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Abstract For a long time, the minimal supersymmetric
standard model (MSSM) with light masses for the super-
symmetric states was considered as the most natural exten-
sion of the Standard Model of particle physics. Consequently,
a valid approximation was to match the MSSM to the pre-
cision measurement directly at the electroweak scale. This
approach was also utilized by all dedicated spectrum gener-
ators for the MSSM. However, the higher the supersymmet-
ric (SUSY) scale is, the bigger the uncertainties which are
introduced by this matching. We point out important conse-
quences of a two-scale matching, where the running param-
eters within the SM are calculated at MZ and evaluated up to
the SUSY scale, where they are matched to the full model.
We show the impact on gauge coupling unification as well
as the SUSY mass spectrum. Also the Higgs mass prediction
for large supersymmetric masses has been improved by per-
forming the calculation within an effective SM. The approach
presented here is now also available in the spectrum generator
SPheno. Moreover, also SARAH was extended accordingly
and gives the possibility to study these effects now in many
different supersymmetric models.

1 Introduction

The discovery of the Higgs with a mass of about 125 GeV
[1,2] is, to date, the biggest success of the large hadron col-
lider (LHC). In contrast, there has not been any evidence for
new physics. This puts very strong constraints on the masses
of new coloured particles as predicted, for instance, by super-
symmetry (SUSY); working with very simplified assump-
tions, it is possible to exclude gluinos and first/second gener-
ation squarks nearly up to 2 TeV [3–6]. These experimental
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results raise not only the question if minimal supersymmetry
is still a good solution to the fine-tuning or hierarchy prob-
lem of the standard model of particle physics (SM), but also
gives new challenges to study the MSSM precisely.

In the past many studies for the MSSM were done under
the impression that the scale of supersymmetry, MSUSY,
should be close to the electroweak scale MZ . With this
assumption it was possible to calculate the gauge couplings
in the DR scheme directly from mZ , GF and αem as well as
the DR Yukawa couplings from the pole mass of the top quark
and the running MS lepton and light quark masses given at
Q = mZ . More importantly the Higgs masses have been cal-
culated at fixed order in the full supersymmetric model. How-
ever, both calculations became less accurate the larger MSUSY

is because potentially large logarithms of form log MSUSY
MZ

and

log MSUSY
mh

, respectively, appear. Therefore, ongoing efforts
are being made to improve the calculation in the presence of
supersymmetric scales which are well above the electroweak
one. The first road is to keep the current set-up in princi-
ple but improve it by higher order corrections: for instance,
SoftSUSY provides the possibility to include higher order
corrections to the threshold corrections at the weak scale
and in the renormalisation group equation (RGE) running
between the weak and SUSY scale, in order to get a bet-
ter determination of the DR parameters at the SUSY scale
[7]. The first ansatz is to calculate the Higgs mass still in
the full MSSM but extends the two-loop fixed order calcu-
lation by a resummation of potential large logarithm involv-
ing stops. That has been done for instance by FeynHiggs
since a few years [8–10]. The second approach, which is
becoming more and more popular, is to work in an effective
theory below MSUSY: SusyHD [11] and recent versions of
FlexibleSUSY [12] as well asFeynHiggs [13] can con-
sider below MSUSY only the degrees of freedom of the SM,
and match the SM to the MSSM just at the SUSY scale. Also
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the Higgs mass calculation is done in the effective SM by
obtaining a value of the quartic Higgs coupling λSM from the
matching between the MSSM and SM at MSUSY. The idea
to work in an effective SM below MSUSY was already well
explored in literature before it became easily available via
public tools; see e.g. Refs. [14–20]. Similarly, also a general
Two-Higgs-Doublet-Model was already considered as low
energy limit of the MSSM [21–23]. Finally, since several
years Split-SUSY variants of the MSSM have become more
and more popular in which the coloured SUSY particles are
integrated out [15–17,24–26].

We have now also extended the stand-alone spectrum gen-
erator SPheno [27,28] as well as the Mathematica pack-
age SARAH [29–34], which gives the possibility to auto-
generate a spectrum generator for a given model, to improve
the predictions for moderate and heavy SUSY scales. Here,
we made use of the second approach: the running DR param-
eters at the SUSY scale are obtained via a two-scale match-
ing procedure and the Higgs mass calculation can optionally
be done within an effective SM. We give in the following
not only details of our exact approach but discuss also phe-
nomenological consequences of the improved calculations.
We focus not only on the Higgs mass prediction, which has
been already discussed to some extent in the recent year,
but show also potential important effects on the SUSY mass
spectrum. Beside the MSSM we consider also it is minimal
extension, the NMSSM.

This paper is organised as follows: in Sect. 2 we sum-
marize our approach to obtain the DR parameters at the
SUSY scale as well as to calculate the mass of the SM-like
Higgs. Many details for the matching are given in Appendix
Appendix A, where also the differences between stand-alone
SPheno and the SARAH generated version are discussed. In
Sect. 3 we discuss the numerical impact of the improved cal-
culation on the running parameters, but also on the SUSY
and Higgs masses in the MSSM and beyond. We conclude
in Sect. 4.

2 Matching procedure and effective Higgs mass
calculation

2.1 The two-scale matching in SARAH

So far, all dedicated MSSM spectrum generators such as
SoftSUSY [7,35–37], Suspect [38] or SPheno were
adapting the procedure of Ref. [39] to obtain the running
gauge and Yukawa couplings at the SUSY scale. All details
of the calculations are summarised in Appendix A.1. The
principal idea is that all measured SM parameters are already
translated at MZ into DR values taking into account the com-
plete MSSM spectrum which are then evaluated to the SUSY
scale by using the RGEs of the MSSM. This procedure suf-

fers from increasing uncertainties when the separation of
the electroweak and SUSY scale becomes large. In order
to reduce the theoretical uncertainty for large SUSY scales,
SoftSUSY is able since some time to include the two-loop
SUSY thresholds in the calculation of the DR parameters
and to perform a three-loop RGE running between MZ and
MSUSY. With these additional corrections, potential large
effects in the prediction of the higgsino mass parameter but
also for the Higgs mass were found. The drawback of this
ansatz is that it is computational very expensive and slows
down the evaluation of a given parameter point significantly.
Moreover, only the effects of a more precise determination
of the top Yukawa coupling on the Higgs mass are caught in
this approach up to some extent, while a still potential large
logarithm in the fixed order Higgs mass calculation can be
present.

Therefore, we shall use another ansatz in SPheno and
SARAH1 which is closer to the set-up of NMSSMCalc [40]
or specific versions of FlexibleSUSY [12,41]: the match-
ing at the electroweak scale includes only SM thresholds
to obtain the MS values of the gauge and Yukawa couplings
and the electroweak vacuum expectation value (VEV). These
parameters are then evolved up to the SUSY scale using SM
RGEs, and the translation from MS to DR scheme and the
inclusion of SUSY thresholds is done at the SUSY scale. All
details of the calculation are given in Appendix A. The pre-
cision to obtain the DR parameters at the SUSY scale via this
two-scale matching (2SM) is as follows in SARAH/SPheno:

1. The MS parameters at the weak scale are calculated
using:

– One-loop electroweak corrections to the fermion
masses.

– Two-loop QCD corrections to the top-quark mass.
– One-loop corrections to δV B as well as one- and two-

loop corrections to δρ .

2. The SM RGEs are available up to three-loop order.
3. The MS–DR conversion of the running fermion masses

is done at two-loop αs and at one-loop in the case of the
electroweak gauge couplings.

4. The MS–DR conversion of the gauge couplings is done
at one-loop order.

5. The SUSY thresholds are included at full one-loop order.

The DR parameters obtained in that way are then used
to calculate the SUSY and Higgs masses at MSUSY. Since
both, the matching at the MZ and MSUSY depends on these
masses, one needs to iterate the matching procedure. For this
reason it is necessary to calculate the quartic self-coupling

1 We use in the following SARAH as synonym for ‘a SARAH generated
spectrum generator based on SPheno’.

123



Eur. Phys. J. C (2017) 77 :338 Page 3 of 21 338

λSM(MSUSY) within the SM which is a function of the SUSY
masses and parameters. A handy and very general ansatz
to obtain λSM(MSUSY) was presented in Ref. [12]: one can
match the Higgs pole masses in the full MSSM and the SM
at the SUSY scale

mSM,pole
h (MSUSY) ≡ mMSSM,pole

h (MSUSY), (1)

from which one can derive λSM:

(vMS(MSUSY))2λSM(MSUSY) = (mSM,tree
h (MSUSY))2

= (mMSSM,pole
h (MSUSY))2 − �h(MSUSY). (2)

Here, �h(MSUSY) are the radiative corrections to the Higgs
mass within the SM which are calculated using MS param-
eters at this scale, while the pole-mass calculation in the
MSSM involves DR parameters. The equivalence of this
ansatz to the matching of four point function as for instance
performed in Refs. [19,20] and used also by SUSYHD has
been explicitly shown in Ref. [12]. SM RGEs are used after-
wards to run λSM to MZ , and the MS parameters are recal-
culated at this scale. This procedure is iterated until the mass
spectrum at the SUSY scale has converged.

2.2 Differences between SARAH and SPheno in the new
matching routines

The above procedure corresponds to the details in SARAH
whereas the procedure implemented in the stand-alone
SPheno differs in the following details:

– at Q = mt : the top Yukawa coupling is optionally
replaced by the fit formula given by Eq. (57) of Ref. [42];

– at Q = mt : the strong coupling g3 is optionally replaced
by the fit formula given by Eq. (60) of Ref. [42];

– at Q = MSUSY: the thresholds corrections to the gauge
and Yukawa interactions are calculated in the electroweak
basis assuming an unbroken SU(2)L × U (1)Y . The full
formulae are given in Appendix A.

The flags to use/not to use with the fit formulae of Ref. [42]
are given in Appendix A.2. If not indicated otherwise, these
fit formulae are used in the following comparisons.

2.3 The effective Higgs mass calculation

So far, the mass calculation with SPheno/SARAH would
have stopped after the conversion of the mass spectrum
at MSUSY. However, this could lead to a large theoretical
uncertainty in the Higgs mass prediction for large SUSY
masses: the fixed order Higgs mass calculation as performed
by SPheno/SARAH would become inaccurate because of
the appearance of large logarithms ∼ log(MSUSY/Mew). In

order to cure this, one could do a resummation of these large
logs. However, in our set-up it is much easier to use the
value λSM(MSUSY), which is already known, and run it to
the top mass scale. By this running all large logarithms get
re-summed and one can then calculate mh at mt within the
SM including radiative corrections. In SARAH/SPheno we
include the full SM one-loop corrections as well as the two-
loop corrections O(αt (αsαt )) to mh . The schematic proce-
dure for the matching and Higgs mass calculation is summa-
rized in Fig. 1.

3 Consequences of the two-scale matching & effective
Higgs mass calculation

3.1 Running SM couplings

All the efforts to disentangle the weak and the SUSY scale
in the matching are done to get more accurate values of
the running DR parameters at the SUSY scale. Therefore,
we want to start the discussion of the impact of the new
matching procedure with presenting the changes in the DR
parameters at the SUSY scale. The results for the top and
bottom Yukawa couplings are shown in Fig. 2 and those
for the three gauge couplings g1, g2 and g3 are depicted in
Fig. 3. Since the exact matching procedure using two scales is
slightly different between SPheno and SARAH as explained
in Sect. 2.2 we show the new results for both codes. Since
we have turned off here the fit formula of Ref. [42] in the
SPheno calculation, the remaining differences appearing
here are due to the threshold corrections of the gauge and
Yukawa couplings at MSUSY. One sees that in particular the
top Yukawa coupling changes significantly compared to the
older calculation with only one matching scale (1SM). For
MSUSY = 100 TeV, the calculated DR value with SARAH
using the two-scale matching is nearly 10% below the one
for the one-scale matching. These large changes are in agree-
ment with the results of Ref. [12] where the impact of a 2SM
on the top Yukawa coupling has also been addressed analyti-
cally. We show for comparison also the calculated couplings
in SoftSUSY with and without two-loop SUSY thresholds
and three-loop RGEs. It is obvious that there was a non-
negligible difference between the old results and the one-
loop results of SoftSUSY, although both calculations were
of the same order in perturbation theory. The reason is the
matching condition, which can schematically be written as

mDR
t = mpole

t + m̂t �(m̂2
t ), (3)

where all loop corrections are summarised in �. SPheno
uses m̂t = mDR

t while SoftSUSY and other codes set

m̂t = mpole
t . The result obtained with the new two-scale
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Fig. 1 Schematic procedure of the two-scale matching

matching agrees now rather well with the SoftSUSY results
once the two-loop SUSY corrections in the matching are
included up to several TeV. However, for even higher SUSY
scales one finds that even the SUSY calculation with two-
loop thresholds gives sizeable differences to the RGE re-
summed calculation. On the other side, we find an excellent
agreement with FlexibleSUSY, which performs also a
two-scale matching but uses a different matching procedure
at the SUSY scale.2 A similar but less pronounced effect can
be seen for the bottom Yukawa coupling. Here, the changes
between the one- and two-scale matching account for a shift
of about 6% for a SUSY scale of 100 TeV.

For the gauge couplings, the difference between the one-
and two-scale matching are in general much smaller than for

2 We have adapted the approach of Ref. [39] to a two-scale approach:
we calculate the DR gauge and Yukawa couplings from the running MS
values of αew , sin �W , g3 as well as from the running fermion masses
and CKM matrix at the SUSY scale. The calculation is similar to the
corresponding matching of the measured values of these parameters to
the DR parameters at MZ as before. All details are given in Appendix
A.2. In contrast,FlexibleSUSY demands the equality of pole masses
in the SM and MSSM at the SUSY scale to get the matching conditions
for the SM gauge and Yukawa couplings.

the Yukawa couplings. The changes are usually well below
1% even for a SUSY scale of 100 TeV. The only exception
is SoftSUSY when turning on the two-loop thresholds to
the strong coupling. In that case a significant decrease in g3

with increasing MSUSY is seen. This effect is not confirmed
by the RGE re-summed calculations.

3.2 Gauge coupling unification

The shifts in the gauge couplings are rather small even for
very large SUSY masses in the multi TeV range. Thus, they
play phenomenologically only a sub-dominant role com-
pared to the larger effects in the top Yukawa coupling. How-
ever, if one embeds the MSSM into a UV complete frame-
work like supergravity, the running gauge couplings gDR

1 and

gDR
2 are usually used as starting point to find the scale of grand

unification, MGUT by imposing the condition

g1(MGUT) = g2(MGUT). (4)

Also the goodness of complete unification, i.e. the remaining
difference between g3(MGUT) compared to the other two
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Fig. 2 The DR values of the running top and bottom Yukawa cou-
plings at the SUSY scale. The dashed red line shows the result using
the one-scale matching as done by earlier SARAH/SPheno version,
while the blue line is the new results from SARAH and black the one
from SPheno. In addition, we show the results for SoftSUSY using

one-loop (dashed orange) and two-loop SUSY thresholds (full brown),
as well as for FlexibleSUSY (green). On the right we give the differ-

ence 	 = YA−YB

YA between the results of two calculations as indicated

couplings is very sensitive to the values of gDR
1 and gDR

2 at
MSUSY. Therefore, we are checking the impact of the two-
scale matching on MGUT and 	g = g1(MGUT)−g3(MGUT)

g1(MGUT)
in a

constrained version of the MSSM (CMSSM). The CMSSM
has five input the parameters: the universal scalar mass m0,
the universal gaugino mass M1/2, the universal trilinear soft-
breaking parameter A0, the ratio of the EW VEVs tan β =
vu/vd and the phase of μ. All three dimensionful parameters,
m0, M1/2 and A0, are set at MGUT. Here, we fixed

m0 = M1/2 , tan β = 10 , A0 = 0 , μ > 0,

(5)

and varied m0 from 200 GeV up to 100 TeV. The results
are shown in Fig. 4. The predicted value for the GUT scale
as function of MSUSY changes only slightly when using the
new two-scale matching compared to the one-scale match-
ing. In a complete GUT-model, the difference 	g has to be
explained by threshold corrections to heavy GUT-scale par-
ticles [43,44] as we are using two-loop RGE running. There-
fore, the right plot of this figure indicates the possible size
of such corrections due to the GUT-scale spectrum. The pre-
diction for 	g is different comparing the one- and two-scale

matching, but also comparing the new results of SARAH and
SPheno. The dominant origin of this difference is the inclu-
sion of the two-loop correction to g3 in SPheno, i.e. the
difference between the two lines can be taken as an estimate
for the theoretical uncertainty in 	g coming from higher
order effects: only two-loop SM corrections in the matching
of g3 are included in SPheno, but not the two-loop SUSY
thresholds. Also, for consistency three-loop RGEs of g3 up
to MGUT would be necessary. However, for small m0 also
the terms O(v2/M2

SUSY), which are neglected in SPheno,
by computing the thresholds in the SU (2)L × U (1)Y limit
become important and introduce a difference in the predic-
tion of the GUT scale, which enters logarithmically in the
unification condition.

3.3 SUSY masses

The changes in the DR parameters at the SUSY scale influ-
ence also the mass spectrum. This has very important conse-
quences in particular on the Higgs mass which are discussed
in the dedicated section Sect. 3.4. For now, we concentrate on
the SUSY masses. In that case, the masses do hardly change
if all SUSY specific parameters are defined at the SUSY scale
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Fig. 3 The same as Fig. 2 for the gauge couplings g1, g2 and g3

Fig. 4 On the left: the predicted value for MGUT as a function of
m0 = M1/2 in the CMSSM. The red line corresponds to the old one-
scale matching, while the blue and green line are the results for the
two-scale matching with SARAH and SPheno. On the right: the dif-

ference between g1(MGUT) and g3(MGUT) (in percent) as a function
of m0. The colour code is the same as on the left. We included here in
SPheno the two-loop thresholds corrections to g3
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because only tiny changes in the F- and D-term contributions
as well as in the radiative corrections will appear. Those are
found to be hardly in the percent range even for large SUSY
scales. Larger effects are present, if on considers unified sce-
narios in which the SUSY parameters are set via boundary
conditions at a scale well above the SUSY scale. The addi-
tional RGE running between the high scale, which is often
associated with the GUT scale via Eq. 4, will then introduce
a larger dependence on DR values of SM gauge and Yukawa
couplings at MSUSY. As an example, we consider again the
CMSSM. For simplicity, we fix in the following, if not stated
otherwise, A0 = 0, μ > 0, tan β = 10 and perform a scan
over m0 and M1/2. The changes in the masses of the lightest
stop, lightest stau, lightest neutralino and the gluino in the
(m0, M1/2)-plane are shown in Fig. 5. The largest effect in
general can be seen for the light stop mass, which changes
by 2–3% when pushing m0 in the multi-TeV range. For the
other masses, the changes in the DR parameters account only

for moderate changes of 1% and below. The only exception
are fine-tuned region with a higgsino LSP which we discuss
below in more detail. Here, we also display the changes in the
bino LSP mass because there small shifts can have sizeable
effects in the calculation of the relic density, e.g. in the case
of Higgs resonances or in the case of co-annihiliation.

The impact of the DR parameters at MSUSY on the predic-
tion of the light stop mass depends also on the chosen value
for A0. For non-vanishing A0, the changes can become larger
as shown in Fig. 6. Setting A0 = +1.5m0 we find that the
stop mass changes by more than 5% for m0 > 4 TeV. These
changes are still very moderate and have hardly any phe-
nomenological impact at the LHC. However, as mentioned
above they can become important for instance in stau or stop
co-annihilation to explain the dark matter abundance in the
universe [45].

A much more pronounced effect can be observed for the
μ parameter in the so called ‘Focus-Point’-region [46–49]

Fig. 5 The mass difference 	 = mold−mnew

mold in percent between the old and new mass calculation using SARAH. The red boundary in the χ̃0
1 -plot

shows the area with a higgsino LSP which is discussed in the text in more detail
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Fig. 6 The same as Fig. 5 for lightest stop but using A0 = −1.5m0 (left) and A0 = +1.5m0 (right)

from the minimisation conditions of the potential. This result
at tree level in

|μ|2 = (m2
Hd

− m2
Hu

tan β2)

tan2 β − 1
− 1

2
M2

Z � −m2
Hu

− 1

2
M2

Z

(6)

where we have assumed in the last step tan β � 1. The
special feature of the focus point region is that cancellations
in the RGE contributions tom2

Hu
result in moderately smallμ,

which is much smaller than the other SUSY mass parameters.
How well these cancellation work depends strongly on the
value of the top Yukawa coupling. Hence, we find that in the
focus point region, which is usually needs moderate M1/2 and
large m0, the value of μ changes by more than 25% as shown
in Fig. 7. Thus, also the higgsino masses vary significantly
between the one- and two-scale matching calculation.

If one assumes that a large μ-parameter is the main source
of fine-tuning in the MSSM, these changes in μ have also an
impact on naturalness considerations. Using the approximate

formula 	 � μ2

M2
Z

as a measure for the fine-tuning,3 one sees

that the fine-tuning prediction could reduce a factor of 2 and
more in the focus point region when going from the one-scale
matching to the two-scale matching.

3.4 Higgs mass in the MSSM

The impact of heavy SUSY masses on the Higgs mass is
nowadays a widely discussed topic. While fixed order cal-
culations suffer from increasing uncertainties, there are two
methods to improve the accuracy: (1) resumming the stop

3 These formula differs by a factor of 2 compared to the expression

usually taken, 	 � 2 μ2

M2
Z

, because of the incorporation of loop effects,

which have been overlooked for a long time [50].

contributions as done by FeynHiggs; (2) working with
a EFT ansatz as first done by SusyHD and later incorpo-
rated in FlexibleSUSY as well. The pole-mass match-
ing described in Sect. 2, which was used so far only in
FlexibleSUSY and now also by SPheno/SARAH, has the
additional advantage that it includes terms O(v2/M2

SUSY).
This is in contrast to previous calculations to obtain λSM

from the effective potential which are used by SusyHD for
instance. Thus, these EFT calculation have a larger uncer-
tainty for not too large MSUSY, while the predictions using
a pole-mass matching are still reliable for MSUSY of 1 TeV
and even below.

We give a comparison of the Higgs mass prediction of the
new SARAH and SPheno versions against previous calcula-
tions as well as the current versions ofFeynHiggs (2.12.2),
SusyHD (1.0.2) andFlexibleSUSY (1.7.2).4 For simplic-
ity, we assume a degeneracy of the SUSY soft masses as well
as MA and μ at the SUSY scale:

M1 = M2 = M3 = MA = μ ≡ MSUSY, (7)

m2
ẽ = m2

l̃
= m2

d̃
= m2

ũ = m2
q̃ = 1M2

SUSY. (8)

We neglect all trilinear soft-terms but the one involving the
stops, which is parametrised as usual by

L = AtYt t̃L t̃
∗
RHu + h.c. (9)

The results for the Higgs mass prediction for At =
0,±MSUSY and MSUSY up to 100 TeV are summarised in
Figs. 8, 9 and 10. One can see in Fig. 8 that the new calcula-
tion ofSPheno/SARAH gives a significant lower Higgs mass

4 We used for the following comparison the model file MSSMtower
of FlexibleSUSY which also performs a pole-mass matching to get
λSM(MSUSY).
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Fig. 7 The same as Fig. 5 for the value of μ at the SUSY scale. The right plot is a zoom into the interesting region of the left one

Fig. 8 The Higgs mass prediction of different computer codes as a
function of the SUSY mass. The dashed red line corresponds to the old
prediction by SARAH/SPheno

for very heavy SUSY scales and is in good agreement with
the other codes like FlexibleSUSY and SusyHD for the
entire range of MSUSY shown here.5 Only for small values
of MSUSY SusyHD deviates from the other codes because of
terms O(v2/M2

SUSY) missing due to the effective potential
approach. The main reason for the large rise in the Higgs
mass with SPheno/SARAH using a one-scale matching is
the calculation of the top Yukawa coupling as discussed in
Sect. 3.1. Since the calculation is not wrong per se, but the dif-
ferences in the calculation of Yt correspond to a three-loop
effect in mh , the large changes in the Higgs mass predic-
tion show how large the theoretical uncertainty of the fixed
order calculation can become for very large SUSY scales.
It might be surprising that a formal three-loop effect has

5 The large rise in the Higgs mass as shown by FeynHiggs for
MSUSY >5 TeV stems from a conversion problem of the input param-
eters and will most likely disappear in the near future [51].

such a big impact. However, it was for instance discussed
in Ref. [19] that at three-loop large cancellations appear, i.e.
an incomplete three-loop calculation can give a quite mis-
leading impression.

Since the agreement between the different codes becomes
impressively good even for very large SUSY masses, we
give in Fig. 9 the numerical differences between the Higgs
mass predictions of SARAH compared to the other codes.
Also the difference between the one-scale matching and the
two-scale matching using a one- or two-loop calculation of
λ is shown: for MSUSY = 100 TeV the Higgs mass pre-
diction decreases by about 7 GeV when doing it via the
EFT approach. The remaining difference from SusyHD and
FlexibleSUSY is always better than 1 GeV, most often
even better than 0.5 GeV.6 The increasing difference between
SARAH and FlexibleSUSY compared to SPheno and
SusyHD comes from the calculation of the top Yukawa cou-
pling in the SM: while SARAH and FlexibleSUSY use
two-loop thresholds, SPheno and SusyHD have included
even higher order corrections via the fit formula of Ref. [42].
These corrections need not to be included because they are
of a higher loop level than the Higgs mass calculation is
done. Thus, the difference between these two calculations
give an impression of the minimal, theoretical uncertainty
which is at least present. The differences between the codes
also don’t grow significantly if we use non-vanishing values
for At as shown in Fig. 10: the overall changes in the Higgs
mass between the SARAH calculation in the full MSSM and
in the effective SM changes again by 7–8 GeV for very large

6 The public version of FlexibleSUSY performs so far a one-loop
matching for λ. We compare therefore the SARAH results of a two-loop
matching only with FeynHiggs, SPheno and SusyHD, while we
use for the comparison with FlexibleSUSY the one-loop matching
results.
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Fig. 9 On the left: difference between the Higgs mass as predicted
by the new SARAH and the old version using one- (blue) or two-loop
(green) matching conditions for λSM at the SUSY scale. On the right:
the differences between SARAH and the new stand-alone SPheno ver-

sion (black), SusyHD (blue; dashed line with three-loop thresholds to
Yt , full line without these corrections) as well as FlexibleSUSY. We
used here vanishing trilinear soft-breaking stop couplings

Fig. 10 The same as Fig. 9 for non-vanishing At

SUSY scales, while the difference from the other codes is in
the range of 1 GeV and less.

3.5 Higgs mass beyond the MSSM

With SARAH it is also possible to generate a spectrum gen-
erator for models beyond the MSSM which calculates mass
spectra, decays and precision observables [52]. Also for these

models two-loop Higgs mass calculations are performed by
default. All important two-loop corrections stemming from
new particles and/or new interactions are covered as dis-
cussed in detail in Refs. [53–55]. The calculations make
use of the generic results of Refs. [56–60] and the only
approximations used in the SARAH implementation of the
two-loop calculations are (1) the gaugeless limit, i.e. set-
ting g1 = g2 = 0, and (2) neglecting the momentum
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Fig. 11 The SM-like Higgs mass in the NMSSM as a function of
the SUSY scale for four different values of λ (first, second row):
the dotted red line gives the result of the one-scale matching (1SM)
without regulator R, the dashed lines uses one-scale matching and

R = 10−1, 10−2, 10−3, while for the green line the two-scale matching
(2SM) was used together with a Higgs mass calculation in the effective
SM. The third row shows the difference 	mh between the one-scale
and two-scale matching (both with R = 10−2)

dependence, i.e. p2 = 0. Thus, SARAH provides for models
beyond the MSSM the same precision in the Higgs mass as
it does for the MSSM. Moreover, the obtained results with
SARAH include already for the next-to-minimal supersym-
metric standard model (NMSSM) corrections, which are not
available otherwise [61,62]. However, there is one additional
subtlety when using these two-loop corrections in extended
Higgs sector which we need to discuss before coming to the
results of the EFT approach: massless states appearing in the
two-loop calculations usually cause divergences. Since the
calculations are done in Landau gauge, these divergences

are often associated with the Goldstone bosons of broken
gauge groups which has motivated the name ‘Goldstone
boson catastrophe’ [63,64]. For many cases this behaviour
was already under control in SARAH by the treatment of the
D-terms which induced finite Goldstone masses as explained
in Ref. [55]. However, for large SUSY scales, it may still
happen that the ratio mS/MSUSY for some scalar mass mS

becomes very small and introduces numerical problems. As
short-term workaround we have introduced for this reason a
regulator R which defines the minimal scalar mass squared
as a function of the renormalisation scale Q,
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m2
S,min = RQ2. (10)

All scalar masses which appear in the two-loop integrals
which are smaller than m2

S,min are then replaced by RQ2. We
found that the numerical dependence on R is usually small for
values of R between 0.1 and 0.001. Nevertheless, the results
of Ref. [65] shall be included in SARAH in the near future to
have a rigorous solution to the Goldstone boson catastrophe
which is independent of any regulator [66].

We can turn now to the discussion of the changes in the
Higgs mass prediction when using the EFT ansatz. In general,
it is possible to use the two-scale matching together with an
effective calculation of the Higgs mass within the SM also
for non-minimal models. The procedure is exactly the same
as for the MSSM. SARAH uses the calculated Higgs mass
in the full model to obtain λSM(MSUSY) via a pole-mass
matching. It then evaluates λSM(mt ) and calculates mh at
that scale using SM corrections. We briefly discuss the impact
of the new calculation at the example of the NMSSM.7 For
this purpose, we relate the NMSSM specific, dimensionful
parameters to the SUSY scale via

μeff = MSUSY, Aκ = −λMSUSY, Aλ

= MSUSY

(
tan β

(1 + tan β2)
− κ

λ

)
.

With this parametrisation we find that the heavy MSSM-like
scalars get a tree-level mass of MSUSY, while also the scalar
singlets are sufficiently heavy to be integrated out at MSUSY.
We set in addition

tan β = 4, λ = κ.

Thus, the only free parameters left are λ and MSUSY.
The Higgs mass for a variation of MSUSY for λ =
0.1, 0.3, 0.5, 0.7 is shown in Fig. 11. Here, we also show
the results with and without regulator R. One can see that the
numerical problems associated with small masses, which in
this case here are the light Higgs as well as the two Gold-
stone bosons, show up for increasing MSUSY. The larger λ

is, the more pronounced these problems are. However, with
a regulator R = 0.01 this behaviour can be prevented for all
values of λ and MSUSY shown here for the one- and two-scale
matching. We find that the results with regulator masses are
in agreement with Ref. [12] within the indicated uncertain-
ties.
The impact on the Higgs mass using the new two-scale
matching is similar to the MSSM: for SUSY masses up
to 2 TeV, the effects are small and less than 2 GeV, but
they quickly increase with increasing MSUSY. For MSUSY =
25 TeV, the difference in the Higgs mass prediction is

7 We refer to Ref. [67] for an introduction into the NMSSM and for
questions regarding the notation in the following.

Fig. 12 The Higgs mass in the MSSM and NMSSM as a function
of Xt/MSUSY using one- and two-scale matching. Here we set μ =
MSUSY = 5 TeV and used for the MSSM tan β = 10, MA = 5 TeV. The
input parameters for the NMSSM were λ = 0.6, κ = 0.2, Aλ = 10 TeV,
Aκ = −5 TeV, tan β = 2

between 5.5 and 6.5 GeV. For our example we find that the
differences depend only weakly on the value of λ.

Similarly, one can now use SARAH to study also the Higgs
masses for other models in the presence of large SUSY scales
more precisely. However, a detailed exploration of these
effects in other models is beyond the scope of this paper.
Here, we want to stress that one should be careful with mod-
els with extended Higgs sector because not all scalar masses
become automatically large if MSUSY is large. Examples are
for instance models with extended gauge sectors in which a
second light scalar can appear because of D-flat directions
[68–70]. In these cases, a sizeable mixing between the SM-
like Higgs and another scalar can be present, i.e. the calcula-
tion ofmh within an effective SM might now be valid. There-
fore,SARAH does not perform this calculation by default, if a
second CP-even scalar with a mass below 500 GeV is present.

3.6 Perturbativity limit of new interactions

Many models beyond the MSSM are attractive because they
give a tree-level enhancement of the Higgs mass. This is
quite interesting from the point of view because it reduces
the required loop contributions to obtain mh = 125.1. Usu-
ally this allows for smaller values of At , which is important
for the stability of the scalar potential [71–75]. The best stud-
ied example is again the NMSSM which pushes the Higgs
mass via new F-term contributions which are proportional
to λ2. We demonstrate this in Fig. 13, where we compare the
dependence of the Higgs mass on the stop mixing parameter
Xt as defined as

Xt = At − μ tan β. (11)

In the NMSSM, μ is replaced by μeff . We see for a SUSY
scale of 5 TeV and the chosen value of tan β = 2 and λ = 0.6
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Fig. 13 Left maximal value of λ(MSUSY consistent with perturbativity up to MGUT for different values of κ . The full (dashed) lines correspond to
the case of two- (one-) scale matching. Right the difference 	λ = λmax

2SM(MSUSY) − λmax
1SM(MSUSY) of the two matching schemes.

even without stop mixing the Higgs mass can be found in the
correct mass range of 122–128 GeV (Fig. 12).

Because of this large impact of λ on the Higgs mass, it
is very important to know how big λ can be in order to
be still in agreement with gauge couplings unification at
MGUT.

In Fig. 13 we display the maximal value of λ(MSUSY),
which does not lead to a Landau pole below MGUT for dif-
ferent values of κ(MSUSY) and for MSUSY up to 25 TeV
and tan β = 4, and show the differences between the one-
and two-scale matching. Because of the smaller top Yukawa
coupling in the two-scale approach, one finds that slightly
larger values of λ(MSUSY are allowed than for the one-scale
matching.

4 Conclusion

We have presented the new two-scale matching procedure
in SARAH/SPheno to improve the prediction of the run-
ning DR gauge and Yukawa couplings at the SUSY scale
for large values of MSUSY. Together with the new matching,
also the possibility of an EFT Higgs mass calculation is intro-
duced. In the EFT calculation λSM is obtained via a Higgs
pole-mass matching at MSUSY and the SM-like Higgs mass
is calculated within the SM at the top mass scale. We have
shown various consequences of the two-scale matching and
the EFT Higgs mass calculation in the MSSM and beyond.
In particular, we have compared the Higgs mass prediction
for SUSY scales up to 100 TeV and found good agreement
with other EFT codes as SusyHD and FlexibleSUSY.
We have also shown that the value of μ in the CMSSM
can change significantly because of the changes in the top
Yukawa coupling. This has a direct impact on naturalness
considerations.
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Appendix A Matching

Appendix A.1 One-scale matching

Before we present the new two-scale matching which is now
performed by SARAH/SPheno, we review the current pro-
cedure. The first step is that all DR parameters are calculated
already at mZ and two-loop SUSY RGEs are used for the
running to MSUSY.

Appendix A.1.1 Strong coupling

The strong interaction coupling at the weak scale is matched
to the input value α

(5)
s (mZ ) in the N f = 5 flavour scheme

via

αDR
s (mZ ) = α

(5),MS
s (mZ )

1 − 	αs(mZ )
, (A.1)

	αs(mZ ) = αs

2π

(
1

2
− 2

3
log

mt

mZ
+ 	MSSM

s

)
. (A.2)

The corrections due to the new coloured states in the MSSM
are given by

	MSSM
s = −2 log

mg̃

mZ
− 1

6

6∑
i=1

(
log

mũi

mZ
+ log

md̃i

mZ

)
.

(A.3)
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For any other BSM model, 	MSSM
s is adjusted by SARAH to

fit to the particle content.

Appendix A.1.2 Electroweak sector

The EW gauge sector of the MSSM is determined by four
fundamental parameters. These are usually the gauge cou-
plings for SU(2)L × U (1)Y and the electroweak VEVs for
the up- and down-Higgs

g1, g2, vd , vu;

vd and vu are derived from the calculated EW VEV

v(mZ )2 =
√

v2
d + v2

u and the input value for tan β =
vu
vd

, which could either be given at mZ or MSUSY. Thus,

the matching procedure needs to determinate vDR(mZ ),
gDR

1 (mZ ) and gDR
2 (mZ ) from three physical quantities. Here,

SPheno and SARAH use as input the Z mass, the Fermi con-
stant GF and the electromagnetic coupling of the SM at the

scale mZ in the 5-flavour scheme, α
(5),MS
em (mZ ).

The relations between the input and DR parameters is as
follows:

1. The electroweak coupling constant is calculated from

αDR
em (mZ ) = α

(5),MS
em (mZ )

1 − 	α(mZ )
, (A.4)

	α(mZ ) = α

2π

(1

3
− 16

9
log

mt

mZ
+ 	MSSM

em

)
. (A.5)

with

	MSSM
em = −4

9

6∑
i=1

log
mũi

mZ
− 1

9

6∑
i=1

log
md̃i

mZ

− 4

3

2∑
i=1

log
mχ̃+

i

mZ
− 1

3

6∑
i=1

log
mẽi

mZ
− 1

3
log

mH+

mZ

(A.6)

Again, if another model shall be considered, the value of
	em is calculated by SARAH automatically.

2. The Weinberg angle sinDR �W at the scalemZ is obtained
iteratively from the above-computed αDR

em (mZ ), together
with GF and mZ , via

(
sinDR �W cosDR �W

)2 = π αDR
em (mZ )√

2m2
ZGF (1 − δr )

, (A.7)

where we have introduced

δr = ρ̂
�T

WW (0)

M2
W

− �e�T
Z Z (m2

Z )

m2
Z

+ δVB + δ(2)
r , (A.8)

ρ̂ = 1

1 − 	ρ̂
, 	ρ̂ = �e

[
�T

Z Z (m2
Z )

ρ̂ m2
Z

− �T
WW (M2

W )

M2
W

]

+ 	ρ̂(2). (A.9)

Here, �T
V V (p2) (V = Z ,W ) are the DR-renormalized

transverse parts of the self-energies of the vector bosons,
computed at the renormalisation scale Q = mZ , and δ

(2)
r

and 	ρ̂(2) are two-loop corrections as given in [39,76],

δ(2)
r = f1

(1 − sin2 �MS
W ) sin2 �MS

W

− xt (1 − δr )ρ

(A.10)

with

xt = 3

(
GFm2

t

8π2

)2

ρ2

(
mh

mt

)
, (A.11)

f1 = αMS
S αMS

ew

4π2(
2.145

m2
t

m2
Z

+ 0.575 log
mt

mZ
− 0.224 − 0.144

m2
Z

m2
t

)
,

(A.12)

f2 = αMS
S αMS

ew

4π2(
−2.145

m2
t

m2
Z

+ 1.262 log
mt

mZ
− 2.24 − 0.85

m2
Z

m2
t

)
,

(A.13)

and

ρ2(r) = 19 − 16.5r + 43

12
r2 + 7

120
r3 − π

√
r

(
4 − 1.5r

+ 3

32
r2 + r3

256

)
− π2(2 − 2r + 0.5r2)

− log(r)(3r − 0.5r2). (A.14)

The one-loop vertex and box corrections δVB imple-
mented into SPheno are hard-coded and taken from
literature[77–79], while the ones used by SARAH are
auto-generated and include therefore all one-loop correc-
tions beyond the MSSM. Also the self-energies �T are
automatically calculated by SARAH at the full one-loop
level.
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3. The electroweak VEV v used to calculate vd and vu at
mZ is obtained from

vDR(mZ ) =
√
mDR

Z (mZ )2
(1 − sin2 �DR

W ) sin2 �DR
W

παDR
.

(A.15)

Here, the running mass mDR
Z is given by

MDR
Z (M)Z) =

√
m2

Z + �T
Z Z (m2

Z ). (A.16)

Appendix A.1.3 Yukawa couplings

In order to calculate the value of the DR-renormalized
Yukawa coupling at the SUSY scale, SPheno used so far
the approach of Ref. [39]. First, for all leptons and the five
light quarks the DR masses atmZ are calculated. Afterwards,
the additional non-SUSY thresholds stemming from massive
bosons and the full one-loop SUSY thresholds are included.
For mt also the known two-loop QCD corrections are added
[80,81]

�
(2)
QCD = 1

16π2 αs18
(

2011 − 1476 log(Q) + 396(log(Q))2

−48ζ3 + 16π2(1 + 2 log 2)
)

. (A.17)

Using these loop corrections, the loop-corrected 3 × 3
mass matrices for quarks and leptons are calculated via

m(1L)
f (p2

i ) = m(T )
f − �S, f (p

2
i )

−�R, f (p
2
i )m

(T )
f − m(T )

f �L , f (p
2
i ) (A.18)

with f = l, d, u. Here, �S,R,L are usually the one-loop self-
energies without photon and gluon corrections. Only for the
top-quark, photon and gluon corrections need to be included
and in addition one identifies

�S,t = �
(1)
S,t + �

(2)
QCD . (A.19)

The DR Yukawa matrices fulfilling

m(T )
u = 1√

2
Yuvu, m(T )

d = 1√
2
Ydvd , m(T )

l = 1√
2
Ylvl ,

(A.20)

are calculated iteratively from Eq. (A.46) by the condition
that the eigenvalues of m(1L)

f (p2
i ) must coincide with the DR

values for the light leptons and the top pole mass, respec-
tively.

Appendix A.2 Two-scale matching

In the new two-scale approach, the separation of the matching
is that all SM corrections are included atmZ to obtain the MS
values which are then shifted at MSUSY to their DR values
by including all one-loop SUSY thresholds.

Appendix A.2.1 Calculating the MS parameters at mZ

The calculation of the MS parameters atmZ is very similar to
the approach described in the last section, but with all BSM
contributions removed.

1. We get for the gauge couplings

αMS
S = α

(5),MS
s (mZ )

1 + 2
3

αs
2π

(
log mt

mZ

) , (A.21)

αMS
ew = α

(5),MS
em (mZ )

1 + α
2π

(
16
9 log mt

mZ

) . (A.22)

2. The Weinberg angle is calculated as

sin �MS
W =1

2
−

√√√√1

4
− παMS

ew (mZ )√
2m2

ZGF (1 − δr )
(A.23)

with δr defined in Eq. (A.8). The following one-loop SM
contributions are used:

δV B = gMS,2
2 ρ

(
6 + log cos2 �W

sin2 �W

(
7

2
− 5

2
sin2 �W

− sin2 �MS
W

(
5 + 3

2

cos2 �W

cos2 �MS
W

)))
, (A.24)

and the two-loop corrections δ
(2)
r agree with the ones used

in the one-scale matching.
3. The VEV is obtained from

vMS = (m2,MS
Z (MmZ) + δm2,MS

Z )
(1 − sin �MS

W ) sin �MS
W

παMS
ew (MmZ)

(A.25)

where δmZ = �T
Z Z (m2

Z ) includes only the SM correc-
tions.

4. The Yukawa couplings are obtained from the running MS
quark and lepton masses. Here, we include for mt the
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two-loop corrections to relate the MS and pole mass[82]

mMS
t = mpole

t

[
1 + 1

16π2((
16π

9
α − 16π

3
αs

)
(4 + log(Q))

)

− 1

(16π2)

α2
s

18
(2821 + 2028 log(Q)

+ 396(log(Q))2 + 16π2(1 + 2 log 2) − 48ζ3)

]
.

(A.26)

The MS Yukawa matrices are calculated iteratively from
the condition that the MS fermion masses are reproduced
once the one-loop SM corrections with massive bosons
are included:

m(1L)
f (p2

i ) = m(T )
f −�̃S(p

2
i )−�̃R(p2

i )m
(T )
f −m(T )

f �̃L(p2
i ).

(A.27)

Here, �̃ are the self-energies without the photonic and
gluonic contributions. The eigenvalues of m(1L)

f (p2
i )

must coincide with mMS
f (mZ ).

gMS
i (i = 1, 2, 3), YMS

f ( f = l, d, u) and vMS are then
evaluated from mZ to MSUSY using the full two-loop SM
RGEs which are extended by the three-loop contributions
involving g3, λ and Yt .

For the top Yukawa and strong gauge coupling one can
include in SPheno an additional threshold at mt at which
higher order corrections are included by using the fit formulae
[42]

Yt (mt ) = 0.9369 + 0.00556
( mt

GeV
− 173.34

)

− 0.6(αs(mZ ) − 0.1184), (A.28)

g3(mt ) = 1.1666 + 0.00314
(αs(mZ ) − 0.1184)

0.0007

− 0.00046
( mt

GeV
− 173.34

)
. (A.29)

Appendix A.2.2 Calculating the DR parameters at MSUSY

in SARAH

At the MSUSY, the MS parameters are first shifted to DR
parameters and then the SUSY thresholds are added.

1. Strong coupling

αDR
S (MSUSY) = αMS

S (MSUSY)

1 − 	DR
αS

(A.30)

with

	DR
αS

= αs

2π

(
1

2
− 	MSSM

s

)
. (A.31)

2. Electroweak sector:
The electroweak gauge coupling is calculated from gMS

1 ,

gMS
2 and translated into its DR value via

αMS
ew (MSUSY) = 1

4π

(gMS
1 gMS

2 )2

(gMS
1 )2 + (gMS

2 )2
, (A.32)

αDR
ew (MSUSY) = αMS

ew (MSUSY)

1 − 	DR
, (A.33)

with

	DR = αDR
ew

2π

(
1

3
+ 	MSSM

em

)
(A.34)

where mZ has to be replaced by MSUSY in Eq. (A.6). In
addition, it is helpful to define for later use

sin �MS
W = gMS

1√
(gMS

1 )2 + (gMS
2 )2)

, (A.35)

δMS
r =1 − παMS

ew (MSUSY)√
2GFm2

Z sin2 �MS
W (1 − sin2 �MS

W )
,

(A.36)

as well as

δDR
V B = δMSSM

V B − δSM
V B, (A.37)

δm2,DR
Z = �

T,MSSM
Z Z − �

T,SM
Z Z , (A.38)

δW 2,DR
Z = �

T,MSSM
WW − �

T,SM
WW . (A.39)

Here �
T,MSSM
WW are the full one-loop self-energies within

the MSSM. Therefore, one needs to subtract �
T,SM
VV to

include only the new physics contributions. Thus, for
consistency, one needs to evaluate here �

T,SM
Z Z in the DR

scheme.

The DR values of the Weinberg angle and electroweak
VEV are now given by

sin2 �DR
W = 1

2
−

√√√√1

4
− παDR

ew (MSUSY)√
2m2

ZGF (1 − δMS
r − δr )

,

(A.40)

vDR =
(
m2,MS

Z (MSUSY) + δm2,DR
Z

)
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(1 − sin �DR
W ) sin �DR

W

παDR
ew (MSUSY)

, (A.41)

where the SUSY corrections are calculated as

δr = 1 + δm2,DR
Z /m2

Z

1 + δW 2,DR
Z /m2

W

δW 2,DR
Z

m2
W

− δm2,DR
Z

m2
Z

+ δDR
V B .

(A.42)

sin �DR
W andvDR together with the calculatedαDR

ew (MSUSY)

and the input value for tan β determines gDR
1 (MSUSY),

gDR
2 (MSUSY), vDR

d (MSUSY), vDR
u (MSUSY).

3. Yukawa couplings As a first step, the running MS
Yukawa couplings are translated in DR values via [83]

mDR
e,μ,τ (MSUSY) = mMS

e,μ,τ (MSUSY) ×
(

1 − αDR
EW

4π

)
,

(A.43)

mDR
d,s,b(MSUSY) = mMS

d,s,b(MSUSY)

×
(

1 − αDR
S

3π
− 43(αDR

S )2

144π2 − αDR
EW

4π

1

9

)
,

(A.44)

mDR
u,c,t (MSUSY) =mMS

u,c,t (MSUSY)

×
(

1 − αDR
S

3π
− 43(αDR

S )2

144π2 − αDR
EW

4π

4

9

)
.

(A.45)

The running Yukawa couplings are obtained from

m(1L)
f (p2

i ) = m(T )
f −�̃S(p

2
i )−�̃R(p2

i )m
(T )
f −m(T )

f �̃L(p2
i ).

(A.46)

Here, �̃ are the self-energies without SM contribu-
tions. The eigenvalues of m(1L)

f (p2
i ) must coincide with

mDR
f (MSUSY).

Appendix A.2.3 Calculating the DR parameters at MSUSY

in SPheno

As in the case of SARAH, the MS parameters are first shifted
to DR parameters and the SUSY thresholds are added at
Q = MSUSY. The main difference is that the conservation of
SUL(2)×UY (1) is assumed at this scale. The corresponding
formulae read

1. Gauge couplings: these get shifted by

(
gDR
i

)2 = (gMS
i )2

1 − (gMS
i )2

8π2 	g2
i

(A.47)

where

	g2
1 = −

3∑
i=1

[
1

12
log

(
m2

Li

Q2

)
+ 1

12
log

(
m2

Ei

Q2

)

+ 1

36
log

(
m2

Qi

Q2

)

+ 1

18
log

(
m2

Di

Q2

)
+ 2

9
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− 1
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3
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)
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1

12
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	g2
3 = 1

2
− 1

12

3∑
i=1

[
2 log

(
m2

Qi

Q2

)
+ log

(
m2

Di

Q2

)

+ log

(
m2

Ui

Q2

)]
− log

( |M3|2
Q2

)
, (A.50)

and mLi , mEi , mQi , mDi and mUi are the masses of the
L̃ , Ẽ , Q̃, D̃ and Ũ , respectively, calculated from the
corresponding soft SUSY breaking mass squares. mH is
the mass of the heavy Higgs boson, which is calculated
according to

m2
H = 1

2

(
M2

Hu
+ M2

Hd
+ |μ|2

+
√

(M2
Hu

− M2
Hd

)2 + 4|Bμ|2
)

. (A.51)

2. Yukawa couplings: First the shift from MS to DR is
calculated according to

YDR
SM,l

′ =
(

1 − 3

128π2

(
g2

1 − g2
2

))
YMS

SM,l , (A.52)

YDR
SM,d

′ =
(

1 − 13g2
1

1152π2 + 3g2
2

128π2 − g2
3

12π2 − 43g4
3

9(16π2)2

)
YMS

SM,d ,

(A.53)

YDR
SM,u

′ =
(

1 − 7g2
1

1152π2 + 3g2
2

128π2 − g2
3

12π2 − 43g4
3

9(16π2)2

)
YMS

SM,u ,
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where the gauge couplings gi are the DR couplings. In a
second step, these couplings get rescaled as follows:

YDR
SM,l = 1

cos β
YDR

SM,l
′, , YDR

SM,d

= 1

cos β
YDR

SM,d
′, , YDR

SM,u = 1

sin β
YDR

SM,u
′. (A.55)

In the next step, the one-loop corrections due to the
SUSY particles and the heavy Higgs doublet H , where
H is to the SM-Higgs orthogonal combination of Hu and
Hd . Here we distinguish between holomorphic and non-
holomorphic corrections, where the first denotes loop
contributions to the existing tree-level coupling and the
second the loop-induced ones to the second Higgs dou-
blet. We give here for simplicity the different contribu-
tions for the case of real parameters neglecting flavour
mixing. The case with flavour mixing can easily be
obtained from Appendix A, see Ref. [84].

– Taking either f = t or f = bwe obtain for the gluino
contributions

Y hol
f = g2

3

6π2 M3T f C0(M
2
3 ,m2

Q,m2
F ), (A.56)

Y anhol
f = − g2

3

6π2 M3Y f μC0(M
2
3 ,m2

Q,m2
F ). (A.57)

– Taking either f = t , f = b or f = τ we obtain for
the single bino contributions

Y hol
f = c f

g2
1

16π2 M1T f C0(M
213,m2

L f
,m2

F ),

(A.58)

Y anhol
f = −c f

g2
1

16π2 M1Y f μC0(M
2
1 ,m2

L f
,m2

F ),

(A.59)

where L f = Q in the case of f = t, b and L f = L
in the case f = τ and the different combinations of
hypercharges give

ct = −2

9
, cb = 1

9
, cτ = −1. (A.60)

– Taking either f = t or f = b we obtain for the single
higgsino contributions

Y hol
f = YtYb

16π2 μ2Y f ′C0(μ
2,m2

Q,m2
F ′), (A.61)

Y anhol
f = − YtYb

16π2 μT f ′C0(μ
2,m2

Q,m2
F ′), (A.62)

where f ′ = b (t) in the case of f = t (b).

– For the mixed wino/higgsino contributions we find

Y hol
f = −3

4

g2
2

16π2 Y f C2(M
2
2 , μ2,m2

L f
), (A.63)

Y anhol
f = 3

4

g2
2

16π2 μM2Y f C0(M
2
2 , μ2,m2

L f
), (A.64)

with L f = Q in the case of f = t, b and L f = L in
the case f = τ .

– For the mixed bino/higgsino contributions we find

Y anhol
f = − g2

1

16π2 Y f(
c f LC2(M

2
2 , μ2,m2

L f
) + c f RC2(M

2
2 , μ2,m2

F )
)

,

(A.65)

Y anhol
f = g2

1

16π2 μM1Y f(
c f LC0(M

2
2 , μ2,m2

L f
) + c f RC0(M

2
2 , μ2,m2

F )
)

,

(A.66)

with L f = Q in the case of f = t, b and L f = L
in the case f = τ . For the different coefficients we
obtain

ctL = cbL = 1

6
, ct R = 2

3
, cbR

= −1

3
, cτ L = −1

2
, cτ R = 1 . (A.67)

– The contributions due to the second heavy Higgs dou-
blet with mass mH read

Y hol
f = c f

Y 3
f

16π2 ln

(
m2

H

M2
SUSY

)
(A.68)

where c f = sin2 β in the case of f = b, τ and c f =
cos2 β in the case of f = t .

In the case of the u-type quarks a simple summation of
all contributions suffices,

Yu = YDR
SM,u − 	Y hol

u − 	Y anhol
u cot β. (A.69)

In the case of the d-type quarks and the leptons one has to
resum the anholomorphic contributions as they get large
in the case of large tan β,

Y f = YDR
SM, f

1 + 	Y anhol
f

YDR
SM, f

tan β

− 	Y hol
f (A.70)

where f = d. For completeness we note that the equiva-
lence of the resummation of the two-point function (as in
the case of SARAH) with the resummation of the three-
point function (as in SPheno) has been shown in [85].
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The loop functions are given by

C0(m
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1,m

2
2,m

2
3) = 1
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[
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2
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, (A.71)
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(A.72)

Appendix B Using the new and old approach in SARAH/
SPheno

Appendix B.1 SARAH

The new matching routines and Higgs mass calculations are
available with SARAH version 4.9.0. By default, the new rou-
tines are included in theSARAH output of theSPheno source
code for any model. Moreover, they are also used by default
now for supersymmetric models with the following restric-
tion: SARAH only calculates the effective Higgs pole mass
within the SM, if the second lightest CP-even scalar has a
pole mass above 500 GeV. The reason is that one expects
for lighter mass splitting potential important effects from the
mixing between the two lightest scalars which would get lost
in the effective model ansatz. In addition, there are the fol-
lowing flags which can be used by the user in the LesHouches
input file to control when the calculations shall be performed:

1 Block SPHENOINPUT #
2 . . .
3 66 1 # Two−scale matching (yes /no)
4 67 1 # Calculate Higgs mass in effective ↪→

←↩ SM if possible (yes /no/always)

The options can be used as follows:

66

0 the old one-scale matching is used;
1 the new two-scale matching is used.

The default value is 1
67

0 the Higgs mass is only calculated at the SUSY scale
in the full model;
1 the Higgs mass is calculated in the effective SM if
only one light scalar is present;

2 the Higgs mass is always calculated in the effective
SM even if light scalars are present.

The default value is 1.

Appendix B.1 SPheno

In SPheno the new matching procedure and Higgs mass
calculation is available with version 4.0.0 and higher. This
procedure is by default switched on but one can switch back
to the old one-scale matching using the new entry 49 in block
SPHENOINPUT

1 Block SPHENOINPUT #
2 . . .
3 48 1 # 0. . 2−loop QCD to Y_t and alpha_s ↪→

←↩ at m_Z, 1 . . . use f i t formula at 3 ↪→
←↩ loop

4 49 1 # Two−scale matching 0/1 correspond ↪→
←↩ to yes /no

where the value 1 switches to the one-scale matching. Using
three-loop fit formulas given in [42] instead of the two-loop
corrections to YMS

t and one-loop corrections to αs at mZ can
be achieved by setting the new flag 48 in block SPHENOIN-
PUT to 1. Moreover, the entry 38 controlling the order used
in the RGEs has been modified.

1 Block SPHENOINPUT #
2 . . .
3 38 3 # 1 & 2: use 1− and 2−loop RGEs; 3: ↪→

←↩ 3−loop SM RGE and 2−loop SUSY RGEs

with the options

1 one-loop RGEs for both SM and SUSY;
2 two-loop RGES for both SM and SUSY;
3 three-loop RGEs for SM but two-loop RGEs for SUSY.
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