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Abstract To protect karst spring water resources, catchments must be known. We have developed a
method for correlating spring hydrographs with newly available, high-resolution, satellite-based Global
Precipitation Measurement data to rapidly and remotely locate recharge areas. We verify the method using a
synthetic comparison of ground-based rain gage data with the satellite precipitation data set. Application to
karst springs is proven by correlating satellite data with hydrographs from well-known springs with published
catchments in Europe and North America. Application to an unknown-catchment spring in Pennsylvania
suggests distant recharge, requiring a flow path that crosses topographic divides, as well as multiple lithologies,
physiographic provinces, and tectonic boundaries. Although surprising, this latter result is consistent with
published geologic/geophysical, monitoring well, and stream gage data. We conclude that the method has
considerable potential to improve the speed and accuracy of catchment identification and hydrodynamic
characterization, with applications to water resource protection and groundwater exploration, among others.

Plain Language Summary We have developed a method for determining the recharge area for any
spring using satellite-based precipitation data. These data are compared to changes in flow of the spring.
That is, when there are surges in the spring flow, we look at satellite data to see where it has recently rained.
This will have important applications in protecting spring water resources worldwide.

1. Introduction

Groundwater from karst aquifers supplies nearly 25% of human population [Ford and Williams, 2007]. Most
large springs on Earth are karstic, with many vital to cities, including Vienna, Rome, and San Antonio [Kresic
and Stevanovic, 2010]. Spring protection in the face of population growth and climate change requires
specific strategies [Hartmann et al., 2014]. However, karst aquifers are often geologically complex and
hydraulically connected over long distances [Bakalowicz, 2005]. Therefore, delineation of spring catch-
ments requires three-dimensional geological analysis, spring hydrograph monitoring and water balances,
hydrochemical/isotopic methods, and artificial tracer tests [Goldscheider and Drew, 2007]. Groundwater
flow paths in karst (confirmed by dye-tracing) sometimes exceed 100 km, illustrating the expansiveness
of these groundwater resources and the challenges of delineation [Ford and Williams, 1989].

This work is motivated by a karst spring in Pennsylvania, USA, locally called “the Bubble.” This spring, plus sev-
eral smaller and connected ones nearby, discharges 5 to 7 times the expected infiltration in its topographic
watershed [Becher, 1991]. The spring hydrograph (Figure 1) displays discharge surges, while temperature, con-
ductivity, and turbidity remain constant. Water temperature varies seasonally by 0.3°C but is 6 months out of
phase with air temperature. This suggests pressure-pulse surges which we correlate, using a novel method,
with precipitation recorded by NASA's Global Precipitation Measurement (GPM) satellite network [NASA,
2016]. Our goal was to constrain the extent of the unknown Bubble recharge zone. This procedure is tested
using springs with published catchments. These tests, and the surprising results from the Bubble, support
the potential worldwide utility of this method for identifying recharge areas and their hydrodynamics.

2. Methods

The GPM constellation measures precipitation using microwaves. One data set is the “Integrated Multi-
satellitE Retrievals for GPM Level 3 Final Run” [Huffman et al, 2015]. This provides precipitation maps
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Figure 1. Comparison of precipitation data for a TRG (teal), GPM (purple), and the Bubble hydrograph (black). The dashed
blue lines highlight discharge events with insignificant local precipitation. The blue arrows show local precipitation with no
change in Bubble discharge.

between 60°N and 60°S with 0.1° x 0.1° spatial resolution and 30 min temporal resolution. Data collection
began in March 2014, and the data are available with a 4 month lag for calibration against ground-based
precipitation gages. The GPM Final Run is considered the most accurate of any remotely sensed
precipitation data set [Huffman et al., 2015].

To check the accuracy of the GPM data, we recorded precipitation for 8 months using a tipping rain gage
(TRG) near the Bubble. Figure 1 overlays TRG data on the GPM record for the Bubble pixel. While the magni-
tudes of events differ (the gage consistently records greater values—probably due to the inherent averaging
within pixels in the GPM data), the times of events match closely (correlation coefficient = 0.66 at p = 0.05).

The Bubble hydrograph is shown on Figure 1. In general, surge times correlate poorly with local TRG data;
some surges occur without local precipitation and vice versa (Figure 1). One explanation is a component
of remotely applied head from precipitation/recharge or associated changes in atmospheric pressure.
Remote sources are consistent with discharge greatly exceeding infiltration in the topographic watershed.

From the GPM maps, we construct a precipitation time series for every pixel within the search area, which is
compared to the spring hydrograph. We developed an algorithm for making this comparison (termed ECHO
for Empirically Constrained Hydrologic Operation) as summarized in Figure 2.

ECHO starts with a hydrograph as discharge D versus time [D, t]. Multiple GPM precipitation (P) maps [X, Y, P],
spanning the time range of the hydrograph, are downloaded from NASA. ECHO combines individual map
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Figure 2. Flowchart for ECHO analysis. The grey steps are automated.
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Table 1. Springs Used to Test the ECHO Prototype

Low-Flow Average High-Flow Magnitude Catchment
Name Location Discharge (m3/s) Discharge (m3/s) Discharge (m3/s) (Based on Average) (kmz)
The Bubble [Becher and Root, Boiling Springs, 0.5 0.7 1 2nd Unknown
1981; this study] Pennsylvania, USA
Sagebach [Chen and Goldscheider, Kleinwalsertal, Vorarlberg, 0.15 0.35 3.5 2nd 28
2014; Goldscheider, 2005] Austria
Areuse [Kiraly, 2003] Canton de Neuchatel, 4 28 42 1st 127

Switzerland

Big Spring [Imes et al., 2007; Van Buren, Missouri, USA 7 12 39 1st 1104

Vineyard and Feder, 1982]

140°W

files into a 4-D block of [X, Y, t, Pl. The hydrograph is subjected to event recognition, which identifies an event
with index (i) based on fitting a regression line to a moving window, and flagging the last point beyond which
inclusion of additional points produces a positive change in slope greater than A, and which persists for more
than n subsequent windows, where A and n are user-selectable. The event list [j, t] is iteratively compared to
the [t, P] series for each pixel using time lags spanning a specified range. For each pixel, the time lag that
produces the maximum number of matches between spring discharge and precipitation events (“hits”) is
recorded, along with the associated number of hits for that pixel. These map data [X, Y, hits] are exported
and displayed as contours or classed postings. The method does not yet comprehend snowmelt signals, so
winter months are excised from the hydrograph.

The prototype algorithm was applied to the Bubble and blind-tested at three karst springs of differing
magnitudes (as defined by Meinzer [1923]) at diverse geographic locations and climates. These springs are
described in Table 1 and shown on Figure 3.

3. Results

ECHO results for the Bubble are depicted in Figure 4a. On this and subsequent maps, the hit count for each
pixel is normalized by the maximum hit count for all pixels and time lags across the tested region so contour
maps (from triangulation with linear interpolation) can use a consistent color scale. For the Bubble, we ana-
lyzed the full GPM global coverage (4.32 million pixels). Under 200 pixels registered >14 hits, and all (0.0043%
of the total) falls within the map limits of Figure 4a. Two pixels registered the peak hit count of 21 (a ratio of
approximately one in two million). The peaks occur in adjoining pixels approximately 60 km SE of the spring.
The implied hydrogeological connection is surprising because the identified recharge area lies on the oppo-
site side of the quartzite/metavolcanic ridge or “South Mountain anticlinorium” [Cloos, 1950] shown in
Figure 4b.

120°W 100°W 80°W 60°W 40°W 20°W

Séagebach

Areuse

80°W 60°W 40°W 20°W

Figure 3. Locations of test springs (Table 1) on the World Karst Aquifer Map by Chen et al., 2017.
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Figure 4. (a) ECHO output for the Bubble. The small black box is the Bubble GPM pixel. The colors depict hit count as a
percentage of the peak which is 21 hits in two pixels east of W. Conewago. (b) Geology [from Stoeser et al., 2005] and
physiographic provinces (dashed). (c) Verification test showing GPM-TRG hits at the Bubble.

To confirm the ECHO result, Figure 4c shows a test using TRG data (Figure 1) as a mock hydrograph, corre-
lated with the same GPM data as the Bubble test in Figure 4a. The highest hit count is in the Bubble/TRG pixel,
validating the ECHO algorithm. Diminishing correlations outside the Bubble/TRG pixel are likely a semiquan-
titative indication of the resolution of the method at this location for this time range. That is, the lateral extent
of precipitation events (beyond the Bubble pixel) and the typical storm track (SW to NE along the Great
Valley) yield a spatial resolution depicted by the color contours of Figure 4c. We could use this pattern to
correct for artificial enlargement of the recharge zone, but in the future, intend to prescreen the GPM data
to retain only small fast-moving storms.

Figure 4c shows an important test of ECHO, but since the catchment for the Bubble is not known, this result
cannot prove the effectiveness of the procedure. Therefore, ECHO was blind-tested on three springs (Table 1
and Figure 3) with mapped catchments from traditional geologic mapping, water budget calculations,
hydraulic modeling, and dye tracing confirmation. These include Sdgebach (Austria), Areuse (Switzerland),
and Big Spring (MO, USA).

Figure 5 shows the geographic location for each spring, the published outline of the springshed, and the
ECHO hit contours overlain on NASA Terra Moderate Resolution Imaging Spectroradiometer imagery. The
ECHO algorithm used GPM data covering an area much larger than that in the figures, Eastern North
America for Big Spring and all of Europe for Sdgebach and Areuse.

To characterize the effectiveness of ECHO and evaluate the significance of the contours in Figure 5, we per-
formed a receiver operating characteristic (ROC) analysis [Hajian-Tilaki, 2013] for the TGR test in Figure 4c and
each of the blind tests in Figure 5 (see the supporting information). For each spring/test, the area enclosed by
each successive hit count contour (from values of 100 through 92) was compared to the mapped catchment
to calculate “detection completeness,” and “false alarm ratio.” Detection completeness is the fraction of the
mapped catchment that a given hit count contour encloses (equivalent to specificity or true positive rate in
general ROC analysis). False alarm ratio is the fraction of area enclosed by a contour that falls outside of the
mapped catchment (equivalent to sensitivity or false alarm rate). The discrimination statistic d or area under
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Figure 5. Contoured ECHO hits for (a) Areuse, (b) Sdgebach, and (c) Big Spring. Catchments are blue, and springs are cyan.

the ROC curve [Nam and D’Agostino, 2002] was calculated for each test/spring and can be compared to
theoretical “perfect” test and “worthless” test in the following list: perfect test, d = 1.00; TRG test, d = 0.91;
Big Spring, d = 0.84; Sdagebach, d = 0.73; Areuse, d = 0.63; and worthless test, d = 0.50.

The TRG and spring applications show that ECHO clearly discriminates catchments at a statistically significant
level. One limitation of this test is that it measures only the effectiveness of the method at matching the out-
line of the mapped catchment and does not value the ability of ECHO to simply locate each spring, with no
additional input, in continent-scale search areas. In addition, these discrimination statistics presume that the
catchment maps are correct and that ECHO-identified potential recharge zones outside the mapped catch-
ment are actually “false positive.”

4, Discussion

In each of the known-catchment tests of ECHO, the greatest number of hits falls within the mapped recharge
area, with counts falling-off outside of it (similar to the GPM versus TRG test in Figure 4c) and good to excel-
lent ROC behavior. An analysis of the time lag between precipitation and discharge peaks has not been com-
pleted and seems nonconstant for Areuse and Big Spring. For Sdgebach, the consistent time lag matches dye
trace transit times [Goldscheider, 2005; G6ppert and Goldscheider, 2008]. For all springs, there are relatively
high-correlation pixels outside of the known springsheds (treated as “false positive” in the ROC analysis).
This may be due to temporal coincidence of precipitation in these pixels with that in the springshed (unre-
lated to groundwater flow), or in some cases, ECHO might be identifying true additional, previously uniden-
tified recharge areas. Longer time series comparisons with culled GPM data preserving only fast-moving
small-extent storms could reduce spurious hits. Strong hits outside currently mapped springsheds (e.g., west
of the marked Big Spring catchment) could motivate research to confirm surprising hydrogeological connec-
tions which often occur in karst terranes.

Since there is no springshed map for the Bubble, and the ECHO-located recharge area lies in a geologically
unexpected location (Figure 4b), we compared the Bubble hydrograph to water data throughout mid-
Atlantic USA. We identified apparent correlation for two monitoring points shown on Figure 4a: Well AD-
146 [U.S. Geological Survey (USGS), 2016a] and W. Conewago Creek gaging station [USGS, 2016b]. Both display
water-level peaks that match surges in the Bubble (Figure 6). This across-the-mountain similarity of hydraulic
behavior went unnoticed until the ECHO analysis. If ECHO is correct, this suggests that South Mountain may
not be a hydrogeological barrier. An artificial tracer test could evaluate this hypothesis. A hydraulic fast-path
for the pressure pulses in the Bubble could be present if South Mountain is a crystalline allochthon that has
overridden younger carbonates, consistent with the interpretation of seismic reflection data by Evans [1989]
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Figure 6. (top) Bubble hydrograph. (bottom) Piezometric level, Well AD-146 [USGS, 2016a] and streamflow, W. Conewago
Creek gaging station [USGS, 2016b] for a 2 week period in summer 2015. Well and gage locations shown in Figure 4a.

for the same “anticlinorium” farther south. A continuous karstified pathway, from the remote recharge area
across the Gettysburg Basin and South Mountain, to the Bubble is possible since there are freshwater
carbonates in the fault-bounded rift basin [de Wet et al., 1998]. Detailed mapping and seismic studies are
underway/planned to address these possibilities. We are also exploring the role of highly hydraulically
conductive pseudo-karstic fracture networks that may carry water through the noncarbonate rocks [Moser
etal., 2014].

The current ECHO algorithm may not comprehend emergent discharge events with long lag times. This is
especially true for springs that show large seasonal fluctuations. In addition, for existing spring discharge
data—e.g., USGS National Water Information Mapper [USGS, 2016a]—the sampling intervals vary from hourly
to daily or longer. ECHO handles this by comparing hydrograph event onset times to the 30 min sampled
data. Resampling of the GPM and/or hydrograph data to a common interval will facilitate more rigorous cor-
relation methods and should affect correlation behavior. This and other improvements to the methodology
are underway.

5. Conclusions and Outlook

Correlation of satellite GPM data with the Bubble hydrograph supports our hypothesis of a remote recharge
component. Testing of the ECHO method using TRG data and hydrographs from other karst springs indicates
that this will be a powerful tool with global applications for rapidly connecting water supplies to their
recharge areas, whether local or remote (and unexpected). ECHO cannot replace hydrogeologic mapping,
geochemical, geophysical, and dye tracing studies, but it could direct these to critical testing locations and
provide a valuable groundwater exploration tool.

In initial tests, ECHO has revealed a previously unrecognized correlation, and potential hydraulic connection,
between water on either side of South Mountain in Pennsylvania. In addition, there are hints of unrecognized
connections to Big Spring, Missouri. We anticipate that testing of other karst springs could reveal numerous
new connections.

We are currently working on improved methods for cross-correlating satellite precipitation and hydrograph
data to better-constrain recharge locations and time lags and quantify associated error and significance sta-
tistics. We will include topographic filtering of cells with elevations below that of the discharge point. With
these improvements, we intend to identify catchment areas and transit times, and even subdivide
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