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Abstract—SPH consistency and different expression of SPH
operators (gradient and Laplacian) accuracy are numerically in-
vestigated with regards to particle disorder and smoothing length
on different particle distributions (2D and 3D Cartesian and 2D
triangular). It is observed that particle disorder deteriorates SPH
consistency and adds to the operators a diverging dependency on
the smoothing length. Numerical tests evaluate the accuracy of
the different operators on perturbed lattices, allowing to establish
a rank in terms of robustness against particle disorder.

I. INTRODUCTION

SPH is known to loose consistency on perturbed lattices.

Monaghan et al. [1] originally showed that the continuous

SPH interpolation is second-order consistent, then Quinlan et

al. [2] highlighted that applying SPH on perturbed lattices will

induce an additional discretization error (of magnitude o(h)
or even divergent in 1/h, h being the smoothing length) that

can be predominant, depending on the level of disorder and

the ratio ∆x/h, ∆x being the particle spacing.

To circumvent this problem, methods were derived to re-

store kernel consistency on perturbed lattices such as the

Shepard correction, the Mixed Kernel Gradient (MKG) [3] or

the RKPM methods [4]. However, exactly retrieving 0-order

consistency nullifies a term (see Eq. (3) in [5]) which has a

reordering role in simulation of fluids. To the authors knowl-

edge, no robust solution is available to avoid the formation of

holes in the lattice when nullifying the stabilizing term and,

therefore, the use of correctors is limited to a small range of

applications.

Alternatively, it is possible to estimate the error introduced

by uncorrected SPH operators in case of particle disorder,

and choose the most robust one. Souto-Iglesias et al. [6]

highlighted the loss of accuracy of gradient and Laplacian

operators on a perturbed lattice in Moving Particle Semi-

implicit (MPS) method (related to SPH), and Antuono et al.

[7] defined a measure of particle disorder and estimated its

influence on the accuracy of one type of gradient expression.

The present work numerically studies the combined in-

fluence of particle disorder and smoothing length on SPH

consistency and SPH operators (gradient and Laplacian) ac-

curacy. Next, the paper describes the numerical setup, in

particular, the canonical particle disorder. The consistency tests

are conducted in the third part and the accuracy of gradient
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Fig. 1. Schematics of canonical particle disorder

and Laplacian operator are investigated in the fourth and fifth

part.

II. NUMERICAL TEST SETUP

A. Canonical particle disorder

A canonical particle disorder is defined in 2D (resp. in 3D)

as a random shift of particles from their equilibrium state onto

a circle (resp. a sphere) of radius R = η∆x, for η ∈ [0, 0.5[,
where ∆x is the unperturbed particle interspacing (Fig. 1).

The parameter θ is randomly drawn with an equiprobable

distribution between 0 and 2π and in 3D an additional random

parameter ϕ is drawn between 0 and π. The distribution of the

normalized distance d/∆x between two particles is depicted

in Fig. 2 for 2D case. If η is sufficiently low, d/∆x depends on

η only. Its minimum, maximum, mean and standard deviation

are 1-2η, 1+2η, 1 and ≈ η respectively.

B. SPH schemes and notations

In the present paper, subscripts a and b stand for the particle

of interest and its neighbors respectively, and their distance is

rab = rb − ra. The summation symbol always refers to a

summation over particles b belonging to the Sphere of Influ-

ence (SoI), and the quintic kernel W (rab, h) is abbreviated to

Wab.

Since the method developed at ITS aims to simulate

multiphase flows of high density ratio (≈ 1000), the use

of traditional SPH operators based on a density approach
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Fig. 2. Density function of normalized distance d/∆x in 2D with the
canonical disorder.

would induce a strong diffusion near the interface over a

thickness of the smoothing length. In order to circumvent

this effect, operators are expressed with a volume approach

that corresponds to the original SPH interpolation: φ(x) =
∫

φ(x′)W (x′ − x, h) dx′ where φ is a scalar field and dx′

an infinitesimal volume. Therefore volume and density are

expressed as:

Va = 1/
∑

Wab (1)

ρa = ma

∑

Wab (2)

where ma stands for the particle mass. Equations (1) and

(2) ensure that the variation of volume and density are just

function of neighbors spacing and not of neighbors mass.

The SPH method presented in this article is composed of

two loops over particle interactions: first, volume and density

are calculated using Eqs. (1) and (2) and second, acceleration

terms are calculated with the particle volume Va computed at

the first step.

Solid boundaries are taken into account through layers of

stationary wall particles that avoid to truncate the support

volume of wall-adjacent fluid particles. Volume and density

of wall particles are also computed by Eq. (1) and (2)

C. Test grids

Tests are conducted in 2D (resp. 3D) with particle distribu-

tion forming a square (resp. cubic) domain of side length L.

The domain is composed of three types of particles as depicted

in Fig. 3: (i) unperturbed wall particles with incomplete SoI

(S1), forming a layer of 4h, (ii) outer perturbed particles with

complete SoI (S2) but influenced by wall particles, over a

layer of 4h and (iii) inner perturbed particles with complete

SoI made only of fluid particles. Numerical tests are conducted

on inner particles only, to avoid any deviation due to the

influence of wall particles on outer particles. Particle disorder

is studied by setting the parameter η to: 10-4, 5·10-4, 2.5·10-3,

1.25·10-2, 6.25·10-2 and 0.3215, as illustrated in Fig. 3.

Two types of lattice are investigated: (i) a cartesian lattice

that forms squares in 2D and cubes in 3D, and (ii) a triangular

S3

S1

S2

Fig. 3. Top left quarter of the test lattice for 2D case for η = 0.0625 (left)
and η = 0.3125 (right). Symbols �, # and  stand for wall, outer and inner
particles respectively

lattice generating equilateral triangles in 2D. The triangular

lattice in 3D was not tested due to a tremendously large

number of neighbors (≈350) that is prohibitive in engineering

applications. The average number of neighbors is 29, 37

and 123 for 2D Cartesian, 2D triangular and 3D Cartesian,

respectively.

As the ratio h/∆x is kept equal to 1.05, the smoothing

length influence is studied by varying the particle interspacing

∆x. For consistency tests, the number of particles is kept

constant whereas, in the operator tests, L is kept constant,

so that the number of particle increases when ∆x decreases.

The latter method therefore checks the consistency of SPH

operators OSPH in the sense of estimating the residual Ψ:
∣

∣

∣
lim

∆x→0
OSPH(∆x)− OANALYTICAL

∣

∣

∣
= Ψ (3)

Finally, the tests are conducted using several grids with the

same geometric parameters, in order to keep the total number

of data points Ngrid×Ninner constant and thus preserve the

statistical quality.

III. EVALUATION OF CONSISTENCIES

A. Definition

Consistency is detailed here as the capacity of the method to

recover the j-th derivative of a i-th order polynomial and it is

labeled Cj
i . Please note that retrieving a polynomial does not

guarantee that its derivative is also recovered. Therefore it is

mandatory to check the consistency of polynomial derivative.

The first four consistency condition are C0
0 , C1

0 , C0
1 and C1

1 ,

and their SPH expression are written as:
∑

Vb Wab = 1 (4)
∑

Vb ∇Wab = 0 (5)
∑

Vb rabWab = 0 (6)
∑

Vb rb ⊗∇Wab = I (7)

where ∇, ⊗ and I are the gradient operator, the tensor product

and the identity matrix respectively. Fulfilling Eqs. (4) to (7)

ensure that at best, SPH can exactly reproduce a linear function

and its first derivative.
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B. Error functions

Each consistency condition Cj
i is quantified by a local

error function εji at particle a, defined by a L2 norm of the

consistency deviation from ideal case:

ε00,a =
(

∑

Vb Wab − 1
)2

(8)

ε10,a =
∣

∣

∣

∣

∣

∣

∑

Vb ∇Wab − 0

∣

∣

∣

∣

∣

∣

2

× h2 (9)

ε01,a =
∣

∣

∣

∣

∣

∣

∑

Vb rab Wab − 0

∣

∣

∣

∣

∣

∣

2

×
1

h2
(10)

ε11,a =
∣

∣

∣

∣

∣

∣

∑

Vb rb ⊗∇Wab − I

∣

∣

∣

∣

∣

∣

2

(11)

where ‖x‖2 and ‖X‖2 represent respectively the magnitude

of vector x and an Hilbert-Schmidt operator of the matrix X

of size n× n:

‖X‖2 =
∑

(i,j)∈[0,n]2

|xi,j |
2

(12)

Functions εji are then equal to zero when consistency is

perfectly fulfilled, and increases when lacking consistency.

Equations (9) and (10) were multiplied or divided by h2 to

recover a non-dimensional error. The overall errors Ej
i are the

square root of averaged error functions over inner particles

and grid:

Ej
i =

√

〈εji 〉Ngrid×Ninner
(13)

C. Results

1) Scaling with h: When particles are regularly spaced (η =

0), all Ej
i are equal to 10-20 for all numerical setups, ensuring

that the four consistencies are retrieved. Figure 4 displays Ej
i

versus h for the maximum disorder η = 0.3215, and shows

significant errors independent of h. As E1
0 and E0

1 follow the

same trend as the one of E0
0 , they are not displayed for the

sake of clarity.

Since E0
0 and E1

1 are not normalized by h, reducing h does

not allow to fulfill C0
0 and C1

1 , and the error remains constant.

E0
1 is divided by h so that C0

1 is recovered for h → 0. The

worse behavior is attributed to E1
0 that shows a multiplication

by h, leading to a consistency error scaling as 1/h and thus

diverging for h → 0, as pointed out by Quinlan et al. [2].

Finally E1
1 is larger than the other errors, suggesting that C1

1

is more sensitive to particle disorder.

2) Scaling with η: Evolution of E0
0 and E1

1 versus η is

presented in Fig. 5 with h = 1 μm and present a trend which

is proportional to η. Errors E0
0 (so as E1

0 and E0
1 ) are the same

in 2D for cartesian and triangular lattice and slightly smaller

for the 3D cartesian case, probably due to a larger number of

neighbors. E1
1 is again larger than the other and confirms that

C1
1 is more difficult to obtain.

D. Conclusion of consistency estimation

The four first consistency conditions are always retrieved on

regular lattices whereas none of them is perfectly fulfilled on

perturbed lattices, and their deviation shows a linear depen-

dence on the canonical disorder η, the largest being C1
1 . When
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Fig. 4. Consistency errors versus h with η = 0.3215
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Fig. 5. Consistency errors versus η with h = 1 μm.

decreasing h to zero, C0
1 is recovered while C0

0 and C1
1 show a

constant deviation and C1
0 diverges. This last point is a serious

limitation of SPH when simulating small configurations and

performing convergence tests.

IV. EVALUATION OF GRADIENTS

The evaluation of accurate representation of the gradient

is conducted by keeping the domain size constant and by

decreasing the smoothing length h, corresponding to increas-

ing the number of discretization points. As the behavior of a

realistic experiment does not depends on any mesh size, the

normalization scale used in this part is the size L of the domain

and not h.

A. Types of gradient

Three gradients G0, G+ and G− are evaluated in this work,

following a volume approach:

G0 : φa 7→ ∇0φa =
∑

Vb φb ∇Wab (14)

G+ : φa 7→ ∇+φa =
∑

Vb (φb + φa)∇Wab (15)

G− : φa 7→ ∇−φa =
∑

Vb (φb − φa)∇Wab (16)

G0 correspond to the canonical expression of the gradient in

SPH and is directly derived by an integration by parts of the

fundamental SPH equation (Eq. 4). The purpose of G+ is to

conserve linear momentum locally by ensuring fab = −fba

where fab is the elementary force that particle b exerts on

particle a. For instance, in the case of the pressure force,
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f
(p)
ab = Va Vb(pb + pa)∇Wab and f

(p)
ab = −f

(p)
ba . G− is

constructed to ensure that the gradient of a constant function

is zero, even if C1
0 is not verified. Note that G− and G0 do

not locally conserve linear momentum.

B. Role of C1
0 in gradient estimation

Writing the gradient operators (GK ) in a general form

∇Kφa =
∑

Vb (φb +K φa)∇Wab leads to:

∇Kφa =
∑

Vb φb ∇Wab +K φa

∑

Vb ∇Wab (17)

The first term of the RHS of Eq. 17 is the canonical gradient

and the second term shows the C1
0 condition. It suggests that

when C1
0 is not fulfilled, the three gradients are not identical

and the deviation from G0 is proportional to φa for ∇+φa

and ∇−φa. In addition, when considering a constant field F0,

the gradients ∇0F0 and ∇+F0 are explicitly:

∇0F0 = F0

∑

Vb ∇Wab (18)

∇+F0 = 2F0

∑

Vb ∇Wab (19)

which shows that (i) G0 and G+ cannot predict a zero gradient

for a constant field when C1
0 is not fulfilled and (ii) G+ is two

times more sensitive to the C1
0 condition than G0 due to the

factor 2 in Eq. (19).

C. Types of fields

The three studied scalar fields are constant (F0), linear (F1)

and quadratic (F2) with the following expressions:

F0(x) = Kx (20)

F1(x) = Kx ξ (21)

F2(x) = Kx ξ
2/2 (22)

so that Kx is the value, the normalized slopes and normalized

curvatures for F0, F1 and F2, respectively, and ξ = x/L the

normalized x coordinate. To study the gradient intensity Kx

was varied over the following values: 0.01, 0.1, 1, 10 and 100.

D. Error functions

The deviation between SPH gradients and analytical ones

is measured through the local non-dimensional error:

λi
xj
(GK) =

1

N2
i

(

∇K,xj
Fi −

∂Fi

∂xj

)2

(23)

where ∇K,xj
stands for the xj component of GK . The term

Ni is a normalization factor equal to Kx/L for the constant

field F0 and to the magnitude of the analytical gradient for

the two other fields. Note that all ∂Fi/∂xj are zero, except:

∂F1

∂x
=

Kx

L
, and

∂F2

∂x
=

Kx x

L2
(24)

Like for the consistency study, the global error Λi
xj
(GK) is

determined by summing over inner particles and grids (Eq.

13).
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Λ
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Fig. 7. Comparison of Λ1
x

and Λ1
y

on a 2D cartesian lattice

E. Results

1) Influence of lattice: As illustrated in Fig. 6, all investi-

gated lattices (2D cartesian, 2D triangular and 3D cartesian)

have the same trends. 2D cases have very similar errors and 3D

cases show generally errors ≈15% lower than 2D cases. This

is possibly due to a larger number of neighbors that reduces

the smoothing length error. Based on these observations, the

next figures will display results of 2D Cartesian lattices only.

2) Directivity: Although the investigated gradients are only

oriented towards x (∂Fi/∂y = ∂Fi/∂z = 0), it is observed

that Kx influences Λi
y and Λi

z , so that deviation is the same

in the three dimensions, as illustrated in Fig. 7. This effect is

due to the isotropic essence of the kernel that homogeneously

redistributes the error into other dimensions. This observation

implies that the direction of the gradient is influenced by

particle disorder, and could not distinguishes different order

of magnitudes along different axis, (e.g. the gradient of the

function f(x, y) = 1000x+ y could not exhibit a dependence

on y due to the noise on the x component).

3) Constant field: Figure 8 displays Λ0
x versus h, η and

Kx. When η = 0, all operators show no deviation (Fig. 8(b)).

For η 6= 0, error is proportional to 1/h, and proportional to η.

Surprisingly, Λ0
x slightly decreases when Kx increases (Fig.

8(c)) whereas Eqs. (18) and (19) predict no dependence on Kx

(= F0) as the error is normalized by Kx. This may be explained

by the fact that lower Kx are more sensible to floating point

truncation error. As expected, the deviation of G+ is twice

larger than the one of G0, and since G− exactly predicts the

zero gradient, it is not plotted.

The error is expressed as a function of h, η and Kx under

the form Λ0
x(h, η,Kx) = a1 h

a2 ηa3 Ka4
x and (a1, a2, a3, a4)

is fitted over all cases, leading to:

Λ0
x(G0) = 3.12 10−3 h−1.03 η0.985 K−0.0857

x (25)

Λ0
x(G+) = 6.11 10−3 h−1.04 η0.987 K−0.0848

x (26)

Equations (25) and (26) indicate an acceptable proportionality

to the term η/h and a weak dependence on Kx, and confirm
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Fig. 6. Influence of lattice type on SPH gradient (Kx = 1)
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Fig. 8. Influence of smoothing length and particle disorder on SPH gradients of a constant field, on a 2D cartesian lattice

the factor 2 between G+ and G0.

4) Linear field: The residual Λ1
x is plotted in Fig. 9 versus

h, η and Kx. Fitting the errors with h, η and Kx leads to:

Λ1
x(G0) = 4.36 10−3 h−0.941 η0.988 K−0.0847

x (27)

Λ1
x(G+) = 9.12 10−3 h−0.936 η0.989 K−0.0854

x (28)

Λ1
x(G−) = 1.70 10−1 h−0.0406 η1.15 K−0.0903

x (29)

Figure 9 and Eqs. (27) to (29) show the same trends as with

the constant field: the error is approximately proportional to

η/h for G0 and G+. Surprisingly, G− behaves much better

that the two other as it presents (i) no influence of h and (ii)

non-zero deviations only for large particle disorder or strong

gradients.

5) Quadratic field: Errors Λ2
x are displayed in Fig. 10. The

same trends as for a linear field with slightly lower error values

are found. As for the case of constant field, G+ errors are two

times larger than G0: Λ2
x(G+) ≈ 2 · Λ2

x(G0).

F. Conclusion of gradient estimation

The operator G+ shows the largest error which is twice as

large as the one of G0. This is probably due to sign ”+” in

Eq. (15) that sums errors on φa and φb. The operator G−

shows the lowest relative deviation and a low dependence on

the smoothing length h. From a numerical point of view, it is

the best to use. However it does not locally conserve linear

momentum, and a more detailed study is necessary to estimate

if this drawback overwhelms the benefits retrieved from its

superiority regarding particle disorder.

V. EVALUATION OF LAPLACIANS

A. Types of Laplacian

1) MCG: The Laplacian proposed by [8] and [9] is referred

to as MCG and is given by:

∆MCG(u)a =
2

π
(d+ 2)

∑

Vb

rab · vab

r2ab + θ2
∇Wab (30)

where d and θ = 0.01h2 are the dimension and a term to

avoid a zero denominator, respectively. The term rab · vab is

the scalar product between particle positions rab = rb − ra
and particle velocities vab = vb − va. The prefactor 1/π was

not in the original formulation but is added in the present

work to match the analytical Laplacian. As ∆MCG(ua) is

oriented along the inter-particle axis, its stress force is axial
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Fig. 9. Influence of smoothing length and particle disorder on SPH gradients of a linear field, on a 2D cartesian lattice
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Fig. 10. Influence of smoothing length and particle disorder on SPH gradients of a quadratic field, on a 2D cartesian lattice

and the local angular momentum is conserved.

2) MEA: This Laplacian estimation, labeled MEA, was

proposed by [10] and [11]:

∆MEA(u)a = 2
∑

Vb

∇Wab · rab
r2ab + η2

vab (31)

It is oriented along the velocity difference vab so that angular

momentum is not locally conserved.

B. Type of fields

As the most important role of the Laplacian is to model

viscous stress based on the second derivative of the velocity,

it is applied here to a vector field. Investigated fields are the

same as for gradients investigation (Eqs. 20 to 22) but applied

to the x component of the velocity:

U0(x) = (Kx, 0, 0) (32)

U1(x) = (Kx ξ, 0, 0) (33)

U2(x) = (Kx ξ
2/2, 0, 0) (34)

The Laplacian thus corresponds to a second derivative with

respect to x.

C. Error function

The general error function is defined as:

ωi
xj
(∆L ) =

1

N2

(

∆L ,xj
Ui −

∑

k

∂2Ui,xj

∂x2
k

)2

(35)

where ∆L ,xj
is the xj component of the Laplacian L (MCG

or MEA). The analytical Laplacian (right term in parenthesis)

is equal to ∂2Ui,x/∂x
2 when xj = xk = x and is zero

otherwise, and the normalization factor N is equal to Kx/L
2.

The global error Ω is calculated according to Eq. (13).

D. Results

1) Type of lattice: Trends are the same on 2D Cartesian and

2D triangular lattices with linear fields. With quadratic fields,

MCG shows a higher deviation on triangular lattices compared

to Cartesian ones (Fig. 11(a)). The same finding are valid for

the comparison of 2D/3D Cartesian configurations, although

3D lattices show approximately an error 20% lower than 2D

ones, as shown in Fig. 11(b).

2) Directivity: A comparison between Ω2
x and Ω2

y versus

Kx is displayed in Fig. 12. It shows that for MCG, both

direction have same trends with the same order of magnitude,

whereas the MEA operator shows zero deviation on its y
component: Ω1,2

y (∆MEA) = 0. This can be explained by the
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Fig. 11. Influence of lattice type (Kx = 1) on Laplacian estimation
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fact that ∆MEA is oriented along vab (Eq. 31) so that a

zero component for the velocity induces a zero component for

the Laplacian. This characteristic of the MEA operator thus

ensures that the inaccuracy due to particle disorder is kept

along vab and is not diffused in other dimensions, leading to

a better resolution of the operator directivity.

3) Constant field: Due to the presence of the term vab in

both expressions, the SPH Laplacian of a constant field is

always zero, independently of the smoothing length, particle

disorder or the field absolute value.

4) Linear field: As depicted in Fig. 13, both Laplacian

operators follow the same trends as gradients operators for

each investigated parameters: they are proportional to η/h
and slightly decrease with Kx. Fitting Ω1

x with the expression

Ω1
x(h, η,Kx) = a1 h

a2 ηa3 Ka4
x leads to:

Ω1
x(∆MCG) = 8.89 10−3 h−1.01 η0.979 K−0.0844

x (36)

Ω1
x(∆MEA) = 6.07 10−3 h−1.03 η0.986 K−0.0849

x (37)

which confirms the proportionality to η/h and low influence of

Kx. In addition, it shows an error for the MEA operator to be

18% lower than for MCG, which is visible in Figs. 13 for any

of the investigated parameters. Finally, no disorder induces an

exact prediction of the Laplacian for both operators.

5) Quadratic field: Figures 14 display Ω2
x versus h, η and

Kx and show that MEA and MCG have the same trends.

Proportionality to 1/h is lost for a strong disorder, and linearity

with η is lost for low disorder. In particular, both operators

are not exact on regular lattices (Fig. 14(b)). Regarding Kx, a

slight decrease is observed when Kx increases. Finally, MEA

behaves slightly better with an global error 17% lower than

MCG.

E. Conclusion of Laplacian estimation

Both operator present the same trends with regards to

investigated parameters and, contrary to gradients, there is

no clear advantages for MCG or MEA. On 2D Cartesian

lattices with linear and quadratic fields, MEA shows an error

≈ 20% lower than MCG for all investigated parameters. On

2D Triangular lattices (no curves shown here) and linear fields,

MEA and MCG deliver the same error, whereas MCG gives

higher errors on low to moderate particle disorder (0 6 η <
10-2) with quadratic fields.

VI. CONCLUSION

SPH consistency was studied versus the particle disorder η,

the smoothing length h, with a constant h/∆x ratio. On a a

regular lattice, the four first consistency conditions (C0
0 , C1

0 ,

C0
1 and C1

1 ) are fulfilled and independent of h. On the contrary,

perturbed lattices bring more complexity: the deviation of

consistency conditions (i) increases with particle disorder and

(ii) depends on the smoothing length with different behavior

depending on the consistency condition. It is indeed observed

that C0
0 and C1

1 are independent of h while C0
1 is proportional

to h and C1
0 diverges with 1/h, which may be critical
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Fig. 13. Influence of smoothing length and particle disorder on SPH Laplacians of a linear field, on a 2D cartesian lattice
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Fig. 14. Influence of smoothing length and particle disorder on SPH Laplacians of a quadratic field, on a 2D cartesian lattice

when simulating small configurations. The importance of C1
0

condition for gradients calculation was also highlighted.

SPH operators accuracy (gradient and Laplacian) were also

studied versus η, h and the non-dimensional parameter Kx

corresponding to a field magnitude, slope or curvature. The

operator G− showed the best behavior with (i) an error

of two orders of magnitude lower than G0 and G+, and

(ii) a low dependency on h. Regarding the Laplacian, both

operators, MEA and MCG show the same trends with a

little advantage for MEA whose error function is generally

30% lower than MCG one. These considerations are purely

numerical and should be completed by a physical study: given

that G− and MEA do not locally conserve the linear and

angular momentum respectively, it must be confirmed that

their numerical advantages are still significant with regards

to physical considerations.

Finally, different particle distributions were investigated (2D

and 3D Cartesian and 2D triangular) and the same trends were

observed.
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