

An advanced MC modeling and multi-physics coupling system for fusion applications

Yuefeng Qiu, Ulrich Fischer, Lei Lu.

Institute for Neutron Physics and Reactor Technology, KIT

www.kit.edu

- Introduction
- The integrated system
- Advanced MC modeling
- Multi-physics coupling

Introduction

- The integrated systemAdvanced MC modeling
- Multi-physics coupling

20.04.2016

Y. Qiu, Institute for Neutron Physics and Reactor Technology (INR)

Introduction – Monte Carlo (MC) modeling

Introduction – Multiphysics coupling

- General data mapping
 - Flexible for any kind of meshes
 - Accurately preserved physical field
- Interfaces
 - Import data from MC codes
 - Export data for TH/SM codes

KIT Karlsruhe Institute of Technology

- Introduction
- The integrated system
- Advanced MC modeling
- Multi-physics coupling

The integrated system

Functions modules

The integrated system

- Introduction
- The integrated system
- Advanced MC modeling
- Multi-physics coupling

- McCad
 - Developed in KIT Based on Open CASCADE
 - Well validated and widely used in ITER, DEMO, IFMIF, ...
- CAD to CSG conversion for MC codes
 - Step 1: decomposing to CSG
 - Step 2: describing void space
 - Support MCNP, TRIPOLI

Recursive void space

- CAD to 3D mesh conversion
 - Hybrid CSG and mesh conversion
 - Hybrid geometry and tally mesh
 - Supporting MCNP6 unstructured mesh geometry
- CAD to tessellated solid conversion
 - Supporting Geant4 GDML

MC geometry mesh

Y. Qiu, Institute for Neutron Physics and Reactor Technology (INR)

SALOME version

- New Object tree
- Independent CAD viewer
- MC material management
- CAD/mesh sharing with GEOM and SMESH
- Visualization CAD in ParaView
- Binary version provided for Linux and Windows system.

ITER Benchmark model

Applications

MCNP model

0.05

- Introduction
- The integrated system
- Advanced MC modeling
- Multi-physics coupling

- McMeshTran
 - A <u>MC Mesh</u> and data <u>Tran</u>sformation/ <u>Tran</u>slation/ <u>Tran</u>sfer tool;
 - Mapping data from MC to CFD/FE meshes (points and cells)
 - Mesh persistency and manipulation with MED
 - Mesh sharing with SMESH
 - Visualize results directly on ParaView

Y. Qiu, Institute for Neutron Physics and Reactor Technology (INR)

- MC code interface
 - MCNP5 rectilinear mesh tally
 - MCNP6 unstructured mesh
 - TRIPOLI-4 orthogonal mesh
 - Geant4 scoring mesh
- CFD/FE code interface

TRIPOLI-4®

- CFX: User Fortran
- Fluent: User Defined Function

Geant4

ANSYS Workbench: CSV

- MCNP6 unstructured mesh
 - Mesh of a breeder unit is generated by ANSYS ICEM;
 - Hybrid model converted by McCad;

Subcom- ponent	MCNP tally result (W)	MCNP UM result(W)	Diff.
Beryllium	1.5555×10 ⁴	1.5787×10 ⁴	1.49%
Cooling plate	1.8036×10 ³	1.7596×10 ³	2.44%
Lithium OSI	1.0862×10 ⁴	1.0821×10 ⁴	0.38%

TRIPOLI test

- An test case has been used
- TRIPOLI Mesh tally of neutron flux is compared with MCNP mesh tally
- Results agree well.

- Geant4 test
 - Using the same cases as TRIPOLI
 - superimposed unstructured mesh tally compared with MCNP6
 - Results agree very well.

- Fluent and CFX comparison
 - The 1/6 FW model was analysis
 - Using the identical mesh and conditions
 - Temperature results agree very well.

- Introduction
- The integrated system
- Advanced MC modeling
- Multi-physics coupling

- An advanced system for MC modeling and multi-physics coupling;
- McCad: Advanced hybrid CSG, tessellated solid and unstructured mesh modelling approach have been developed;
- McMeshTran: Generic coupling between MCNP5/6, TRIPOLI-4, Geant4 and Fluent, CFX, ANSYS Workbench has been achieved.
- This system is well verified and has been applied in fusion neutronics analysis.
- General purpose tools, developed for, but not limited in fusion engineering;
- Open-source!
 - McCad binary: <u>https://github.com/inr-kit/McCad-Salome-Binaries</u>
 - McCad source: <u>https://github.com/inr-kit/McCad-Salome-Source</u>
 - McMeshTran binary: <u>https://github.com/inr-kit/McMeshTran-Binaries</u>
 - McMeshTran source: <u>https://github.com/inr-kit/McMeshTran-Source</u>

