running program is actually deadlocked, and differentiate between
a non-responsive state and one where the operation takes a long time.

Figure 4.2 shows a program with a possible deadlock. In the program two
threads compete for simultaneously acquiring two mutexes: m and p. Three
possible interleavings of this program appear in Figure 4.3. In the interleavings
4.3a and 4.3b, the program ended successfully, one of the threads was able to
acquire both mutexes first. In the third interleaving 4.3c, each thread acquired
one of the mutexes. As they try to acquire the second one, they cannot succeed
because the other thread is holding it. Both threads remain blocked on the
mutex and the program deadlocks.

With RaceQuest our target is not to detect a deadlock at runtime, but to
find a potential alternative interleaving where a deadlock happens. RaceQuest
takes one of the non-deadlocked interleavings and searches for a reordering
of the synchronization events that can lead to a deadlock. The deadlocked

52



4.3. Trace Model

Program

Instrumented Program

Trace

Predictor:
CSP model & check

Counterexamples

Reproduction

Result

Instrumentation
specification

Property specification

Error specific

Figure 4.1.: RaceQuest workflow

interleaving consists of all the steps needed to guide the program to a deadlock.
The steps are the calls to synchronization primitives.

4.3. Trace Model

First, we present our trace model: the events it contains and its internal rules.
The trace model works as an interface between the execution of a program
and the predictive step. The order of operations that the program must follow
during the replay step is also described by using the trace model.

A multithreaded program has a set of threads, each with a unique identifier t.
Each thread performs operations on different shared elements, such as a mutex
m, a barrier b, or a semaphore s. A trace α is a sequence of the events performed
by the different threads of a multithreaded program. The trace model is only
composed of synchronization events, which are depicted in Table 4.1.

53



4. RaceQuest and Deadlock Detection

Table 4.1.: Synchronization events

Event Description

start(t) thread t began its execution

end(t) thread t ended its execution

fork(t, t′) thread t spawned a child thread t′

join(t, t′) thread t was blocked until t′ ended its execution

lock(t, m) thread t acquired mutex m; if the mutex is a read-write
mutex then the acquisition is in write mode

flock(t, m) thread t executed an unsuccessful lock operation on mu-
tex m, due a failed lock acquisition through a conditional
lock (a lock busy during a try lock) or a timeout in a
timed lock

rdlock(t, m) thread t acquired the read-write mutex m in read mode

frdlock(t, m) thread t executed an unsuccessful read lock operation on
read-write mutex m, due a failed lock acquisition through
a conditional lock (a lock busy during a try lock) or a
timeout in a timed lock

unlock(t, m) thread t released mutex m

signal(t, ci) thread t woke up a thread waiting on condition variable
instance ci

broadcast(t, ci) thread t woke up all threads waiting on condition variable
instance ci

wait(t, ci) thread t blocked until another thread executed a signal
or broadcast on condition variable instance ci

fwait(t, c) thread t performed an unsuccessful wait operation, due a
timeout on a timed wait

barrier init(b, i) barrier b is initialized with value i

barrier enter(t, b) thread t entered and blocked at the barrier b

barrier exit(t, b) thread t left the barrier b

sem init(s, i) semaphore s is initialized with value i

sem wait(t, s) thread t decreased the value of semaphore s or blocked
until the value is greater than zero

sem fwait(t, s) thread t performed an unsuccessful semaphore wait op-
eration, due a timeout on a timed wait or a conditional
wait (semaphore counter equal to zero with a try wait)

sem post(t, s) thread t increased the value of semaphore s by one

atom(t) thread t performed an atomic operation

54



4.3. Trace Model

1 mutex m, p;
2 void main() {
3 fork(worker);
4 lock(p);
5 lock(m);
6 unlock(m);
7 unlock(p);
8 join(worker);
9 }

10
11 void worker() {
12 lock(m);
13 lock(p);
14 unlock(p);
15 unlock(m);
16 }

Figure 4.2.: Program with possible deadlock

Each event represents a completed operation done by a thread t. All the
operations are related to synchronization operations, although some do not
imply actual synchronization, such as ‘failed’ or initialization events.

A fork event has a single corresponding start event. The fork event always ap-
pears before the corresponding start. There is no fork event without a matching
start event or a start event without a fork event. The main thread has no start
or end event. A join event has a single corresponding end event. The end
event always appears before the corresponding join. But not all end events
have a matching join. A detached or non-joinable thread produces an end
event, which does not match any join in the trace.

We assume that lock-unlock, or rdlock-unlock, pairs are balanced. A lock is
always followed by an unlock by the same thread.

The events signal, broadcast, and wait do not use the condition variable on
which they operate as an argument. Instead they have a condition instance ci.
A condition instance ci is a specific use of a condition variable c. A condition
variable c can be used in a program multiple times and can build different
inter-thread edges. In this trace model each of these edges is considered an
independent instance of the condition variable. Each condition instance has
exactly one signal or broadcast event associated. If a condition instance is
associated with a signal, there are zero or one wait events associated, because a

55



4. RaceQuest and Deadlock Detection

main worker
fork(worker)

lock(m)
lock(p)
unlock(p)
unlock(m)

lock(p)
lock(m)
unlock(m)
unlock(p)
join(worker)

(a)

main worker
fork(worker)
lock(p)
lock(m)
unlock(m)
unlock(p)

lock(m)
lock(p)
unlock(p)
unlock(m)

join(worker)

(b)

main worker
fork(worker)

lock(m)
lock(p)

DEADLOCK

(c)

Figure 4.3.: Different interleavings for program in Figure 4.2

signal can only wake up one thread. If a condition instance is associated with a
broadcast, there are any number of wait events associated, because a broadcast
can wake up multiple threads. Signal or broadcast events without associated
waits are cases of lost signal. They do not impose any synchronization and are
kept for replay purposes. How the condition variables instances are computed
is described in Section 4.3.2 along with the trace capture.

Two events, barrier enter and barrier exit, represent waiting at a barrier. The
barrier exit(t, b) event always happens after the matching barrier enter(t, b).
There is no other event performed by thread t between these two events.

Initialization events, barrier init and sem init, do not carry thread identifiers
and are mere annotations of the initial values of the corresponding synchro-
nization constructs. For each barrier b in the trace there is a single barrier init
for b. For each semaphore s in the trace there is a single sem init for s. Ini-
tialization events are not used later during reproduction.

Failing events: flock, frdlock, fwait, and sem fwait represent unsuccessful ver-
sions of some synchronization primitive. These events only appear in calls that
can ‘fail’, such as conditional locking. These events do not produce any kind of

56



4.3. Trace Model

inter-thread synchronization. Their position in the trace is needed for a more
precise replay of the original program. Similarly, the atom event is only needed
to know the position of atomic memory operations and order non-deterministic
atomic operations during the replay step.

4.3.1. Example of a Non-Deadlocked Trace

We assume that a single execution of the program in Figure 4.2 has not pro-
duced a deadlock and finished successfully, as in the interleaving shown in
Figure 4.3a. This interleaving is represented in the trace model as the trace in
Figure 4.4.

fork(t1, t2)
start(t2)
lock(t2, m)
lock(t2, p)
unlock(t2, p)
unlock(t2, m)
lock(t1, p)
lock(t1, m)
unlock(t1, m)
unlock(t1, p)
end(t2)
join(t1, t2)

Figure 4.4.: Trace with no deadlock

The thread main is identified as t1, the thread worker as t2. At the beginning,
the fork of t2 by t1 appears before the start of t2. In this trace t2 is the first
to acquire and release both mutexes m and p. Afterwards, t1 acquires and
releases these mutexes. The lock-unlocks events on m and p are balanced. The
thread t1 also performs a join on t2, which appears after the corresponding end
event of t2. For deadlocks only the synchronization events are needed, no other
events are recorded in the trace.

4.3.2. Capturing the Trace

The description of the trace events in Table 4.1 associate each event with
some function or point in the program, a tracing point. To capture the event
at each tracing point we use two techniques: function wrapping and program
instrumentation. The input program is first compiled in LLVM IR. The LLVM

57



4. RaceQuest and Deadlock Detection

IR is modified to generate an instrumented version which will be compiled to
machine code. Auxiliary functions needed by the instrumentation are part of
an external library that is linked to the instrumented program. The execution
of the final binary of the instrumented version will output a trace.

The start, end, and atom events do not directly correspond to any function
call. Auxiliary functions are inserted at the beginning and end of each thread
function to emit start and end events. Before each LLVM IR atomic instruction
we insert an auxiliary function, which will emit the atom event.

Calls to the functions of the synchronization library, the POSIX threads li-
brary, are outlined and wrapped in the LLVM IR with auxiliary functions.
These auxiliary functions emit the event for the corresponding function, with
a unique thread identifier and the needed arguments. Each auxiliary wrap-
ping function also calls its original synchronization function. The trace model
events are mapped one-to-one to POSIX threads calls, with some exceptions.
Barrier enter and barrier exit are generated by the function wrapper during
a single call to a barrier wait, i.e. after and before the call to the original
function. ‘Failed’ events depend on the return value of the original function.
If a try lock fails because the lock is held, then flock is emitted. If successful,
then a normal lock event is emitted.

Capturing signal-wait events

Capturing signal-wait or broadcast-wait events is not as straightforward as
capturing the other events. As explained in Section 2.1.2, the wait call is
surrounded by a loop that checks the precondition. If the precondition is met
before reaching the loop, the wait call is not seen at all. It is also possible that
we see the wait call multiple times. The waiting thread can sporadically wake
up, not exit the loop and call the wait function again.

This issue is solved using the exit of the waiting loop as the point where the wait
event is emitted instead of the call itself. For each waiting loop an additional
function call -wait post- is introduced after the loop, as in the example in
Figure 4.5.

The algorithm in Figure 4.6 checks if a wait call has the expected structure
and instruments it. First it checks if the wait call is in a loop. If not a
warning is issued. The loop is canonicalized; it contains a single entry edge
from outside (the header), a single back edge, and all exit blocks are dominated
by the header. The algorithm checks whether the loop header is dominated
by a lock operation on the mutex used by the wait, and whether all exits of
the loop are post-dominated by the corresponding unlock. As explained in

58



4.3. Trace Model

1 int flag = 0;
2 mutex m;
3 cond_var c;
4 void main() {
5 fork(worker);
6 lock(m);
7 flag = 1;
8 signal(c);
9 unlock(m);

10 join(worker);
11 }
12
13 void worker() {
14 lock(m);
15 while (flag == 0) {
16 wait(c, m);
17 }
18 wait_post(c, m);
19 unlock(m);
20 }

Figure 4.5.: Program with instrumented wait loop

Section 2.1.2, a wait loop must be surrounded by a lock and an unlock. If
any of these conditions is not met, a warning is issued and the wait is ignored.
Then each exit of the loop is instrumented with a wait post function call. The
instrumenting function takes the condition variable and mutex of the wait call
as arguments. Non-instrumented waits lead to missing wait events in the trace.
The instrumenting function is implemented as a LLVM Pass that uses LLVM
to find loops and compute dominance.

During runtime the instrumented wait call will not emit any event. Instead,
wait post produces the corresponding wait event. For each wait-loop a single
wait event is emitted, regardless of whether the wait call is executed zero, once,
or multiple times. As a wait implicitly unlocks and locks the mutex, the wait
event is not emitted alone. The wait event is always preceded by an unlock
event on the mutex and followed by a lock event on the mutex, as show in the
trace in Figure 4.7.

We also need to match the signal or broadcast to the corresponding waits. The
trace model defines that signal and wait events operate on condition variable
instances, i.e. uses of a condition variable. Initially these events are emitted

59



4. RaceQuest and Deadlock Detection

Let wait set be the set of all wait, try wait, and timed wait calls present
in a module
for each w(c, m) call in set wait set, where c is a condition variable and m
a mutex do

if w not in a loop then
Issue a warning and continue

end if
Let l be the loop surrounding w in canonical form
if 6 ∃ lock on m dominating the header of l then

Issue a warning and continue
end if
for each unique exit block e of the loop l do

if 6 ∃ unlock on m postdominating e then
Issue a warning and continue

end if
end for
for each unique exit block e of the loop l do

Insert wait post(c,m) in e
end for

end for

Figure 4.6.: Wait loop instrumentation algorithm

with the identifier of the condition variable. The trace is preprocessed to
compute the condition variable instances. The preprocessing matches each
wait to the nearest and previous signal or broadcast available and assigns to
each match a unique identifier for the instance. During runtime, it is ensured
that the signal event appears in the trace before the wait.

60



4.4. CSP Model

fork(t1, t2)
start(t2)
lock(t1, m)
signal(t1, c)
unlock(t1, m)
lock(t2, m)
unlock(t2, m)
wait(t2, c)
lock(t2, m)
unlock(t2, m)
end(t2)
join(t1, t2)

Figure 4.7.: Trace of a signal-wait program

4.4. CSP Model

The CSP model is the core idea of RaceQuest. A trace represents a single
interleaving. From a single trace we extrapolate alternative interleavings that
occur when the synchronization events have a different timing. The events in
the trace are mapped to CSP events. The behavior of the individual threads
and the synchronization constructs are modeled as CSP processes. These pro-
cesses are combined with different standard operators to obtain a final process
called PROGRAM . The idea is that the set of traces traces(PROGRAM)
contains the ordering of the input trace as well as the alternative ones.

Events

Each event in the trace is mapped one-to-one to CSP events. The mapping uses
the CSP dot notation. The event type is the channel. The event arguments are
fields in the CSP event, in the same order. For example, a trace event lock(t1,
m) is translated directly to CSP as lock.t1.m.

The initialization events, barrier init and sem init, are ignored and not trans-
lated into CSP events. They are only used to provide starting values to the
CSP processes representing barriers and semaphores.

Threads

Each thread in the trace is represented in two ways in the CSP model. Each
CSP event carries an identifier of the performing thread in the first field, like
the events in the trace carry the thread identifier.

61



4. RaceQuest and Deadlock Detection

The CSP model also defines a process THREADi for thread i. Each of these
processes represents the total ordering of the events in the trace for that thread.
Each THREADi process is a chain of CSP prefixed expressions terminated in
SKIP . Each prefix corresponds to one event in trace for thread i, and the prefix
expressions follow the same order as the events in the trace. For example, if
the events in the trace for thread t are: e1, e2, e3, ..., en, then the following CSP
process is built:

THREADt = e1 → e2 → e3 → ...→ en → SKIP

An unrestricted interleaving of all thread events is achieved using the interleav-
ing operator on all THREAD processes. This new interleaved process freely
mixes the events of the different threads, but maintains the internal order of
each one. To determine that all threads have ended we concatenate this inter-
leaving composition with the emission of an auxiliary event endthreads. The
resulting process is called INTER:

INTER = (|||i∈Threads THREADi)) ; endthreads→ SKIP

Main process

The CSP process PROGRAM represents the input trace but also the alter-
native reorderings, which could include interleavings that reveal a deadlock.

PROGRAM = INTER ‖
sync events

SY NC

sync events = {|fork, start, join, end, lock, rdlock, unlock, signal, broadcast,
wait, barrier enter, barrier exit, sem post, sem wait|} − independent

PROGRAM is a parallel composition of two processes INTER and SY NC.
The combination of all the possible orderings of the threads is represented
by the process INTER. The event names do not have any meaning for the
process algebra, e.g. lock or signal are arbitrary identifiers. Their semantics
are subject to our use case. The process INTER can exhibit traces that
violate the semantics of the synchronization events. For example, it is possible
that 〈lock.t1.m, lock.t2.m〉 ∈ traces(INTER), because if both events appear
in different THREAD processes, the interleaving operator can shuffle them.
But a mutex locked by t1 could not be immediately locked by t2. To provide
meaning to the synchronization events, we define a process that describes the
valid orders of the synchronization events. These orders are represented by the
process SY NC.

62



4.4. CSP Model

The parallel composition of INTER and SY NC removes the invalid orders
because of the synchronization events, for example 〈lock.t1.m, lock.t2.m〉 6∈
traces(PROGRAM). All synchronization events are contained in the set
sync events. To perform any event in sync events, both processes need to
agree to perform the event due to the synchronous rules of CSP and the inter-
faced parallel operator. The set independent is excluded. This set contains:
end events without matching join, signal, and broadcast events without match-
ing wait.

Synchronization

The order between threads imposed by the synchronization constructs is rep-
resented in the CSP model with the process SY NC. SY NC is a combination,
interleaving, of sets of independent processes. Each of these sets represents a
type of synchronization present in the trace: fork-join edges, mutexes, signal-
wait, barriers, and semaphores.

SY NC = FORKJOINS |||MUTEXES ||| WAITS

||| BARRIERS ||| SEMAPHORES

Fork-join

The creation of thread t′ through the fork-start pair is represented by a FORKt′

process:

FORKt′ = fork?t.t′ → start.t′ → SKIP

The start event of the children thread t′ cannot be performed, because t′ is
blocked at the beginning, until any other thread t executes a fork operation
creating t′. The use of ? instead of a dot means that t could be any thread,
while t′ is defined by the parameter of the process FORKt′ . Only one fork
event that creates t′ exists in the trace.

The joining on a thread t′ through the end-join pair is represented by a JOINt′

process:

JOINt′ = end.t′ → join?t.t′ → SKIP

In the trace, there is only one join event per thread created. Again, any thread
t that can perform the join event is specified with the use of the ? separator.

63



4. RaceQuest and Deadlock Detection

The process FORKJOINS combines all the FORK and JOIN processes.
The processes are simply interleaved as they do not interact. All thread iden-
tifiers, with the exception of the main thread, the only one not created with a
fork, compose the set CreatedThreads. The set JoinedThreads contains all
thread identifiers that are joined at some point in the trace. The main thread,
non-joinable, and detached threads are excluded from JoinedThreads.

FORKJOINS = (|||t∈CreatedThreads FORKt)

||| (|||t∈JoinedThreads JOINt)

Mutexes

A mutex m that can be used by any thread is represented by the process
MUTEXm:

MUTEXm = lock?t.m→ unlock.t.m→MUTEXm

The process accepts a lock on the mutex m by any thread, which represents the
transition to the acquired state of a mutex. Afterwards the process can only
return to the original state, thanks to the recursive call to MUTEXm, with an
unlock event. The unlock event must be performed by the same thread that
has executed the previous lock event, as it is bound to t. Figure 4.8 represents
the equivalent labeled transition system.

lock?t.m

unlock.t.m

Figure 4.8.: Labeled transition system for process MUTEXm

If the trace contains a rdlock event associated with a particular mutex m,
then m is considered a read-write mutex. A read-write mutex m is modeled
by a RWMUTEXm,max process, where max defines the maximum number of
threads that can share the mutex in read mode:

RWMUTEXm,max = RWMUTEXm,max,0

RWMUTEXm,max,0 = lock?t.m→ unlock.t.m→ RWMUTEXm,max

2 rwlock?t.m→ RWMUTEXm,max,1

RWMUTEXm,max,i = rdlock?t.m→ RWMUTEXm,max,i+1

2 unlock?t.m→ RWMUTEXm,max,i−1

RWMUTEXm,max = unlock?t.m→ RWMUTEXm,max,i−1

64



4.4. CSP Model

At the beginning a RWMUTEX process accepts any lock or rwlock event.
A lock event puts the read-write mutex in write mode. Then it works similar
to a normal mutex. No other locking event is possible until the corresponding
thread frees it with an unlock event. Alternatively, the mutex can go into read
mode, which happens when it is acquired with a rdlock event from the initial
state. From this point on, only new rdlock events or unlock events are allowed.
The parameter i is a counter of the needed unlocks to bring back the process
to the initial state after a series of rdlock events. A read-write mutex has no
limit on the number of threads that can acquire it in read mode. To limit the
number of possible states in the model due to the different values of i, we limit
i with the maximum value max. The value max is equivalent to the number
of different threads in the trace that have a rdlock event on the mutex m. The
maximum value of max is the number of different threads in the trace. If max
is zero, there is no rdlock event on the trace, and the behavior is equivalent
to a simple MUTEX process, so MUTEXm ≡ RWMUTEXm,0. Figure 4.9
represents the equivalent labeled transition system.

0

1 ... max

lock?t.m

unlock.t.m

rdlock?t.munlock.t.m

rdlock?t.m

unlock.t.m

rdlock?t.m

unlock.t.m

Figure 4.9.: Labeled transition system for process RWMUTEXm,max

All the mutexes in a trace are represented with the process MUTEXES. The
set Mutexes is the set of all normal mutexes defined on the trace. The set
RWMutexes is a set of pairs with the id of a mutex, as well as the number of
threads with rdlock events on the mutex, if this number is greater than zero.

MUTEXES = (|||m∈Mutexes MUTEXm)

||| (|||(m,max)∈RWMutexes RWMUTEXm,max)

65



4. RaceQuest and Deadlock Detection

We can simplify it further and define the MUTEXES combination only using
RWMUTEX. In this case the set AllMutexes is a set of pairs with the id of
a mutex and the number of threads with rdlock events on it.

MUTEXES =|||(m,max)∈AllMutexes RWMUTEXm,max

Signal-wait

Each synchronization due to a conditional variable instance ci is represented
by a SIGNALci process.

SIGNALci = signal?t.ci → wait?t.ci → SKIP

2 broadcast?t.ci → NWAITci
NWAITci = wait?t.ci → NWAITci

If the condition variable instance is associated with a signal, then the signal
is followed by a single wait. If associated with a broadcast, then the recur-
sive process NWAITci allows any number of waits on ci. A thread can only
perform a wait on ci after another thread has performed the corresponding
signal/broadcast event on ci. Figure 4.10 represents the equivalent labeled
transition system.

signal?t.ci wait?t.ci

broadcast?t.ci

wait?t.ci

Figure 4.10.: Labeled transition system for process SIGNALci

The process SIGNALS represents all the signal-wait event pairs in a trace,
where the set CondV arInstances is the set of all condition variable instances
with at least one wait in the trace.

SIGNALS =|||ci∈CondV arInstances SIGNALci

66



4.4. CSP Model

Barriers

A barrier b is modeled with the BARRIERb,max process, where max is the
number of threads that must reach the barrier to open it, a value provided by
the only related barrier init event on b in the trace.

BARRIERb,max = barrier enter?t.b→ BARRIER Ub,max,1

BARRIER Ub,max,i = barrier enter?t.b→ BARRIER Ub,max,i+1

BARRIER Ub,max,max = barrier exit?t.b→ BARRIER Db,max−1

BARRIER Db,max,i = barrier exit?t.b→ BARRIER Db,max,i−1

BARRIER Db,max,0 = BARRIERb,max

Initially the process BARRIERb,max only accepts barrier enter events. When
the counter i reaches the max value, the process only accepts barrier exit
events. When a thread in the trace performs a barrier enter, the next event
is always a barrier exit on the same barrier. This process accumulates the
barrier enter events of multiple threads, until there are max threads, then
all these threads can execute their respective barrier exit events. Once all
the threads have left the barrier, the process is restarted and can be reused.
Figure 4.11 represents the equivalent labeled transition system.

0

1 ...

max

...1

barrier enter?t.b

barrier enter?t.b

barrier enter?t.b

barrier exit?t.b

barrier exit?t.b

barrier exit?t.b

Figure 4.11.: Labeled transition system for process BARRIERb,max

All the barriers in a trace are represented by the BARRIERS process. The
set Barriers is the set of pairs with the id of a barrier and the number of

67



4. RaceQuest and Deadlock Detection

threads needed to unblock the barrier given by the corresponding barrier init
event in the trace.

BARRIERS =|||(b,max)∈Barriers BARRIERb,max

Semaphore

A semaphore s is modeled as a counter with the SEMAPHOREs,init,max

process, where init is the initial value of the semaphore provided by the
corresponding sem init event. Max defines the maximum number that the
semaphore can reach and is equal to the total number of sem post events on
s in the trace.

SEMAPHOREs,0,max = sem post?t.s→ SEMAPHOREs,1,max

SEMAPHOREs,i,max = sem post?t.s→ SEMAPHOREs,i+1,max

2 sem wait?t.s→ SEMAPHOREs,i−1,max

SEMAPHOREs,max,max = sem wait?t.s→ SEMAPHOREs,max−1,max

An event sem post by any thread increases the counter by one, while an event
sem wait decreases the counter by one. If the counter is zero, threads execut-
ing a sem wait event on the semaphore are blocked until another executes a
sem post. A semaphore starts with an initial value init, so the whole process
can start in any of the states. Figure 4.12 represents the equivalent labeled
transition system.

0 1 ... max

sem post?t.s

sem wait?t.s

sem post?t.s

sem wait?t.s

sem post?t.s

sem wait?t.s

Figure 4.12.: Labeled transition system for process SEMAPHOREs,init,max

All the semaphores in a trace are represented by the SEMAPHORES process.
Semaphores is the set of 3-tuples with the id of a semaphore, the initial value,
and the maximum value of the counter, which are given by the corresponding
sem init event in the trace.

SEMAPHORES =|||(s,init,max)∈Barriers SEMAPHOREs,init,max

68



4.4. CSP Model

4.4.1. CSP Model Example

Figure 4.13 contains the corresponding CSP model for the trace example in
Figure 4.4.

THREADt1 = fork.t1.t2 → lock.t1.p→ lock.t1.m→ unlock.t1.m→
unlock.t1.p→ join.t1.t2 → SKIP

THREADt2 = start.t2 → lock.t2.m→ lock.t2.p→ unlock.t2.p→
unlock.t2.m→ end.t2 → SKIP

INTER = (THREADt1 ||| THREADt2) ; endthreads→ SKIP

FORKt′ = fork?t.t′ → start.t′ → SKIP

JOINt′ = end.t′ → join?t.t′ → SKIP

MUTEXi = lock?t.i→ unlock.t.i→MUTEXi

SY NC = FORKt2 ||| JOINt2 |||MUTEXm |||MUTEXp

PROGRAM = INTER ‖
sync events

SY NC

sync events = {|fork, start, join, end, lock, rdlock, unlock, signal,
broadcast, wait, barrier enter, barrier exit, sem post,

sem wait|} − independent
independent = ∅

Figure 4.13.: CSP model of the trace in Figure 4.4

The trace contains only two threads, so the model only uses the identifiers
t1 and t2 in the events and there are only two THREAD processes. Each
THREADt process only consists of the events in the trace performed by thread
t, and the events follow the same order as in the trace. The SY NC process
is composed of three other processes: FORKt2 , JOINt2 and a MUTEXp. As
described previously, FORKt′ , JOINt′ and MUTEXi are the templates for
any fork, join, or mutex synchronization. They are instantiated in the compo-
sition of SY NC. The FORKt2 represents the creation of the thread t2. The
JOINt2 represents the joining of t2. The joining thread cannot execute the join
event until t2 has executed its end event. The MUTEXp model the accesses
by any thread to the mutex p, after one lock has been performed; another lock
is not possible until the corresponding unlock. The set independent is empty,
because there are no independent events in this model. We could simplify the
set sync events to sync events = {|fork, start, join, end, lock, unlock|}.

69



4. RaceQuest and Deadlock Detection

The set traces(PROGRAM) contains the trace of the interleaving in Fig-
ure 4.4. The set also contains other traces, i.e. other reorderings of the input
events. The order of the events of the same thread is maintained in all reorder-
ings. For example, lock.t1.p always appears after fork.t1.t2, because it was so
defined in the process THREADt1 . The processes representing the synchro-
nization constructs, such as MUTEXi and FORKt′ , ensure that the orders of
their events follow the semantics of the synchronization. For example, there is
no trace in the set where start.t2 appears before fork.t1.t2, because FORKt2

forces the fork to always appear first. Similarly, there is no trace with two
lock events on the same mutex without an unlock between them; the process
MUTEXi guarantees this.

traces(PROGRAM) = {〈fork.t1.t2〉, 〈fork.t1.t2, start.t2〉, ...,
〈fork.t1.t2, start.t2, lock.t2.m, lock.t2.p, unlock.t2.p, unlock.t2.m,

lock.t1.p, lock.t1.m, unlock.t1.m, unlock.t1.p, end.t2, join.t1.t2, endthreads〉,
〈fork.t1.t2, start.t2, lock.t1.p, lock.t1.m, unlock.t1.m, unlock.t1.p,

lock.t2.m, lock.t2.p, unlock.t2.p, unlock.t2.m, end.t2, join.t1.t2, endthreads〉,
〈fork.t1.t2, start.t2, lock.t2.m, lock.t1.p〉, ...}

We see that the goal of the CSP modeling is achieved, i.e. to obtain a set of
possible interleavings from variations of the input interleaving, such as all the
interleavings depicted in Figure 4.3. The trace corresponding to the deadlocked
interleaving in Figure 4.3c also appears in the set:

〈fork.t1.t2, start.t2, lock.t2.m, lock.t1.p〉

In the next section we extract this trace from traces(PROGRAM), using a
CSP refinement check and the event endthreads. Some traces in the set exhibit
the auxiliary event endthreads as the last event. This event is present in the
model, but not in the input trace. The event endthreads is one of the keys to
differentiate between a trace where the program halts and a trace where the
program deadlocks.

4.5. Error Checking

Once we have a model of the input and the alternative traces in the CSP process
PROGRAM , we have to find and extract a possible trace in PROGRAM
leading to the target error.

70



4.5. Error Checking

The error or correct behavior check must be defined as a refinement relationship
between the two processes SPEC and IMPL:

SPEC v IMPL(PROGRAM)

The IMPL process must be a composition where one of the components is
the PROGRAM process. A CSP model checker has the task to explore the
composing processes and check if the refinement holds or not. The model
checker can find more than one state where the refinement does not hold; these
states belong to different schedulings and/or different errors. If the refinement
does not hold, the PROGRAM process has executed a sequence of steps that it
should not. This sequence of steps can be used later to reproduce the erroneous
behavior.

This refinement relationship and auxiliary processes are the property specifica-
tion. We must describe the processes SPEC and IMPL for the type of error
that we want to detect. The following section describes the general property
specification for deadlocks.

4.5.1. Deadlock Checking

In CSP a process is deadlocked after a trace if it cannot perform any event at
all, i.e. its refusal set is composed of all the events in the system. The default
CSP process STOP is always deadlocked. After the only possible trace, 〈〉 (the
empty trace), STOP cannot perform anything.

Using the failures semantic model and a refinement relationship, it is possible
to check if a process deadlocks or not in CSP terms. The traces semantic model
is not enough here. We need to compare which sequences the processes are
able to perform and if they are willing to perform more events; in a deadlock
they cannot engage in any event. To find deadlocks in the original program,
we search for deadlocks in the constructed PROGRAM process.

But when the process PROGRAM performs the endthreads event, it will
be CSP-deadlocked, i.e. after executing all the events in both thread pro-
cesses there are no more events to execute in PROGRAM . We have to distin-
guish between the situation in PROGRAM reaching a CSP-deadlock because
endthreads has been reached, and any other CSP-deadlock. These other CSP-
deadlocks are the ones that we want to find and apply to the original program
as deadlocks. The following refinement relationship for deadlock freedom is as
follows:

LIV E = live→ LIV E

LIV E vF (PROGRAMΘendthreadsSKIP ) \ Σ ; LIV E

71



4. RaceQuest and Deadlock Detection

We use the exception operator Θ on PROGRAM to transit to a SKIP process
if the event endthreads is reached. Reaching SKIP means reaching the process
LIV E thanks to the sequential composition. The process LIV E is a recursive
process that always emits and accepts the live event. It never deadlocks. We
also hide all events, Σ, except the live event.

The idea is the following: if PROGRAM cannot deadlock under any sequence
of events, then it will always reach the endthreads event, which leads to SKIP
and finally to LIV E. Both sides of the refinement will behave like the LIV E
process and the refinement holds, always emitting and accepting the live event.
If PROGRAM deadlocks at any other point without reaching the endthreads
event, then, for some trace, it will not behave like LIV E and will refuse the
event live. But the LIV E process on the left side of the refinement cannot
refuse the event live, it always accepts live. As the left side of the refinement
always accepts live, but the right side can refuse live for some traces, then the
refinement does not hold.

When the refinement holds there is no deadlock in any reordering of the input
trace, i.e. PROGRAM is deadlock-free. When the refinement does not hold,
the process PROGRAM contains a reordering of the input trace leading to
the detected deadlock. This reordering is a counterexample of the refinement,
a witness of the falsification of the relationship.

Note that the refinement check has always the same definition, independently
of the construction of the PROGRAM process. Neither the number of events,
composition of THREAD processes, or synchronization processes modify how
the deadlock check is built.

4.5.2. Deadlock Check Example

Figure 4.14 contains the previous example model in Figure 4.13 along with the
deadlock refinement check. The final CSP model with the check is the union
of the processes defining the possible reorderings, such as PROGRAM and
THREADt, the definition of the auxiliary process LIV E, and the refinement
check.

In this example the refinement does not hold and a counterexample is:

〈fork.t1.t2, start.t2, lock.t2.m, lock.t1.p〉

The counterexample is equivalent to the deadlocked interleaving in Figure 4.3c.
The thread t2 first acquires m, and before acquiring p the thread t1 locks on p.
After this trace the process PROGRAM cannot engage in any new event, it is

72



4.6. Counterexample Reproduction

THREADt1 = fork.t1.t2 → lock.t1.p→ lock.t1.m→ unlock.t1.m→
unlock.t1.p→ join.t1.t2 → SKIP

THREADt2 = start.t2 → lock.t2.m→ lock.t2.p→ unlock.t2.p→
unlock.t2.m→ end.t2 → SKIP

INTER = (THREADt1 ||| THREADt2) ; endthreads→ SKIP

FORKt′ = fork?t.t′ → start.t′ → SKIP

JOINt′ = end.t′ → join?t.t′ → SKIP

MUTEXi = lock?t.i→ unlock.t.i→MUTEXi

SY NC = FORKt2 ||| JOINt2 |||MUTEXm |||MUTEXp

PROGRAM = INTER ‖
sync events

SY NC

sync events = {|fork, start, join, end, lock, rdlock, unlock, signal,
broadcast, wait, barrier enter, barrier exit, sem post,

sem wait|} − independent
independent = ∅

LIV E = live→ LIV E

LIV E vF (PROGRAMΘendthreadsSKIP ) \ Σ ; LIV E

Figure 4.14.: CSP model of the trace in Figure 4.4 with deadlock refinement

deadlocked. The INTER process (due to the individual THREAD processes)
is only willing to execute the following events: lock.t1.m and lock.t2.p. But
the SY NC (due to the MUTEX processes) will only engage in: unlock.t1.p,
unlock.t2.m or end.t2. As these two sets are disjointed and all the events
are part of sync events, INTER and SY NC cannot agree on the parallel
operator to execute a common event. The combination (PROGRAM) refuses
to engage in any event at all and is effectively deadlocked after that trace. The
machine-readable version of this example in CSPM is in Appendix A.2.1.

4.6. Counterexample Reproduction
The final step in RaceQuest consists of reproducing the failure. The reproduc-
tion has two goals: to discard infeasible counterexamples, see Section 4.7.2, and
to allow the developer to reproduce the error multiple times, always observing
the same interleaving.

73



4. RaceQuest and Deadlock Detection

The counterexample is an ordered sequence of events that lead to the erro-
neous state. We use the counterexample directly as a schedule to replay the
instrumented program. The input trace was obtained from a set of tracing
points, such as start and end of a thread, thread creation, mutex locking and
unlocking, etc., as described previously in Table 4.1. These points are now
used as scheduling points.

Each time a thread arrives at one of these scheduling points, the algorithm
in Figure 4.15 is evaluated. The thread id of the current thread is compared
against the thread id of the first event in the counterexample. If the ids are
different, the current thread is blocked and must wait to be woken up. If
the current thread matches the first event in the counterexample, then the
type of the operations is compared. For example, if the first event in the
counterexample is a lock, then the current scheduling point of the current
thread should be a lock. When the types do not match, the counterexample
is infeasible and the reproduction is aborted. If the types match, the real
operation is executed, i.e. the lock. If the expected operation is a ‘failed’
event, such as flock or fwait, the failed result is mimicked instead of executing
the real operation. For example, returning a ‘lock busy’ result if we are in
a try lock. Then the first event in the counterexample is discarded and the
next event is enforced. If the thread for the next event is already blocked, it is
woken up explicitly.

The reproduction is partially deterministic. After enforcing the last event in
the counterexample, the program reaches a state where the failure manifests
itself. The program continues its execution freely, with the consequences of the
failure, and the enforcing algorithm no longer applies.

During the enforcement the algorithm prevents the execution of any scheduling
point that does not match the first event in the counterexample. Instructions
not covered by scheduling points are executed freely. If a program does not
exhibit the failure, the counterexample can be discarded.

4.6.1. Deadlock Reproduction Example

The counterexample obtained from the previous model in Figure 4.14 is:

〈fork.t1.t2, start.t2, lock.t2.m, lock.t1.p〉

Following this counterexample we re-execute the original program from Fig-
ure 4.2. At the beginning only the fork by the thread main is possible. After
that, the thread worker (t2) can start or main can acquire the mutex p. If

74



4.7. Limitations

Let sched be the sequence of events to be enforced
Let t be the current thread
Let op be the type of operation in the current scheduling point
Let ts be the thread id in head(sched)
if t 6= ts then

Block thread t
end if
Let ops be the operation in head(sched)
if op 6= ops then

infeasible enforcement, abort
end if
if ops is not a fail operation then

result← execute original operation
else

result← a failed result
end if
Remove head(sched)
Let tw be the thread id in head(sched)
if tw is blocked then

Wake up tw
end if
return result

Figure 4.15.: Scheduling point enforcing algorithm

main reaches first lock(p), then its thread id will not match the thread id
of the next event, start.t2, and main will be blocked by the algorithm. The
thread worker is able to begin, i.e. to complete the start event. The thread
worker also successfully executes lock(m). The next thread is main, so it
is unblocked. The thread main executes lock(p). The counterexample is
now totally consumed and the program will run freely. But both mutexes are
acquired by different threads and both threads will try to acquire the other
mutex, thus the program deadlocks as expected.

4.7. Limitations

The presented approach has several limitations in the model depending on its
size, which events are represented, and the possible reorderings. In this section
we discuss all these limitations, as well as their consequences.

75



4. RaceQuest and Deadlock Detection

4.7.1. Unsupported Concurrency Mechanisms

The CSP model only creates inter-thread orderings based on the semantics
of the synchronization operations. There are two mechanisms that are not
supported by RaceQuest:

• Ad-hoc synchronization: any non-standard synchronization construct
created by the application developer, as described in Section 2.1.3. Ad-
hoc synchronization does not use any standard function call or fixed
pattern. Its purpose is dependent on the specific implementation.

• Lock-free programs: in general, these are parallel programs that cannot
be blocked by other threads. They do not use mutexes or other com-
mon synchronization constructs. Instead, through a clever use of atomic
variables and data separation, they enable concurrent and safe access
without introducing concurrency errors.

These two mechanisms are completely transparent to RaceQuest. RaceQuest
can neither identify the points in the source code where the synchronization
happens, nor its expected behavior. The CSP model will not reflect specific
behavior of any of either of these two mechanisms – no additional orders be-
tween events. This results in the appearance of false positives in the model.
Also, as the schedule re-execution is based on synchronization operations, no
order is enforced in code with any of these mechanisms which results in non-
deterministic execution.

A solution could be to add annotations to the code to capture the order ob-
served in the input manually or automatically. The annotations would emit
auxiliary events and the CSP model should define the order of these events.
This order would simply be like a signal-wait, an order that would be main-
tained in all interleavings. As the semantics of the mechanism are unknown it
is not possible to implement more complex reorderings. But the false positives
due to these mechanisms would be reduced.

4.7.2. Infeasible Reordering

The CSP model is optimistic and assumes that all orders of events in the set
traces(PROGRAM) are possible in the original program, i.e. that they are
feasible. A reordering of synchronization events in the original program could
lead to a different program path, where the remaining events of the new order
cannot be enforced. These other program paths are unknown by the model as
they do not exist in the input trace.

76



4.7. Limitations

The program in Figure 4.16 can mainly exhibit two interleavings depending
on which thread executes the access to the atomic flag first, as shown in
Figure 4.17. If the thread main executes the store on flag first, as in Fig-
ure 4.17a, then the thread worker will enter in the if-body and execute the
calls lock and unlock on m and p. But if worker reads the flag value first,
then it will not execute the mutex operations and will end, as in Figure 4.17b.

1 atomic flag = false;
2 mutex m, p;
3 void main() {
4 fork(worker);
5 lock(p);
6 lock(m);
7 flag = true;
8 unlock(m);
9 unlock(p);

10 join(worker);
11 }
12
13 void worker() {
14 if (flag == true) {
15 lock(m);
16 lock(p);
17 unlock(p);
18 unlock(m);
19 }
20 }

Figure 4.16.: Program with multiple control flow

The behavior of RaceQuest depends on the input trace. If the input trace
is the one in Figure 4.17b, no deadlock is detected and no counterexample is
generated. If the input trace is the one in Figure 4.17a, then a deadlock is
detected and the counterexample could be:

〈fork.t1.t2, start.t2, atomic.t2.f lag, lock.t2.m, lock.t1.p〉

But this counterexample is infeasible. After the events fork.t1.t2, start.t2, the
event atomic.t2.f lag is performed in the if-clause. As the predicate is false, the
worker thread will not enter the if-body and the thread can only execute its
corresponding end event, end.t2. The counterexample demands that the next
event is a lock. As this demand cannot be fulfilled, the counterexample cannot

77



4. RaceQuest and Deadlock Detection

main worker
fork(worker)
lock(p)
lock(m)
flag = true
unlock(m)
unlock(p)

if (flag)
lock(m)
lock(p)
unlock(p)
unlock(m)

join(worker)

(a)

main worker
fork(worker)

if (flag)
lock(p)
lock(m)
flag = true
unlock(m)
unlock(p)
join(worker)

(b)

Figure 4.17.: Different interleavings for program in Figure 4.16

be completed; it is infeasible. We consider this counterexample a false positive
of the modeling step. As we automatically reproduce all counterexamples
provided by the model checker, we can detect which can be completed and
which cannot. The infeasible schedulings are explicitly removed after enforcing
them, and not provided to the user.

4.7.3. Scalability & Trace Windowing

As the number of events in the trace increases, the size of the CSP model grows
quickly. A bigger model requires more resources for its exploration, and may
eventually become intractable. The size of the trace imposes a limit on the
scalability of the approach.

To limit the size of the model without limiting the size of the trace, we split
the trace into a series of fixed size windows, e.g. 1,000 events. Each window is
treated as an individual trace with its own CSP model and individual checks.
Multiple checks of smaller models take fewer resources than a single check on
a larger model.

Previous windows are still needed to setup the initial conditions. The CSP
model for the window i has to take into consideration the state of the system
at the end of the window i − 1, e.g. if mutexes are acquired or the counters
in semaphores. The structure of the PROGRAM process is replaced by the

78



4.8. Deadlock Detection Evaluation

following:

PROGRAM = (PREFIX ; INTER) ‖
sync events

SY NC

The process INTER is the interleaving of THREAD processes with only the
events in window i. The process SY NC is the interleaving of the synchroniza-
tion processes for any synchronization construct that appears in the windows 0
to i. The PREFIX process is a SKIP ending process where all the events in
the windows 0 to i− 1 appear as a sequence of prefix operators. In PREFIX
there is no concurrency, the events from different threads are not split into
subprocesses and the events follow the order in the input trace. A PREFIX
process looks like this:

PREFIX = fork.t1.t2 → start.t2 → lock.t1.m→ lock.t2.p→ SKIP

SY NC is also in parallel with PREFIX. As PREFIX is always a valid
order, the order executed by the program, then SY NC will synchronize in
all its events. After the end of PREFIX, all synchronization processes in
SY NC can be in a non-initial state, e.g. mutexes can already be acquired.
When INTER starts, after the SKIP in PREFIX, it will run in parallel
with the last state of SY NC.

A disadvantage of trace windowing is the possible introduction of false nega-
tives. To be detected, an error would need a reordering between elements on
two different windows. But as only the elements on one window are reordered,
the error would be missed, a false negative.

A positive side-effect of trace windowing is that the probability of obtaining
an infeasible schedule is reduced. In Section 4.7.2 we have shown that it is
possible to obtain a counterexample that cannot be applied to the original
program. For a long trace the probability of becoming infeasible is higher, due
to a large divergence from the original trace. The windowing only allows new
reorderings from the start of the window, not from the start of the trace. The
events prior to the examined window cannot become infeasible.

4.8. Deadlock Detection Evaluation

In this section we evaluate the RaceQuest capability for deadlock detection.
We apply RaceQuest to a set of scenarios that could deadlock under specific
timings. We observe whether we could deadlock the programs using the coun-
terexample provided by RaceQuest. We compare RaceQuest against another

79



4. RaceQuest and Deadlock Detection

predictive approach: a lock-order detector. A lock-order detector issues a
warning if a set of two or more locks have more than one acquisition order in
a single execution of a program. Different order-acquisitions are an indication
of a possible deadlock under a different scheduling. We also present two more
scenarios in detail, where the lock-order detector fails but RaceQuest does not.

4.8.1. Experimental Setup

This evaluation has been carried out in an 8x Intel Xeon CPU E5-1620 v2 at
3.70GHz, 64 GB RAM, running CentOS 6.7 x64. The programs are written
on C or C++ and use POSIX threads for parallelization. As RaceQuest in-
strumentation and replay are based on LLVM, the programs were compiled
with clang 3.7 for x64 architecture. FDR3.3 was used as CSP model checker.
FDR3 was configured to search for a single counterexample. After it has been
found the search is aborted as the refinement does not hold. The lock-order
detector tested is included in ThreadSanitizer V2 [SI09]. The trace window
size is 10,000 events. The traces of all the benchmarks fit into a single window.

4.8.2. Benchmark & Results

RaceQuest deadlock detection is evaluated on a set of 13 scenarios and appli-
cations from the deadlock detection literature. Hawknl is a test for a custom
mutex implementation in the HawkNL game-oriented network API. Sqlite-1672
is a test harness for a mutex implementation in the SQLite database engine, re-
lated to the bug 1672. Hg02, tc13, and tc14 are tests from the Helgrind [Val07]
suite, tc14 is an implementation of the classical dining philosophers prob-
lem. Cp-9 is the scenario in Figure 9 in the causally proceeds paper [SES+12].
Tsandl1 and tsandl2 are two cases of a data race benchmark [Goo09] which also
includes some deadlocks. Guarded-lock, guarded-lock2, mul-lockorders, sem-
deadlock, and barrier-deadlock have been explicitly written for this benchmark.
Scenarios with a deadlock are timed to show a non-deadlocked interleaving, but
in another interleaving the deadlock is still possible. The scenarios and appli-
cations have 37 lines of code and 13 synchronization operations in average.

The results appear in Table 4.2. Expected indicates if the scenario contains a
deadlock for any interleaving. RaceQuest indicates if a deadlock is found and
reproduced. ThreadSanitizer shows if a lock order violation is identified, which
means a possible deadlock.

Hawnknl, hg02, tc14, cp-9, tsandl1, tsandl2, and guarded-lock are different
scenarios where there is a violation of the lock order. RaceQuest and Thread-
Sanitizer correctly detected the deadlock. RaceQuest not only detected the

80



4.8. Deadlock Detection Evaluation

Table 4.2.: Deadlock detection benchmark results

Scenario Expected RaceQuest ThreadSanitizer

hawknl TRUE TRUE TRUE

sqlite-1672 TRUE FALSE TRUE

hg02 TRUE TRUE TRUE

tc13 FALSE FALSE TRUE

tc14 TRUE TRUE TRUE

cp-9 TRUE TRUE TRUE

tsandl1 TRUE TRUE TRUE

tsandl2 TRUE TRUE TRUE

guarded-lock TRUE TRUE TRUE

guarded-lock2 FALSE FALSE TRUE

mul-lockorders FALSE FALSE TRUE

sem-deadlock TRUE TRUE FALSE

barrier-deadlock TRUE TRUE FALSE

Σ True Positives 10 9 8

Σ True Negatives 3 3 0

Σ False Positives - 0 3

Σ False Negatives - 1 2

Precision - 1 0.7273

Recall - 0.9 0.8

deadlock, it also generated a counterexample that forces the program into a
deadlock.

In sqlite-1672 there is also a lock-order violation. RaceQuest detected the dead-
lock and generated a feasible and enforceable counterexample, but the deadlock
situation was not achieved. In this case, after completing the steps defined in
the counterexample, the deadlock still depends on a non-deterministic access to
a shared variable that is not considered in the model or in the counterexample.
ThreadSanitizer correctly emitted a warning about the lock-order violation.

The tc13 and mul-lockorders scenarios contain multiple orders to acquire the
same mutexes. These lock orders never happen in parallel, due to other syn-
chronization operations. RaceQuest takes all the synchronization operations
into account and does not report any deadlock. ThreadSanitizer emitted in-
correct warnings in both cases. A lock-order detector is only aware of mutex

81



4. RaceQuest and Deadlock Detection

operations and produces false warnings in these two cases.

Similarly, sem-deadlock, and barrier-deadlock are deadlocks that happen when
semaphore and barrier primitives are reordered. RaceQuest was able to find
and reproduce both deadlocks, but ThreadSanitizer missed them completely.
Two of these examples are examined more deeply in the following subsection.

In summary, the lock-order detector of ThreadSanitizer missed two deadlocks
and issued three false warnings. In the cases where a lock-order detector issued
a warning, it could not be used directly to reproduce the suspected deadlock,
as it did not contain a scheduling sequence. RaceQuest produced no false
positives, and a single false negative: sqlite-1672. For all reported positives,
RaceQuest was also able to induce the deadlock in the original program using
the counterexample obtained from the CSP model.

The average time used by RaceQuest for all scenarios, except tc14, is 554ms
with an average trace size of 22.25 events, while for ThreadSanitizer it was
57ms. For tc14 the time is 1,921ms for RaceQuest, with 2,020 events, and
1,015ms for ThreadSanitizer. RaceQuest needs more resources, but a lock-
order detector with more resources would detect the same errors. The limita-
tions on the lock-order detector lie in the algorithm itself, as it cannot take
non-mutex synchronization into account. Eighty-five percent of the time spent
by RaceQuest in these scenarios is in the off-line step, which is dominated by
the refinement checker.

4.8.3. Additional Detailed Examples

Here we describe two additional examples in detail, to show their CSP models
and cases where a lock-order detector fails.

Multiple lock orders

This example corresponds to the scenario mul-lockorders. Figure 4.18 shows
the equivalent source code. Two threads run in parallel and both acquire the
mutexes m and p two times at two different moments. The threads clearly have
two phases divided by the synchronization on barrier b.

A trace of the program appears in Figure 4.19. The calls to barrier wait
in the program have produced two pairs of consecutive events: barrier enter
and barrier exit. There is no other event from the same thread between enter
and exit.

RaceQuest would generate the CSP model that appears in Figure 4.20. The
CSP model contains two THREAD processes, the corresponding FORK and

82



4.8. Deadlock Detection Evaluation

JOIN processes, two MUTEX processes, and a single BARRIER process.
Note that the BARRIER process is instantiated with a maximum value of
two, as indicated by the single barrier init event in the trace.

In this case the refinement relationship holds. There is no alternative reorder-
ing where PROGRAM does not reach the endthreads event. As there is no
deadlock, no counterexample is generated.

A lock-order detector would issue a warning. It would observe the following
acquisition orders in the trace: p → m and m → p. But the different acqui-
sition orders happen in non-concurrent parts of the trace: one is before the
barrier and the other is after it. There is no possibility of deadlock in any
alternative interleaving. A lock-order detector does not consider the barrier
calls: it simply ignores them and the inter-thread ordering that they define.
The machine-readable version of this example in CSPM is in Appendix A.2.2.

83



4. RaceQuest and Deadlock Detection

1 barrier b;
2 mutex m, p;
3 void main() {
4 b = barrier_init(2);
5 fork(worker);
6 lock(p);
7 lock(m);
8 unlock(m);
9 unlock(p);

10
11 barrier_wait(b);
12
13 lock(m);
14 lock(p);
15 unlock(p);
16 unlock(m);
17 join(worker);
18 }
19
20 void worker() {
21 lock(p);
22 lock(m);
23 unlock(m);
24 unlock(p);
25
26 barrier_wait(b);
27
28 lock(m);
29 lock(p);
30 unlock(p);
31 unlock(m);
32 }

Figure 4.18.: Program with different lock orders and a barrier

84



4.8. Deadlock Detection Evaluation

barrier init(b, 2)
fork(t1, t2)
start(t2)
lock(t1, p)
lock(t1, m)
unlock(t1, m)
unlock(t1, p)
lock(t2, p)
lock(t2, m)
unlock(t2, m)
unlock(t2, p)
barrier enter(t2, b)
barrier enter(t1, b)
barrier exit(t1, b)
barrier exit(t2, b)
lock(t2, m)
lock(t2, p)
unlock(t2, p)
unlock(t2, m)
lock(t1, m)
lock(t1, p)
unlock(t1, p)
unlock(t1, m)
end(t2)
join(t1, t2)

Figure 4.19.: Trace of program in Figure 4.18

85



4. RaceQuest and Deadlock Detection

THREADt1 = fork.t1.t2 → lock.t1.p→ lock.t1.m

→ unlock.t1.m→ unlock.t1.p→ barrier enter.t1.b

→ barrier exit.t1.b→ lock.t1.m→ lock.t1.p

→ unlock.t1.p→ unlock.t1.m→ join.t1.t2 → SKIP

THREADt2 = start.t2 → lock.t2.p→ lock.t2.m

→ unlock.t2.m→ unlock.t2.p→ barrier enter.t2.b

→ barrier exit.t2.b→ lock.t2.m→ lock.t2.p

→ unlock.t2.p→ unlock.t2.m→ end.t2 → SKIP

INTER = (THREADt1 ||| THREADt2);

endthreads→ SKIP

FORKt′ = fork?t.t′ → start.t′ → SKIP

JOINt′ = end.t′ → join?t.t′ → SKIP

MUTEXi = lock?t.i→ unlock.t.i→MUTEXi

BARRIERb,max = barrier enter?t.b→ BARRIER Ub,max,1

BARRIER Ub,max,i = barrier enter?t.b→ BARRIER Ub,max,i+1

BARRIER Ub,max,max = barrier exit?t.b→ BARRIER Db,max,max−1

BARRIER Db,max,i = barrier exit?t.b→ BARRIER Db,max,i−1

BARRIER Db,max,0 = BARRIERb,max

SY NC = FORKt2 ||| JOINt2 |||MUTEXm |||MUTEXp

||| BARRIERb,2

PROGRAM = INTER ‖
sync events

SY NC

sync events = {|fork, start, join, end, lock, rdlock, unlock, signal,
broadcast, wait, barrier enter, barrier exit, sem post,

sem wait|} − independent
independent = ∅

LIV E = live→ LIV E

LIV E vF (PROGRAMΘendthreadSKIP ) \ Σ ; LIV E

Figure 4.20.: CSP model of the trace in Figure 4.19 with multiple lock orders
and a barrier

86



4.8. Deadlock Detection Evaluation

Semaphore deadlock

This example corresponds to the scenario sem-deadlock. Figure 4.21 shows
the equivalent source code. Two threads run in parallel and they synchronize
using a semaphore. The developer’s intention here is that first function
is called before second function, and that third function is called
after second function. To generate this order, the thread worker should
wait until the thread main allows it to continue. Afterwards it is the main
thread that waits until the worker allows it to continue.

A trace of the program appears in Figure 4.22. This trace shows the intended
order of the synchronization events. The thread t1 calls sem post, allowing t2
to complete sem wait, which issues another sem post and allows t1 to complete
its own sem wait.

RaceQuest would generate the CSP model that appears in Figure 4.23. The
CSP model contains two THREAD processes, the corresponding FORK and
JOIN processes, and a single SEMPAHORE process. Note that the process
SEMAPHORE is instantiated with a maximum value of ten and an initial
value of zero, as indicated by the single sem init event in the trace.

In this case the refinement relationship does not hold, because there is an al-
ternative reordering where PROGRAM does not reach the endthreads event.
A counterexample that reveals a deadlock is the following:

〈fork.t1.t2, start.t2, sem post.t1.s, sem wait.t1.s〉

In this case, after main has increased the semaphore, it decreases it again
with its own sem wait call. When worker calls sem wait, the semaphore
counter is zero again, and the worker thread will be blocked forever. Then
main will be blocked at the join call. With both threads blocked the program
is in a deadlock.

A lock-order detector would generate no warnings in this case, i.e. false nega-
tives. It would neither take the wait at the semaphore nor the end-join order
into consideration. The machine-readable version of this example in CSPM is
in Appendix A.2.3.

87



4. RaceQuest and Deadlock Detection

1 semaphore s;
2 void main() {
3 s = sem_init(0, 10);
4 fork(worker);
5 first_function();
6 sem_post(s);
7
8 long_computation();
9

10 sem_wait(s);
11 third_task();
12 join(worker);
13 }
14
15 void worker() {
16 do_work();
17 sem_wait(s);
18
19 second_task();
20
21 sem_post(s);
22 do_work();
23 }

Figure 4.21.: Program with different lock orders and a barrier

sem init(b, 0, 10)
fork(t1, t2)
start(t2)
sem post(t1, s)
sem wait(t2, s)
sem post(t2, s)
sem wait(t1, s)
end(t2)
join(t1, t2)

Figure 4.22.: Trace of program in Figure 4.21

88



4.8. Deadlock Detection Evaluation

THREADt1 = fork.t1.t2 → sem post.t1.s→ sem wait.t1.s

→ join.t1.t2 → SKIP

THREADt2 = start.t2 → sem wait.t2.s→ sem post.t2.s

→ end.t2 → SKIP

INTER = (THREADt1 ||| THREADt2);

endthreads→ SKIP

FORKt′ = fork?t.t′ → start.t′ → SKIP

JOINt′ = end.t′ → join?t.t′ → SKIP

SEMAPHOREs,0,max = sem post?t.s→ SEMAPHOREs,1,max

SEMAPHOREs,i,max = sem post?t.s→ SEMAPHOREs,i+1,max

2 sem wait?t.s→ SEMAPHOREs,i−1,max

SEMAPHOREs,max,max = sem wait?t.s→ SEMAPHOREs,max−1,max

SY NC = FORKt2 ||| JOINt2 ||| SEMAPHOREs,0,10

PROGRAM = INTER ‖
sync events

SY NC

sync events = {|fork, start, join, end, lock, rdlock, unlock,
signal, broadcast, wait, barrier enter,

barrier exit, sem post, sem wait|} − independent
independent = ∅

LIV E = live→ LIV E

LIV E vF (PROGRAMΘendthreadSKIP ) \ Σ ; LIV E

Figure 4.23.: CSP model of the trace in Figure 4.22 with a semaphore

89



4. RaceQuest and Deadlock Detection

4.8.4. Summary

In this chapter we presented RaceQuest and used it to detect deadlocks. The
main idea of RaceQuest is to use a trace of a successful single execution to
generate a model in the CSP process algebra. The model represents each thread
and the synchronization constructs as individual processes. The semantics
of each synchronization construct are enforced by a concrete process, which
defines the valid orders of events between threads. The model not only contains
the observed trace but also plausible reorderings, i.e. alternative interleavings
that the program could take.

We explore the model using a refinement check to find deadlocks in alternative
interleavings. The key to detect the deadlock is to map a program deadlock to
a CSP-deadlock. The detected deadlock is obtained with an interleaving that
can be used as schedule to replay the deadlock.

We evaluated the approach in 13 scenarios and compared it with a lock-order
detector. RaceQuest obtained a higher precision and recall than the other
detector.

We saw the limitations of RaceQuest and the steps taken to mitigate them.
Some concurrency mechanisms are unsupported and would require additional
annotations. The model also contains infeasible reorderings, which are dis-
carded by the replay step. Longer traces imply bigger models; to handle the
state explosion we split the trace to control the size at the cost of more false
negatives.

The following chapter expands RaceQuest to enable race detection. The core of
RaceQuest continues to be a CSP model that generalizes a trace. New events
to represent memory accesses are added, as well as extra steps in the workflow
to manage the huge number of race candidates.

90



5. Data Race Detection

This chapter describes the use of RaceQuest for data race detection and the
extensions needed. RaceQuest performs the same steps: tracing, CSP model
generation, checking, and replay, but with some modifications. Checking for
data races requires monitoring and testing all memory accesses performed by
the program. The number of memory accesses in a program is huge; to manage
this, a few extensions in RaceQuest reduce the size of the trace. The error check
must look for data races: concurrent read-write or write-write accesses. These
patterns are defined as a new property specification, a CSP refinement check.
As in deadlocks, RaceQuest will infer new interleavings and possible races in
the CSP model.

Figure 5.1 displays the additional steps in the RaceQuest workflow, introduced
before and after the trace step. Memory grouping computes the memory over-
lap between memory accesses off-line, relieving the model checker of this task,
which is described in Section 5.2.2. Reduction refers to the race candidate
elimination algorithms presented in Section 5.5.

5.1. Motivational Data Race Example

A data race is a situation when two threads access the same memory address
simultaneously, and at least one access is a write. A program with a possible
data race appears in Figure 5.2. In the program two threads increment two
shared variables x and y. While variable y is correctly protected, variable x
is not. Three possible interleavings appear in Figure 5.3. A happens-before
detector output would depend on the observed interleaving. The detector

91



5. Data Race Detection

Instrumented Program

Memory
Grouping

Trace

Reduction

Predictor:
CSP model & check

Figure 5.1.: Auxiliary steps in RaceQuest workflow

would not find the race in the interleaving in Figure 5.3a, because a happens-
before relation between the unlock and lock calls hides the race on x. But
the race would be detected in the interleavings in Figures 5.3b and 5.3c,
because the accesses to x are not happens-before ordered. With RaceQuest
the goal is to generate a racy interleaving from any of the three interleavings as
input, where the conflicting accesses are not happens-before ordered. In other
words, and from the scenario in Figure 5.3a, to obtain any of the schedules of
Figures 5.3b or 5.3c. Any one of these two schedules is enough to reveal the
failure.

5.2. Incorporating Memory Accesses
In the previous chapter RaceQuest captured synchronization events to be aware
of possible inter-thread orderings. Race detection must track which memory
operations take place in the program, so we need to incorporate them into
the trace and CSP models. This section describes how they are extracted and
defined in the trace; the following section introduces them in the CSP model.

First, for each memory operation we need to know the type (read or write), the
starting address, and the size, because a single instruction can affect multiple
bytes. A pair of memory accesses will race if their memory blocks overlap.
We capture a trace including the executed read and writes, along with the
performing thread, address, and size, as explained in Section 5.2.1.

92



5.2. Incorporating Memory Accesses

1 int x = 0, y = 0;
2 mutex m;
3 void main() {
4 fork(worker);
5 x++;
6 lock(m);
7 y++;
8 unlock(m);
9 join(worker);

10 }
11
12 void worker() {
13 lock(m);
14 y++;
15 unlock(m);
16 x++;
17 }

Figure 5.2.: Program with a data race

If we use the address and size in the CSP model directly to check for races,
the model size would increase greatly, because the required if-conditions are
very expensive. Instead, we pre-compute the overlaps off-line in an auxiliary
step before generating the final trace. With the pre-computed overlaps, the
CSP model does not have to perform this comparison. This step is described
in Section 5.2.2.

The final trace will not have any reference to address or size of the accesses.
Instead the memory events refer to unique identifiers for overlapping blocks of
memory, which we call memory intervals. Section 5.2.3 explains the extended
trace model.

5.2.1. Capturing Memory Events

The capturing of events is an extension of the trace capture explained in Sec-
tion 4.3.2. Memory accesses are also captured using instrumentation in LLVM
IR. Each load and store instruction is a tracing point, so before each instruc-
tion an instrumenting function call is added. The instrumentation function will
emit if it is a read (load) or a write (store), as well as the performing thread,
the memory address, and the size of the memory access. The instrumentation
excludes the following cases:

93



5. Data Race Detection

main worker
fork(worker)
x++
lock(m)
y++
unlock(m)

lock(m)
y++
unlock(m)
x++

join(worker)

(a)

main worker
fork(worker)

lock(m)
y++
unlock(m)
x++

x++
lock(m)
y++
unlock(m)
join(worker)

(b)

main worker
fork(worker)
x++

lock(m)
y++
unlock(m)
x++

lock(m)
y++
unlock(m)
join(worker)

(c)

Figure 5.3.: Different interleavings for program in Figure 5.2

• inside a single LLVM basic block a load before a store on the same target
without any function call in-between. Without any function call between
both instructions, there is no synchronization. When the load races with
any other instruction, the store will also race. Both instructions will
always have the same interleaving. It is enough to detect one race to
have an interleaving for both races.

• operations where the target does not escape, i.e. if the target is not
accessed outside the current scope. The capture tracking algorithm [LLV]
integrated in LLVM determines this.

Also, during runtime all memory accesses before the first fork event in the
program are ignored. At the beginning of the execution there is always a
single thread, and its accesses cannot race with any other future access.

94



5.2. Incorporating Memory Accesses

5.2.2. Memory Grouping in Intervals

After capturing the trace, we translate the addresses and sizes of memory
accesses to the more convenient memory intervals. The captured trace differs
from the trace model in the parameters of the memory events.

We define a memory interval as the longest sequence of consecutive memory
positions that are always accessed by the same threads. A memory interval
could represent a single byte, if any thread addresses it individually at any
point, or multiple bytes, e.g. the bytes of an integer variable that is always
accessed as a whole. No two memory intervals overlap, and each byte addressed
by the program is contained in a single memory interval.

The algorithm in Figure 5.4 describes how we transition from memory events
with address and size to memory events with interval ids. First, for each
memory access a tuple is defined with the starting address, the final address
(sum of starting and size minus one), operation (read or write), and the set of
threads accessing it (initially each tuple only has the performing thread). These
intervals are stored in the set intervals, sorted by their starting address. Then
iteratively the following conditional rules are applied to each pair of consecutive
intervals:

• if the two intervals have the same operation and exactly the same range
(start and end addresses), they are combined into a single one. Note that
the set of accessing threads can be different, but in the combined interval
the sets of threads are joined.

• if they are strictly consecutive, i.e. one starts where the other ends, and
the operation and threads involved are the same, they are fused into a
larger interval.

• if they overlap, they are split into smaller non-overlapping intervals.
These intervals can subsequently be merged with other intervals.

This process generates a list of non-overlapping intervals of memory addresses,
which are accessed by the threads with read or write operations. A unique id is
assigned to each element in the set intervals. Then each memory access in the
trace is replaced by a new set of memory accesses targeting the corresponding
memory intervals.

Subsequently we can remove some memory intervals and related memory ac-
cesses from the trace if any of these conditions apply:

• a memory interval is only referenced by read events. A memory interval
must be written at some point to have a race.

95



5. Data Race Detection

Let intervals := ∅
for each Memory access with address a, size s, operation o done by thread
t in the trace do

Add (a, e, o, tids) to intervals where e = a+ s− 1, tids = {t}
end for
Sort intervals by the address a of the tuples
for each Two consecutive intervals m, n in intervals do

if ma = na ∧me = ne ∧mo = no then
Add (ma,me,mo,mtids ∪ ntids) to intervals at m position
Remove m and n from intervals

else if me = na ∧mo = no ∧mtids = ntids then
Remove n from intervals
me := ne

mtids := mtids ∪ ntids

else if me > na then
Add (ma, na,mo,mtids) to intervals at m position
Add (ne,me,mo,mtids) to intervals at m position
Add (na,me, no, ntids) to intervals at m position
Add (me, ne, no, ntids) to intervals at m position
Remove m and n from intervals

end if
end for

Figure 5.4.: Memory interval algorithm

• a memory interval is only referenced by a single thread. A memory
interval accessed by a single thread cannot have a race.

Grouping Example

Figure 5.5 shows an example of memory interval grouping. Thread t1 writes
at address 0, size 1, address 1, size 3, and address 4, size 3. Thread t2 writes
at address 2, size 2, and reads at address 4, size 1. The corresponding memory
interval ids are in the right column. The rows reflect which memory addresses
are included in the interval. We see that address 0 and 1 have been merged in
interval 1, because they are only accessed by t1. Addresses 2 and 3 conform
interval 2, as they are accessed by t1 and t2

After computing the memory intervals, we replace the address and size of each
memory operation with the corresponding memory interval id. If an original
memory operation affects more than one memory interval, a new memory event
per affected memory interval is added just after the original. For example, the

96



5.2. Incorporating Memory Accesses

write by t1 at address 4, size 3, is replaced by two operations, a write by t1 on
interval 3 and a write by t1 on interval 4. The read by t2 at address 0, size1,
is replaced by a read by t2 on interval 3.

To compare if two memory operations affect the same memory, instead of
checking for overlapping, we only need to compare the memory interval ids.
The write by t1 on interval 3 and the read by t2 on interval 3 affect the same
memory interval 3 and they could conflict.

t1 Address t2 Interval id

write
{

0
1

write


1

2
}

write 2
3

write


4

}
read 3

5
4

6

Figure 5.5.: Memory interval example

5.2.3. Extending the Trace Model with Memory Events

The final trace model is an extension of the model presented in Section 4.3.
Table 5.1 lists the additional events included in the model.

Table 5.1.: Memory access events

Event Description

read(t, r) thread t reads memory interval r

write(t, r) thread t writes memory interval r

Read and write represent types of access to a memory interval by a thread.
Atomic accesses will always generate a read event in addition to the atomic
event, and do it independently if they are atomic reads or writes. Atomic
accesses can only race with non-atomic writes, so considering them as reads
simplifies the classification of events. None of the other rules and events pre-
sented about the trace model in Section 4.3 are modified.

97



5. Data Race Detection

5.2.4. Example of a Trace

Figure 5.6 shows the final trace of an execution of the racy program in Fig-
ure 5.2, concretely the corresponding to the interleaving in Figure 5.3a.

fork(t1, t2)
start(t2)
write(t1, rx)
lock(t1, m)
write(t1, ry)
unlock(t1, m)
lock(t2, m)
write(t2, ry)
unlock(t2, m)
write(t2, rx)
end(t2)
join(t1, t2)

Figure 5.6.: Trace of program in Figure 5.2

The thread main is t1 and the thread worker is t2. In the program the vari-
ables x and y are in disjoint memory regions, so their corresponding intervals
will not overlap. In this case the resulting memory intervals are mapped one-
to-one to the variables in the program, the memory interval rx contains the
addresses of x and ry the addresses of y. Each auto-increment in the original
program implies a read and a write on the same memory interval. The reads
are removed from the trace as the writes are sufficient to find the race.

5.3. CSP Model & Data Race Checking

As explained previously in Section 4.4, the CSP model is derived from the
trace. The only addition is the new read and write events. These events are
also mapped one-to-one to CSP events. Two new channels are defined, read
and write, where the first field is the thread id, and the second field the id of
the memory interval. Read and write events are not synchronization events,
so they only appear in the THREADi processes.

5.3.1. Data Race Checking

To find the data races in the CSP model, we need a definition of a data race
in terms that we can translate to the model. Two events a = opa(ta, ka) and
b = opb(tb, kb) in a trace could conflict if:

98



5.3. CSP Model & Data Race Checking

• both are memory accesses, opa, opb ∈ {read, write}.

• one is a write, opa = write ∨ opb = write.

• the thread id on both events is different, ta 6= tb.

• both affect the same memory interval, ka = kb.

• a and b are concurrent, a||b. If there is no other event between a and b
in the trace, they are concurrent. If we consider the trace a total order
of elements, then 6 ∃x|a < x < b ⇒ a||b. This requirement for concur-
rency between two memory accesses is strict but sufficient, as the process
PROGRAM contains all possible combinations of the events. For exam-
ple, this requirement is fulfilled in the interleaving in Figure 5.3b, where
the auto-increments on x are seen one after the other.

If we want to find all the data races we should check the above properties for
each pair of events in the trace, i.e. a search in the model for each pair. Instead
we approximate, and assume that it is enough to find one race per memory
interval. In this case we build a single check per memory interval, instead of
per pair of memory events.

To translate the previous conditions to CSP, we need to find if, in the set
traces(PROGRAM), there is any sequence that contains one of the following
subsequences for the memory interval k:

〈write.t.k, write.t′.k〉 ∨ 〈read.t.k, write.t′.k〉 | t 6= t′

We must also describe this property as a refinement expression. The following
is a refinement relationship that holds if the memory interval k is data race
free:

race eventsk = {read.t.k|t ∈ threads}∪
{write.t.k|t ∈ threads} ∪ sync events

RACEk = RACE ERRk 4 (2z:race eventsk z → RACEk)

RACE ERRk = read?t.k → write?t′ : threads− {t}.k → race→ SKIP

2 write?t.k → write?t′ : threads− {t}.k → race→ SKIP

STOP vT (PROGRAM ‖
race eventsk

RACEk) |̀ {race}

We build the implementation process as a combination of PROGRAM and a
process RACEk that will monitor the data race subsequences on the memory
interval k. The process RACE will emit a single race event in case the patterns

99



5. Data Race Detection

is matched. RACEk can monitor the relevant events of PROGRAM , thanks
to the parallel composition. The relevant events in the monitoring are the
synchronization events and memory accesses related to the memory interval
k. We ignore all the events performed by the composition except the warning
event race, using the project operator |̀ . The specification process is only
composed of empty traces, traces(STOP ) = ∅. So, if RACEk reaches the race
event, the refinement does not hold and a counterexample exists. Note that
for data races the trace semantic model of CSP is sufficient. In Chapter 4 we
used the failures model for deadlock detection.

The key elements in RACEk are the racy sequences, read-write and write-write,
described as alternative paths in RACE ERRk. When any of these paths are
completed, the race event is emitted. The process RACEk returns to process
RACEk through the interrupt operator 4. The interrupt operator is used to
reset the pattern and avoid the process blocking itself when confronted with
another event. Any combination of events can be the prefix of the racy pair.
The equivalent labeled transition system for RACEk is shown in Figure 5.7.

read?t.k

write?t′ : threads− {t}.k
race

write?t.k

write?t′ : threads− {t}.k
race

λ λ λ

λ λ λ

λ

Figure 5.7.: Labeled transition system for process RACEk. Where λ ∈
race eventsk

Each memory interval k must be checked by its own refinement relationship.
But the definitions of RACEk and RACE ERRk are the same; only the re-
finement itself must be instantiated for each memory interval. For each refine-

100



5.4. Counterexample and Reproduction

ment that does not hold we obtain a counterexample, i.e. a counterexample
per memory interval.

5.3.2. Model Example

Figure 5.8 contains the CSP model along with the data race refinement check
for the trace in Figure 5.6. We observe that the structure of the processes that
define PROGRAM are the same as in the deadlock case. In the THREADi

processes the new memory events appear, e.g. write.t1.ry is the write by t1 on
the memory interval ry.

As there are two memory intervals present in the model, rx and ry, we have
two refinement relationships too. For ry the refinement holds, as the memory
accesses to ry are correctly protected and the lock m avoids the two writes
appearing contiguously. For rx the refinement does not hold, because there is
a sequence of events that triggers the event race:

〈fork.t1.t2, start.t2, lock.t2.m,write.t2.ry, unlock.t2.m,write.t2.rx, write.t1.rx〉

The counterexample is equivalent to the interleaving shown in Figure 5.3b,
where the worker thread acquires the mutex first. In this case the two auto-
increments on variable x appear one after the other. The memory interval rx
corresponds to the variable x in the example. As the two memory accesses to
rx appear together, they are not happens-before ordered, because any of them
could be the first. The machine-readable version of this example in CSPM to
be executed with the FDR3 refinement checker is in Appendix A.2.4.

5.4. Counterexample and Reproduction

The counterexample obtained from PROGRAM is composed of synchroniza-
tion and memory events. Because of the reductions in Sections 5.2 and 5.5,
neither the trace nor the CSP model contain a memory event per memory
instruction executed. During reproduction it is not possible to match and
enforce all performed memory operations with events in the counterexample.
Instead, the memory events on the counterexample are completely ignored, i.e.
they do not work as enforcing points. Only the synchronization events are
enforced in the reproduction. The reproduction operates exactly as described
in Section 4.6.

For deadlocks a successful reproduction leads to the program being deadlocked.
For data races a successful reproduction leads to a state where the memory

101



5. Data Race Detection

THREADt1 = fork.t1.t2 → write.t1.rx → lock.t1.m→ write.t1.ry →
unlock.t1.m→ join.t1.t2 → SKIP

THREADt2 = start.t2 → lock.t2.m→ write.t1.ry → unlock.t2.m→
write.t2.rx → end.t2 → SKIP

INTER = (THREADt1 ||| THREADt2) ; endthreads→ SKIP

FORKt′ = fork?t.t′ → start.t′ → SKIP

JOINt′ = end.t′ → join?t.t′ → SKIP

MUTEXi = lock?t.i→ unlock.t.i→MUTEXi

SY NC = FORKt2 ||| JOINt2 |||MUTEXm

PROGRAM = INTER ‖
sync events

SY NC

sync events = {|fork, start, join, end, lock, rdlock, unlock, signal,
broadcast, wait, barrier enter, barrier exit, sem post,

sem wait|} − independent
independent = ∅

race eventsk = {read.t.k|t ∈ threads} ∪ {write.t.k|t ∈ threads}
∪ sync events

RACEk = RACE ERRk 4 (2z:race eventsk z → RACEk)

RACE ERRk = read?t.k → write?t′ : threads− {t}.k → race→ SKIP

2 write?t.k → write?t′ : threads− {t}.k → race→ SKIP

STOP vT (PROGRAM ‖
race eventsrx

RACErx) |̀ {race}

STOP vT (PROGRAM ‖
race eventsry

RACEry) |̀ {race}

Figure 5.8.: CSP model of the trace in Figure 5.6

102



5.4. Counterexample and Reproduction

interval is accessed by two threads in a non-happens-before order. To confirm
that the accesses are not happens-before ordered, we execute a pure happens-
before detector in parallel during the reproduction. The detector will compute
the vector clock of the accesses and confirm if the race exists or not, as de-
scribed in Section 2.3.1. If the detector emits no warning, the counterexample
is discarded. A case where the race does not exist under a feasible counterex-
ample is show in Section 5.4.2.

RaceQuest does not store any information that links a memory event with the
original source code line. The reductions on the trace would increase the impre-
cision of this information. Instead we rely on the reproduction step to obtain
more information about the race: stack trace, code lines, memory addresses,
etc. The race detector executed in parallel will report all this information in a
known format.

5.4.1. Reproduction Example

If we take the counterexample from the model in Figure 5.8 for memory interval
rx and we ignore the memory accesses events, we have the following sequence:

〈fork.t1.t2, start.t2, lock.t2.m, unlock.t2.m〉

During reproduction the program is going to behave like the interleaving shown
in Figures 5.3b or 5.3c. In Figure 5.3b the accesses to x are seen together, as
in the assumption for the data race pattern. But in Figure 5.3c they are not
together, as the critical section of the worker thread is seen in between. It does
not matter which of these two interleavings are observed in the reproduction.
In both cases the accesses to x, memory interval rx, are not happens-before
ordered.

5.4.2. No Race Under Feasible Reordering

The use of a happens-before detector helps to distinguish the situation where
the counterexample is feasible but a suspicious data race does not exist. An
example is the program in Figure 5.9.

This program can mainly exhibit two interleavings, as in Figure 5.10, depending
on which thread first executes the access to the critical section. If the thread
main executes the critical section first, Figure 5.10a, then the thread worker
updates y to two and executes the access to x. In this case the accesses to x
are happens-before ordered. If worker executes the critical section first, as in

103



5. Data Race Detection

1 int x = 0, y = 0;
2 mutex m, p;
3 void main() {
4 fork(worker);
5 x++;
6 lock(m);
7 y++;
8 unlock(m);
9 join(worker);

10 }
11
12 void worker() {
13 int flag = 0;
14 lock(m);
15 y++;
16 flag = y;
17 unlock(m);
18 if (flag > 1) {
19 x++;
20 }
21 }

Figure 5.9.: Feasible program with multiple control flow

Figure 5.10b, it will not execute the if-body as the condition is false, because
the value of flag is one.

The result of RaceQuest depends on the input trace and the program paths
covered by the trace. If the input trace is the one in Figure 5.10b, there is single
thread accessing x and no data race is reported. If the input trace is the one
in Figure 5.10a, then a race on x is reported with a simplified counterexample:

〈fork.t1.t2, start.t2, lock.t2.m, unlock.t2.m〉

This counterexample is feasible. The counterexample forces the program to
behave like the interleaving in Figure 5.10a during reproduction. Without
an additional check, we would report that there is a data race on x. But
the parallel happens-before detector will report no race at all, so we can also
discard this counterexample.

104



5.5. Reduction Techniques

main worker
fork(worker)
x++
lock(m)
y++
unlock(m)

lock(m)
y++
flag = y
unlock(m)
if (flag > 1)
x++

join(worker)

(a)

main worker
fork(worker)

lock(m)
y++
flag = y
unlock(m)
if (flag > 1)

x++
lock(m)
y++
unlock(m)
join(worker)

(b)

Figure 5.10.: Different interleavings for program in Figure 5.9

5.5. Reduction Techniques

The memory accesses executed by a program outnumber the synchronization
operations. The complexity of the model increases with the number of events,
which requires more resources and eventually makes the model intractable.
Capturing, storing, and processing a trace with a high number of events is also
costly. It is imperative to minimize the number of events to reduce the con-
sumed resources and to support larger programs and traces. To achieve this
goal we have applied several additional strategies along the RaceQuest work-
flow. Trace windowing is a general technique already shown in the previous
chapter. As we know the characteristics of data races we can apply specific
reduction techniques.

5.5.1. On-Line Redundant Accesses Removal

Memory accesses from different instructions to the same memory address in
the same thread segment generate redundant memory events. For example,
in Figure 5.11 there are two auto-increments. The statement x++ accesses
the four bytes of x. But the statement *ptr++ modifies a single byte at an
unknown address. If the pointer ptr points to variable x, e.g. ptr = &x,
and x races with another part of the program, then the access through the
pointer will also race. The scheduling for the two races would be the same, as
they are in the same thread segment. A single counterexample would reveal

105



5. Data Race Detection

both races. In this case the memory event generated by the pointer access is
redundant for race detection.

1 int x = 0;
2 char *ptr;
3 void increment() {
4 x++;
5 *ptr++;
6 }

Figure 5.11.: Example with redundant accesses

We remove redundant memory accesses on-line using a cache. During trace
capture the memory events are not emitted directly, instead they are stored in
a small thread-local cache. Each time a memory access is going to be added
to the cache, we check if it overlaps any access already stored in the cache. If
the whole memory block accessed by the new access is contained in a previous
memory access, the new one is ignored and not added to the cache. When the
cache is full or the thread segment ends, because a synchronization operation is
reached, then the cache is immediately flushed. Afterwards, the corresponding
memory access event is generated for each entry in the cache.

In the example the access to *ptr++ happens after x++, and the memory
addresses that it uses are a subset of the already contained accesses of x++.
The memory events of *ptr++ can be ignored. When the value of ptr is
not the address of x or one of its bytes, as this reduction works at runtime,
the event generated by the memory accesses of *ptr++ would not overlap the
memory events generated by x++. In the reverse case, if x++ happens after

*ptr++, then all the memory accesses of both statements would be in the
cache. The cache would contain redundant events and they would be emitted.
This redundancy can still be removed by the next techniques.

5.5.2. Hybrid Algorithm Data Race Filtering

Exploring the CSP model for a race is more expensive than comparing two
vector clocks for a happens-before relationship or comparing two locksets. If
all accesses to a memory interval are protected by a common lock in the input
trace, the CSP check is not going to report any race. Similarly, accesses ordered
by a fork-start are going to be ordered in all interleavings in the CSP model.

We use a weakened version of the happens-before algorithm1 combined with

1A version that ignores the happens-before edges of the mutex operations.

106



5.5. Reduction Techniques

the lockset algorithm to remove memory accesses that cannot race in any
interleaving in the CSP model. Alone and in combination, these algorithms
produce false positives. But false positives are not a problem, as they will
be checked later by the CSP model. False negatives are not introduced, as
the weak happens-before and lockset algorithms are conservative. This step is
applied after obtaining the trace model and computing the memory intervals.

The combined algorithm is shown in Figure 5.12. Each memory event m is
compared against any other memory event n. First, we check if they are from
different threads, target the same memory interval and at least one is a write.
Then we apply both algorithms: the weak happens-before and the lockset
algorithms. If the events are parallel due the weak happens-before relationship
or do not share any lock, then they are added to the set candidate. All events
that are not present in the set candidate are removed from the trace and will
not be present in the CSP model. Only the events in the set candidate are
considered candidates for a possible data race.

Let candidates = ∅ be the set of possible racy memory accesses
for each Memory access m in the trace do

for each Memory access n in the trace where m 6= n do

if

(
mtid 6= ntid ∧minterval = ninterval∧
(mop = write ∨ nop = write)

)
then

if V C(m) 6< V C(n) ∧ V C(n) 6< V C(m) then
if lockset(m) ∩ lockset(n) = ∅ then

Add m to candidates
Add n to candidates

end if
end if

end if
end for

end for
Remove from the trace each memory access m, such m 6∈ candidates

Figure 5.12.: Hybrid filtering algorithm

Firstly, we check if both accesses could be parallel using vector clocks for a
weak happens-before relationship. The properties of the vector clocks are ex-
plained in Section 2.3.1. In the standard algorithm the happens-before edges
are constructed for all synchronization constructs. In this weak version we only
construct the edges for the following constructs: fork-start, end-join, signal-
wait and broadcast-wait. Memory accesses ordered by only these constructs

107



5. Data Race Detection

in the trace will be always ordered by them in the CSP model. It is less ex-
pensive to prune these memory accesses with vector clocks. This modification
removes false negatives from the original happens-before algorithm, at the cost
of producing false positives.

Secondly, we run a standard lockset analysis, as described in Section 2.3.2. The
differences here only are in the implementation, where we have two locksets
per memory accesses, one for read locks and one for write locks. The locksets
of memory accesses are compared against each other. We do not use an accu-
mulative C(x) lockset per memory interval. The lockset analysis will remove
the memory accesses from the trace to an interval that is always correctly
protected. The remaining accesses will be checked in the CSP model.

Figure 5.14 illustrates this hybrid algorithm with an example. Two threads
concurrently access the intervals a, b, and c. The original trace is on the left,
Figure 5.13a. The filtered trace is on the right, Figure 5.13b. The two accesses
to c are weak happens-before ordered by the end-join of t2, so they are removed.
All the accesses to b are protected by the mutex m, so they cannot be in a
race on b and are removed. The accesses to a are neither weak happens-before
ordered, because the mutexes does not impose any weak happens-before edge,
nor protected by a common mutex. The accesses to a are not filtered, and they
will be checked in the CSP model.

fork(t1, t2)
start(t2)
write(t1, a)
lock(t1, m)
write(t1, b)
unlock(t1, m)
lock(t2, m)
write(t2, b)
unlock(t2, m)
write(t2, c)
write(t2, a)
end(t2)
join(t1, t2)
write(t1, c)

(a) Original

fork(t1, t2)
start(t2)
write(t1, a)
lock(t1, m)

unlock(t1, m)
lock(t2, m)

unlock(t2, m)

write(t2, a
end(t2)
join(t1, t2)

(b) Filtered

Figure 5.14.: Hybrid filtering algorithm example

This filtering reduces the size of the CSP model and the number of checks.

108



5.5. Reduction Techniques

5.5.3. Same Thread Segment Reduction

After the previous filtering with the hybrid algorithm, it is still possible to have
multiple racy memory intervals that will generate the same counterexample. It
is a similar case to the motivation for redundant access removal in Section 5.5.1.
When two memory intervals have exactly the same memory accesses in the
same set of thread segments in the trace, and there is a race in one of the
intervals, then there will be a race in the other interval. The counterexamples
will be equivalent, containing the same order of synchronization operations.

To avoid redundant refinement checks, we check the thread segment equiva-
lence of each pair of memory intervals before the CSP model generation. The
algorithm appears in Figure 5.15. Each thread segment in the trace is num-
bered. For each memory interval we define two sets, one for thread segments
with only a read access and other with the thread segments with at least one
write access to this memory interval. Then we check in each thread segment
which memory intervals are written and which are only read. The thread seg-
ment is added to the appropriate set of each memory interval. Then all memory
intervals are compared in pairs. If two memory intervals have exactly the same
thread segment sets, the memory accesses to one of them are removed from
the whole trace. One memory interval effectively disappears from the trace.

Let seg writtenk = ∅ and seg readk = ∅ sets of thread segments for memory
interval k
for each Thread segment ts in the trace do

if Memory interval r is written in ts then
Add ts to seg writtenr

else if Memory interval r is read in ts then
Add ts to seg readr

end if
end for
for each Memory intervals r and s in the trace do

if seg writtenr = seg writtens ∧ seg readr = seg reads then
Remove all memory accesses to s from the trace

end if
end for

Figure 5.15.: Thread segment reduction algorithm

One example is shown in Figure 5.16. In Figure 5.16a there is a trace, where two
threads access the intervals a, b, and c (the events pertinent to each thread have
been justified to each side). The thread t1 has three relevant thread segments:

109



5. Data Race Detection

ts1, ts2, and ts4. Before the fork and after the join there are also thread
segments, but without any memory accesses. The thread t2 has one relevant
thread segment, ts3; again, before the lock and after the unlock there are also
thread segments but they are empty. In Figure 5.16b we see which memory
intervals are accessed in each thread segment. Intervals a and b have exactly
the same thread segment sets. The counterexample for a will also trigger the
race in b, so we can safely remove b from the trace and not check it. However,
interval c has different sets and will have to be checked. The number of race
checks required is reduced from three to two.

fork(t1, t2)
start(t2)

ts1

{
write(t1, a)
write(t1, b)
lock(t1, m)

ts2

{
read(t1, a)
read(t1, b)
unlock(t1, m)

lock(t2, m)
write(t2, a)

ts3write(t2, b)
write(t2, c)

unlock(t2, m)
ts4
{

read(t1, c)
end(t2)

join(t1, t2)

(a) Trace

Interval seg written seg read

a {ts1, ts3} {ts2}
b {ts1, ts3} {ts2}
c {ts3} {ts4}

(b) Segment sets

Figure 5.16.: Thread segment reduction example

5.6. Evaluation

RaceQuest data race detection was evaluated in two parts. RaceQuest is first
compared against two happens-before detectors that, like RaceQuest, work on
C/C++ programs: the state of the art ThreadSanitizer V2 [SI09] and Hel-
grind [Val07]. This comparison uses a set of unit tests with known data races
and a set of applications commonly used in data race benchmarking. Race-
Quest is also compared with other high-coverage race detectors, and we observe
how they perform with an increasing number of possible interleavings.

110



5.6. Evaluation

5.6.1. Experimental Setup

The first half of the evaluation was executed in an 8x Intel Xeon CPU E5-
1620 v2 at 3.70GHz, 64 GB RAM, running CentOS 6.7 x64. The programs are
written in C or C++ and use POSIX threads for parallelization. As RaceQuest
instrumentation and replay are based on LLVM, the programs were compiled
with clang 3.7 for x64 architecture. FDR3.3 was used as CSP model checker.
We requested FDR to provide a single counterexample, after it is found the
search is aborted. This makes no difference if the refinement holds. The on-line
event cache has a size of 100 events, and the trace window size is 10,000 events.

5.6.2. Unit Test Benchmark

The unit test benchmark is a set of 113 scenarios. Thirteen scenarios are from
the Helgrind test suite [Val07]. Six scenarios appear in the causally proceeds
paper [SES+12]. The other 94 are part of the unit test suite [Goo09] for the
first version of ThreadSanitizer, which is based on Valgrind. This suite contains
specific tests for the tool functionalities and multiple data race scenarios. We
have only used the data race scenarios that do not require special support, such
as custom annotations. The scenarios use different synchronization primitives:
locks, signals, barriers, semaphores and multiple threads. The scenarios use
sleeps to always show the same interleaving to the detectors.

The results appear in Table 5.2. True positives are scenarios with a real race
detected. True negatives are race-free scenarios where no race is detected.
False positives are race-free scenarios where the tool reports a race that in fact
does not exist. False negatives are scenarios with races where the tool does not
report any warning. Precision is the ratio between True positives and the sum
of True positives and False positives. Recall is the ratio between True positives
and the sum of True positives and False negatives. The detailed results are in
Appendix B.

The results show that RaceQuest detected fewer incorrect scenarios than Hel-
grind with 18 and ThreadSanitizer with 17. Whereas RaceQuest only shows
one false negative, ThreadSanitizer shows 15 and Helgrind 13. RaceQuest
explores more interleavings than the other tools. RaceQuest generated a coun-
terexample that reproduces the warning in all cases of true positives. Helgrind
failed, deadlocked, in one scenario.

Both RaceQuest and ThreadSanitizer produced two false positives, while Hel-
grind produced six. The two cases uses ad-hoc synchronization. None of
the tools can detect non-standard synchronization. Neither ThreadSanitizer

111



5. Data Race Detection

Table 5.2.: Data race detection unit test benchmark results

RaceQuest ThreadSanitizer Helgrind

True positives 57 43 45

True negatives 53 53 48

False positives 2 2 6

False negatives 1 15 13

Precision 0.9661 0.9556 0.8824

Recall 0.9828 0.7414 0.7759

nor Helgrind can build the corresponding happens-before edge between both
threads, and RaceQuest does not build any kind of synchronization CSP pro-
cesses to describe the ad-hoc synchronization, as stated in Section 4.7.1. Nev-
ertheless, RaceQuest generated a counterexample in both cases. But during
the reproduction the races were erroneously detected, as the race verification
depends on a happens-before detector which is also insensitive to the ad-hoc
synchronization. Ad-hoc synchronization detection is an orthogonal problem
to race detection, which can be solved with specific algorithms or annotations.

In 12 of the cases marked as true negatives, RaceQuest initially generated a
counterexample. During reproduction these cases showed no warning and the
counterexamples were discarded. These cases show that the happens-before
detector that runs during reproduction is needed to discard possible false pos-
itives.

5.6.3. Application Benchmark

The application benchmark is composed of open source projects used in the
data race detection literature. Aget is a parallel application to download files
through http. BoundedBuffer and prodcons are producer-consumer imple-
mentations. Bzip2smp and pbzip2 are parallel implementations of the BZIP
compression algorithm. Ctrace is a library for debugging and tracing multi-
threaded programs. Hawknl is a test for a custom mutex implementation in
the HawkNL game-oriented network API. Qsort mt is a parallel implementa-
tion of the quicksort algorithm. Pfscan is a parallel file scanner. Sqlite-1672
is a test harness for a mutex implementation in the sqlite database engine,
related to bug number 1672. Blackscholes, fmm, fft, lu, lu-non, streamcluster,
and water-nsquared are applications and kernels from the SPLASH-2 multi-
thread benchmark [WOT+95]. The applications contain an unknown number

112



5.6. Evaluation

of data races. Table 5.3 lists which synchronization operations are used in
each application (mutexes, signal-wait, barrier, or semaphores), the number of
threads, and the size in lines of code. Some applications are CPU intensive
despite their size and generate long traces, as shown in Table 5.7. A single ex-
ecution of ThreadSanitizer or Helgrind is much faster than a single execution
of RaceQuest. The user could repeatedly execute any of these happens-before
detectors in the same amount of time, and hope to observe more interleavings.
To be fair, the evaluation compares a single execution of RaceQuest against
multiple executions of ThreadSanitizer and Helgrind, so all tools have the same
amount of resources.

Table 5.3.: Application benchmark characteristics

Application LOC Threads Mutex Signal Barrier Sema

aget 848 3 X
blackscholes 327 5 X
boundedBuffer 252 5 X X
bzip2smp 4,210 4 X X
ctrace 772 2 X X X
fft 886 2 X X
fmm 3,385 2 X X
hawknl 6,992 3 X
lu 917 2 X X
lu-non 718 2 X X
pbzip2 1,491 4 X X
pfscan 632 3 X X
prodcons 67 5 X X
qsort mt 511 3 X X
sqlite-1672 48,253 3 X
streamcluster 1,255 4 X
water-nsquared 1,373 2 X X

Race detection results

Table 5.4 contains the number of unique locations involved in a race for each
tool. The first column is the application name, while the second, third, and
fourth columns correspond to the results of RaceQuest, ThreadSanitizer, and
Helgrind. All tools emit a set of warnings, where each warning corresponds

113



5. Data Race Detection

to a data race. A data race involves one or two locations, i.e. one or two
different instructions. To compare the tools, all warnings for an application
have been collected, all locations extracted, and all differences counted. For
RaceQuest there is a single execution per application. For ThreadSanitizer
and Helgrind there are multiple executions, therefore multiple sets of warnings
per application. For these two tools all sets of warnings for each application
are combined, so the results are the aggregation of multiple executions.

Table 5.4.: Number of racy locations

Application RaceQuest ThreadSanitizer Helgrind

aget 4 5 2

blackscholes 0 0 0

boundedBuffer 0 0 0

bzip2smp 0 0 0

ctrace 0 2 2

fft 0 0 0

fmm 75 64 -

hawknl 0 0 0

lu 0 0 0

lu-non 0 0 0

pbzip2 7 6 6

pfscan 7 0 0

prodcons 5 3 3

qsort mt 8 8 2

sqlite-1672 0 0 0

streamcluster 2 2 0

water-nsquared 0 0 0

Total 108 90 15

Table 5.5 shows the number of times that ThreadSanitizer and Helgrind were
executed in the time needed for a single RaceQuest execution, hence each tool
ran during the same amount of time. Application is the application name.
Time is the total time in milliseconds required by RaceQuest in a single execu-
tion. The sum of tracing time, off-line predictive time, and reproduction time
is included. The third and fourth columns are the total number of executions
of ThreadSanitizer and Helgrind during the same amount of time.

114



5.6. Evaluation

Table 5.5.: Time and number of executions equivalent to a single RaceQuest
execution

Application Time(s) ThreadSanitizer Helgrind

aget 1.89 18 3

blackscholes 0.46 30 2

boundedBuffer 0.54 40 2

bzip2smp 0.43 6 1

ctrace 2.78 2 2

fft 5.05 390 18

fmm 480.36 1,373 -

hawknl 1.03 14 2

lu 2,488.21 7,171 461

lu-non 67.03 3,529 190

pbzip2 1.49 14 2

pfscan 4.49 5 12

prodcons 0.73 68 3

qsort mt 1.21 70 5

sqlite-1672 0.62 30 2

streamcluster 1.11 72 4

water-nsquared 1,956.19 653 332

The applications blackscholes, boundedBuffer, bzip2smp, fft, hawknl, lu, lu-
non, and water-nsquared seem to be race-free. None of the three tools in the
evaluation emitted any warning about them.

In qsort mt and streamcluster, RaceQuest matched the results of ThreadSan-
itizer, with eight and two erroneous locations. Helgrind falls behind with two
and zero locations.

In aget, ThreadSanitizer found one more data race location than RaceQuest.
The additional data race location is mutually exclusive to another racy loca-
tion. Both locations are in different program paths and cannot be found in a
single execution. RaceQuest examines a single trace, so like any other dynamic
approach it is highly dependent on the path explored by that trace. Thread-
Sanitizer suffers this dependency too, but in this case it has been executed 18
times. Not all of the executions of ThreadSanitizer took the same path, allow-
ing it to find an additional data race location. RaceQuest and ThreadSanitizer
performed better than Helgrind, which only found two lines.

115



5. Data Race Detection

In ctrace, ThreadSanitizer and Helgrind found two locations, but RaceQuest
none. RaceQuest correctly suspected the memory address where the data race
took place, and generated a counterexample. The counterexample given by the
model checker was not enforceable in the original program, i.e. it was infeasible,
so RaceQuest missed the data race. The given counterexample diverges very
early from the program path, and its schedule cannot be completed. In this
case, we requested the model checker to provide additional counterexamples,
but none were generated.

Sqlite-1672 is a similar case to ctrace. None of the tools emitted any kind of
warning, but in this case we know, through manual inspection, that there is
one possible data race. RaceQuest suspected a race, but the counterexample
obtained was not feasible and was discarded.

In the fmm, pbzip2, pfscan, and prodcons applications, RaceQuest found more
locations than ThreadSanitizer and Helgrind. In fmm RaceQuest found 75,
while ThreadSanitizer only found 64. Helgrind crashed in fmm, which makes
the most difference in the total number of warnings between the three tools. It
is relevant here that ThreadSanitizer was executed 1,373 times, and still could
not match the number of locations found by RaceQuest. Note that a single
execution of ThreadSanitizer found 52 locations. Most of the remaining 1,372
executions only revealed 12 more. This high number of executions shows that
ThreadSanitizer wastes a lot of time exploring the same interleaving, but the
off-line exploration of interleavings by RaceQuest discovers more failures.

In pbzip2 RaceQuest found seven locations, while the other tools only found six.
In prodcons RaceQuest found two more than ThreadSanitizer and Helgrind.
In pfscan neither ThreadSanitizer nor Helgrind found any location at all, while
RaceQuest found seven.

The results show that a single execution of RaceQuest found more races than
a dynamic happens-before detector in multiple executions. A non-predictive
race detector relies on reaching a specific timing to be able to see some races.
RaceQuest explores many more off-line.

RaceQuest and dynamic on-line race detectors are not necessarily mutually
exclusive. A user would start by using a dynamic on-line detector, as a con-
siderable portion of the data races can be found in a single run. RaceQuest
would only be applied if more races are suspected, or the user requires more
confidence.

116



5.6. Evaluation

Counterexample feasibility

Table 5.6 describes how many counterexamples RaceQuest generated. Appli-
cation is the application name. Candidate is the number of counterexamples
obtained in the predictive step. Feasible and erroneous is the number of coun-
terexamples that can be successfully reproduced and where the parallel race
detector emits at least one warning.

Table 5.6.: Counterexample feasibility

Application Candidate Feasible & Erroneous

aget 2 2

blackscholes 0 0

boundedBuffer 0 0

bzip2smp 0 0

ctrace 1 0

fft 0 0

fmm 121 12

hawknl 2 0

lu 0 0

lu-non 0 0

pbzip2 2 1

pfscan 2 2

prodcons 1 1

qsort mt 1 1

sqlite-1672 1 0

streamcluster 1 1

water-nsquared 0 0

Fmm produced many race candidates, but only 10% are feasible. We have seen
that fmm contains many racy locations. Most of the discarded counterexam-
ple candidates are infeasible interleavings; reproduction is aborted as soon as
infeasibility is detected. For the other applications 14 counterexample candi-
dates were produced, out of which eight were feasible and contained at least a
data race warning.

As previously observed there is a data race in sqlite-1672 and ctrace, and Race-
Quest generated a counterexample. Unfortunately, the reordering provided by
the model checker is not feasible.

117



5. Data Race Detection

In all applications, the number of final counterexamples is smaller than the
number of data races. A single counterexample can reveal multiple data races,
thanks to the trace reduction strategies explained in Section 5.5. For example:
when accessing different fields in the same structure, the whole structure is a
single interval in the trace. In this case a single counterexample will reveal a
race per field.

Race detectors usually only provide the location of the race, but no information
on when and how the program has reached that state. Mixing the race detector
with interactive debugging makes the erroneous state difficult to reach. Race-
Quest provides a step by step counterexample of the synchronization events
that is immune to the interference of interactive debugging.

Trace reductions

Tables 5.7 and 5.8 show the trace reduction effects of the techniques presented
in Section 5.2 and 5.5.1.

Table 5.7 shows the number of events at different stages in the RaceQuest
workflow until the generation of the trace in the trace model. No cache and
with cache show how many events are emitted if the on-line cache is disabled
or enabled. The size of the on-line cache is 100. Other runtime techniques
are always in effect, such as the elimination of read in read-write pairs, and
no tracing before the first fork. Total shows the final size of the trace after
the memory intervals have been computed, from the with cache emitted events.
The number of synchronization events emitted and presented in the trace model
is shown in synch.

The on-line cache drastically reduces the number of events emitted by the
tracing mechanism. The average reduction for the entire application set is
46.2%, with a maximum of 93.64% for blackscholes and 87.66% for water-
nsquared. For the biggest applications – fmm, lu and water-nsquared – the
reduction is particularly relevant as the storage requirement and IO load is
significantly smaller.

Grouping the memory accesses into memory intervals and removing read-only
intervals reduces the trace further to the value in the total column. The mem-
ory intervals reduce the trace size by an average of 72.29%, with peak values
of 99.98% for lu and 99.95% for water-nsquared. The combined reduction due
to the on-line cache and the grouping of memory accesses into intervals leads
to an average trace size reduction of 82.41%. For blackscholes and bzip2smp,
these reductions remove all possible memory access events, leaving no race
candidates.

118



5.6. Evaluation

Table 5.7.: Trace reduction: cache and memory intervals

Events emitted Trace size

Application No cache With cache Total # Synch

aget 1,609 1,142 213 89

blackscholes 4,044 257 20 20

boundedBuffer 879 521 209 129

bzip2smp 35 26 16 16

ctrace 886 762 235 88

fft 84,005 36,166 1,028 22

fmm 4,963,725 1,064,670 12,308 2,460

hawnknl 439 266 81 47

lu 93,484,264 58,993,887 7,239 142

lu-non 1,514,864 921,251 3,048 46

pbzip2 346 229 91 63

pfscan 1,243 1,018 446 273

prodcons 242 209 114 89

qsort mt 7,289 1,741 795 46

sqlite-dl 78 59 31 22

streamcluster 666 149 61 18

water-nsquared 222,853,344 27,511,033 12,391 8,304

Table 5.8 shows the number of events removed by the hybrid filter and the
same segment reduction, as well as the number of redundant CSP refinement
checks. Hybrid indicates the number of events from the trace eliminated by
the hybrid race filter algorithm. Same segment shows how many events are
eliminated due to the same thread segment reduction. Redundant indicates
the number of refinement checks that are not performed because of the events
eliminated in the same segment column. The number of remaining refinement
checks to be performed appears in the final column.

The hybrid algorithm removed all memory access events in several applications:
boundedBuf, fft, lu, lu-non, and water-nsquared. These cases have no remain-
ing race candidates that should be checked with the CSP model. The average
reduction in the trace size by the hybrid algorithm is 47.73%. Blackscholes
and bzip2smp are excluded as they have no remaining memory events.

The same segment reduction is shown by the number of removed events and

119



5. Data Race Detection

Table 5.8.: Trace reduction: hybrid filter & segment merge

Events removed Refinement checks

Application Hybrid Same segment Redundant Final

aget 53 0 0 2

blackscholes 0 0 0 0

boundedBuffer 80 0 0 0

bzip2smp 0 0 0 0

ctrace 124 15 2 1

fft 1,006 0 0 0

fmm 4,081 5,396 2,091 143

hawnknl 15 4 1 4

lu 7,097 0 0 0

lu-non 3,002 0 0 0

pbzip2 19 2 1 2

pfscan 160 0 0 2

prodcons 18 0 0 1

qsort mt 737 2 1 3

sqlite-dl 0 0 0 1

streamcluster 34 6 2 1

water-nsquared 4,087 0 0 0

the number of saved refinement checks. For blackscholes, boundedBuffer,
bzip2smp, fft, lu, lu-non, and water-nsquared, the other reductions have elim-
inated all possible race candidates, so the thread segment reduction is not
needed. This technique has no effect on aget, pfscan, prodcons, and sqlite-dl,
which all require one or two checks to be performed. In ctrace, fmm, pbzip2,
qsort mt, and streamcluster, at least 20% of the initial checks are eliminated.
Fmm is an extreme case where 93.6% of the checks are removed as they are
equivalent to the remaining 6.4%. The number of times that the CSP model
must be explored is greatly reduced from 2234 to 143.

We can cross-compare the number of remaining checks with the number of
counterexamples obtained, which are already shown in the candidate column
of Table 5.6. As we obtain a maximum of one counterexample per check, we
see that in the 86.7% of the final checks RaceQuest found a racy interleaving.

120



5.6. Evaluation

5.6.4. Scalability Comparison

In this section we compare the scalability of RaceQuest, in number of interleav-
ings, with other dynamic high-coverage tools, such as CHESS and RVPredict.
CHESS [MQB07], which is described in Section 3.1.3, is an influence scheduler
that exhaustively explores the interleavings of a program. RVPredict [HMR14]
is a trace-based predictive tool, described in Section 3.1.2. These tools work for
different platforms to RaceQuest; CHESS is used for C# programs and RVPre-
dict for Java programs, so we cannot use the previous benchmarks. Therefore,
we implemented a program with variable number of interleavings in the three
languages: C, C#, and Java.

The implemented program is depicted in Figure 5.17, and it is similar to the
motivational example of this chapter in Figure 5.2. The program contains a
configurable number of interleavings. It contains a race that only occurs under
a specific schedule, when the thread worker finalizes before the thread main
performs the increment on x. In all other interleavings, the race on x is hidden
because of the happens-before relation between the unlock and lock calls.
In this program each thread executes the correctly protected critical section N
times, so the number of possible interleavings depends on N; but there is still
only one interleaving where the race takes place.

This evaluation is performed on a 2x Intel Core i5 4300 at 1.9GHz with 8GB
RAM, running a Debian Jessie for RaceQuest and RVPredict, and Windows
10 for CHESS. The configuration of RaceQuest is the same as in previous
experiments. CHESS uses a default configuration with race detection enabled.
For RVPredict we extended the trace window size to 10,000 events, matching
the trace window size of RaceQuest.

Table 5.9 contains the time, in seconds, needed by each tool to find the race.
Each column corresponds to an instance of the previous program with N loop
iterations in each thread.

CHESS starts with 3.83 seconds for a program with 10 iterations but increases
exponentially to more than half an hour when reaching the 200 iterations in
each thread. CHESS explores all possible interleavings, with a bounded number
of preemptions, until it finds the race. It executes the whole program each time,
which results in hundreds of executions. This program does not perform any
significant work outside locking/unlocking. If there was any relevant work in
any thread, CHESS would pay the cost of executing this work in each explored
interleaving, something that RaceQuest and RVPredict do not as they only
explore an abstract model.

121



5. Data Race Detection

1 int x = 0, y = 0;
2 mutex m;
3 void main() {
4 fork(worker);
5 x++;
6 for(int i = 0; i< N; i++) {
7 lock(m);
8 y++;
9 unlock(m);

10 }
11 join(worker);
12 }
13
14 void worker() {
15 for(int i = 0; i< N; i++) {
16 lock(m);
17 y++;
18 unlock(m);
19 }
20 x++;
21 }

Figure 5.17.: Program with a race and N loop iterations

RVPredict detection time quickly increases with the number of iterations, but
not as fast as CHESS. When the number of iterations is 200 RVPredict exhaust
the available memory of the machine and crashes. If we use the standard trace
window size of RVPredict, which is 1,000 events, it does not crash for 200
iterations, because the internal models are smaller. But it would not find the
race in the cases with 150 and 200 iterations.

RaceQuest can handle all cases without a huge increment in execution time.
For RaceQuest the time includes the cost of replaying the counterexample
schedule. RaceQuest scales better than the other two approaches, as it mini-
mizes the number of events in the trace and creates a smaller abstract model.

5.7. Summary

In this chapter we have shown that RaceQuest, with some extensions, can
detect data races. The CSP model only requires two additional event types
to represent the memory operations. The race detection is performed with

122



5.7. Summary

Table 5.9.: Detection time(s) with different number of iterations

Number of iterations 10 50 100 150 200

RaceQuest 1.30 1.60 2.04 2.86 3.79

RVPredict 1.69 4.04 50.78 85.59 Fail

CHESS 3.83 70.57 385.50 1,013.46 2,235.16

a specific refinement check. This check searches for read-write or write-write
sequences of events in the model and reports if a race is found.

The number of memory operations executed by a program is vast and all of
them can be race candidates. To reduce the size of the trace and the number
of candidates and checks in the model, we presented several techniques and
reductions: selective instrumentation, on-line caching, interval computation,
hybrid race filtering, and same segment elimination. In our evaluation we see
that the combination of all these techniques removes on average 87% of the
events executed by the program.

RaceQuest race detection was compared against ThreadSanitizer and Helgrind
happens-before detectors in a benchmark of 113 test scenarios and 17 real
applications. In both cases RaceQuest outperformed the other race detectors
and found more races. A single execution of RaceQuest detects more races
than multiple, even thousands, of executions of the other race detectors. This
shows that the other detectors explore redundant interleavings, but RaceQuest
achieves greater coverage. We also compared the scalability of RaceQuest
against the high-coverage race detectors CHESS and RVPredict. RaceQuest
scales much better than the other tools as the number of interleavings increases.

The next chapter enables developers to customize RaceQuest similar to how
it is done for race detection. They can generate additional instrumentation
to the program to generate new events, which are mapped to CSP, like read
and write events. The users can specify their own refinement checks in CSP
to detect other ordering errors.

123





6. Detection of Custom
Ordering Errors

Previous chapters have shown the approach of RaceQuest for general concur-
rency failures: deadlocks and data races. In this chapter we extend RaceQuest
further to detect program specific errors that involve ordering issues, such as
atomicity and order violations. The idea is similar to the approach for data
races: capture additional relevant events for the error, represent them in the
CSP model, and use a custom refinement check to detect the error.

Only the user can provide the necessary knowledge about the domain, the
failure, and the correct behavior. The user has to provide a definition of the
additional events and the refinement check. To specify the additional events,
we use Aspect-Oriented Programming. The user describes an instrumentation
specification, which includes the new events for the trace model and how these
events are generated. The new events in the trace model are automatically
translated into the CSP model by RaceQuest. The user also provides a de-
scription of the property as a CSP refinement check. The check is combined
with the CSP model and fed to the model checker. When the check does not
hold, a counterexample is obtained. The counterexample is used to reproduce
the interleaving to reach the erroneous state.

6.1. Motivational Example
An example of an order violation is the file access example in Figure 6.1.1 Two
threads use a file API. The thread main opens and closes the file handle. The

1As already described in Chapter 1

125



6. Detection of Custom Ordering Errors

spawned thread worker writes the output of the function compute to the
file.

1 file *f;
2 void main() {
3 fork(worker);
4 f = open_file("foo");
5
6 some_work();
7
8 join(worker);
9 close_file(f);

10 }
11
12 void worker() {
13 data = compute();
14 write_file(f, data);
15 clear(data);
16 }

Figure 6.1.: Concurrent use of file API (again)

The user expects that the program performs the interleaving in Figure 6.2a.
After the file is opened and worker is created, the function some work
runs in parallel with compute and the file writing. But the interleaving in
Figure 6.2b is also possible. Here, write file happens before the file is
open. In this case write file could simply fail without any warning, and
the data written to the file would be lost.

The idea with RaceQuest is that if finds the erroneous interleaving in Fig-
ure 6.2b when given any interleaving of the program, such as the one in Fig-
ure 6.2a. We need to know the valid orders of API calls to find an interleaving
that would produce a failure, so RaceQuest can check if any interleaving in
the CSP model does not follow the valid orders. The valid set of API orders is
only known by the developer, who has to provide these orders to RaceQuest.
In the case of the file API, the valid orders are: at the beginning the file can
only be opened, afterwards the file can be read or written any number of times.
An opened file can be closed at any time. Then the file returns to the original
state and can only be accessed after being opened again.

126



6.2. Customizing the Trace Model

main worker
fork(worker)
f = open file("foo”)
some work()

data = compute()
write file(f, data)
clear(data)

join(worker)
close file(f)

(a)

main worker
fork(worker)

data = compute()
write file(f, data)

f = open file("foo”)
some work()

clear(data)
join(worker)
close file(f)

(b)

Figure 6.2.: Different interleavings for program in Figure 6.1

6.2. Customizing the Trace Model

The basic trace model presented in Chapter 4 only contains synchronization
related events. To check properties not directly related to synchronization
events, we need to extract the additional information from the program execu-
tion. In Chapter 5 the events read and write were added, with the sole purpose
of detecting data races. These memory events were obtained by instrumenting
all memory operations and generating events at runtime.

Through instrumentation specification the user is able to define new events
and the corresponding tracing points to generate them. The instrumentation
specification is based on Aspect-Oriented Programming, which is introduced
in Section 2.5. The grammar for the instrumentation specification is shown in
Figure 6.3.

The whole specification is defined as the set Instrumentation, a set of several
instrumentation orders. Each instrumentation order contains the following:
event, where, what and target. These describe the join-points, pointcuts, and

127



6. Detection of Custom Ordering Errors

〈Instrumentation〉 ::= (〈event〉 〈where〉 〈what〉 〈target〉 ‘\n’)*

〈where〉 ::= ‘before’
| ‘after’

〈what〉 ::= ‘call’
| ‘body’
| ‘read-global’
| ‘write-global’
| ‘line’

〈event〉 ::= 〈identifier〉 ( ‘(’ 〈field〉 (‘,’ 〈field〉)* ‘)’ ) ?

〈field〉 ::= ‘string’
| ‘*’* ‘#index’
| ‘*’* ‘#return’
| ‘#size’
| ‘#address’
| ‘#value’

Figure 6.3.: Summary of instrumentation specification grammar

advice in AOP terminology. The join-points are described by the combination
of where and what. These define the type of element in source code that will
be instrumented. The pointcuts (join-point instances) are denoted with the
identifier target. Where describes if the instrumentation takes place before or
after what in the source code. The following list contains the possible values
of what and the meaning of the associated target :

• call - a call to a function; target is the name of the function.

• body - the body of a function (if available); target is the name of the
function.

• read-global - a load instruction for a global variable; target is the
name of the global variable.

• write-global - a store instruction for a global variable; target is the
name of the global variable.

• line - a source code line; target is the source code file and line.

An advice is in all cases the emission of an event, described by event. Event is
composed of an identifier and a sequence of fields. The identifier is the name

128



6.2. Customizing the Trace Model

of the new event in the trace, such as the already existing lock, unlock, or fork
events. The fields parameterize the different events. They carry additional
information in the trace model, e.g. a lock event carries the identifier of a
mutex. Most of the fields will take different values at runtime, based on the
real values in the program during the execution.

Different values of what allow different fields; Table 6.1 summarizes which fields
are available for each join-point.

Table 6.1.: Valid field elements in each join-point

call body read-global write-global line

string X X X X X
#index X X
#return X X
#size X X
#address X X
#value X X

The following list describes the behavior of each type of field :

• string - an alphanumeric string, which is used directly as an identifier
in the trace model. This value is constant across all the instances of the
same event.

• #index - captures the argument in the index position as an integer,
targeted for capturing pointer addresses or integers.

• #return - captures the returning value of the function as an integer,
targeted for capturing pointer addresses or integers. Only valid if the
value of where is after.

• #size - captures the width of a memory access as an integer.

• #address - captures the address of a memory access as an integer.

• #value - captures the value of a memory access as an integer.

Any #index or #return field can be prefixed by the * symbol. For each
instance of the symbol, the argument or the return value will be dereferenced
before emitting the contained value. The dereferencing is used to capture the
content of pointers.

Additionally, all events have automatically associated the thread identifier of
their performing thread as first field. The user does not specify that in the

129



6. Detection of Custom Ordering Errors

instrumentation specification, but it appears in the trace model. For exam-
ple, an event element defined as access(), would emit the event access(tx) at
runtime.

6.2.1. Example of a Custom Instrumentation

Figure 6.4 shows the relevant events for the API used by the file access program
in Figure 6.1.

Each line defines an additional event in the trace, starting with the identifier
that will appear in the trace, such as open, close and access, and followed
by when they should be logged. In this case the three events are logged before
a function call. The synchronization events are always automatically instru-
mented, as they are needed to generate the inter-thread orderings. The func-
tions in the source code are open file, close file, write file, and
read file. The instrumentation of the call to open file is placed after
the call itself, because we need to track the output of the call. The output of
the call is the file handle pointer that is used later with the other functions;
we capture the pointer with the #return field. The program is automatically
instrumented before the close file, write file, and read file calls.
For these three calls the events also carry the pointer of the file handle, which
is always the first argument and is captured with the #0 field. The instrumen-
tation logs the previous identifiers (open, close and access) in the trace. The
access event represents the calls to read file and write file.

open(#return) after call open_file
close(#0) before call close_file
access(#0) before call write_file
access(#0) before call read_file

Figure 6.4.: Instrumentation specification for file API

Figure 6.5 displays a trace of the program in Figure 6.1, obtained with the
previous instrumentation in Figure 6.4. It is obtained from the expected in-
terleaving in Figure 6.2a. The thread main is t1, the thread worker is t2.
The trace contains the open, access, and close events as expected. The first
field for each one is the thread identifier. Note that the user did not specify
the thread identifiers, it is done automatically. The second field is the address
of the target file captured as an integer value. Here we simply represent the
value as f . There is no trace of the functions that are not specified in the
instrumentation: some work, compute, and clear.

130



6.3. CSP Model & Custom Properties

fork(t1, t2)
open(t1, f)
start(t2)
access(t2, f)
end(t2)
join(t1, t2)
close(t1, f)

Figure 6.5.: Simplified trace in tuple format

6.3. CSP Model & Custom Properties

The transformation of a trace with custom events to the CSP model corre-
sponds to the process outlined in Section 4.4. The additions are the custom
events, which are translated one-to-one to CSP events. For each type of event
a channel is defined, and the fields of the event in the trace are fields of the
CSP events. The custom events are not synchronization events, so they only
appear in the processes THREADi.

6.3.1. Custom Properties

The second input that the user must provide is the property specification.
The property specification is exactly a refinement check in CSP and the aux-
iliary processes and events, as explained in Section 4.5. The processes SPEC
and IMPL can take any form that the user wishes. As in the previous re-
finement checks, the only requirement is that the user references the process
PROGRAM in the implementation process, because the counterexample is
extracted automatically from PROGRAM . The refinement check can use any
semantic model. SPEC and IMPL may reference both synchronization and
custom events in the model. The generated CSP model is combined with the
property specification and fed to the model checker.

Property check patterns

The refinement check can take multiple forms and have different goals. We
identified two main patterns: correctness check and sequence search.

In correctness checking, the user defines in CSP the correct behavior for a set
of events, e.g. a process V ALID. Then the CSP model of the trace is checked
for violations of that correct behavior. This case is a direct implementation of

131



6. Detection of Custom Ordering Errors

the refinement checking definition:

SPEC = V ALID

IMPL = PROGRAM |̀ valid set

SPEC vT IMPL

The correct behavior is the specification process. The implementation process
is the process PROGRAM , but the events that are never performed by the
correct behavior are hidden. The set of possible events performed by V ALID
is defined in the set valid set. If at any point the process IMPL causes
an ordering not defined in V ALID, the refinement does not hold and the
counterexample is retrieved.

In sequence searching the user provides a description of an erroneous inter-
leaving and uses the refinement check to find it. An example is race detection,
where the read-write and write-write subsequences are searched, independently
of the previous and the subsequent events. In CSP there is no direct approach
to search for a subsequence in the traces of a process, as each trace of a pro-
cess begins from the first event. Instead we have to build a watchdog process
that will follow all the relevant events of the process PROGRAM and emit
a special event to indicate the error. We offer a pre-defined watchdog process
called WD. The structure of WD and the associated refinement check is as
follows:

WDE,events = (E ; error → SKIP ) 4 (2z:events z → WDE,events)

STOP vT (PROGRAM ‖
err set

WDERR,err set) |̀ {error}

The process WD will follow all the events performed by PROGRAM in
err set. The refinement does not hold if WD emits the special event error; in
this case the counterexample is extracted from PROGRAM . WD is config-
urable by the user, it requires a process ERR defining the relevant subsequence.
The subsequence must terminate with SKIP , in order for the event error to
be emitted. A set with the relevant events for the subsequence ordering is also
needed, and is defined in err set.

6.3.2. Counterexample Reproduction

A counterexample will be a combination of synchronization and custom events.
As the custom events also have tracing points, they will be used as enforcing
points.

132



6.3. CSP Model & Custom Properties

6.3.3. Example of a Custom Property

Figure 6.6 shows the corresponding CSP model for the trace in Figure 6.5. The
model contains the two corresponding thread processes THREADi and the re-
quired synchronization processes FORK and JOIN . The model only contains
the standard synchronization events and the events specified in Figure 6.4 that
occur at runtime.

THREADt1 = fork.t1.t2 → open.t1.f → join.t1.t2 → close.t1.f → SKIP

THREADt2 = start.t2 → access.t2.f → end.t2 → SKIP

FORKt′ = fork?t.t′ → start.t′ → SKIP

JOINt′ = end.t′ → join?t.t′ → SKIP

INTER = (THREADt1 ||| THREADt2) ; endthreads→ SKIP

SY NC = FORKt2 ||| JOINt2

PROGRAM = INTER ‖
{|fork,join|}

SY NC

Figure 6.6.: CSP model of the trace in Figure 6.5

The property, in the form of a CSP refinement check, is shown in Figure 6.7.
The process FILEp represents the valid orders in CSP for the file p, but uses
the events defined in the instrumentation specification. The events include the
thread identifier and the file identifier as fields. The process allows any event
to be performed by any thread, because in each event the thread field accepts
any value.

The refinement check is an application of the correctness pattern, where FILEp

describes the allowed order of file-related events. We can have multiple file
identifiers in the program and the trace; therefore, for each file a process FILEp

is instantiated. These processes are combined with an interleaving operator in
the process FILES that represents the combined orderings of file operations in
all files in the trace. The set Files contains all file identifiers in the model. In
the implementation side of the refinement check we only show the file-related
events of PROGRAM . All the synchronization events are hidden, as none
appear in FILEp.

The refinement check with the process PROGRAM from the model in Fig-
ure 6.6 does not hold. In PROGRAM the access.t2.f event can occur before
the open.t1.f event, an order not allowed by FILEp. The counterexample here

133



6. Detection of Custom Ordering Errors

FILEp = open?t.p→ OPENp

OPENp = access?t.p→ OPENp

2 close?t.p→ STOP

FILES =|||x∈Files FILEx

FILES vT PROGRAM |̀ {|open, access, close|}

Figure 6.7.: File access property

is:

fork.t1.t2, start.t2, access.t2.f

The CSPM version of the property model and checks can be found in Ap-
pendix A.2.5.

6.4. Use Cases

In this section we present additional use cases of RaceQuest with custom prop-
erties.

For each case, including the file access example, two small programs have been
coded and tested to evaluate the validity of the defined properties. One is
a scenario that violates the relevant property, e.g. the file opening does not
ever happen before the first access. The other is the corrected version of that
scenario. RaceQuest detected 100% of the property violations and generated
the corresponding counterexample. No warning was reported in any of the
correct test cases. The average trace size in all the 14 tests is 15 events. Due
to their small size, as in the deadlock evaluation in Section 4.8, the average
time used by RaceQuest is 554ms, out of which 85% is the off-line prediction
step, dominated by the call to the refinement checker.

6.4.1. Deadlock

In Chapter 4 we used deadlock detection as a motivational example for the
basic modeling in RaceQuest. Although deadlock detection is built into Race-
Quest, we can easily replicate the property it as a custom property. The
instrumentation specification is empty, as no additional events are needed, the
synchronization events are enough. The property specification is exactly the

134



6.4. Use Cases

one defined in Section 4.5.1. It is a special instance of correctness checking, as
the specification process is a non-deadlocking one. The user would only need
to provide the description in Figure 6.8 as property specification.

LIV E = live→ LIV E

LIV E vF (PROGRAMΘendthreadsSKIP ) \ Σ ; LIV E

Figure 6.8.: Deadlock property

6.4.2. Custom Race Detector

Race detection was covered in Chapter 5, which presented additional algo-
rithms to reduce the huge number of initial candidates. Users can also create
their own race detectors if they want to check a specific global variable. For
example, a user wants to check if the accesses to the shared variables x and
y of a program suffer from a race. The instrumentation specification in Fig-
ure 6.9 instruments all accesses to the shared variables x and y of a program,
but only the direct accesses to the global variables, not through alias. During
runtime these memory access events will populate the trace, such as x.t1.store
for a write by the thread t1 to variable x.

x(load) before read-global x
x(store) before write-global x
y(load) before read-global y
y(store) before write-global y

Figure 6.9.: Instrumentation specification for custom race detector

The data race property for checking races on both variables is shown in Fig-
ure 6.10. A data race is an instance of the sequence search pattern. The
set err setk for each variable are the events related to the variable and the
synchronization events. The same parameterized process ERRk can be used
for both variables. The process WD is the same as presented in the pattern
description. For each variable there is a specific refinement check. Both refine-
ment checks have the same structure and only the process ERR and the set
err set change. The whole structure of the race check is the same as the one
used in Section 5.3.1, distinguished only by the structure of the events and the
process we use, WD.

The CSPM version of the property can be found in Appendix A.2.6.

135



6. Detection of Custom Ordering Errors

err setk = {|k|} ∪ sync events
ERRk = k?t.load→ k?t′ : threads− {t}.store→ SKIP

2 k?t.store→ k?t′ : threads− {t}.store→ SKIP

WDE,events = (E ; error → SKIP ) 4 (2z:events z → WDE,events)

STOP vT (PROGRAM ‖
err setx

WDERRx,err setx) |̀ {error}

STOP vT (PROGRAM ‖
err sety

WDERRy ,err sety) |̀ {error}

Figure 6.10.: Data race property

6.4.3. Rover Uplink

The following example describes the ordering in API calls of a data uplink
from a planetary rover to a space craft, a fictional example presented by
Havelund [Hav08]. The functions in the API are listed in Figure 6.11. The
API has the following four requirements:

R1: A connection is opened, accessed zero or more times, and subsequently
either closed or canceled. An access is either a write operation or a
commit operation.

R2: The commit operation must be followed by an acknowledgment before
any other operation can be performed, except a cancellation.

R3: It is prohibited to have more than one connection opened at any time.

R4: A write operation or an assignment to the variable header, collectively
referred to as an update, should be followed by a commit operation before
the connection is closed, unless the transmission is canceled.

char* header;
Connection open_connection(char* name) {...}
bool close_connection(Connection connection) {...}
void cancel_transmission(Connection connection) {...}
void write_buffer(Connection connection, int data) {...}
void commit_buffer(Connection connection) {...}
void acknowledge() {...}

Figure 6.11.: Rover uplink API

136



6.4. Use Cases

We want to check if any program using this API violates any of the require-
ments. We need to define the instrumentation and property specifications for
RaceQuest. The instrumentation specification is shown in Figure 6.12. An
event is created for each function and for the accesses to the global variable
header. The assignment to header and the write operation on the buffer
produce the common event update (R4). As it is only permissible to open one
connection (R3), we do not need to differentiate the function calls by their
arguments, i.e. the connections.

open before call open_connection
close before call close_connection
cancel before call cancel_transmission
update before call write_buffer
commit before call commit_buffer
update before write-global header
ack before call acknowledge

Figure 6.12.: Instrumentation specification for rover example

The property check is displayed in Figure 6.13. The property follows the
correctness check pattern, where the process UPLINK represents the spec-
ification to be fulfilled. The four requirements are defined in the processes
UPLINK, OPEN , and COMMIT . UPLINK ensures that the first action
must be always to open the connection (R1) and that only one connection is
open at any time (R3). UPLINK may be canceled at any state (derived from
R1, R2, and R4). OPEN describes the operations on an open connection:
closing (R1), committing (R1), or updating (R4). COMMIT ensures that a
commit operation is always followed by an acknowledgment operation (R2).
Finally, all synchronization events and read operations on the header variable
are hidden from PROGRAM , as they are not relevant for UPLINK.

Any program that makes use of this API can be checked with RaceQuest to
detect violations of any of the four requirements. For example, a violation is
a write or commit after a cancel by another thread. Only the instrumentation
and property specifications are needed. The CSPM version of the property can
be found in Appendix A.2.7.

6.4.4. SQLite Core API

The SQLite API for C/C++ contains a core set of functions that are sufficient
to access the database and make requests. The API manual [SQL] describes

137



6. Detection of Custom Ordering Errors

UPLINK = open?t→ ((OPEN 4 cancel?t→ SKIP ) ; UPLINK)

OPEN = closed?t→ SKIP

2 COMMIT

2 update?t→ COMMIT

COMMIT = commit?t→ ack?t→ OPEN

UPLINK vT PROGRAM |̀ {|open, close, cancel, update, commit, ack|}

Figure 6.13.: Rover example property

the relevant set of functions and the order in which they are used. The API
contains two sets of functions, one for managing a connection to a database
and another for managing SQL statements. A connection to a database can be
created and closed with the functions sqlite3 open and sqlit3 close.
SQL statements can be compiled and prepared on an open connection with
the function sqlite3 prepare. This preparation can only be done once per
statement. The function sqlite3 step evaluates a statement and retrieves
the first row of results. Subsequent calls to sqlite3 step on the same
statement deliver the next rows. The columns of the current row are explored
with the function sqlite3 column. Starting with the first column, following
sqlite3 column calls show the next column. A statement is destroyed with
the function sqlite3 finalize. Prepared statements can be reused using
the function sqlite3 reset. A prepared statement can be parameterized
with the function sqlite3 bind. This must happen before evaluating the
statement, and before calling sqlite3 step.

The instrumentation specification in Figure 6.14 defines the events for the dif-
ferent functions. The events carry at least one parameter to identify the con-
nection or statement to which they refer. The function sqlite3 prepare
carries both arguments, as it depends on both. In all cases we capture the
pointer address of the structure so they can be uniquely identified. The func-
tions sqlite3 open and sqlite3 prepare use one of their arguments to
return a pointer to the created connection or statement. In these two cases we
need to dereference these arguments so they match the captured arguments of
the other functions. For example, the *#3 for sqlite3 prepare derefer-
ences the third argument of the function call and then emits its content as an
integer in the event.

The custom property is defined in Figure 6.15. The processesDBx andOPENx

138



6.4. Use Cases

open(*#1) after call sqlite3_open
close(#1) before call sqlite3_close
prepare(#0, *#3) after call sqlite3_prepare
finalize(#0) before call sqlite3_finalize
bind(#0) before call sqlite3_bind
reset(#0) before call sqlite3_reset
step(#0) before call sqlite3_step
column(#0) before call sqlite3_column

Figure 6.14.: Instrumentation specification for the SQLite core API.

define the behavior of a single database connection. The connection can be
opened. Once open, multiple prepare events can be performed until the con-
nection is finally closed. The process STMTx initiates a database statement,
which can be initially bound or not, and transits into the process READYx.
STMTx allows multiple step events, being reset (with an optional bind), mul-
tiple column events, and finalized. The process SQL combines all instances
of the processes DBx and STMTx. All DBx processes are interleaved, as are
all STMTx processes. The interleaved DBx processes are composed in par-
allel with the STMTx processes communicating over the prepare events; this
composition is the process SQL. No STMTx begins until the correspondent
prepare event has been performed by the corresponding DBx. The refinement
check follows the correctness pattern, where SQL describes the correct behav-
iors. The CSPM version of the property can be found in Appendix A.2.8.

6.4.5. Atomicity Violation

Figure 6.16 shows a program with an atomicity violation. In the program the
threads main and worker execute the function increment, which increases
the global variable x by one. Note that the variable x is atomic, so there
are no data races during the access to x. While main is performing the local
instruction temp++, worker can concurrently execute its call to increment.
Then the value of x that main read is no longer valid and main will overwrite
the work done by worker. The function increment function should be
executed atomically, i.e. its calls should be serialized. But nothing is enforcing
the atomicity.

This atomicity violation is a semantic error, so we need to know that the func-
tion increment should be serialized and check whether the serializability is
violated. It is not in the scope of RaceQuest hypothesize which parts of a

139



6. Detection of Custom Ordering Errors

DBx = open?t.x→ OPENx

OPENx = prepare?t.x?s→ (OPENx 2 close?t.x→ SKIP )

STMTx = prepare?t?d.x→ (bind?t.x→ READYx 2 READYx)

READYx = step?t.x→ READYx

2 reset?t.x→ (READYx 2 bind?t.x→ READYx)

2 column?t.x→ READYx

2 finalize?t.x→ SKIP

SQL = (|||x∈Connections DBx) ‖
{|prepare|}

(|||x∈Statements STMTx)

SQL vT PROGRAM |̀
{|open, close, prepare, finalize, bind, reset, step, column|}

Figure 6.15.: SQLite example property

program are supposed to be atomic. This information should come from pro-
gram annotations or other tools, e.g. from Vaziri [VTD06] or Atomizer [FF08].
However, with RaceQuest we can check whether the atomicity of a supposed
atomic region has been violated.

We describe the instrumentation specification in Figure 6.17, where the en-
ter and exit events correspond to the beginning and end of the body of the
increment function, and the access event correspond to the accesses to the
variable x.

The work of Vaziri [VTD06] defines multiple atomicity violation patterns, such
as read-write-write or write-read-write by different threads. The five single
variable atomicity patterns are condensed here in the process AVt. The process
PREAVt allows any memory access as prefix of AVt. The process ERR ensures
that the previous patterns are only active inside the defined serializable region,
delimited by the enter-exit pair of events. The refinement check follows the
sequence search pattern.

The atomicity violation property in CSP can be reused for any single variable
atomicity violation check. But the instrumentation must be adapted to the
specific serializable block and variable to be checked. The CSPM version of
the property can be found in Appendix A.2.9.

140



6.4. Use Cases

1 atomic x = 0;
2 void main() {
3 fork(worker);
4
5 increment();
6
7 join(worker);
8 }
9

10 void worker() {
11 increment();
12 }
13
14 void increment() {
15 int temp = x;
16
17 temp++;
18
19 x = temp;
20 }

Figure 6.16.: Atomicity violation example

6.4.6. Resource Management System

The following example describes a resource management system presented by
Havelund [HR15]. The system contains only the four functions listed in Fig-
ure 6.19.

The system has the following requirements:

R1: A resource may be requested by any task with the request function.

R2: A requested resource may be denied or granted, i.e. the request function
returns a zero or a non-zero.

R3: A granted resource may be rescinded or canceled, a rescinded resource is
still granted.

R4: A resource may only be requested by a task if that task does not currently
hold the resource.

R5: A granted resource must eventually be canceled.

141



6. Detection of Custom Ordering Errors

enter before body increment
exit after body increment
x(load) before read-global x
x(store) before write-global x

Figure 6.17.: Instrumentation specification for an atomicity violation check

err setk = {|enter, exit, k|}
AVt,k = k.t.load→ k?t′ : threads− {t}.store→ k.t?any → SKIP

2 k.t.store→ k?t′ : threads− {t}.load→ k.t.store→ SKIP

2 k.t.store→ k?t′ : threads− {t}.store→ k.t?any → SKIP

PREAVt,k = AVt,k 4 (2z:{|k|} z → AVt,k)

ERRk = enter?t→ (PREAVt,k 4 exit.t→ ERRk)

WDE,events = (E ; error → SKIP ) 4 (2z:events z → WDE,events)

STOP vT (PROGRAM ‖
err setk

WDERRk,err setk) |̀ {error}

Figure 6.18.: Atomicity property

R6: A resource should only be held by at most one task at any one time.
A resource should be canceled before being granted to another task, i.e.
mutual exclusion.

R7: Two resources can be declared to be mutually exclusive (they conflict),
i.e. they cannot be granted to any task at the same time.

We will consider that each task is performed by a single thread.

The instrumentation specification is shown in Figure 6.20. We capture one
event per function call and the first argument, which refers to the resource.
For the function request we also capture the return value, as it is needed
to know if the resource has been granted or not. The function conflict
declares that the two given resources are mutually exclusive.

Figure 6.21 displays the property. The processes RESk and GRANTEDt,k

describe the basic behavior of the resource management. In RESk, after a
request event for a resource, the return value, field s, is used to decide if the
resource has been granted or not. A resource granted to thread t transits the
process to the process GRANTEDt,k. A denied resource returns to RESk, so

142



6.5. Summary

int request(resource *r) {...}
void rescind(resource *r) {...}
void cancel(resource *r) {...}
void conflict(resource *r1, resource* r2) {...}

Figure 6.19.: Resource management API

request(#0, #return) after call request
rescind(#0) after call rescind
cancel(#0) after call cancel
conflict(#0,#1) after call conflict

Figure 6.20.: Resource management

it can be requested again. All the RESk processes are interleaved. The process
CONFIm,n represents the entry point for the conflict management, i.e. the
mutual exclusion between resources m and n. CONFIm,n must first observe
the corresponding conflict event, afterwards the mutual exclusion becomes ac-
tive with the process CONFm,n. CONFm,n observes the request events on m
or n. After a denial of the request, the process returns to CONFm,n to observe
the next request. After a granted request, non-zero s, the only valid event
is a cancel on the same resource. The paired resource cannot be requested
until the first one is released. For each pair of resources, m and n, an inde-
pendent CONFIm,n is instantiated in the process CONFS. All the instances
of CONFIm,n run in parallel and synchronize on the events request and can-
cel. Different conflicting pairs will have to agree on these events. Similarly,
all these conflict processes also run in parallel with the interleaved RESk pro-
cesses, again synchronizing on request and cancel events. With all the defined
processes synchronizing simultaneously on the request and cancel events, we
ensure that all conditions, e.g. resources not acquired and not conflicting with
any other, for each event must be fulfilled at the same time. The refinement
check is an instance of the correctness pattern, where the process RESS de-
scribes the correct behaviors. The CSPM version of the property can be found
in Appendix A.2.10.

6.5. Summary

In this chapter we have extended RaceQuest to support custom checks. Users
can define their own properties to validate that the behavior of a program

143



6. Detection of Custom Ordering Errors

RESk = request?t.k?s→
(RESk<I s == 0>I GRANTEDt,k)

GRANTEDt,k = rescind.t.k → GRANTEDt,k

2 cancel.t.k → RESk

CONFIm,n = conflict?.m.n→ CONFm,n

2 request?t.m→ CONFm,n

2 request?t.n→ CONFm,n

2 cancel?t.m→ CONFm,n

2 cancel?t.n→ CONFm,n

CONFm,n = request?t.m?s→
(CONFm,n<I s == 0>I cancel?t.m→ CONFm,n

2 request?t.n?s→
(CONFm,n<I s == 0>I cancel?t.n→ CONFm,n

CONFS = ‖
{|request,cancel|} x,y∈Resources

CONFIx,y

RESS = (|||x∈Resources RESx) ‖
{|request,cancel|}

CONFS

RESS vT PROGRAM |̀ {|request, rescind, cancel, conflict|}

Figure 6.21.: Resource management property

follows the correct order. Users must specify which events are relevant in a
program and extract them with the help of Aspect-Oriented Programming.
The orders to be checked, i.e. the properties, are described in CSP. The vio-
lation of the properties provides a counterexample, such as in deadlocks and
data races, which users can use to analyze the problem. We provide two main
patterns to facilitate the writing of new properties.

We illustrated the use of RaceQuest for custom properties with seven different
examples. The examples include cases with descriptions of only the accepted
behaviors, such as API calling orders, and cases with descriptions of erroneous
behaviors, such as atomicity violations. All examples have been tested with
correct and faulty versions of the same program.

144



7. Conclusion

This final chapter presents a summary of the RaceQuest predictive approach,
as well as several ideas and directions for research and future work.

7.1. Summary

In this work we developed RaceQuest, an innovative automatic dynamic ap-
proach to find concurrency failures. We stated in Section 1.3 that a model-
based analysis of a trace should fulfill the following requirements: high coverage
of interleavings, no false positives, reproducibility of the detected failures, ex-
tensibility, and minimal size of the trace. Throughout this work we have shown
how RaceQuest achieves these requirements.

Our model takes a trace of an execution, and models the observed interleaving
and alternative interleavings using the CSP process algebra. These alterna-
tive interleavings are based on the reorderings of the observed instructions,
always following the semantics of the present synchronization operations. The
exploration of the model that represents this set of interleavings enables the
detection of more failures than other dynamic tools, which are sensitive to the
timing and observe a narrow set of interleavings. The off-line exploration of
interleavings, and its smaller abstract model, allow RaceQuest to cover more
interleavings with a better scalability without re-executing the program for
each interleaving.

RaceQuest only observes real addresses and values, and thus eliminates false
positives due to aliasing. RaceQuest has some limitations that can introduce
false positives, such as ad-hoc synchronization or lock-free algorithms, but these

145



7. Conclusion

could be improved with additional annotations. The interleaving inference by
the model could generate infeasible interleavings, which could lead to false
positives. These infeasible interleavings are explicitly detected and eliminated
replaying the obtained counterexamples. The outputs of RaceQuest exclusively
consist of failure-triggering counterexamples.

The counterexamples are schedulings provided by RaceQuest when a failure
is found in any interleaving of the model. Replaying can also be used by
developers to investigate the failure. The locations in the source code are
not always enough to understand the cause of the problem and identify the
defect. Thanks to the schedule provided, the developer can re-run the program
multiple times and repeatedly observe the same behavior.

Our model can be used for multiple purposes. We have covered deadlocks,
data races, and ordering errors defined by the user. All the errors are defined
directly in the process algebra, without any kind of extension to the algebra.

In each case the captured trace and the model are composed of the least number
of events relevant to the failure. This implies less overhead during the capture
of the trace and the reproduction of the program, as well as faster exploration
of the CSP model due to its smaller size. Race detection is a taxing case, as
the initial number of operations is huge. RaceQuest contains additional steps
that reduce the size of the trace as well as the number of explorations of the
model.

RaceQuest is a viable and effective approach to help the developers of multi-
threaded shared memory systems to find and debug concurrency failures. As
the tool does not emit false positives, no time is wasted tracking non-existent
failures. The developers can focus on replaying the given counterexamples to
understand the causes of the failure without the timing influence of a debugger.
RaceQuest simplifies the life of developers and saves time when facing concur-
rency failures, which is one of the main disadvantages of the now ubiquitous
parallel programming.

7.2. Future Work

An improvement would be the reduction of infeasible counterexamples, to save
resources by avoiding the testing of invalid schedules. To achieve this with-
out incorporating sequential consistency in all memory operations is difficult.
Tracking sequential consistency in all memory operations requires capturing all
accesses and their values. That is, the amount of resources needed to reduce
infeasibility in the model should be smaller than what is needed to perform the

146



7.2. Future Work

active testing. One possibility is to only enable memory consistency for atomic
variables. This approach should reduce the number of interleavings without
excessively increasing the size of the trace and the model.

In cases where no error is detected, the model checker performs an exhaustive
search. We have not limited the number of resources in each search. But in
case of more limited resources we would want to prioritize some reorderings
above others. Alternatively, we would want to prioritize interleavings that are
similar to the original trace to avoid path divergence. One direction of work
would be to incorporate this prioritization using the process algebra or the
model checker algorithms.

The Aspect-Oriented grammar can be significantly expanded with ideas from
more complex languages such as AspectJ. We could add advice customization,
more join-points, or conditional behavior to the tracing. The current imple-
mentation of the Aspect-Oriented instrumentation works at the level of LLVM.
An alternative could be to change it to operate directly on C or C++ code,
which would offer more possibilities, such as the use of type information.

Applying RaceQuest to other languages or libraries, even if they use LLVM
as backend, implies technical changes, such as identifying the functions to
synchronization calls. More importantly, we need to support the semantics
of its synchronization constructs, i.e. add or modify the CSP processes that
represent these constructs. For example, in Java we find a recursive mutex as
built-in mutex and a latch is a non-reusable barrier.

Although this work covered shared memory systems, the main idea could be
translated to distributed memory. Each process of the distributed program
would take the role of one thread in the model. The synchronization mecha-
nisms would need to be redefined.

147





Appendices

149





A. Example Models in CSPM

This appendix contains a brief introduction to the machine-readable format
CSPM and the CSPM versions of the examples seen in previous chapters. The
examples can be applied as they are to the FDR3 model checker.

A.1. CSPM Language

The CSPM is a lazy functional language to describe CSP models and checks.
CSPM representation differs slightly from the blackboard CSP description used
in the previous chapters. In a CSPM description we identify three main ele-
ments: type definitions, CSP processes, and checks. Table A.1 describes the
CSPM equivalent, in plain ASCII, for blackboard CSP symbols.

In CSPM the events are typed. Type is assigned with the keyword channel.
For example, channel coin: Integer defines a channel coin that always
has exactly a single field and is an integer; coin.100 or coin.-50 are valid
instances of the event, but coin.gold is not as gold is not an integer. New
types are defined with the keyword datatype. For example, datatype
metal = gold | silver creates the type metal that has two values: gold
or silver. A set of types can be bonded together to a name using the keyword
nametype. For example, nametype validcoins = {10,50} binds the
set composed of the integers 10 and 50 to the name validcoins; this set can
also be used as another type. Datatypes and nametypes can be used in channel
definitions, e.g. channel coin: metal or channel coin: values.

An assertion asks the model checker to verify if an expression is true. An asser-
tion uses the keyword assert, as in assert P [T= Q where it verifies if Q

151



A. Example Models in CSPM

Table A.1.: CSPM symbol equivalence

CSP CSPM

a→ P a -> P

P 2 Q P [ ] Q

P \ event-set P \event-set

P |̀ event-set P |\event-set

P ;Q P ; Q

PΘevent-setQ P [| event-set |> Q

P ||| Q P ||| Q

P ‖
event-set

Q P [| event-set |] Q

P 4 Q P /\Q
P <I b>I Q if b then P else Q

{|a, b|} {| a, b |}
Σ Events

S vT I S [T= I

S vF I S [F= I

m-set ∪ n-set union(m-set, n-set)⋃
x∈sets x Union(sets)

m-set \ n-set diff(m-set, n-set)

refines P using the trace model. Assertions also accept additional options, such
as :[partial order reduce], which applies a safe state space reduction
technique.

CSPM has more capabilities not described here: functions, error handling,
modules, subtypes, etc. A more complete description of CSPM is available in
the FDR3 manual [GRABR13].

152



A.2. Example Versions in CSPM

A.2. Example Versions in CSPM

A.2.1. Model with Deadlock in Figure 4.14

nametype thread = {0,1}
nametype mutex = {0,1}
channel lock : thread.mutex
channel unlock : thread.mutex
channel fork : thread.thread
channel join : thread.thread
channel start : thread
channel end : thread
channel endthreads

THREAD_0 = fork.0.1 -> lock.0.0 -> lock.0.1 -> unlock.0.1 ->
unlock.0.0 -> join.0.1 -> SKIP

THREAD_1 = start.1 -> lock.1.1 -> lock.1.0 -> unlock.1.0 ->
unlock.1.1 -> end.1 -> SKIP

INTER = (THREAD_0 ||| THREAD_1) ; endthreads -> SKIP
MUTEX_0 = lock.0.0 -> unlock.0.0 -> MUTEX_0

[] lock.1.0 -> unlock.1.0 -> MUTEX_0
MUTEX_1 = lock.0.1 -> unlock.0.1 -> MUTEX_1

[] lock.1.1 -> unlock.1.1 -> MUTEX_1
FORK_1 = fork.0.1 -> start.1 -> STOP
JOIN_1 = end.1 -> join.0.1 -> STOP
SYNC = MUTEX_0 ||| MUTEX_1 ||| FORK_1 ||| JOIN_1
sync_set = {|fork,join,start,end,lock,unlock|}
PROGRAM = INTER [| sync_set |] SYNC

channel aux
LIVE = aux -> LIVE
assert LIVE [F= (((PROGRAM [| {endthreads} |> SKIP)\Events);

LIVE) :[partial order reduce [precise]]

153



A. Example Models in CSPM

A.2.2. Model with Multiple Lock-Orders in Figure 4.20

nametype thread = {0,1}
nametype mutex = {0,1}
nametype barrier = {0}
channel lock : thread.mutex
channel unlock : thread.mutex
channel fork : thread.thread
channel join : thread.thread
channel start : thread
channel end : thread
channel barrier_enter : thread.barrier
channel barrier_exit : thread.barrier
channel endthreads

THREAD_0 = fork.0.1 -> lock.0.0 -> lock.0.1 -> unlock.0.1 ->
unlock.0.0 -> barrier_enter.0.0 -> barrier_exit.0.0
-> lock.0.1 -> lock.0.0 -> unlock.0.0 -> unlock.0.1
-> join.0.1 -> SKIP

THREAD_1 = start.1 -> lock.1.0 -> lock.1.1 -> unlock.1.1 ->
unlock.1.0 -> barrier_enter.1.0 -> barrier_exit.1.0
-> lock.1.1 -> lock.1.0 -> unlock.1.0 -> unlock.1.1
-> end.1 -> SKIP

INTER = (THREAD_0 ||| THREAD_1) ; endthreads -> SKIP
MUTEX_0 = lock.0.0 -> unlock.0.0 -> MUTEX_0

[] lock.1.0 -> unlock.1.0 -> MUTEX_0
MUTEX_1 = lock.0.1 -> unlock.0.1 -> MUTEX_1

[] lock.1.1 -> unlock.1.1 -> MUTEX_1
FORK_1 = fork.0.1 -> start.1 -> STOP
JOIN_1 = end.1 -> join.0.1 -> STOP
BARRIER_U_0(2) = barrier_exit.0.b -> BARRIER_D_B(1)

[] barrier_exit.1.b -> BARRIER_D_B(1)
BARRIER_U_0(i) = barrier_enter.0.b -> BARRIER_U_B(i+1)

[] barrier_enter.1.b -> BARRIER_U_B(i+1)
BARRIER_D_0(0) =barrier_enter.0.b -> BARRIER_U_B(1)

[] barrier_enter.1.b -> BARRIER_U_B(1)
BARRIER_D_0(i) = barrier_exit.0.b -> BARRIER_D_0(i-1)

[] barrier_exit.1.b -> BARRIER_D_0(i-1)
SYNC = MUTEX_0 ||| MUTEX_1 ||| FORK_1 ||| JOIN_1

||| BARRIER_D_0
sync_set = {|fork,join,start,end,lock,unlock,barrier_enter,

barrier_exit|}
PROGRAM = INTER [| sync_set |] SYNC

154



A.2. Example Versions in CSPM

channel aux
LIVE = aux -> LIVE
assert LIVE [F= (((PROGRAM [| {endthreads} |> SKIP)\Events);

LIVE) :[partial order reduce [precise]]

155



A. Example Models in CSPM

A.2.3. Model with Deadlock & Semaphore in Figure 4.23

nametype thread = {0,1}
nametype semaphore = {0}
channel fork : thread.thread
channel join : thread.thread
channel start : thread
channel end : thread
channel sem_post : thread.semaphore
channel sem_wait : thread.semaphore
channel endthreads

THREAD_0 = fork.0.1 -> sem_post.0.0 -> sem_wait.0.0 ->
join.0.1 -> SKIP

THREAD_1 = start.1 -> sem_wait.1.0 -> sem_wait.1.0 ->
end.1 -> SKIP

INTER = (THREAD_0 ||| THREAD_1) ; endthreads -> SKIP
FORK_1 = fork.0.1 -> start.1 -> STOP
JOIN_1 = end.1 -> join.0.1 -> STOP
SEMAPHORE_0(0) = sem_post.0.0 -> SEMAPHORE_0(1)

[] sempost.1.0 -> SEMAPHORE_0(1)
SEMAPHORE_0(10) = sem_wait.0.0 -> SEMAPHORE_0(1)

[] semwait.1.0 -> SEMAPHORE_0(1)
SEMAPHORE_0(i) = sem_post.0.0 -> SEMAPHORE_0(i+1)

[] sem_post.1.0 -> SEMAPHORE_0(i+1)
[] sem_wait.0.0 -> SEMAPHORE_0(i-1)
[] sem_wait.1.0 -> SEMAPHORE_0(i-1)

SYNC = FORK_1 ||| JOIN_1 ||| SEMAPHORE_0
sync_set = {|fork,join,start,end,lock,unlock,sem_post,

sem_wait|}
PROGRAM = INTER [| sync_set |] SYNC

channel aux
LIVE = aux -> LIVE
assert LIVE [F= (((PROGRAM [| {endthreads} |> SKIP)\Events);

LIVE) :[partial order reduce [precise]]

156



A.2. Example Versions in CSPM

A.2.4. Model with a Data Race in Figure 5.8

nametype thread = {0,1}
nametype mutex = {0}
nametype memory = {0,1}
channel lock : thread.mutex
channel unlock : thread.mutex
channel fork : thread.thread
channel join : thread.thread
channel start : thread
channel end : thread
channel read: thread.memory
channel write: thread.memory
channel endthreads
THREAD_0 = fork.0.1 -> write.0.0 -> lock.0.0 -> write.0.1 ->

unlock.0.0 -> join.0.1 -> SKIP
THREAD_1 = start.1 -> lock.1.0 -> write.1.1 -> unlock.1.0 ->

write.1.0 -> end.1 -> SKIP
INTER = (THREAD_0 ||| THREAD_1) ; endthreads -> SKIP
MUTEX_0 = lock.0.0 -> unlock.0.0 -> MUTEX_0

[] lock.1.0 -> unlock.1.0 -> MUTEX_0
FORK_1 = fork.0.1 -> start.1 -> STOP
JOIN_1 = end.1 -> join.0.1 -> STOP
SYNC = MUTEX_0 ||| FORK_1 ||| JOIN_1
sync_set = {|fork,join,start,end,lock,unlock|}
PROGRAM = INTER [| sync_set |] SYNC

channel race
RACE(k,event_set) = RACE_ERR(k) /\

([] z:event_set @ z -> RACE(k,event_set))
RACE_ERR(k) = (read?t1:thread!k ->

write?t2:diff(thread,{t1})!k -> race -> SKIP)
[] (write?t1:thread!k ->

write?t2:diff(thread,{t1})!k -> race -> SKIP)
events_0 = union({read.0.0,read.1.0,write.0.0,write.1.0},

sync_set)
events_1 = union({read.0.1,read.1.1,write.0.1,write.1.1},

sync_set)
assert STOP [T= (PROGRAM [| events_0 |] RACE(0,events_0)) |\

{race} :[partial order reduce [precise]]
assert STOP [T= (PROGRAM [| events_1 |] RACE(1,events_1)) |\

{race} :[partial order reduce [precise]]

157



A. Example Models in CSPM

A.2.5. File Example in Figures 6.6 and 6.7

nametype thread = {0,1}
nametype mutex = {0}
channel lock : thread.mutex
channel unlock : thread.mutex
channel fork : thread.thread
channel join : thread.thread
channel start : thread
channel end : thread
channel endthreads
THREAD_0 = fork.0.1 -> open.0.0 -> join.0.1 -> close.0.0 ->

SKIP
THREAD_1 = start.1 -> access.1.0 -> end.1 -> SKIP
INTER = (THREAD_0 ||| THREAD_1) ; endthreads -> SKIP
FORK_1 = fork.0.1 -> start.1 -> STOP
JOIN_1 = end.1 -> join.0.1 -> STOP
SYNC = FORK_1 ||| JOIN_1
sync_set = {|fork,join,start,end,lock,unlock|}
PROGRAM = INTER [| sync_set |] SYNC

files = Union({open_arg1,access_arg1,close_arg1})
channel open: thread.files
channel access: thread.files
channel close: thread.files
FILE(p) = open?t.p -> OPENED(p)
OPENED(p) = access?t.p -> OPENED(p)

[] close?t.p -> FILE(p)
FILES = ||| x : files @ FILE(x)
assert FILES [T= PROGRAM |\ {|open,access,close|}

:[partial order reduce [precise]]

158



A.2. Example Versions in CSPM

A.2.6. Custom Race Detector Example in Figure 6.10

channel x : thread.{load,store}
channel y : thread.{load,store}

err_set(k) = union({|k|},sync_set)

ERR(k) = k?t1!load -> k?t2:diff(thread,{t1})!store -> SKIP
[] k?t1!store -> k?t2:diff(thread,{t1})!store -> SKIP

channel error
WD(E,events) = (E; error -> SKIP) /\

([] z : events @ z -> WD(E,events))

assert STOP [T= ( PROGRAM [| err_set(x) |] WD(ERR(x),
err_set(x))) |\ {error} :[partial order reduce [precise]]

assert STOP [T= ( PROGRAM [| err_set(y) |] WD(ERR(y),
err_set(y))) |\ {error} :[partial order reduce [precise]]

159



A. Example Models in CSPM

A.2.7. Rover Example in Figure 6.13

channel open: thread
channel close: thread
channel update: thread
channel cancel: thread
channel ack: thread
channel commit: thread

UPLINK = open?t -> ((OPENED /\ cancel?t -> SKIP); UPLINK)
OPENED = close?t -> SKIP

[] COMMIT
[] update?t -> COMMIT

COMMIT = commit?t -> ack?t -> OPENED
assert UPLINK [T= PROGRAM |\{|open,close,cancel,update,

commit,ack|} :[partial order reduce [precise]]

160



A.2. Example Versions in CSPM

A.2.8. SQL Example in Figure 6.15

db = Union({open_arg1,close_arg1,prepare_arg1})
st = Union({prepare_arg2,bind_arg1,step_arg1,finalize_arg1,

reset_arg1,column_arg1})

channel open: thread.db
channel close: thread.db
channel prepare: thread.db.st
channel bind: thread.st
channel step: thread.st
channel finalize: thread.st
channel reset: thread.st
channel column: thread.st

DB(x) = open?t!x -> OPEN(x)
OPEN(x) = prepare?t!x?s -> (OPEN(x) [] close?t!x -> SKIP)
STMT(x) = prepare?t?d!x ->

(bind?t!x -> READY(x) [] READY(x))
READY(x) = step?t!x -> READY(x)

[] reset?t!x -> (READY(x) [] bind?t!x -> READY(x))
[] COLUMN(x)
[] finalize?t!x -> SKIP

COLUMN(x) = column?t!x -> (COLUMN(x) [] READY(x))
SQL = ||| x : db @ DB(x) [| {|prepare|} |]

||| x : st @ STMT(x)
assert SQL [T= PROGRAM |\ {|open,prepare,close,bind,step,

reset,column,finalize|} :[partial order reduce [precise]]

161



A. Example Models in CSPM

A.2.9. Atomicity Violation Example in Figure 6.18

channel x : thread.{store,load}
channel y : thread.{store,load}
channel enter: thread
channel exit: thread

err_set(k) = {|enter,exit,k|}

AV(t1,k) = k.t1.load -> k?t2:diff(thread,{t1})!store ->
k.t1?any -> SKIP

[] k.t1.store -> k?t2:diff(thread,{t1})!load ->
k.t1.store -> SKIP

[] k.t1.store -> k?t2:diff(thread,{t1})!store ->
k.t1?any -> SKIP

PREAV(t,k) = AV(t,k) /\ ([] e:{|x|} @ e -> AV(t,k))
ERR(k) = enter?t -> (PREAV(t,k) /\ exit.t -> ERR(k))

channel error
WD(E,events) = (E;error -> SKIP)

/\ ( [] z : events @ z -> WD(E,events)))
assert STOP [T= ( PROGRAM [| err_set(x) |] WD(ERR(x),

err_set(x))) |\ {error} :[partial order reduce [precise]]

162



A.2. Example Versions in CSPM

A.2.10. Resource Management Example in Figure 6.21

resources = Union({conflict_arg1,conflict_arg2,request_arg1,
rescind_arg1,cancel_arg1})

size = request_arg2
channel conflict : thread.resources.resources
channel request : thread.resources.size
channel rescind : thread.resources
channel cancel : thread.resources

RES(k) = request?t!k?s ->
(if s==0 then RES(k) else GRANTED(t,k))

GRANTED(t,k) = rescind.t.k -> GRANTED(t,k)
[] cancel.t.k -> RES(k)

CONFI(m,n) = conflict?t!m!n -> CONF(m,n)
[] request?t!m?s -> CONFI(m,n)
[] request?t!n?s -> CONFI(m,n)
[] cancel?t!m -> CONFI(m,n)
[] cancel?t!n -> CONFI(m,n)

CONF(m,n) = request?t!m?s ->
(if s==0 then CONF(m,n) else cancel?t!m -> CONF(m,n))

[] request?t!n?s ->
(if s==0 then CONF(m,n) else cancel?t!n -> CONF(m,n))

CONFB = [|{|request,cancel|}|] x:conflict_arg1,
y:conflict_arg2 @ CONFI(x,y)

RESS = ( ||| x:resources@ RES(x))
[| {|request,cancel|} |] CONFB

assert RESS [T= PROGRAM |\ {|request,rescind,cancel,
conflict|} :[partial order reduce [precise]]

163





B. Data Race Unit Test Results

Table B.1 contains the detailed results for the data race unit test evaluation
presented in Section 5.6.2. Test name identifies the test case and the corre-
sponding test suite. Expected shows the expected result of the test, TRUE if it
contains a data race, FALSE otherwise. The third, fourth, and fifth columns
show the results for each tool: RaceQuest, ThreadSanitizer, and Helgrind. The
values reflect whether a warning was emitted or not. An emitted warning in
RaceQuest also implies a feasible counterexample. If the result of a tool does
not match the expected value, the result is boldfaced. A summary at the end
shows the number of true and false positives and negatives, along with the
precision and recall.

165



B. Data Race Unit Test Results

Table B.1.: Data race detection unit test benchmark results - detailed

Test name Expected RaceQuest TSan Helgrind

Helgrind suite

hg01 all ok FALSE FALSE FALSE FALSE

hg03 inherit TRUE TRUE TRUE TRUE

hg04 race TRUE TRUE TRUE TRUE

hg05 race2 TRUE TRUE TRUE TRUE

hg06 readshared FALSE FALSE FALSE FALSE

lock vs unlocked1 TRUE TRUE TRUE TRUE

tc01 simple race TRUE TRUE TRUE TRUE

tc02 simple tls FALSE FALSE FALSE FALSE

tc03 re excl FALSE FALSE FALSE FALSE

tc05 simple race TRUE TRUE TRUE TRUE

tc06 two races TRUE TRUE TRUE TRUE

tc16 byterace FALSE FALSE FALSE TRUE

tc21 pthonce TRUE TRUE TRUE TRUE

Causally-preceedes

Fig 3 TRUE TRUE FALSE FALSE

Fig 5 TRUE TRUE FALSE FALSE

Fig 6 TRUE TRUE FALSE FALSE

Fig 7 TRUE TRUE FALSE FALSE

Fig 8 TRUE TRUE FALSE FALSE

Fig 9 FALSE FALSE FALSE FALSE

Data-race-test

1 TRUE TRUE TRUE TRUE

2 FALSE FALSE FALSE FALSE

4 FALSE FALSE FALSE FALSE

5 FALSE FALSE FALSE FALSE

8 FALSE FALSE FALSE FALSE

9 TRUE TRUE TRUE TRUE

10 TRUE TRUE TRUE TRUE

11 FALSE FALSE FALSE FALSE

12 FALSE FALSE FALSE FALSE

Continued on next page

166



Table B.1 – continued from previous page

Test name Expected RaceQuest TSan Helgrind

14 FALSE FALSE FALSE FALSE

22 TRUE TRUE TRUE TRUE

23 FALSE FALSE FALSE FALSE

28 FALSE FALSE FALSE FALSE

29 FALSE FALSE FALSE FALSE

32 FALSE FALSE FALSE FALSE

33 FALSE FALSE FALSE FALSE

36 FALSE FALSE FALSE FALSE

37 FALSE FALSE FALSE FALSE

38 FALSE FALSE FALSE FALSE

40 FALSE FALSE FALSE FALSE

43 FALSE FALSE FALSE FALSE

44 FALSE FALSE FALSE FALSE

45 FALSE FALSE FALSE FALSE

46 TRUE TRUE FALSE FALSE

47 TRUE TRUE FALSE FALSE

48 TRUE TRUE TRUE TRUE

49 TRUE TRUE TRUE TRUE

50 TRUE TRUE TRUE TRUE

51 TRUE TRUE TRUE TRUE

52 TRUE TRUE TRUE TRUE

53 FALSE FALSE FALSE FALSE

57 FALSE FALSE FALSE FALSE

58 FALSE TRUE TRUE TRUE

64 TRUE TRUE TRUE TRUE

65 TRUE TRUE TRUE TRUE

66 FALSE TRUE FALSE FALSE

68 TRUE TRUE TRUE TRUE

69 FALSE FALSE FALSE FALSE

75 TRUE TRUE FALSE TRUE

76 FALSE FALSE FALSE FALSE

77 FALSE FALSE FALSE FALSE

78 FALSE FALSE FALSE FALSE

Continued on next page

167



B. Data Race Unit Test Results

Table B.1 – continued from previous page

Test name Expected RaceQuest TSan Helgrind

79 FALSE FALSE FALSE FALSE

80 FALSE FALSE FALSE FALSE

81 FALSE FALSE FALSE FALSE

82 TRUE TRUE TRUE TRUE

83 TRUE TRUE TRUE TRUE

84 FALSE FALSE FALSE FALSE

89 TRUE TRUE TRUE TRUE

90 FALSE FALSE FALSE FALSE

91 FALSE FALSE FALSE FALSE

92 FALSE FALSE FALSE FAILED

94 TRUE TRUE TRUE TRUE

95 TRUE TRUE TRUE TRUE

96 FALSE FALSE FALSE FALSE

101 FALSE FALSE FALSE FALSE

102 TRUE TRUE TRUE TRUE

103 FALSE FALSE FALSE FALSE

104 TRUE TRUE TRUE TRUE

105 FALSE FALSE FALSE FALSE

108 FALSE FALSE TRUE TRUE

109 FALSE FALSE FALSE FALSE

110 TRUE TRUE TRUE TRUE

114 FALSE FALSE FALSE TRUE

116 FALSE FALSE FALSE FALSE

117 FALSE FALSE FALSE TRUE

119 TRUE TRUE TRUE TRUE

120 TRUE TRUE TRUE TRUE

121 TRUE FALSE TRUE TRUE

122 TRUE TRUE TRUE TRUE

125 FALSE FALSE FALSE TRUE

131 FALSE FALSE FALSE FALSE

132 TRUE TRUE TRUE TRUE

133 TRUE TRUE TRUE TRUE

134 FALSE FALSE FALSE FALSE

Continued on next page

168



Table B.1 – continued from previous page

Test name Expected RaceQuest TSan Helgrind

139 TRUE TRUE FALSE FALSE

146 TRUE TRUE TRUE TRUE

148 TRUE TRUE FALSE FALSE

150 TRUE TRUE TRUE TRUE

152 FALSE FALSE FALSE FALSE

153 FALSE FALSE FALSE FALSE

154 TRUE TRUE TRUE TRUE

302 TRUE TRUE FALSE FALSE

305 TRUE TRUE FALSE FALSE

306 TRUE TRUE TRUE TRUE

307 TRUE TRUE TRUE TRUE

308 TRUE TRUE TRUE TRUE

310 TRUE TRUE FALSE FALSE

311 TRUE TRUE FALSE FALSE

312 TRUE TRUE TRUE TRUE

313 TRUE TRUE TRUE TRUE

315 FALSE FALSE FALSE FALSE

CyclicBarrier TRUE TRUE FALSE TRUE

RWLockVsRWLock TRUE TRUE TRUE TRUE

Summary

Σ True Positives 58 57 43 45

Σ True Negatives 55 53 53 48

Σ False Positives - 2 2 6

Σ False Negatives - 1 15 13

Precision - 0.9661 0.9556 0.8824

Recall - 0.9828 0.7414 0.7759

169





Bibliography

[Bar06] R. Barik, “Efficient Computation of May-Happen-in-Parallel
Information for Concurrent Java Programs,” in 18th International
Workshop on Languages and Compilers for Parallel Computing,
2006, pp. 152–169. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-69330-7 11

[BH02] S. Bensalem and K. Havelund, “Reducing False Positives in
Runtime Analysis of Deadlocks,” 2002. [Online]. Available:
http://ntrs.nasa.gov/search.jsp?R=20030002784

[BLR02] C. Boyapati, R. Lee, and M. Rinard, “A Type System for
Preventing Data Races and Deadlocks in Java Programs,”
in Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications, 2002,
pp. 211–230. [Online]. Available: https://www.cse.umich.edu/
techreports/cse/2006/CSE-TR-525-06.pdf

[BMT+05] A. Bouajjani, M. Markus, T. Touili, M. Müller-Olm, and
T. Touili, “Regular Symbolic Analysis of Dynamic Networks
of Pushdown Systems,” in CONCUR 2005 16th International
Conference on Concurrency Theory, 2005, pp. 473–487. [Online].
Available: http://dx.doi.org/10.1007/11539452 36

[Boe11] H. Boehm, “How to miscompile programs with “benign”
data races,” in HotPar’11 Proceedings of the 3rd USENIX
conference on Hot topic in parallelism, 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2001255

[CES71] E. G. Coffman, M. Elphick, and A. Shoshani, “System
Deadlocks,” ACM Comput. Surv., vol. 3, no. 2, pp. 67–78, 1971.
[Online]. Available: http://doi.acm.org/10.1145/356586.356588

[CT15a] L. M. Carril and W. F. Tichy, “Interleaving Generation for Data
Race and Deadlock Reproduction,” in Proceedings of the 2Nd

171

http://dx.doi.org/10.1007/978-3-540-69330-7_11
http://dx.doi.org/10.1007/978-3-540-69330-7_11
http://ntrs.nasa.gov/search.jsp?R=20030002784
https://www.cse.umich.edu/techreports/cse/2006/CSE-TR-525-06.pdf
https://www.cse.umich.edu/techreports/cse/2006/CSE-TR-525-06.pdf
http://dx.doi.org/10.1007/11539452_36
http://dl.acm.org/citation.cfm?id=2001255
http://doi.acm.org/10.1145/356586.356588


Bibliography

International Workshop on Software Engineering for Parallel
Systems. Pittsburgh, PA, USA: ACM, 2015, pp. 26–34. [Online].
Available: http://doi.acm.org/10.1145/2837476.2837480

[CT15b] ——, “Predicting and Witnessing Data Races Using CSP,”
in NASA Formal Methods: 7th International Symposium,
NFM 2015, K. Havelund, G. Holzmann, and R. Joshi, Eds.
Pasadena, CA, USA: Springer International Publishing, 2015,
pp. 400–407. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-17524-9 28

[CWC14] Y. Cai, S. Wu, and W. K. Chan, “ConLock: a constraint-based
approach to dynamic checking on deadlocks in multithreaded pro-
grams,” Proceedings of the 36th International Conference on Soft-
ware Engineering - ICSE 2014, pp. 491–502, 2014. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?doid=2568225.2568312

[EA03] D. Engler and K. Ashcraft, “RacerX: effective, static detection
of race conditions and deadlocks,” in SOSP ’03 Proceedings
of the nineteenth ACM symposium on Operating systems
principles, 2003, pp. 237–252. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=945468

[FF08] C. Flanagan and S. N. Freund, “Atomizer: A dynamic atomicity
checker for multithreaded programs,” Science of Computer
Programming, vol. 71, no. 2, pp. 89–109, 2008. [Online].
Available: http://dl.acm.org/citation.cfm?id=964023

[FF09] C. Flanagan and S. N. S. Freund, “FastTrack: efficient and precise
dynamic race detection,” in PLDI ’09 Proceedings of the 2009
ACM SIGPLAN conference on Programming language design
and implementation, 2009, pp. 121–133. [Online]. Available:
http://doi.acm.org/10.1145/1542476.1542490

[Gai86] J. Gait, “A probe effect in concurrent programs,” Software: Prac-
tice and Experience, vol. 16, no. 3, pp. 225–233, 1986.

[Goo09] Google, “Data-race-test Benchmark for ThreadSanitizer,” 2009.
[Online]. Available: https://github.com/lmcarril/data-race-test-

[GRABR13] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. W.
Roscoe, “Failures Divergences Refinement (FDR) Version 3,”
2013. [Online]. Available: https://www.cs.ox.ac.uk/projects/fdr/

[GRABR14] ——, “FDR3 - A Modern Refinement Checker for CSP,”
Tools and Algorithms for the Construction and Analysis of

172

http://doi.acm.org/10.1145/2837476.2837480
http://dx.doi.org/10.1007/978-3-319-17524-9_28
http://dx.doi.org/10.1007/978-3-319-17524-9_28
http://dl.acm.org/citation.cfm?doid=2568225.2568312
http://dl.acm.org/citation.cfm?id=945468
http://dl.acm.org/citation.cfm?id=945468
http://dl.acm.org/citation.cfm?id=964023
http://doi.acm.org/10.1145/1542476.1542490
https://github.com/lmcarril/data-race-test-
https://www.cs.ox.ac.uk/projects/fdr/


Bibliography

Systems, vol. 8413, pp. 187–201, 2014. [Online]. Available:
http://www.cs.ox.ac.uk/files/6001/Document.pdf

[Hav00] K. Havelund, “Using runtime analysis to guide model checking of
Java programs,” in 7th International SPIN Workshop, Stanford,
CA, USA, no. 7th International SPIN Workshop, 2000, pp.
245–264. [Online]. Available: http://dl.acm.org/citation.cfm?id=
672085

[Hav08] ——, “Runtime Verification of C Programs,” in Testing
of Software and Communicating Systems, 2008, pp. 7 –
22. [Online]. Available: http://www.springerlink.com/content/
31526744648107p1

[HMR14] J. Huang, P. Meredith, and G. Rosu, “Maximal sound
predictive race detection with control flow abstraction,” in PLDI
’14 Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2014, pp.
337–348. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2594315

[Hoa78] C. Hoare, “Communicating Sequential Processes,” Communi-
cations of the ACM, vol. 21, no. 8, pp. 666–677, 1978.
[Online]. Available: http://www.cs.ucf.edu/courses/cop4020/
sum2009/CSP-hoare.pdf

[HQR15] J. Huang, L. Qingzhou, and G. Rosu, “GPredict: generic
predictive concurrency analysis,” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering (ICSE), 2015,
pp. 847–857. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2818856

[HR15] K. Havelund and G. Reger, Specification of Parametric Monitors,
2015. [Online]. Available: http://link.springer.com/10.1007/
978-3-658-09994-7

[ISZBM99] A. Itzkovitz, A. Schuster, and O. Zeev-Ben-Mordehai, “Towards
Integration of Data Race Detection in DSM Systems,” Journal
of Parallel and Distributed Computing - Special issue on software
support for distributed computing, vol. 59, no. 2, 1999. [Online].
Available: http://dl.acm.org/citation.cfm?id=339736

[JNPS09] P. Joshi, M. Naik, C.-S. Park, and K. Sen, “CalFuzzer: An
Extensible Active Testing Framework for Concurrent Programs,”

173

http://www.cs.ox.ac.uk/files/6001/Document.pdf
http://dl.acm.org/citation.cfm?id=672085
http://dl.acm.org/citation.cfm?id=672085
http://www.springerlink.com/content/31526744648107p1
http://www.springerlink.com/content/31526744648107p1
http://dl.acm.org/citation.cfm?id=2594315
http://dl.acm.org/citation.cfm?id=2594315
http://www.cs.ucf.edu/courses/cop4020/sum2009/CSP-hoare.pdf
http://www.cs.ucf.edu/courses/cop4020/sum2009/CSP-hoare.pdf
http://dl.acm.org/citation.cfm?id=2818856
http://dl.acm.org/citation.cfm?id=2818856
http://link.springer.com/10.1007/978-3-658-09994-7
http://link.springer.com/10.1007/978-3-658-09994-7
http://dl.acm.org/citation.cfm?id=339736


Bibliography

in Proceedings of the 21th International Conference on Computer
Aided Verification (CAV ’09), 2009, pp. 675–681. [Online].
Available: http://dl.acm.org/citation.cfm?id=1575118

[JT08] A. Jannesari and W. F. Tichy, “On-the-fly race detection in
multi-threaded programs,” in Proceedings of the 6th Workshop
on Parallel and Distributed Systems: Testing, Analysis, and
Debugging (PADTAD ’08), 2008, pp. 1–10. [Online]. Available:
http://doi.acm.org/10.1145/1390841.1390847

[JT10] ——, “Identifying ad-hoc synchronization for enhanced race
detection,” in Proceedings of the International Symposium on
Parallel & Distributed Processing (IPDPS ’10), 2010, pp. 1–
10. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5470343

[KH08] E. Koskinen and M. Herlihy, “Dreadlocks: Efficient Deadlock
Detection,” in Proceedings of the twentieth annual symposium on
Parallelism in algorithms and architectures - SPAA ’08, 2008,
p. 297. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1378585

[KVBA+99] M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan,
I. Lee, and O. Sokolsky, “Formally specified monitoring of
temporal properties,” 11th Euromicro Conference on Real-Time
Systems, no. June, pp. 114–122, 1999. [Online]. Available:
http://dx.doi.org/10.1109/EMRTS.1999.777457

[LA04] C. Lattner and V. S. Adve,“LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation.” in International
Symposium on Code Generation and Optimization, 2004, pp.
75–88. [Online]. Available: http://doi.ieeecomputersociety.org/
10.1109/CGO.2004.1281665

[Lam78] L. Lamport, “Time, clocks, and the ordering of events
in a distributed system,” Communications of the ACM,
vol. 21, no. 7, pp. 558–565, 1978. [Online]. Available:
http://dl.acm.org/citation.cfm?id=359563

[Lee06] E. A. Lee, “The problem with threads,” Computer, vol. 39, no. 5,
pp. 33–42, 2006. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1137289

[LKK+99] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan,
“Runtime assurance based on formal specifications,” in Proceed-

174

http://dl.acm.org/citation.cfm?id=1575118
http://doi.acm.org/10.1145/1390841.1390847
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5470343
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5470343
http://dl.acm.org/citation.cfm?id=1378585
http://dl.acm.org/citation.cfm?id=1378585
http://dx.doi.org/10.1109/EMRTS.1999.777457
http://doi.ieeecomputersociety.org/10.1109/CGO.2004.1281665
http://doi.ieeecomputersociety.org/10.1109/CGO.2004.1281665
http://dl.acm.org/citation.cfm?id=359563
http://dl.acm.org/citation.cfm?id=1137289
http://dl.acm.org/citation.cfm?id=1137289


Bibliography

ings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), 1999, pp.
279–287. [Online]. Available: http://repository.upenn.edu/cgi/
viewcontent.cgi?article=1311&context=cis papers

[LLV] LLVM, “LLVM Capture Tracking.” [Online]. Available: http://
llvm.org/docs/doxygen/html/CaptureTracking 8h source.html

[LMC87] T. J. LeBlanc and J. M. Mellor-Crummey, “Debugging
Parallel Programs with Instant Replay,” IEEE Transactions on
Computers, vol. 36, no. 4, pp. 471–482, 1987. [Online]. Available:
http://dx.doi.org/10.1109/TC.1987.1676929

[MQB07] M. Musuvathi, S. Qadeer, and T. Ball, “CHESS: A systematic
testing tool for concurrent software,” Tech. Rep. MSR-TR-2007-
149, 2007. [Online]. Available: http://research.microsoft.com/
apps/pubs/default.aspx?id=70509

[NM92] R. H. B. Netzer and B. P. Miller, “What are race conditions?
Some issues and formalizations,” ACM Letters on Programming
Languages and Systems, vol. 1, no. 1, pp. 74–88, 1992. [Online].
Available: http://dl.acm.org/citation.cfm?id=130623

[NPSG09] M. Naik, C.-S. Park, K. Sen, and D. Gay, “Effective
static deadlock detection,” in 2009 IEEE 31st International
Conference on Software Engineering, 2009, pp. 386–396.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5070538

[NS07] N. Nethercote and J. Seward, “Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation,” ACM Sigplan
Notices, vol. 42, no. 6, pp. 89–100, 2007. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1250746

[NWT+07] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and
B. Calder, “Automatically Classifying Benign and Harmful
Data Races Using Replay Analysis,” ACM SIGPLAN Notices,
vol. 42, no. 6, pp. 22–31, 2007. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1250738

[PFH11] P. Pratikakis, J. S. Foster, and M. Hicks, “LOCKSMITH:
Practical static race detection for C,” ACM Transactions on
Programming Languages and Systems, vol. 33, no. 1, pp.
3:1—-3:55, 2011. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1890000

175

http://repository.upenn.edu/cgi/viewcontent.cgi?article=1311&context=cis_papers
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1311&context=cis_papers
http://llvm.org/docs/doxygen/html/CaptureTracking_8h_source.html
http://llvm.org/docs/doxygen/html/CaptureTracking_8h_source.html
http://dx.doi.org/10.1109/TC.1987.1676929
http://research.microsoft.com/apps/pubs/default.aspx?id=70509
http://research.microsoft.com/apps/pubs/default.aspx?id=70509
http://dl.acm.org/citation.cfm?id=130623
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5070538
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5070538
http://dl.acm.org/citation.cfm?id=1250746
http://dl.acm.org/citation.cfm?id=1250738
http://dl.acm.org/citation.cfm?id=1250738
http://dl.acm.org/citation.cfm?id=1890000
http://dl.acm.org/citation.cfm?id=1890000


Bibliography

[PS07] E. Pozniansky and A. Schuster, “MultiRace: efficient on
the fly data race detection in multithreaded C++ programs,”
Concurrency and Computation: Practice and Experience,
vol. 19, no. 3, pp. 327–340, 2007. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1228969

[Ram94] G. Ramalingam, “The Undecidability of Aliasing,” ACM Trans.
Program. Lang. Syst., vol. 16, no. 5, pp. 1467–1471, sep 1994.
[Online]. Available: http://doi.acm.org/10.1145/186025.186041

[RB99] M. Ronsse and K. D. Bosschere, “RecPlay: a fully integrated
practical record/replay system,” ACM Trans. Comput. Syst.,
vol. 17, no. 2, pp. 133–152, 1999. [Online]. Available:
http://dl.acm.org/citation.cfm?id=312203.312214

[Ros10] A. Roscoe, Understanding Concurrent Systems, 1st ed. Springer-
Verlag New York, Inc., oct 2010. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1941861

[SBN+97] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson, “Eraser: a dynamic data race detector for
multithreaded programs,” ACM Transactions on Computer
Systems, vol. 15, no. 4, pp. 391–411, nov 1997. [Online].
Available: http://doi.acm.org/10.1145/265924.265927

[Sch99] S. Schneider, Concurrent and Real-Time Systems: The CSP
approach, 1st ed. John Wiley & Sons, Inc., 1999. [Online].
Available: http://dl.acm.org/citation.cfm?id=555233

[SES+12] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan,
“Sound predictive race detection in polynomial time,” Proceedings
of the 39th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages - POPL ’12, p. 387,
2012. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
2103656.2103702

[SI09] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: data race
detection in practice,” in WBIA ’09 Proceedings of the Workshop
on Binary Instrumentation and Applications, 2009, pp. 62–71.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1791203

[SN16] A. Sankar and V. K. Nandivada, “Improved MHP Analysis,” in
CC 2016 Proceedings of the 25th International Conference on
Compiler Construction, 2016, pp. 207–217. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2897144

176

http://dl.acm.org/citation.cfm?id=1228969
http://doi.acm.org/10.1145/186025.186041
http://dl.acm.org/citation.cfm?id=312203.312214
http://dl.acm.org/citation.cfm?id=1941861
http://dl.acm.org/citation.cfm?id=1941861
http://doi.acm.org/10.1145/265924.265927
http://dl.acm.org/citation.cfm?id=555233
http://dl.acm.org/citation.cfm?doid=2103656.2103702
http://dl.acm.org/citation.cfm?doid=2103656.2103702
http://dl.acm.org/citation.cfm?id=1791203
http://dl.acm.org/citation.cfm?id=2897144


Bibliography

[SOA08] A. Sen, V. Ogale, and M. S. Abadir, “Predictive runtime verifica-
tion of multi-processor SoCs in SystemC,” in Proceedings - Design
Automation Conference, 2008, pp. 948–953. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=1391469.1391708

[SQL] SQLite, “An Introduction To The SQLite C/C++ Interface.”
[Online]. Available: https://www.sqlite.org/cintro.html

[Ste93] N. Sterling, “WARLOCK - A Static Data Race Analysis Tool,” in
USENIX Technical Conference, 1993, pp. 97–106.

[Sut05] H. Sutter, “The free lunch is over: A fundamental turn
toward concurrency in software,” Dr. Dobb’s Journal, pp. 1–9,
2005. [Online]. Available: http://www.gotw.ca/publications/
concurrency-ddj.htm

[SWYS11] M. Said, C. Wang, Z. Yang, and K. Sakallah, “Generating
data race witnesses by an SMT-based analysis,” in NFM’11
Proceedings of the Third international conference on NASA
Formal methods, 2011, pp. 313–327. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1986334

[Val07] Valgrind, “Helgrind: a data-race detector,” 2007. [Online].
Available: http://valgrind.org/docs/manual/manual.html

[VJL07] J. Voung, R. Jhala, and S. Lerner, “RELAY: static race detection
on millions of lines of code,” in ESEC-FSE ’07 Proceedings of the
6th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of
software engineering, 2007, pp. 205–214. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1287654

[VTD06] M. Vaziri, F. Tip, and J. Dolby, “Associating synchronization
constraints with data in an object-oriented language,” ACM SIG-
PLAN Notices, vol. 41, no. 1, pp. 334–345, 2006. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?doid=1111320.1111067

[WOT+95] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta, “The SPLASH-2 programs,” in Proceedings of the
22nd annual international symposium on Computer architecture
- ISCA ’95, no. June, 1995, pp. 24–36. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=223982.223990

[XPZ+10] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma, “Ad
Hoc Synchronization Considered Harmful,” in Proceedings of

177

http://dl.acm.org/citation.cfm?doid=1391469.1391708
https://www.sqlite.org/cintro.html
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://dl.acm.org/citation.cfm?id=1986334
http://valgrind.org/docs/manual/manual.html
http://dl.acm.org/citation.cfm?id=1287654
http://dl.acm.org/citation.cfm?doid=1111320.1111067
http://dl.acm.org/citation.cfm?doid=223982.223990


Bibliography

the 9th USENIX conference on Operating systems design and
implementation. USENIX Association, 2010, pp. 1–8. [Online].
Available: http://dl.acm.org/citation.cfm?id=1924943.1924955

[YCG08] Y. Yang, X. Chen, and G. Gopalakrishnan, “Inspect: A Runtime
Model Checker for Multithreaded C Programs,” Tech. Rep. i,
2008. [Online]. Available: http://formalverification.cs.utah.edu/
publications/conferences/pdf/spin07.pdf

[YRC05] Y. Yu, T. Rodeheffer, and W. Chen, “RaceTrack : Efficient
Detection of Data Race Conditions via Adaptative Tracking,”
Computing, vol. 39, pp. 221–234, 2005. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1095832

[ZT07] P. Zhou and R. . Y. Z. Teodorescu, “HARD : Hardware-Assisted
Lockset-based Race Detection,” in High Performance Computer
Architecture, 2007. HPCA 2007. IEEE 13th International
Symposium on, 2007, pp. 121–132. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1318108

178

http://dl.acm.org/citation.cfm?id=1924943.1924955
http://formalverification.cs.utah.edu/publications/conferences/pdf/spin07.pdf
http://formalverification.cs.utah.edu/publications/conferences/pdf/spin07.pdf
http://dl.acm.org/citation.cfm?id=1095832
http://dl.acm.org/citation.cfm?id=1318108
http://dl.acm.org/citation.cfm?id=1318108

	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Thesis Objectives
	1.4 Structure of the Thesis

	2 Basic Concepts
	2.1 Concurrent Systems
	2.1.1 Trace
	2.1.2 Synchronization Mechanisms
	2.1.3 Ad-Hoc Synchronization

	2.2 Concurrency Failures
	2.2.1 Deadlock
	2.2.2 Data Race
	2.2.3 Atomicity Violation
	2.2.4 Order Violation

	2.3 Race Detection Algorithms
	2.3.1 Happens-Before Algorithm
	2.3.2 Lockset Algorithm

	2.4 Communicating Sequential Processes
	2.4.1 Sequential Operators
	2.4.2 Concurrency Operators
	2.4.3 Expanding Event and Process Definitions
	2.4.4 Semantic Models
	2.4.5 Refinement
	2.4.6 Practicalities in Model Checking

	2.5 Aspect-Oriented Programming
	2.6 LLVM

	3 Related Work
	3.1 Race Detection
	3.1.1 Static Analysis
	3.1.2 Dynamic Analysis
	3.1.3 Influencing the Scheduler

	3.2 Deadlock Detection
	3.3 Runtime Verification
	3.4 Summary

	4 RaceQuest and Deadlock Detection
	4.1 Overview
	4.2 Motivational Deadlock Example
	4.3 Trace Model
	4.3.1 Example of a Non-Deadlocked Trace
	4.3.2 Capturing the Trace

	4.4 CSP Model
	4.4.1 CSP Model Example

	4.5 Error Checking
	4.5.1 Deadlock Checking
	4.5.2 Deadlock Check Example

	4.6 Counterexample Reproduction
	4.6.1 Deadlock Reproduction Example

	4.7 Limitations
	4.7.1 Unsupported Concurrency Mechanisms
	4.7.2 Infeasible Reordering
	4.7.3 Scalability & Trace Windowing

	4.8 Deadlock Detection Evaluation
	4.8.1 Experimental Setup
	4.8.2 Benchmark & Results
	4.8.3 Additional Detailed Examples
	4.8.4 Summary


	5 Data Race Detection
	5.1 Motivational Data Race Example
	5.2 Incorporating Memory Accesses
	5.2.1 Capturing Memory Events
	5.2.2 Memory Grouping in Intervals
	5.2.3 Extending the Trace Model with Memory Events
	5.2.4 Example of a Trace

	5.3 CSP Model & Data Race Checking
	5.3.1 Data Race Checking
	5.3.2 Model Example

	5.4 Counterexample and Reproduction
	5.4.1 Reproduction Example
	5.4.2 No Race Under Feasible Reordering

	5.5 Reduction Techniques
	5.5.1 On-Line Redundant Accesses Removal
	5.5.2 Hybrid Algorithm Data Race Filtering
	5.5.3 Same Thread Segment Reduction

	5.6 Evaluation
	5.6.1 Experimental Setup
	5.6.2 Unit Test Benchmark
	5.6.3 Application Benchmark
	5.6.4 Scalability Comparison

	5.7 Summary

	6 Detection of Custom Ordering Errors
	6.1 Motivational Example
	6.2 Customizing the Trace Model
	6.2.1 Example of a Custom Instrumentation

	6.3 CSP Model & Custom Properties
	6.3.1 Custom Properties
	6.3.2 Counterexample Reproduction
	6.3.3 Example of a Custom Property

	6.4 Use Cases
	6.4.1 Deadlock
	6.4.2 Custom Race Detector
	6.4.3 Rover Uplink
	6.4.4 SQLite Core API
	6.4.5 Atomicity Violation
	6.4.6 Resource Management System

	6.5 Summary

	7 Conclusion
	7.1 Summary
	7.2 Future Work

	Appendices
	A Example Models in CSPm
	A.1 CSPm Language
	A.2 Example Versions in CSPm
	A.2.1 Model with Deadlock in Figure 4.14
	A.2.2 Model with Multiple Lock-Orders in Figure 4.20
	A.2.3 Model with Deadlock & Semaphore in Figure 4.23
	A.2.4 Model with a Data Race in Figure 5.8
	A.2.5 File Example in Figures 6.6 and 6.7
	A.2.6 Custom Race Detector Example in Figure 6.10
	A.2.7 Rover Example in Figure 6.13
	A.2.8 SQL Example in Figure 6.15
	A.2.9 Atomicity Violation Example in Figure 6.18
	A.2.10 Resource Management Example in Figure 6.21


	B Data Race Unit Test Results
	Bibliography

