

Application of an Advanced Variance Reduction Technique for Bulk Shield Calculations of the IFMIF-DONES facility

Yuefeng Qiu, Stanislav Simakov, Ulrich Fischer

Institute for Neutron Physics and Reactor Technology

Outline

- Introduction
- Assessment of ADVANTG for IFMIF-DONES
- Improvements: methods and codes
- Summary and outlook

Karlsruhe Institute of Technology

Introduction

IFMIF-DONES

20.04.2017

3

- IFMIF: the International Fusion Materials Irradiation Facility
- DONES: DEMO Oriented Neutron Source (downgraded, early neutron source)
- Deuterium-Lithium neutron source
- Deuteron beam: 1 x 40 MeV, 125 mA
- Neutron: up to 55 MeV, 10¹⁵ n/cm²/s
- Material irradiation: up to 20 dpa/fpy, 0.5 Liter high flux volume

IFMIF-DONES building

Introduction

- Test cell shielding
 - Heavy concrete up to 4 m in thickness
 - Neutron flux varies >10¹⁰ n/cm²/s
 - Bulk shielding with penetrations
 - Challenging for both Monte Carlo (MC) and deterministic simulation method.

Dr. Yuefeng Qiu, Application of an Advanced Variance Reduction Technique for Bulk Shield Calculations of the IFMIF-DONES facility

Introduction

- Monte Carlo (MC) method
 - Common method for IFMIF-DONES shielding calculation
 - MCNP code, e.g. MCNP5-1.6
 - Variance reduction technique required for bulk shielding, e.g. superimposed weight-window (WW) mesh
- ADVANTG
 - A tool for automatic generation of MCNP weight-window mesh for variance reduction.
 - Version 3.0.3
- Is ADVANTG suitable for IFMIF-DONES ?
 - MCNP source subroutine used instead of SDEF card
 - Penetration in the bulk shielding
 - **.**...

20.04.2017

5

McDeLicious

- A MCNP source subroutine
- Simulate the generation of source neutrons/photons from deuterium-lithium reactions
- Normalized by deuteron: 1 d -> 1n, the source neutron weight varies as neutron yields
- Well validated against experiments, reference code for IFMIF-DONES

Issue

- ADVANTG code require a SDEF source in the MCNP input file
- Solution
 - Create a approximation

6 20.04.2017

Dr. Yuefeng Qiu, Application of an Advanced Variance Reduction Technique for Bulk Shield Calculations of the IFMIF-DONES facility

Dr. Yuefeng Qiu, Application of an Advanced Variance Reduction Technique for Bulk Shield Calculations of the IFMIF-DONES facility

- Normal MCNP run (Case-Ref)
 - MCNP5.1.6, FENDL3 release 4;
 - Without WW, as reference
 - 10⁸ neutron histories, mode n
 - Mesh tally covering the whole TC
 - Additional cell tally (T#), spectrum tally
- ADVANTG WW (Case-Adv)
 - Mesh: 120 × 80 × 125 intervals in X, Y and Z direction, fine 10 × 3 × 2 cm, coarse 20 × 20 × 20 cm
 - Library: 27n19g
 - Method: FW-CADIS, global weighting treatment
 - Pn order: 5
 - Source biasing turned off!

8 20.04.2017

Dr. Yuefeng Qiu, Application of an Advanced Variance Reduction Technique for Bulk Shield Calculations of the IFMIF-DONES facility

Case-Ref

- Only ~10% of cells has results
- Statistics < 0.15: 7% of cells</p>
- Case-Adv
 - Only finished 10⁷ histories
 - Good statistics in beam up and downstream
 - Statistics < 0.15: 13% of cells</p>
 - Very slow!!

faction of cells with statistical error less than the given statistical error

9 20.04.2017

Dr. Yuefeng Qiu, Application of an Advanced Variance Reduction Technique for Bulk Shield Calculations of the IFMIF-DONES facility

Vertical cut

Spectrum

Agreed in high energy range

Agreed very cell.

- Very large statistics error when E< 0.1 MeV</p>
- Cell tallies

10 20.04.2017

Dr. Yuefeng Qiu, Application of an Advanced Variance Reduction Technique for Bulk Shield Calculations of the IFMIF-DONES facility

- Issue of computational speed
 - WW lower-bounds does not consistent with the flux level through the beam duct
 - Change of flux: 10⁻² to 10⁻³

11

- Change of WW: more than 10⁻⁸
- Result in long-time simulation of over-splitting particles (long histories)

- A WW tuning program
 - A Python script for reading, tuning, writing wwinp file
- Method-1
 - Sweeping a block in X, Y, Z direction
- Method-2
 - Sweeping a tunnel of rectangular or cylindrical shape in any direction
- Linear or exponential tuning
 - Multiplying a factor to orignal value (W_i) or to reference value W₀
 - λ : factor
 - δ : relative distance

$$Wethod-2$$

$$Wethod-2$$

$$Wethod-1$$

12 20.04.2017

Dr. Yuefeng Qiu, Application of an Advanced Variance Reduction Technique for Bulk Shield Calculations of the IFMIF-DONES facility

- Tuning of the ADVANTG WW (Case-Tuned)
 - Block-1 : Reduce the over-splitting in the beam downstream
 - Block-2: increase the WW arround the beamduct
 - Beam duct: replace with the in-TC weight

	Block-1	Block-2	Beam duct	
Method	Method-1	Method-1	Method-2	
Tuning	Exponential	Exponential	Exponential	After tuning
Multiply	Original value	Original value	Reference value	
Factor	6.9	11.5	-6.9	
Effect at the last cell	10 ³ ↑	10 ⁵ ↑	10 ⁻³ ↓	

Dr. Yuefeng Qiu, Application of an Advanced Variance Reduction Technique for Bulk Shield Calculations of the IFMIF-DONES facility

Case-Ref

- Only ~10% of cells has results
- Statistics < 0.15: 7% of cells
- Case-Adv
 - 1.4 time fast than Case-Ref
 - Long-histories problem imtigated
 - Statistics < 0.15: 15% of cells

1E14 1E11

1E8

Neutron flux $(n/cm^2/s)$

1E5

1E2

 $1.0_{0.5} 0.25_{0.15} 0.1_{0.05} 0$ Statistical error

Case-Ref 13999 **Case-Tuned** 19663

Computation speed (NPS/ CTM)

Dr. Yuefeng Qiu, Application of an Advanced Variance Reduction Technique for Bulk Shield Calculations of the IFMIF-DONES facility

- Spectrum
 - Agreed in high energy range
 - Still large statistics error when E< 0.1 MeV
 - Due to the response-weighted option
- Cell tallies

Tally index

T#1

Т#2

Horizontal cut

Target FTM

tallv

20.04.2017 15

Dr. Yuefeng Qiu, Application of an Advanced Variance Reduction Technique for Bulk Shield Calculations of the IFMIF-DONES facility

- McDeLicious with constant weight (Case-ConstW)
 - Choosing a ω₀ weight larger than the maximum weight
 - Using the Russian roulette technique
 - **Neutron kill:** $\omega < \xi \omega_0$, resampling
 - Neutron survived: new weight of ω_0
 - Results renormalized by

$$\eta = 1 - \frac{N_{kill}}{N_{kill} + N_{nps}} \, .$$

- N_{kill}: mount of neutrons killed
- *N_{nps}*: total particle histories.

16

Case-Ref

- Only ~10% of cells has results
- Statistics < 0.15: 7% of cells</p>
- Case-Adv

20.04.2017

17

- 1.4 speed up
- Long-histories problem imtigated
- Statistics < 0.15: 15% of cells</p>

Case-Tuned

Case-ConstW

Dr. Yuefeng Qiu, Application of an Advanced Variance Reduction Technique for Bulk Shield Calculations of the IFMIF-DONES facility

- Spectrum
 - Agreed in high energy range
 - Still large statistics error when E< 0.1 MeV
 - Due to the response-weighted option
- Cell tallies

T#3

Tally index

T#4

T#5

T#1

Т#2

T#1

T#2

Horizontal cut

Target HFTM

Agreed very cell.

Dr. Yuefeng Qiu, Application of an Advanced Variance Reduction Technique for Bulk Shield Calculations of the IFMIF-DONES facility

M&C 2017, Jeju, Korea, April 16-20, 2017

T#6

Summary and outlook

- The effect of using an ADVANTG generated WW mesh for the DONES has been assessed.
- The long histories problem has been mitigated by tuning the WW mesh using a python script.
- The MCNP run with the tuned ADVANTG WW mesh has 2 times more mesh tallies cells with statistical error < 15%, the computational speed is 1.4 times faster compared to normal MCNP run.