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Purpose: To introduce a scheme based on a recent technique in computational hemodynamics, known as the lattice
Boltzmann methods (LBM), to noninvasively measure pressure gradients in patients with a coarctation of the aorta
(CoA). To provide evidence on the accuracy of the proposed scheme, the computed pressure drop values are com-
pared against those obtained using the reference standard method of catheterization.
Materials and Methods: Pre- and posttreatment LBM-based pressure gradients for 12 patients with CoA were simulat-
ed for the time point of peak systole using the open source library OpenLB. Four-dimensional (4D) flow-sensitive phase-
contrast MRI at 1.5 Tesla was used to acquire flow and to setup the simulation. The vascular geometry was recon-
structed using 3D whole-heart MRI. Patients underwent pre- and postinterventional pressure catheterization as a refer-
ence standard.
Results: There is a significant linear correlation between the pretreatment catheter pressure drops and those computed
based on the LBM simulation, r5:85, P < :001. The bias was -0.58 6 4.1 mmHg and was not significant (P50:64Þ with a
95% confidence interval (CI) of -3.22 to 2.06. For the posttreatment results, the bias was larger and at -2.54 6 3.53
mmHg with a 95% CI of -0.17 to -4.91 mmHg.
Conclusion: The results indicate a reasonable agreement between the simulation results and the catheter measure-
ments. LBM-based computational hemodynamics can be considered as an alternative to more traditional computational
fluid dynamics schemes for noninvasive pressure calculations and can assist in diagnosis and therapy planning.
Level of Evidence: 3
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Coarctation (or narrowing) of the aorta (CoA) is a con-

genital heart disease and accounts for 3–11% of all

birth heart defects.1 The narrowing usually occurs distal to

the carotids and its severity degree is variable. CoA causes

upper-body hypertension and lower-body hypotension.2

Clinical guidelines recommend treatment by surgery, stent

placement, or by balloon angioplasty.3

To evaluate the severity of the coarctation either pre-

operatively or postoperatively, the hemodynamic analysis is

usually performed through measuring the pressure gradient

across the coarctation site by means of an invasive and

expensive cardiac catheterization.4 However, with develop-

ments in combining noninvasive MRI with modeling

schemes, numerical simulations of hemodynamics could
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assist in diagnosis.5,6 Recently, three-dimensional spatial

encoding combined with three-directional phase-contrast

MRI (4D flow [PC] MRI) has drawn increased attention.7

Four-dimensional (4D) flow MRI offers the ability to mea-

sure and to visualize the temporal evolution of complex

blood flow patterns within an acquired 3D volume. These

4D flow MRI along with anatomical images can be used to

extract hemodynamic and wall boundary conditions respec-

tively, when performing patient-specific computational fluid

dynamics (CFD) simulations. In this regard, several authors

used similar techniques to simulate patient-specific hemody-

namics.8 We further add that based on imaging techniques

such as Doppler ultra sound and flow MRI, pressure com-

putation schemes have been suggested.9–11 However, pres-

sure gradients obtained from Doppler ultra sound suffer

from overestimation and those based on flow MRI tend to

underestimate pressure drop values.

In conventional computational studies, CFD schemes

are based on Navier-Stokes equations and are performed on

body-fitted volume meshes. In this work, however, our

hemodynamics computation is based on an approach known

as the lattice Boltzmann methods (LBM).12 The LBM is a

relatively new development in CFD and even newer in the

field of blood flow simulation.13–16 They are easy and

straightforward to implement, benefit from an automated

and efficient mesh preprocessing, and due to their local

operations, are an ideal candidate for a highly scalable paral-

lelization.17 These promising features motivated us to use

LBM as the method of choice for the purposes of this work.

Previously, Henn et al investigated a patient-specific

blood flow simulation using the lattice Boltzmann methods

for one coarctation case and showed how realistic pressure

values can be obtained when sufficient spatial and temporal

resolutions are used.18 In this work, the aim was to demon-

strate the fidelity of LBM for treatment planning through

considering a versatile coarctation patient cohort and pre-

liminary validation against catheter measurements.

Materials and Methods

Patient Data
The data include 12 patients (5 males, 7 females), all with clinical

indication for catheterization, with the age ranging from 14 to 62

years, and mean and standard deviation of 26 6 15 years. Patients

were first scanned for 3D whole-heart (WH) and 4D flow MRI.

Then catheterization and pressure measurements were performed.

The averaged time lapse between MRI acquisition and the cathe-

terization procedure was 4 days (range between 1 day and 4

weeks). Table 1 provides the heart rates and pressure measurements

of these 12 cases during the MRI acquisition and catheterization.

Except for cases 6, 7, and 11 (Fig. 1) with native coarctation, the

remaining cases were due to recoarctation. All CoAs were treated

by an implantation of a bare Cheatham platinum (CP) stent pre-

mounted on a BIB (balloon in balloon) catheter (NuMED, Nich-

olville, NY), except case 9, which was treated by balloon

angioplasty and case 4, which was not treated as the

catheterization-based pressure drop (<20 mmHg) together with an

analysis of the anatomy (stenosis degree) and other parameters

(e.g., hypertension) did not assign this patient to the treatment

group according to the clinical guidelines. The study was approved

by the institutional Research Ethics Committee, following the ethi-

cal guidelines of the 1975 declaration of Helsinki. Written

informed consent was obtained from the participants and their

guardians, where applicable.

MRI
MRI was done with a whole-body 1.5 Tesla MR scanner Achieva

R 3.2.2.0 using a five-element cardiac phased-array coil (Philips

Medical System, Best, Netherlands). Anatomy of the aorta was

acquired by a navigator-triggered 3D WH MRI sequence in end

diastole. The sequence parameters were: field of view (FOV)

212 3 212 3 121 mm, matrix size 320 3 320, 76 slices, acquired

voxel 0.66 3 0.66 3 3.2 mm, reconstructed voxel 0.66 3 0.66 3

1.6 mm, repetition time (TR) 4.0 ms, echo time (TE) 2.0 ms, flip

angle (FA) 90 8, and number of signal averages 3. The scan time

was �8 min.

The 4D flow MRI of thorax was performed using an aniso-

tropic 4D segmented k-space phase contrast gradient echo sequence

with retrospective electrocardiographic gating but without navigator

gating of respiratory motion to minimize acquisition time. The

sequence parameters were: FOV 180 3 216 3 75 mm, matrix size

100 3 128, 30 slices, acquired voxel 2.5 3 2.5 3 2.5 mm, recon-

structed voxel 1.7 3 1.7 3 2.5 mm, TR 3.5 ms, TE 2.2 ms, FA 5 8,

25 reconstructed cardiac phases, velocity encoding 4.0 m/s, and

TABLE 1. Heart Rates and Pressure Measurements
for CoA Casesa

MRI Cath

Case HR Psys Pdia HR Psys Pdia

1 65 140 60 66 113 65

2 88 136 58 77 129 74

3 65 146 66 66 95 54

4 96 128 62 84 120 82

5 75 128 62 76 122 74

6 62 140 75 65 126 65

7 65 158 83 61 149 73

8 68 140 55 54 111 53

9 80 128 62 74 111 69

10 85 153 72 70 114 70

11 75 118 63 81 110 66

12 74 196 88 78 144 73
aHeart rates (HR) and pressure measurements (in mmHg) dur-
ing MRI and catheterization (Cath). Psys is the systolic pres-
sure, and Pdia is the pressure at diastole. For the MRI
acquisitions, cuff pressures are reported.
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number of signal averages 1. Scan time varied between 9 and

14 min, depending on the size of the patient’s chest. The high

velocity encoding in all three directions was used to avoid phase

wraps in the presence of stenosis forming complex 3D flow.

Segmentation, Flow Analysis, and Posttreatment
Geometry Reconstruction
Segmentation of the aorta was performed on the 3D WH images

using level set methods similar to Goubergrits et al.19 Figure 1a

depicts the 12 preoperative geometries used in this work.

The 4D flow MRI was analyzed using the MEVISFlow soft-

ware (Fraunhofer MEVIS, Bremen, Germany). After the routine

preprocessing of the PC MRI data including phase-offset error cor-

rection and antialiasing, the extracted anatomy was fused with the

flow data. For this purpose, first a PC MR angiography (PC

MRA) image was computed and then coregistered with the anato-

my image. As both anatomy and flow measurements were acquired

in the same session using gated imaging sequences, only small per-

turbations occurred between the two which could be accounted for

using rigid registration techniques.20 Based on this fusion, the nec-

essary flow information required for CFD modeling could be

extracted. More specifically, flow rate curves in the ascending aorta

just above the sinotubular junction and in the descending aorta are

computed. Figure 2 demonstrates this processing pipeline.

The posttreatment corresponding geometries can be seen in

Figure 1b. Posttreatment MRI anatomy data were not available for

this patient cohort; therefore, the treated geometry was recon-

structed using projection image data acquired during catheteriza-

tion similar to Goubergrits et al.8 These images provide an

accurate (0.1 mm resolution) measurement of the posttreatment

diameters.

Hemodynamic Computation with the Lattice
Boltzmann Methods
The proposed hemodynamic modeling scheme in this work is

based on the lattice Boltzmann methods. Rather than relying on

the classical Navier-Stokes equations as in conventional CFD solv-

ers, LBM is a special finite-difference discretization of the simpli-

fied Boltzmann equation from kinetic theory, which describes

transport phenomena in a mesoscopic scale. Quantities of interest,

such as velocity uðx; tÞ and pressure pðx; tÞ, where x is a point in

space and t represents time, are computed indirectly through simu-

lating the dynamics of particle distributions. Fundamental to an

LBM is a uniform lattice which defines the possible paths that fic-

titious particles are allowed to take. Central to the scheme are the

streaming and collision operations. For instance, in a three-

dimensional implementation, a typical scenario is shown in Figure

3 where particles can stream in 19 different paths (the so-called

D3Q19 LBM scheme). Collision can be viewed as relaxation

toward local equilibrium which should satisfy conservation of

mass, momentum, and energy.

In one time step, particles can move along the lattice only

in the given lattice directions. The distribution functions fi ðx; tÞ
are defined at each grid point x and time t and represent the

likelihood of particles moving along the certain directions i: The

LBM iteration with Bhatnagar-Gross-Krook (BGK) collision

operator is

fi ðx1eidx; t1dtÞ2fi ðx; tÞ52
1

s

�
fi ðx; tÞ2f

eq
i ðu; qÞ

�
(1)

where feig are the set of discrete lattice direction vectors defining a

local neighborhood of a grid point.21 dx and dt are the lattice

spacing and time step. s is a relaxation parameter and is s5m=c2
s 1

FIGURE 1: a: Pretreatment coarctation geometries. b: Posttreatment geometries. Case 4 was not treated. Treatment was per-
formed through a stenting procedure to expand the narrowed region in the aortic arch.
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1
2 with m the kinematic viscosity and cs being the lattice speed of

sound. f
eq

i is the equilibrium distribution function and is a low

Mach number approximation to the Maxwellian distribution

defined as,

f
eq

i ðu; qÞ5 xiq 113ei:u1
9

2
ðei:uÞ22

3

2
u2

� �
(2)

where xi are weight factors that can be found in literature.22

The hydrodynamic density q, and the macroscopic velocity u are

determined from the particle distribution functions using the laws

of conservation of mass and momentum, q5
P

i fi and

qu5
P

i fi ei, and the pressure is given by p5qc2
s . The LBM

reproduce the results of the Navier-Stokes equations in the nearly

incompressible limit and is second-order accurate for the velocity

and first-order accurate for the pressure distributions in the body

of the fluid.23

Simulation Setup
The computational domain, in our case the aorta, was divided into

a uniform lattice. Additionally, it was further divided into blocks

that were processed by separate processors for parallelization pur-

poses. Figure 4 demonstrates a LB-based discretization. A velocity

boundary condition as given by Bouzidi et al with a Poiseuille flow

profile based on the measured flow volume at the ascending aorta

opening as shown in Figure 2 was used.24 A smooth startup phase

was added to suppress undesired pressure fluctuations. Due to the

limited resolution of the 4D flow MRI, the flow rates at the side

branches are prone to noise and could not be extracted with

enough accuracy. Therefore, the difference between flow rates in

the ascending and descending aorta was distributed between side

branches of the aortic arch according to their cross sectional area.

The boundary condition at the descending aorta was set as a stress-

free condition, i.e., the pressure is fixed to zero. Moreover, a no-

slip (velocity zero) Bouzidi boundary condition was considered at

the walls. The same boundary conditions are applied to the post-

treatment geometries.

As for the blood, it is assumed to be Newtonian with a

density of 1000 kg=m3 and a kinematic viscosity of 0:00431023

m2=s. In addition, a D3Q19 BGK-LBM, supported by a Smagor-

insky turbulence model with constant 0.12 was applied to account

for the relatively coarse spatial resolution.25 The simulations are

done using the open source lattice Boltzmann library OpenLB

(www.openlb.net). A fixed spatial resolution of 0:00130:0013

0:001m was used in all the cases and the computation times were

on average around 30 min for each case on Intel Core i7-2600k

CPU @ 3.4 GHz. Computations were done using 4 cores and no

hyperthreading.

FIGURE 3: Lattice configuration D3Q19 in three dimensions
with 19 discrete velocity directions.

FIGURE 2: Extraction of flow rate curves at the inlet (red con-
tour) and outlet (green contour) of the aorta geometry for sim-
ulation setup. a: The 3D WH MRI (anatomy). b: PC MR
angiography (PC MRA). c: Anatomy after alignment with PC
MRA through registration. d: The segmented geometry. e,f:
Represent the magnitude of the velocity. g: Red: inlet flowrate
curve. Green: outlet flowrate curve. The flow is distributed into
the branches by subtracting the inlet and outlet flow rate at
the time point of peak systole (red vertical line).
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Simulation Outcome and Pressure Computation
At the end of the simulation, a velocity vector field was generated

corresponding to the time point of peak systole. This velocity field

was then used to compute the pressure field using the pressure

Poisson equation (PPE) as described in Krittian et al and Meier

et al.10,11 As can be noticed, we did not use the pressure values

computed directly from the LB simulation. Henn et al demonstrat-

ed that a very high spatial resolution is required to get pressure val-

ues compared with the reference measured values.18 In our work,

however, as we are adhering to a fixed spatial resolution for effi-

ciency purposes, we rely on the higher order of convergence of the

velocity field in LBM and use this for pressure field computations

using the PPE.

Statistical Analysis
The statistical analysis in this work was carried out using Excel

data analysis toolbox and are expressed as mean 6 standard devia-

tion (SD). Effects were considered significant at P < 0.05. Normal-

ity tests using normal probability plots was performed to ensure

the normal distribution of the data. The Pearson’s correlation coef-

ficient was used to compute the linear relation between the mea-

surement and computed results. The agreement between the values

was investigated using Bland-Altman plots.26 The difference

between the methods was analyzed using a paired t-test for com-

paring the means of the samples and the suitable sample size was

determined using a power analysis with the following parameters:

two-tails a 5 .05, power 5 1-b 5 .8, effect size 5
means difference

SD 5

1.08. In computing the effect size, a 5 mmHg difference in means

between measurement techniques was assumed with a SD of pres-

sure drops measured with catheter at 4.6 mmHg. Based on these

values, the required sample size for this study was 9 patients.

Results

The mean flow rate at the inlet (ascending aorta) was 389 6

111 mL/s which corresponds to a mean Reynolds number of

5299 6 1675 for a mean diameter of 26.4 6 5.18 mm. The

mean flow rate at the outlet (descending aorta) was 192 6

58 mL/s. A statistical analysis of pressure and heart rate data

shown in Table 1 found no significant differences for heart

rates during MRI acquisition and catheterization

(71.9 6 12.8 versus 68.5 6 10.5 bpm; P 5 0.112), diastolic

pressure (66.7 6 12.4 versus 62.1 6 12.3 mmHg;

P 5 0.366), and mean aortic pressure (95.5 6 12.9 versus

89.5 6 10.9 mmHg; P 5 0.129). The peak systolic pressure

acquired during MRI was, however, significantly higher

than the one measured by the catheterization (143.9 6 19.8

versus 112.8 6 14.6 mmHg; P 5 0.001). A comparison of

FIGURE 4: Lattice Boltzmann voxelization for a patient-specific aorta geometry. a: Blocks are for parallelization and are distributed
between processors. Each block normally contains between 1000 to 10,000 grid cells. b: The boundaries are fitted by taking the
exact distances along the 19 paths from each voxel which is inside the computational domain and close to the wall. c: Streamline
visualization of the simulated velocity.

TABLE 2. Pre- and Posttreatment Pressure Dropsa

Case Cath Pre Cath Post LBM Pre LBM Post

01 25 9 21 7

02 30 1 35 1

03 25 5 30 3

04 11 – 9 –

05 15 2 14 5

06 18 3 11 4

07 15 0 23 7

08 16 0 16 0

09 11 0 12 4

10 15 1 15 5

11 17 0 16 9

12 12 0 15 4
aAscending-descending aorta pressure drops (mmHg) computed
for the cases in Figure 1 using catheter (Cath) and lattice Boltz-
mann methods (LBM), respectively.
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the pre- and posttreatment pressure drops between the cath-

eter measurements and LBM-based computations are pro-

vided in Table 2.

Considering the pretreatment results, the mean pres-

sure drop measured by catheter was 17.5 6 6 mmHg and

computed based on the LBM was 18 6 7.8 mmHg. Figure

5a demonstrates the agreement between pressure gradients

using a Bland-Altman plot. There is a significant relation-

ship between the pretreatment catheter pressure drops and

those computed based on the LBM simulation, rð10Þ5:85,

P < 0:001. The bias in Figure 5a is -0.58 6 4.1 mmHg

with a 95% confidence interval (CI) of -3.22 to 2.06

mmHg based on a t-distribution with 11 degrees of free-

dom. The lower and upper limits of agreement are -8.7

(95% CI: -13.45–-3.94) and 7.5 (95% CI: 2.75–12.25)

mmHg correspondingly. The paired t-test indicated no sig-

nificant difference between the pretreatment catheter and

LBM pressure drop values ðP50:64).

Regarding the posttreatment results, the mean pressure

drop measured by catheter was 1.9 6 2.84 mmHg and com-

puted based on the LBM was 4.45 6 2.62 mmHg. As can

be noticed, treatment resulted in a reduced pressure drop

computed by means of LBM for all the cases. The agree-

ment between pressure gradients is demonstrated in Figure

5b. The bias is -2.54 6 3.53 mmHg with a 95% CI of -

0.17 to -4.91 mmHg based on a t-distribution with 10

degrees of freedom. Based on the paired t-test, P50:04,

indicating a difference between the sample means and,

therefore, rejecting the null hypothesis. The lower and

upper limits of agreement are -9.46 (95% CI: -13.34–-

5.58) and 4.37 (95% CI: 0.49–8.25) mmHg, respectively.

Discussion

In this study, MRI flow and anatomy data was used in a

CFD scheme based on the lattice Boltzmann methods to

estimate pressure gradient values in patients with a

coarctation of the aorta. LBM has been used in a wide range

of geometries in medical applications and a few studies have

also reported on the agreement between LBM and Finite-

element-based CFD.27,28

Given the results in the previous section, we observed

that the bias between the pretreatment catheter and LBM

pressure gradient values was small. On the other hand, we

noticed that the bias was much larger in the posttreatment

results, but with a comparable standard deviation to pre-

treatment findings. For the posttreatment LBM values, case

7 and 11 produced the highest differences comparing to the

catheter measurements. It is not immediately clear to the

authors why these cases have resulted in higher pressure

drops compared with their catheter counterparts and more

investigation is required. If we, however, remove these two

outliers, the bias will reduce to -1.33 6 2.5 mmHg.

When comparing the modelling results with the clini-

cal reference values, we should also take into account the

sources of uncertainty and discrepancies in measurement

and simulation during the whole processing pipeline. In our

study, these can, among others, be generally related to (1)

catheter measurements, (2) MRI postprocessing, and (3)

simulation setup.

For this work, catheter measurements and the MRI

acquisitions were performed sequentially and some days

apart in sedated and awake patients, respectively. Comparing

the heart rate and the mean pressure, there was no statisti-

cally significant difference between MRI and catheterization,

however, the peak systolic pressure in MRI was significantly

higher. We note that the difference in systemic pressure

does not automatically mean a difference in the flow rate

and subsequently in the pressure drop. Nonetheless, further

investigation needs to be performed to analyze the impact

of MRI-based boundary setup on the discrepancies between

simulation results and catheter measurements. Moreover, in

clinical routines, systolic pressure drops are reported as

FIGURE 5: Bland-Altman plots demonstrating the agreement between pressure gradients measured by catheter and LBM. a: pre-
treatment. b: posttreatment. Reference lines are mean and 6 1.96 3 SD.
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peak-to-peak gradients, even though this nonphysiological

difference might result in inaccuracies.29 Here, we simulated

the pressure gradient along the vessel centerline and only at

the time point of peak systole. Riesenkampff et al used a

dynamic pressure calibration technique based on the cathe-

ter data to compare peak-to-peak pressure gradients based

on catheterization and 4D flow MRI.30 A similar approach

can be performed using a time-harmonic simulation to gain

more insight on the discrepancies between the methods.

This is the subject of future research. We, moreover, note

that the locations in the ascending and descending aorta

chosen for the pressure drop calculation, corresponded only

roughly to those measured by catheter.

In case of MRI data postprocessing, there is a level of

uncertainty when constructing the 3D posttreatment geome-

try based on 2D angiography data, which ultimately con-

tributes to the differences between the postinterventional

simulation and catheterization pressure gradients. Moreover,

uncertainties manifest themselves when extracting flow rates

for a vessel cross-section based on the 4D flow MRI data,

which in turn affects the accuracy of the simulation

outcome.31

Considering the LBM simulation, its relatively easy

setup makes it an attractive alternative to traditional solvers.

However, modeling blood flow in larger vessels with LBM

involves a challenging set of constraints. Among these, accu-

rate open and wall boundary conditions suited to the appli-

cation area and the geometry under investigation is still an

active topic of research.32–34 For this work, we adhered to a

somewhat classic way of imposing boundary conditions, that

is, velocity Poiseuille at the inlet, pressure zero at the outlet,

and a second order no-slip at the wall boundaries. The aim

was to keep the computational effort as low as possible to

examine the suitability of LBM for clinical applications. In

this regard, more investigations should be done to study the

effect of MRI-based inflow on an LBM simulation, similar

to Goubergrits et al.19 Additionally, for the posttreatment

cases there was no flow information available and, therefore,

the same boundary conditions used in pretreatment geome-

tries, were applied. In future studies, MRI measurements

after intervention should also be included.

Considering the limitations in this study, we note that

the patient data for this work was obtained from one clini-

cal site. A multicenter study should be carried on to exam-

ine the impact of different MR scanners and protocols on

the robustness and accuracy of the results. Moreover, we

only had access to 12 CoA patients with the required imag-

ing data. The statistical analysis can certainly benefit from a

larger patient cohort. Furthermore, one disease model was

considered here. The merits of the LBM for pressure com-

putation should be further investigated through its applica-

tion to a diverse range of medical problems.

In conclusion, despite the aforementioned uncertain-

ties, we demonstrated the accuracy of the lattice Boltzmann

methods for pressure drop calculations in coarctation

patients. Our findings are comparable to those obtained by

Goubergrits et al using a traditional CFD approach.8 Both

pre- and posttreatment results indicated a reasonable agree-

ment with catheter measurements. In case of CoA, stenting

is a recommended therapy to reduce the pressure gradients

across the narrowed vessel segment.35 However, as we men-

tioned earlier, this procedure is associated with several com-

plications. Recently Neugebauer et al, developed a virtual

stenting tool that enables an interactive placement of stents

into the narrowed aortic region.36 Combining this with an

LBM-based flow simulation, provides a means for a

computer-aided treatment planning and predicting possible

hemodynamic alterations. Our first validation study in this

work, provides evidence on the applicability of such tools in

clinical settings.
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