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ABSTRACT:

Mobile sensor devices offer great opportunitiesdotomatic scene analysis and object recognitimwadiays a new generation of
ranging devices is available, like laser scannenichvare small and light weighted. Concerning thissprovements specific
applications can be tackled. In this contributioe fecus on vineyard monitoring for detecting andrding grape berries with a
small, lightweight and low cost multi-echo lasearscer. Therefore a Hokuyo UTM-30LX-EW laser rangelér is utilized for
capturing the data in close range up to 1m. Inmta@rocess the data the following methodologyrigposed: after smoothing and
morphological techniques are applied on the lasersag intensity and range images the number adbleisgrape berries is
determined from the resulting segments. The apprpacforms with a detection accuracy of above 8%B& results reveal the high
potential of such close range ranging devices doating and counting grape berries. Thus, the ndetlogy provides practical

support for viticulture applications.

1. INTRODUCTION

The knowledge about the grape quantity is an inambrtopic
for vineyard management. The still dominating siyst to
provide vineyard managers information for makingisiens
involves manpower and is thus labour-intensive el as too
sparse for capturing the spatial variability witlsirvineyard. In
order to provide the respective information in thgform, it is
possible to use vehicles which are equipped witmeras
and/or laser scanners and move through the vines@nd.
Such a dense, non-destructive vineyard monitorifigwa
frequent pre-harvesting analyses and significamtlgviates
decisions for different viticulture applicationsdamarvesting
activities.

Using camera images for making dense observatibrggape
guantity has been addressed in recent years. Omegei
information is available, standard methods from poter
vision can be applied to automatically detect andnt grape
berries. The gained information can then be exgibito
forecast yield with both precision and accuracyweeer, it has
to be taken into account that the extraction opgraerries from
images is often limited due to shadows and occhssicaused
by leaves within the grape canopy. Furthermoragthaght be
a varying appearance under different lighting cbads during
daytime and a weak color contrast between grapeebeand
leaves.

The increasing availability of laser scanners haanged this
situation during the last years. Such active opteasors are
capable to capture dense and accurate 3D informatimut
surfaces of objects in the local area around tlearser with
respect to a local coordinate frame. The new géneraf laser
scanners additionally provides radiometric inforiomatin form

of intensity measurements representing the resjgeetiergy of
the backscattered laser light. Some laser scarmeenwhile
even provide the capability to measure multipleoeshfor each

single emitted laser pulse which are likely to espond to
different 3D structures in the respective directiddultiple

echoes offer the possibility to efficiently detediges of objects.
All these information together are promising dataurses to
detect the berries of a grape bunch surroundedawesk.

For the example of monitoring grape canopy at #myestage
of grape ripening (Figure 1), the data acquiredhwd

lightweight and low-cost multi-echo line laser secan(Hokuyo

UTM-30LX-EW) rotating on a tripod is visualized Figure 2

as 3D point cloud, where the distance between riéygegcanopy
and the laser scanner was approximately 30 cm.rd$mective
2D representations in form of intensity image aadge image
are depicted in Figure 3 and Figure 4, and higidighareas
indicate the occurrence of multiple echoes at edgdémcomes
visible that grape berries are hardly visible i tBD point
cloud at this early stage of grape ripening anargel amount of
noise may be expected (Figure 2). In contrast, ithage

representations provide more interpretable strest(Figure 3
and Figure 4).
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early stage of grape ripening.

Figure 3: Intensity image with highlighted areassiag from
multiple echoes at edges.

2 ¢ in_ o WK SN
Figure 4: Range image with highlighted areas aridirogn
multiple echoes at edges.

In this paper, we present an automatic methodoléyy
detecting grape berries from laser scanning dat.elicitly
focus on the use of small, lightweight and low awstiti-echo
laser scanners as these can easily be mounted ranbde
platform and still cope with data acquisition. lamemary, we
investigate

« the capability and performance of a small, lightylei
and low cost multi-echo laser scanner to captur@lsm
objects such as grape berries, and

« the automatic detection of single grape berriewels
as counting their number from the captured data.

The derived experimental results demonstrate thaalls
lightweight and low cost multi-echo laser scanradfsr a high
potential for detecting grape berries.

The paper is organized as follows. In Section 2, briefly
describe the related work. Subsequently, in SecBonwe
present our methodology for detecting grape berfiike sensor
used for data acquisition and the test scenarianneduced in

Section 4. Experimental results are provided intiSec5 and
demonstrate the performance of the proposed melbgylo
Finally, in Section 6, concluding remarks are pded and
suggestions for future work are outlined.

2. RELATED WORK

There have already been various attempts to dgtape berries
from different data sources. The detection of gra@eies from
image data has been a topic of research for maretén years,
and approaches for detecting other types of fieats easily be
transferred.

Recent investigations address the localization wt fin trees
(Jimenez et al., 2000), quality control and theeesive sorting
of cherries (Rosenberger et al., 2004), the autarsatection of
‘fruit’ pixels by thresholding color values and @échnces (Dunn
and Martin, 2004), the detection of peel defectxitnus fruits

(Blasco et al., 2007), and olive classification wigspect to
quality constraints (Diaz et al., 2004; Riquelmeakt 2008).

Furthermore, detecting the curved surfaces of grapg

terahertz imaging has been proposed (Federici.eR@09) as
well as a method for the automatic extraction afpgrberries by
using a smartphone (Grossetéte et al., 2012).dratter case,
the integrated flash of the smartphone is used tlaadeflection
of light on the berry surface is more or less aafze reflection.
The maximum of reflection is on the center of ther, and

this light reflection significantly decreases frahe center of a
grape berry to the boundary. Consequently, the aidra
strategy exploits the locations with maximum reflec for

counting the berries.

As alternative, a method to detect and count gizrees by
exploiting shape and visual texture in images tentproposed
(Nuske et al., 2011; Nuske et al., 2012). The siele®f these
visual features directly addresses the crucialeissaf different
lighting and lack of color contrast. More specifigapotential

berry locations are detected with a radial symmeamsform.

Locations that have similar appearance to grapeelsesre then
identified by considering a respective local imagéch for each
potential berry location and deriving a feature teeovhich

consists of generic low-level features in termgalbr features
and Gabor features.

Furthermore, the use of 3D reconstructions gengrétem

uncalibrated image sequences has been proposelhdsifying

plant structures such as leaves, branches and(Bej et al.,
2012). The respective plant structures are idextiising both
color and local 3D shape features. Basic 3D shayarfes have
been investigated analytically for describing objetructures
(Jutzi and Gross, 2009), and a detailed analysikeofelevance
of a variety of local 3D shape features for the awetic

interpretation of 3D point cloud data has recenligen

presented (Weinmann et al., 2013).

Further investigations also involve the combinatidrdifferent
sensors. Attaching cameras and laser scanners neyard
machinery has for instance been proposed for estigharop
weight and canopy volume (Grocholsky et al.,, 201The
applied laser scanners cover a field-of-view of °1&hd
generate 75 scans per second while the vehicle dgedn
through the vineyard.

Beside the detection of grape berries, a furtherllahge
consists of extracting stem skeletons, i.e. bunakfegrapes
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where the berries have been removed. Recent inag@etig
involve Relational Growth Grammars (Schéler and ritage,
2012) to derive semantically annotated 3D reconstn
hypotheses of plant architectures from 3D sensta, da. laser
range measurements.

The further analysis of grape berries has for mstabeen
addressed in a lab. Destemming, positioning on eciap
construction and taking images are the basic reménts for an
image interpretation tool referred to as Berry AsayTool
(BAT) (Kicherer et al., 2013) which was recentlyrottuced for
acquiring the number, diameter, and volume of grbpeies
from from RGB color images. The tool is based onvacti
learning to distinguish between the labisgsry andbackground
as well as morphological techniques to remove noece
grape berries are detected, their number and dieineter are
estimated. Subsequently, their volume is calculdtedvhich
the grape berries are supposed to be ellipsoids.

3. METHODOLOGY

The proposed methodology consists of two majorsstEpstly,
a segmentation of the image is derived and it kertainto
account that many approaches for image segmenttdiah to
oversegmentation. In order to avoid such an ovemsegation,
a smoothing and morphological techniques are iremlv
(Najman and Schmitt, 1996). In the second stepnthmaber of
visible grape berries is determined from the réasylt
information on the segments.

3.1 Image Segmentation

Firstly, the intensity information is transformeatd grayscale
images by histogram normalization. In the next stépe

gradient magnitude is derived which is high at timeders of
objects and lower inside the objects. For this paep the image
is convolved with the Sobel operators in horizoatad vertical

direction which yields the partial derivativég and |, of the

image function at each pixelxy) in form of gradient images.
From these partial derivativels and Iy, the corresponding
gradient magnitude is derived for each pixel.

Subsequently, foreground objects are extracted dsyraing
that there are connected blobs of pixels insideh eafc the
foreground objects. For this purpose, morpholodieehniques
are applied in form of (i) morphological openinge(ierosion
followed by dilation) which removes smaller objeetsd (ii)
morphological closing (i.e. dilation followed byosion) which
removes small holes in the remaining foregroundcasréls
result, flat regional maxima are derived inside heabject
which represent foreground markers. Furthermore, isit
beneficial if background objects can be marked a#. Whis
can easily be achieved by considering the image afiplying
the morphological techniques and assigning alpikels which
are darker than a certain threshold to the backgtodhe
regional minima represent background markers. bl derived
regional maxima and minima are then used to mothfy
gradient magnitude image.

Finally, a watershed segmentation (Vincent and|&oil991)
which represents a region-based segmentation appria
applied on the modified gradient magnitude imagegéneral,
the watershed transform is based on the idea efgrdting a
grayscale image as topographic relief where theevaf a pixel
represents its altitude, i.e. bright pixels repn¢sggh altitudes
and dark pixels represent low altitudes. A dropvafer falling

on the relief flows along the steepest descent rdsva local
minimum. All points on the relief from which a dray water
reaches the same local minimum form a catchmerihbasd
watersheds separate adjacent catchment basinse She
structure of an image can be quite complex, theershed
segmentation typically tends to a strong oversegatien. In
order to avoid such an oversegmentation, the nestigiradient
magnitude images are considered here.

3.2 Detection of Grape Berries

Considering the locations of the derived regionakima inside
each object, i.e. the foreground markers, a coedect
component analysis can be applied in order to atinpigels to
local regions and thus obtain distinct components.detecting
grape berries, the ratio between the lengths obraajd minor
axes of each connected component is determinedn Hrese,
the respective eccentricitg is derived. Components whose
eccentricity equals O represent circular regions, @mponents
with 0 <e < 1 represent elliptical regions. Consequently, for
detecting almost circular regions, a simple thréfihg based
on eccentricity can be applied to discard irrelé\@mponents
and thus only obtain components arising from vesiglape
berries. The number of visible grape berries mayubed as
objective information to support decisions in viagy
management. Later on, for the experiments, thetaoyis also
performed manually in order to get ground truthad#r
evaluating the obtained results.

4. SENSOR AND DATASET

In this section, we introduce the utilized senswa arovide an
impression of the captured dataset.

4.1 Sensor

The data are captured with a Hokuyo UTM-30LX-EWelas
range finder (210 g without cable) which represemtsmall,
lightweight and low-cost laser scanner well-suifed robotic
applications. This laser scanner takes measurenreatsingle
plane and provides 2D scans covering a scan ang@lé0s with
an angular resolution of 0.25°. According to thedfications
(Hokuyo Specifications, 2013), the range measurémen
resolution is 1 mm, and the accuracy is specifiéth 80 mm
within a range of 0.1-10 m and 50 mm within a reued 10-30
m. The emitted laser pulses have a wavelength=sB05 nm,
the laser safety is class 1 and the pulse repetitaie is
specified with 43 kHz. For each reflected laserspuldata in
terms of range and intensity information are meagur

Additionally, it has to be considered that up teethechoes can
be measured for each single emitted laser pulsgemheral, the
number of echoes depends on the surface propérgeshape
and reflectivity) of the respective objects. Oftehe second
echo results from a partially occluded structurehie original
pulse direction and can thus be treated as aniaalglitrange
measurement. The capability to measure multipleoesteven
makes the device suitable for use under heavy tondilike
rain, smoke, mist or dust (Djuricic and Jutzi, 20138hus,
adequate measurements can even be expected ifateedew
drops present on the grape berries.

4.2 Dataset

The proposed approach is applied on a small tesise
captured within an indoor environment. The mairemtion of
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our test scenario is to preserve the main charstitsr of

visible berries in a vineyard. Consequently, theneceontains
visible berries, leaves, stems and some gaps. tteroto

estimate the adequate distance for future outd@asorements
with the available sensor, the scanner was plapptbaimately

25 cm, 50 cm and 1 m from our observed object-bunches
of grape berries positioned along the horizontal aertical

direction. The resulting intensity images and raimgages are
depicted in Figure 5 and Figure 6. The bunchesaeberries
(highlighted by red boxes in Figure 5) can easéysken in the
intensity images. A visualization of the respect®® point

cloud is depicted in Figure 7 at two different ssal

:

Figue 5: Intensity images for object distanceamfroximately

25 cm, 50 cm and 1 m (from left to right). The redxes
highlight the regions of interest, i.e. the regiangh bunches of
grape berries.

Figure 6: Range images for object distances of aqpadely
25 cm, 50 cm and 1 m (from left to right). Smatliégstances are
encoded with darker pixel values, whereas largstadces are
encoded with brighter pixel values.

FigUre 7: Visualization of the 3D point cloud aaq.mi for the
test scenario (top) and zoom on the upper regiomtefest
(bottom).

5. EXPERIMENTAL RESULTSAND DISCUSSION

For comparison, we first apply a standard regioowigng

algorithm on the intensity image of a bunch of grdyerries.
First, an initialization is conducted by selectinged points
which themselves form regions of minimum size. &gpently,
in an iterative process, each region is grown hygaring all
unallocated neighbouring pixels to the region. #his purpose,
the difference between a pixel's intensity valud tre region's
mean intensity value is used as a measure of sityildhe

pixel with the smallest difference is allocatedhe region. The
process stops when the intensity difference betwegion

mean and new pixel becomes larger than a specHieshold.
The derived results for our dataset are depictdeigare 8 and
show that single berries can hardly be counted.

Figure 8: Results of a standard region growing & tivo
regions of interest in the intensity images.

In contrast, the proposed methodology based on motwpical

operations followed by watershed segmentation alltmaderive
interpretable results by means of detecting andhtiog the

touching objects from regional maxima representimgground
markers (Figure 9). As the edges are also marked,espective
regional maxima have to be excluded. By applyingneated
component analysis and filtering with respect toceatricity,

the presented extraction strategy is able to loea# count
grape berries (Figure 10). Similar to using digitameras and
flash (Grossetéte et al., 2012), the remainingoreg)i maxima
correspond to the maxima of reflection on the aeofethe

berries, and the light reflection decreases froedénter of a
grape berry to the boundary.

ki

Figure 9: Original range image with highlighted esearising
from multiple echoes (left) and regional maxima rtaygped on
original image (right).

) -
Figure 10: Example showing regional maxima (leftd ahe
detected grape berries after filtering with resgeatccentricity
(right).
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Furthermore, we assess the detection results éomth bunches The fully automatic monitoring of properties such growth,
of grape berries by comparison to a manually detedh yield, quantity, color, ripeness and their develeptover time
ground truth data as reference. For both scenamespbtain  is not only of great interest for vineyard managembut also
detection accuracies of 84.21% and 86.21% (Tablevlixth  for food industry in general. Once automatic, freuand
reveals the feasibility of the proposed methodology dense monitoring is possible in agriculture, itpisssible to

forecast yield with both precision and accuracy.fukther

automation could lead to a fully automatic processsisting of

_ Counted Detected pre_-he_lrvestmg analyses, mformed_ decn_s,lons and/_ebang
Scenario . ; Accuracy activities which would substantially increase eéficy,
grape berries grape berrieg S .
significantly reduce the required manpower and sauet of
1 19 16 84.21% money over a long time.
2 29 25 86.21% Hence, for future work, the methodology could béeegded to
i _ _ also account for specific properties such as tleeipe size of
Table 1: Detection results for two different scéosr each detected berry or the number of berries inrelb of grape

berries in order to estimate and predict the volumfiethe

income for the actual year of harvest. Additionadly automatic
Finally, a comparison is performed by applying fveposed  detection of bunches of grape berries would beraleisi.
methodology on an intensity image and the respeatange
image. The results of the single steps in the [ssing chain are  Furthermore, the combined use of the different sypé data
depicted in Figure 11 and Figure 12. It becomebidsthat  should be taken into account. For this purposeydtld be
range images are not suitable for detecting andittmy single  desirable to perform a dense scanning in ordeibtaio dense
grape berries with the presented methodology, hatfurther 3D point cloud data. Once the point density isisigfitly high,
effort is required in this case. a variety of local 3D features can be extracted éach
measured 3D point from the spatial arrangementtioéro3D
points in its local neighborhood (Weinmann et &0Q13;
Otepka et al., 2013). These features could bezetilfor better
detecting and localizing small objects such as Isirgrape
berries in the 3D point cloud data. For speciakoty such as
grape berries which provide a spherical 3D strgtarfitting of
respective 3D primitives could also be introducédwould
further be interesting to fuse data captured witluitable laser
Figure 11: Watershed segmentation results basedthen scanner and data captured with a digital camertzi(&t al.,
intensity image: Original intensity image, gradienagnitude, 2014) as the additional data would possibly conotgbto
regional maxima, regional maxima superimposed dgirea improve an automatic interpretation of the obses@zhe.
intensity image and colored watershed label méfrom left to
right).
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