
Reduction of Dimensionality for Classification

Carlos Cuevas-Covarrubias and Eva Riccomagno

Abstract We present an algorithm for the reduction of dimensionality useful
in statistical classification problems where observations from two multivariate
normal distributions are discriminated. It is based on Principal Components
Analysis and consists of a simultaneous diagonalization of two covariance
matrices. The criterion for reduction of dimensionality is given by the con-
tribution of each principal component to the area under the ROC curve of a
discriminant function. Linear and quadratic scores are considered, the focus
being on the quadratic case.

1 Introduction

Principal components analysis (PCA) and linear discriminant analysis (LDA)
are very important methods of multivariate statistics. Given a p-dimensional
random variable X : Ω → Rp, PCA defines its optimal representation in a
lower-dimensional subspace; this representation is usually assessed in terms of
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a percentage of total variation expressed as a function of the eigenvalues of the
covariance matrix (Mardia et al, 1979). LDA assumes that Ω , the sample space
of X, is partitioned into two different categories: Ω0 and Ω1. Given x, a par-
ticular realization of X, LDA is used to infer whether x corresponds to an ob-
servation coming from Ω0 or Ω1 (Mardia et al, 1979). The ROC1 curve is one
of many criteria to assess the quality of this classification procedure (Bamber,
1975). Although PCA and LDA appear in many standard textbooks of mul-
tivariate statistics, these methods are usually discussed independently. In this
article, we assume that both classes of conditional distributions of X are mul-
tivariate normal. We explore an original combination of PCA and LDA where
the area under the ROC curve appears as the link between both methods. The
objective is to reduce dimensionality while preserving as much separability as
possible. Our proposal is interesting for several reasons: It gives PCA a wider
context of application, and it also helps to make LDA a more explanatory tech-
nique. Some of the ideas introduced in this article were previously discussed
in Cuevas-Covarrubias (2003) and in Cuevas-Covarrubias (2013). However,
these previous works mainly concentrates in the geometrical aspects of this
method. Now, our discussion is different, it is presented from a pattern recog-
nition perspective. The geometrical aspects are not analyzed and heteroscedas-
ticity as an important source of information is considered. The main contribu-
tion of this article is given in Sects. 5 and 6 where a new approach for PCA
is presented. Our proposal is somehow similar to the one in Chang (1983);
both methods use a principal components transformation to discriminate two
multivariate normal densities. However, contrasting with Chang’s method, our
proposal does not assume a common covariance matrix in both distributions,
and it concentrates on the case where both covariance matrices are different.
Our method diagonalizes both matrices simultaneously, and it always results
in a set of mutually independent components.

2 Classification rules and ROC curves

Consider a random variable X : Ω →Rp defined on a sample space Ω which is
partitioned into two categories: Ω0 and Ω1. Given x = X(ω), the objective is to
infer whether ω ∈Ω0 or ω ∈Ω0. Discriminant Analysis is aimed to summarize
our vector of covariates X into a univariate risk score S : Rp → R, useful to

1 Receiver Operating Characteristic
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discriminate between Ω0 and Ω1. Discrimination takes place according to the
following decision rule:

Classify in
{

Ω1 i f S > t
Ω0 i f S≤ t,

(1)

where t is an arbitrary decision threshold.

Definition 1. Given a risk score S with class conditional distribution functions

F0(t) = Pr[S≤ t|Ω0] and F1(t) = Pr[S≤ t|Ω1],

its ROC curve is the following set:

ROC = {(x,y)|x = 1−F0(t),y = 1−F1(t),−∞ < t < ∞}. (2)

The ROC curve as in Definition 1 is a graphical summary of the global per-
formance of the score. The area covered by the ROC-curve (denoted as A) is
a measure of the quality of S (Bamber, 1975). A = Pr[S0 ≤ S1]; where S0 ∼ F0
and S1∼F1 are two independent random variables. Thus, if we randomly select
one ω0 ∈Ω0, one ω1 ∈Ω1, and we evaluate S on each of these, A is the prob-
ability that both observations are ordered according to Equation 1. The closer
A is to 1, the better the the performance of S (Bamber, 1975). ROC curves are
invariant to monotonous transformations of the score, this property is the basis
of the following definition:

Definition 2. Let S be a single variable used to discriminate between Ω0 and
Ω1. If there is a monotonous transformation T (S) of S such that its class condi-
tional distributions are both normal, the ROC curve of S (and of T (S)) is given
by

ROC = {(u,v)|u = 1−Φ(t),v = 1−Φ

( t−d
r

)
,−∞ < t < ∞}, (3)

where Φ denotes a standard normal distribution function, d = E(T (S)|Ω1)−E(T (S)|Ω0)√
Var(T (S)|Ω0)

and r2 = Var(T (S)|Ω1)
Var(T (S)|Ω0)

. Any variable S with this property is said to be a binormal
score with parameters (d,r2). The area under the ROC curve of such a score is:

A = Φ

( d√
1+ r2

)
(4)

Table 1 shows the numerical value of A for a binormal model with different
values of d and r2 (see Equation 4).



4 Carlos Cuevas-Covarrubias and Eva Riccomagno

Table 1 Area under the ROC curve of a binormal score (Equation 4)

d r2 = 1.01 r2 = 1.25 r2 = 1.50 r2 = 1.75 r2 = 2.00 r2 = 4.00

0.00 0.50 0.50 0.50 0.50 0.50 0.50
0.50 0.63 0.63 0.62 0.61 0.61 0.59
1.00 0.75 0.74 0.73 0.72 0.71 0.67
1.50 0.85 0.84 0.82 0.81 0.80 0.75
2.00 0.92 0.90 0.89 0.88 0.87 0.81

Table 2 Numerical Integration of the ROC curve of Q

d r2 = 1.01 r2 = 1.25 r2 = 1.50 r2 = 1.75 r2 = 2.00 r2 = 4.00

0.00 0.50 0.53 0.56 0.58 0.60 0.70
0.50 0.63 0.63 0.62 0.63 0.64 0.71
1.00 0.75 0.74 0.73 0.72 0.72 0.74
1.50 0.85 0.84 0.82 0.81 0.80 0.78
2.00 0.92 0.90 0.89 0.88 0.87 0.83

3 Discrimination under normality

3.1 The univariate case

Let X : Ω → R be a univariate random variable such that its class conditional
distributions are: N(0,1) when the observations come from Ω0; and N(d,r2)
when they come from Ω1. Clearly, X is a binormal score. As a direct conse-
quence of the Neyman-Pearson Theorem, the best way to exploit X is through
its likelihood ratio. Thus, the quadratic function in Equation 5 is an optimal
discriminant score (Mardia et al, 1979).

Q(X) = log
f1(X)

f0(X)
+

d2

r2 = (1− 1
r2 )X

2 +2
d
r2 X (5)

In Equation 5 f0 and f1 represent the class conditional density functions of X .
Large values of Q indicate that Ω1 is more likely than Ω0. We do not have a
closed form for the area under the ROC curve of this likelihood ratio; neverthe-
less, very accurate approximations can be obtained using numerical methods.
Table 2 shows the area under the ROC curve of Q for different values of d and
r2. The ROC curve for Q was calculated according to Equation 2, and the area
under the curve was approximated by the trapezoid rule.

The best discriminant scores are those based on the likelihood ratio; how-
ever, the advantages of using a quadratic score are not always evident. As a
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matter of fact, in terms of A, there is no evident improvement unless (r2− 1)
is comparatively larger than d. Consider the following transformation of Q
(where r2 > 1):

r2

r2−1
Q = X2 +2

d
r2−1

X . (6)

Clearly, the relative importance of the quadratic term in Equation 6 increases as
r2 diverges from 1. By comparing Tables 1 and 2 for any fixed d, it is possible
to see how, when r2 ≤ d + 1, X and Q are equivalent in terms of the area
under their ROC curves. However, once r2 ≥ d + 1 the area corresponding to
Q increases with r2 while the one corresponding to X continues decreasing to
1
2 . In this way, Equation 6 and Table 2 suggest a practical rule of thumb: If
d ≤ (r2−1), then use a quadratic discriminant score.

3.2 The multivariate case

Let X be a random vector such that its class conditional distributions are both
multivariate normal (Mardia et al, 1979). Then, its conditional density func-
tions given Ωi are:

fi(x) =
1

‖2πΣi‖1/2 exp−1
2
(x−µi)

t
Σ
−1
i (x−µi) (7)

with i = 0,1. The problem of discriminating into two multivariate normal dis-
tributions is well known and extensively discussed in the literature (Mardia
et al, 1979). When a vector X is normally distributed in both classes we re-
fer to it as a Multivariate Normal Score (MNS). Here, we concentrate on the
canonical form of a MNS (Kullback, 1968, p. 194-197). This is:

(X |Ω0)∼ N(0,I) and (X |Ω1)∼ N(δ ,Λ) (8)

where I is the identity matrix and Λ is a diagonal matrix.
When Λ = I, the likelihood ratio is transformed into the following linear

function:
S` = δ

tX. (9)

Because X is a MNS, S` is a univariate binormal score with d =
√

δ tδ and
r2 = 1. Thus, its ROC curve is as given as in Definition 2. If Λ 6= I, the likeli-
hood ratio is transformed into the following quadratic discriminant function.
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Sq =
p

∑
i=1

(1− 1
λi
)X2

i +2.
p

∑
i=1

δi

λi
Xi (10)

Please compare Sq in Equation 10 with Q in Equation 5.

4 Linear Discriminant Analysis

Let X be a p-dimensional vector of covariates such that its class conditional
density functions are both multivariate normal; i.e. as given in Equation 7. The
parameters µi and Σi represent the class conditional expectation and class con-
ditional covariance matrix of X given Ωi. Let θ be a constant p-dimensional
vector. In principle, any linear combination S = θ t(X− µ0) is a unidimen-
sional summary of X that could be used in a classification rule like the one in
Equation 1. Thus, it is important to find that linear score S with the best global
performance. Given the normality assumption on X, any linear combination of
its components is a binormal score and the area under its ROC curve is

AS(θ) = Φ

[
θ t(µ1−µ0)√
θ t(Σ0 +Σ1)θ

]
. (11)

We are interested on finding θ∗ such that AS(θ∗)> AS(θ) for any θ 6= θ∗

Theorem 1. Let X be a MNS and let A = (µ1−µ0)(µ1−µ0)
T and B = (Σ0 +

Σ1). Then, no linear combination of the elements of X has an area under its
ROC larger than

AS(θ∗) = Φ(
√

ϕ) (12)

where ϕ is the only positive eigenvalue of B−1A, θ∗ its corresponding nor-
malized eigenvector and Φ the cumulative distribution function of a Standard
Normal.

It is possible show that that

ϕ = (µ1−µ0)
tB−1(µ1−µ0) (13)

and
θ∗ =

1
√

ϕ
B−1(µ1−µ0). (14)

Theorem 1 is demostrated in Su and Liu (1993).
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5 Principal Components Analysis for Discrimination

The canonical form of a MNS X, as given in Sect. 3, implies that its compo-
nents are simultaneously independent in Ω0 and Ω1. This may look too restric-
tive; however, every MNS can be transformed to its canonical form with just a
linear transformation.

Definition 3. Let X be a multivariate score such that its class conditional co-
variance matrices (Σ0,Σ1) are both positive definite and with all their eigenval-
ues with multiplicity one; also let (µ0,µ1) be its class conditional expectations.
The Principal Components Vector (PCV) of X is:

Z = Γ
T

Σ
−1/2
0 (X−µ0), (15)

where Γ ΛΓ T is the spectral decomposition of Σ
−1/2
0 Σ1Σ

−1/2
0 , and Σ

1/2
0 is a

square root of Σ0.

E(Z|Ω0) = 0, Var(Z|Ω0) = I, E(Z|Ω1) = δ and Var(Z|Ω1) = Λ , where
δ = Γ T Σ

−1/2
0 (µ1 − µ0) and Λ = diag{λi}p

i=1 is the matrix of eigenvalues
of Σ

−1/2
0 Σ1Σ

−1/2
0 . We will refer to T = Σ

−1/2
0 Γ as the principal components

transformation matrix.

Property 1. Given the conditions of Definition 3, the principal components
transformation matrix always exists. If the elements of the diagonal of Λ are
all different, then the transformation matrix is unique.

Proof. If Σ0 and Σ1 are positive definite, then it is always possible to construct

T = Σ
− 1

2
0 Γ (16)

where Σ
1
2

0 is any square root of Σ0 and Γ T Σ
− 1

2
0 Σ1Σ

− 1
2

0 Γ =Λ . Clearly TT Σ1T=
Λ and because Γ is orthonormal TtΣ0T = I. We conclude that under these
assumptions a matrix T always exists. We now show that if T exists, then it is
unique.

Let T be a square and nonsingular matrix such that TT Σ0T= I and TT Σ1T=
D for a diagonal matrix D. This is true if and only if (TT )−1 = Σ0T and
(TT )−1D = Σ1T. Therefore,

(Σ−1
0 Σ1)T = TD (17)
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In other words, the columns of T form a set of linearly independent eigenvec-
tors of R = Σ

−1
0 Σ1 and the elements of the diagonal of D are their respective

eigenvalues (Harville, 1997, p. 562). If the eigenvalues in D are all different,
the dimension of {υ |(R−diI)υ = 0} is 1, making T unique. ut

When X is a MNS, Z is just its canonical representation. Therefore, accord-
ing to equations (13) and (14) , the linear combination of the elements of Z
with maximum area under its ROC curve has the following vector of coeffi-
cients

ξ∗ =
[

δ1

1+λ1
,

δ2

1+λ2
, ...,

δp

1+λp

]t
, (18)

and

AZ(ξ∗) = Φ

[√
p

∑
i=1

δ 2
i

1+λi

]
. (19)

Equation 18 shows how each component Zi is weighted by the ratio of its
difference in means (δi) and the sum of its class conditional variances (1+λi).
A very important property of the principal components transformation is that

θ∗ = Σ
− 1

2
0 Γ ξ∗. This implies that S∗ is invariant to the principal components

transformation. Therefore, we can say that in terms of S∗, there is no loss of
information when X is transformed into Z.

6 Reduction of Dimensionality

6.1 When δ is the main source of information

Each principal component Zi is a linear score itself and the area under its ROC
curve is

Ai = Φ

[√
δ 2

i
1+λi

]
. (20)

The main objective of PCA is to represent random vectors in a linear space
of lower dimension. AZ(ξ∗) can be used as a criterion to asses and control
this reduction of dimensionality (see Equation 19 and (22)). Once X is trans-
formed into its principal components vector Z, its p components are ordered
as Z(1),Z(2), ...,Z(p) where
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δ 2
(i)

1+λ(i)
≥

δ 2
(i+1)

1+λ(i+1)
(21)

with i = 1,2, ...p− 1. After ordering the components of Z, the sequence

{Rk}p
i=1 of log odds ratios Rk =

log
AZ|k

1−AZ|k

log AZ (ξ∗)
1−AZ (ξ∗)

is computed. In this ratio

AZ|k = Φ

[√
k

∑
i=1

δ 2
i

1+λi

]
(22)

is the maximum area under the ROC curve that can be obtained with a linear
combination of the first k principal components (Z(1),Z(2), ...,Z(k)). Any di-
mension reduction can imply a smaller area under the ROC curve of the final
linear score. Therefore, if the minimum log odds ratio that can be afforded is a
100(1− p)% of log AZ(ξ∗)

1−AZ(ξ∗)
, the new multivariate score in a lower dimension

is obtained by selecting the first k components, where k is the minimum k such
that Rk ≥ p.

6.2 When Λ is the only source of information (δ = 0)

Let X be a vector of covariates as in Definition 3, and let Z represent its vec-
tor of principal components. If δ = 0, the covariance matrices are the only
information we can use to discriminate Ω0 from Ω1; under this circumstances

Sq =
p

∑
i=1

(1− 1
λi
)Z2

i . (23)

Our objective is to identify those components with the most important contri-
bution to Aq (the area under the ROC curve of Sq) and use them to represent
X in a space of lower dimension. For a moment, let us assume that a partic-
ular Zi with λi > 1 is our only discriminant score. Given our current assump-
tion on δ , the class conditional distributions of Z2

i are2:
(

Z2
i |Ω0

)
∼ χ2

(1) and(
Z2

i
λi
|Ω1

)
∼ χ2

(1), when we would classify in Ω1 when Z2
i > t for a certain

threshold t. Therefore,

2 χ2
(k) indicates a Chi-square distribution with k degrees of freedom.
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Aq = Pr[X ≤ λY ],

where X and Y represent two independent random variables identically dis-
tributed as χ2

(1). Clearly, Aq (the area unde the ROC curve of Sq) is an increas-
ing function of λi. If λi < 1 the decision to classify in Ω1 would be taken when
Z2

i < t; in this case
Aq = 1−Pr[X ≤ λY ]

is a decreasing function of λi. Thus, if we consider the complete set of compo-
nents with

0 < λ1 ≤ λ2, . . .≤ λp < ∞

we can conclude that:

• if λ1 > 1, then Zp is the principal component with the largest contribution
to Aq.

• if λp < 1, then Z1 is the principal component with the largest contribution
to Aq.

• when λ1 < 1 and λp > 1, the maximum contribution to Aq corresponds Z1
if λ

−1
1 > λp, and to Zp otherwise.

Once Z(1) (the first principal component) has been identified, the same crite-
rion is applied to the rest of the components in order to find Z(2) (the second
principal component). The process can be repeated until all the components of
Z are ranked and ordered in terms of their contributions to Aq.

Let

Sq|k =
k

∑
i=1

(1− 1
λ(i)

)Z2
(i) (24)

and let Aq|k be the area under its ROC curve. Then, as in the previous sub-

section, we suggest to use the log odds ratio Rk =
log

Aq|k
1−Aq|k

log Aq
1−Aq

in order to assess

the reduction of dimensionality process. The areas Aq|k and Aq can be easily
approximated using Monte Carlo methods.

6.2.1 When δ and Λ are both relevant.

Finally, we consider those situations where δ and Λ are equally important as
sources of information to discriminate Ω0 from Ω1. These are cases where
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despite ‖δ‖> 0, the cost of replacing Sq with S∗ is too high (see the rule pro-
posed in Sect. 3). The idea is to rank and select the components of Z in terms
of their contribution to Aq. It is important to keep in mind that our objective is
not only to know the actual value of Aq, but also to have a criterion to rank the
components of Z; thus, in a first stage we order the principal components with
respect to the area under the ROC curve of their marginal quadratic discrimi-
nant function Q (see eq. 5). Given the ordered set

{Z(1),Z(2), ...,Z(k)}

of the first k principal components we would use

Sq|k =
k

∑
i=1

(1− 1
λi
)Z2

(i)+2
k

∑
i=1

δi

λi
Z(i) (25)

as a discriminant score. Again, if the minimum loss of information that we can
afford is the 100(1− p)% of log Aq

1−Aq
, we must take the minimum number of

components such that Rk ≥ p. Given that we do not have a closed analytic
form of Aq nor of Aq|k, we suggest to use Monte Carlo approximations.

7 Practical Examples

Example 1. We analyze the skull morphometrics of grey kangaroos(Macropus
giganteous) shown in (Andrews and Herzberg, 1985, p. 307-317). We focus
on 50 skulls of the Macropus giganteous in order to discriminate male from
female individuals. Each observation is a vector of 18 continuous variables. A
previous analysis showed that 16 of these variables can be considered to be
normally distributed. Two of them were transformed to normality with a Box-
Cox transformation. We can assume that the linear score with maximum area
under the ROC curve for this data is binormal with parameters d = 3.33 and
r2 = 2.31. Because d > r2−1, we conclude that S∗ is enough to discriminate
male from female skulls. The results of the PCA are shown in table 3.

The dimensionality of X can be significantly reduced: three independent
principal components are enough to construct a linear score with an area of
0.91 under its ROC curve, and the first six components contain nearly the 90%
of the total information. The graph shown in Fig. 1 confirms that a straight line
can separate both groups despite its heteroscedasticity.
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Table 3 Discriminating Male from Female skulls of the Macropus giganteous kind

Zi Ai Rank Z(q) AS|q log
AS|q

1−AS|q
100∗Ri%

1 0.8240 (1) (1) 0.8240 1.5436 45.90
2 0.5977 (11) (2) 0.8850 2.0465 60.90
3 0.5573 (13) (3) 0.9118 2.3360 69.54
4 0.7311 (3) (4) 0.9284 2.5637 76.32
5 0.7772 (2) (5) 0.9409 2.7679 82.40
6 0.7068 (5) (6) 0.9502 2.9496 87.81
7 0.6869 (7) (7) 0.9570 3.1046 92.42
8 0.6989 (6) (8) 0.9596 3.1678 94.31
9 0.5051 (18) (9) 0.9617 3.2242 95.98
10 0.6094 (10) (10) 0.9635 3.2733 97.45
11 0.5455 (15) (11) 0.9648 3.3121 98.60
12 0.6229 (8) (12) 0.9653 3.3262 99.02
13 0.5593 (12) (13) 0.9657 3.3393 99.41
14 0.5144 (16) (14) 0.9660 3.3493 99.71
15 0.7133 (4) (15) 0.9663 3.3575 99.95
16 0.5108 (17) (16) 0.9663 3.3584 99.98
17 0.6167 (9) (17) 0.9663 3.3588 99.99
18 0.5501 (14) (18) 0.9663 3.3589 100.00

Fig. 1 Macropus giganteous, second vs first principal component: male = 0, female = 1
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Example 2. We analyze the physical characteristics of 77 urine samples; 33
with calcium oxalate crystals and 44 without crystals3. Six physical charac-
teristics are measured: (1) specific gravity, (2) pH, (3) osmolarity (mOsm),
(4) conductivity, (5) urea concentration and (6) calcium concentration. Five of
these variables can be assumed as normaly distributed. A Box-Cox Transfor-
mation was applied to variable X6 (calcium). The optimal linear score S∗ can
be considered to be binormal with d = 2.34 and r2 = 8.81: AS(θ∗) = 0.77 and
Aq = 0.95. Therefore, we decided to base our PCA on the quadratic discrimi-
nant score Sq; the results are shown in table 4.

Table 4 Principal Components Analysis; contribution to Aq|k

Variable Ai Rank Z(k) Aq|k log
Aq|k

1−Aq|k
Ratio

Z1 0.8250 (2) (1) 0.8464 1.7066 55.73 %
Z2 0.8464 (1) (2) 0.9332 2.6369 86.11 %
Z3 0.6370 (4) (3) 0.9373 2.7046 88.32 %
Z4 0.5054 (6) (4) 0.9454 2.8515 93.12 %
Z5 0.6190 (5) (5) 0.9549 3.0527 99.69 %
Z6 0.6483 (3) (6) 0.9553 3.0620 100.00 %

The dimensionality of X can be reduced to the first three principal compo-
nents keeping the 88% of the total information of X. The graph in Fig. 2 shows
the plot of Z(2) against Z(1). The urine samples without crystals are mainly
concentrated within a circle of radius 2 centered at the origin, while those with
crystals show a different location and are scattered all over the plane.

8 Conclusion

We have explored a new method for reduction of dimensionality based on the
canonical form of the multivariate normal distribution. This method is flexi-
ble enough to be applied when a quadratic function is used instead of a linear
one. To the best of our knowledge, this is the first time that the area under the
ROC curve is applied as a criterion to assess reduction of dimensionality. Our
proposal is based on a simultaneous diagonalization of two covariance matri-
ces. This form of orthogonality suggests that our proposal may be useful as a

3 The data set is in (Andrews and Herzberg, 1985, p. 249-252)
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Fig. 2 Urine chrystals, second vs first principal component: no crystals = 0, crystals = 1

way to eliminate colinearity in logistic regression. We can conclude that this
proposal for PCA is parsimonious and interpretable. Our discussion has been
focused on a two category discrimination context. Extensions to the three cate-
gory problem are possible as long as the three covariance matrices involved are
proportional. The multy class problem will be the objective of future research.
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