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Filtering for multiple, possibly dependent angular variates on 
higher-dimensional manifolds such as the hypertorus is challenging 
as solutions from the circular case cannot easily be extended. In this 
paper, we present an approach to recursive multivariate angular es-
timation based on Fourier series. Since only truncated Fourier series 
can be used in practice, implications of the approximation errors 
need to be addressed. While approximating the density directly can 
lead to negative function values in the approximation, this problem 
can be solved by approximating the square root of the density. As 
this comes at the cost of additional complexity in the algorithm, 
we present both a filter based on approximating the density and 
a filter based on approximating its square root and closely regard 
the trade-offs. While the computational effort required for the fil-
ters grows exponentially with increasing number of dimensions, our 
approach is more accurate than a sampling importance resampling 
particle filter when comparing configurations of equal run time.
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I. INTRODUCTION

Periodic quantities are ubiquitous both in nature [1],

[2], [3] and technology [4], [5], [6]. The most common

periodic quantities are in the form of angles, such as the

orientation in a two-dimensional space, but a variety of

other periodic quantities exist, such as the phase of a

signal [7], [8]. When dealing with orientations, we are

usually only interested in the current orientation in our

coordinate system and do not aim to count how often the

object has revolved around the axis of rotation. While

neglecting the latter simplifies the task, estimators need

to be carefully crafted to properly account for the effects

of periodicity.

For recursive Bayesian estimation, uncertainties in

the system and measurement models have to be rep-

resented, e.g., via transition densities and likelihoods.

Filters on linear domains that assume the support of the

prior and posterior densities to be unbounded, such as

the Kalman filter, have underlying assumptions that are

incompatible with periodic manifolds. However, most

periodic domains are locally similar to linear ones when

regarding a very narrow region of the domain. Since

the importance of a region to the estimation problem

strongly depends on the probability mass in the region,

densities that are concentrated on a very narrow region

can still be handled with sufficient accuracy using ap-

proaches that rely on the linearity of the domain. There-

fore, problems featuring very little uncertainty can still

be handled properly using a modified Kalman filter or

an unscented Kalman filter [9].

However, the wider the probability mass is spread

on the domain, the less the estimation problem behaves

like on a linear domain. For higher uncertainties, fil-

ters assuming linearity of the domain degrade and can

become entirely misleading. In these cases, approaches

based on directional statistics specifically crafted for pe-

riodic domains become a necessity. Directional statistics

[10], [11] puts the focus on properly handling periodic

manifolds by providing many analogues to concepts

that are commonly used on linear manifolds. Fields in

which directional statistics is applied include, e.g., geo-

sciences [1], biology [2], [12], analysis of crystal struc-

tures [13], scattering theory [14], MIMO radar systems

[15], robotics [4], and signal processing [5], [6], [16].

The main focus of directional statistics is on two

classes of topologies. One of the two classes is the

Fig. 1. A mixture of two bivariate wrapped normal distributions

shown as a heatmap. The two modes are shown in dark red.



hypersphere Sd, which is the surface of the unit ball

in Rd+1. The other important topology is the Cartesian
product of multiple circles S1£ ¢¢ ¢£ S1 called hyper-
torus, which will be the focus of this paper. The hy-

pertorus is the proper topology to use when dealing

with multiple, possibly stochastically dependent angles

in the range of [0,2¼). Examples featuring a hyper-

toroidal topology include angles at different points in

time or connected rotatory robotic joints. If the vari-

ates of the random vector are stochastically indepen-

dent, they can be treated as independent random vari-

ables and filters for circular topologies can be used. For

the circle, several filters have been proposed [17], [18],

[19], [20], [21], [22]. However, filters for multivariate

angular problems are necessary if the random vector

cannot be separated into multiple independent random

variables. For example, if the random variables x and y

are independent, the two variates of the vector [x x+ y]T

are (usually, but not necessarily) dependent. They can,

however, be easily transformed into a problem featur-

ing independent variates that can be estimated indepen-

dently. The obtained estimates can then be transformed

back for use in the original problem featuring dependent

variates. In practice, transforming the problem in a way

that causes the components to be independent is usually

nontrivial and frequently impossible.

On linear domains, an important filter is the Kalman

filter that scales well with increasing number of variates

and yields optimal estimation results if certain condi-

tions are met. The Kalman filter can handle correlations

and scales no more than cubically in the number of vari-

ates. For nonlinear system or measurement models, such

an efficient and optimal solution does not exist in gen-

eral. Therefore, even on linear domains, nonlinear esti-

mation is a challenging task, especially for multivariate

problems. On periodic domains, estimation problems

are inherently nonlinear and thus challenging to deal

with for higher numbers of variates.

For multivariate angular estimation, a recursive fil-

ter has been suggested in [23] for the two-dimensional

torus. However, due to the approximation with a single

bivariate wrapped normal distribution, multimodal bi-

variate posteriors, such as the one shown in Fig. 1, can-

not be modeled adequately. As an alternative for toroidal

and hypertoroidal estimation problems, the very general

concept of a sampling importance resampling (SIR) par-

ticle filter [24] that is popular on linear domains can be

adapted in a straightforward manner to periodic mani-

folds.

In this paper, we generalize a recursive Bayesian es-

timator based on Fourier series, which we proposed for

univariate densities on the circle in [21]. Our new ap-

proach to multivariate angular estimation problems on

the hypertorus is based on representing the density or

its square root using a multidimensional Fourier series.

Based on the representation used, we either call the fil-

ter the (angular) Fourier identity filter or the (angular)

Fourier square root filter and we abbreviate their names
as IFF and SqFF. We show that the prediction and filter

operations can be performed in computationally effi-

cient ways, never exceeding an asymptotic complexity

of O(n logn) for n Fourier coefficients and a fixed num-

ber of variates. However, for estimation problems with

a higher number of variates, it is advisable to use more

Fourier coefficients.

The rest of this paper is structured as follows. We

give a brief explanation on how to perform recursive

Bayesian estimation in general and lay out the required

operations in the next section. We introduce the basics

of Fourier series and directional statistics that are a

prerequisite for our proposed approach in the third and

fourth section. In the fifth section, we address related

work and explicate the key idea of our proposed filters.

In Sec. VI, we introduce an actual implementation of

the Fourier filters. A comparison of our proposed filters

and an evaluation comparing the Fourier filters with

other approaches is given in Sec. VII. A conclusion

and an outlook is provided in Sec. VIII. Finally, we

present some useful properties of the Fourier series

representations in the appendix.

II. RECURSIVE BAYESIAN ESTIMATION
While a lot of effort in estimation theory is geared

towards estimating the mean of the posterior density,

keeping track of the whole density is usually required

for accurate results over multiple time steps. The focus

on approximating the mean can be explained by the

fact that on linear domains, the mean of the posterior

density is the minimum mean squared error estimator

[25, Sec. 10.3]. However, if the density is to be reused in

future time steps, the mean of the posterior density itself

does in general not suffice for an accurate calculation of

the mean of the posterior density in future time steps. In

the case of linear systems with Gaussian noise on linear

domains, keeping track of the whole density is easy–

the resulting Gaussian posterior density is precisely

described by the mean vector and the covariance matrix.

For noise terms that are not exactly Gaussian dis-

tributed and especially for nonlinear models, describ-

ing the precise posterior density using a limited number

of parameters is challenging or impossible even on lin-

ear domains. Many estimators focus on approximating

the posterior density using a parameterized density of a

prespecified family of densities. For example, Gaussian

assumed density filters [26], [27], [28], [29] try to find

a suitable Gaussian approximation for the true posterior

density. To increase the accuracy of the approximation,

Gaussian mixtures [26] can be used but mixtures entail

further problems concerning component reduction [30].

Another popular approach is to use an SIR particle filter

[24]. While simple particle filters can be used to asymp-

totically approximate moments such as the mean over

multiple time steps, they are non-deterministic and do

not directly provide a continuous approximation of the

density.



In the subsections of this section, we introduce the

general formulae that can be used for recursive Bayesian

estimation with given likelihoods and transition den-

sities and lay out the required operations for imple-

menting a recursive Bayesian estimator. The formulae

presented are suitable for manifolds with a topological

group structure, such as Rn and the hypertorus.

A. Prediction Step

Theprediction stepcanbedescribedby theChapman—

Kolmogorov equation

f
p
t+1(xt+1 j z 1, : : : ,z t)

=

Z
−x

fTt (xt+1 j xt)fet (xt j z 1, : : : ,z t)dxt,

in which −x denotes the sample space–for hypertori,

[0,2¼)d–fTt the transition density, f
e
t the posterior den-

sity, and f
p
t+1 the prior density based on measurements

up to the time step t. For identity models involving ad-

ditive noise on linear domains, we can write

x t+1 = x t+w t, (1)

with wt distributed according to f
w
t . On periodic do-

mains, this becomes

x t+1 = (x t+w t) mod 2¼,

which includes a nonlinear transformation. In the case

of additive noise, we can simplify the formula for f
p
t+1 to

f
p
t+1(xt+1 j z1, : : : ,z t)

=

Z
−x

fwt (xt+1¡ xt)fet (xt j z1, : : : ,z t)dxt

= (fwt ¤fet )(xt+1)
for both linear and circular domains and are able to

perform the prediction step by calculating a continuous

convolution.

B. Filter Step

If we obtain a measurement and know the corre-

sponding measurement likelihood, we can use Bayes’

formula for the filter step. This essential concept can be

formulated as

fet (xt j z1, : : : ,z t) =
fLt (z t j xt)fpt (xt j z1, : : : ,z t¡1)R

−x
fLt (z t j xt)fpt (xt j z1, : : : ,z t¡1)dxt

/ fLt (z t j xt)fpt (xt j z1, : : : ,z t¡1),
with the likelihood function fLt . It is important to note

that the denominator is independent of xt and can thus

be treated as a constant. Since we know that a proper

pdf integrates to one, we can ignore the denominator if

we have other means to normalize the density.

III. BASICS OF DIRECTIONAL STATISTICS

In this section, we introduce important concepts of

directional statistics. In directional statistics, there are

counterparts to many important concepts used in the

context of linear domains, some of which are addressed

in this section. We always assume that our periodic

region has a size of 2¼ along each dimension. While

most formulae given in this paper do not explicitly

depend on the precise region used, we say that our

periodic quantities are always in [0,2¼) in the scalar

case and in [0,2¼)d in the d-variate case.

In this paper, we use the von Mises distribution as

well as the wrapped normal distribution and generalize

the latter to an arbitrary number of variates. We chose

to use the multivariate wrapped normal distribution as it

can be trivially generalized from its bivariate definition.

Another important concept is that of trigonometric mo-

ments. While these moments are seldom used on linear

domains, they are a useful concept to employ instead

of power moments when dealing with periodic densi-

ties. We also introduce concepts for describing corre-

lations between the variates of a random vector on hy-

pertoroidal manifolds. For further reading, we recom-

mend the two classic books about directional statistics

[10], [11].

A. Von Mises Distribution

The von Mises distribution [10, Sec. 3.5], also called

the circular normal distribution [11, Sec. 2.2.4], is a

popular circular distribution. A useful property of this

distribution is that the product of two von Mises dis-

tributions yields an (unnormalized) von Mises distribu-

tion again. The density of the von Mises distribution is

given by

fVM(x;¹,·) =
e·cos(x¡¹)

2¼I0(·)
,

with I0(¢) being the modified Bessel function of the first
kind, ¹ 2 [0,2¼) being the location parameter, and ·¸ 0
describing its concentration.

B. Wrapped Normal Distribution

The wrapped normal distribution [10, Sec. 3.5] can

be, visually speaking, obtained by wrapping a Gaussian

distribution around the circle and summing up all prob-

ability mass at each point. The density is defined as

fWN(x;¹,¾
2) =

X
j2Z
N (x+2¼j;¹,¾2),

in which we parameterize the density based on the mean

¹ 2 [0,2¼) and the variance ¾2 of the underlying normal
distribution. We use the variance instead of the standard

deviation to provide a definition that is consistent with

the multivariate case introduced in the next subsection.

C. Multivariate Wrapped Normal Distribution

The concept of a wrapped normal distribution can

be generalized to higher dimensions, e.g., to the torus

as a bivariate wrapped normal (also called wrapped

bivariate normal) distribution [11, Sec. 2.3.2]. For the

d-variate wrapped normal distribution, we wrap a



d-variate normal distribution onto the d-dimensional

hypertorus. This leads to the formula

fWN(x;¹,CWN) =
X
j2Zd

N (x+2¼j;¹,CWN)

for the density of the d-variate distribution with the

vector-valued mean ¹ 2 [0,2¼)d and covariance matrix
CWN.

D. Trigonometric Moments

One important concept on linear domains are power

moments, usually simply referred to as moments. Mo-

ments describe useful properties of the distribution and

are important for estimators. As previously mentioned,

the first moment of the posterior density is the MMSE

estimator on linear domains. Distributions of certain

types can be parametrized by some of their moments,

e.g., for the Gaussian distribution, the combination of

the first moment and the second central moment (or

its root) is the most commonly used parameteriza-

tion.

On periodic manifolds, trigonometric (also called

raw) moments feature some of the properties that power

moments have on linear domains. The kth trigonometric

moment (k 2 N) for scalar random variables is given by

[11, Sec. 2.1]

mk = E(e
ikx) =

Z 2¼

0

f(x)eikxdx:

It is also common practice to write trigonometric mo-

ments as vectors instead of as a complex number. For

this representation, used for example in [10, Sec. 3.4.1],

the parts represented by the real and imaginary part are

calculated using separate integrals. However, using Eu-

ler’s formula, it can be shown that the conversion from

one representation to the other is straightforward.

Unlike power moments, trigonometric moments con-

sist of two values–either the real and complex parts or

the two components of the vector–and thus, a single

moment can describe multiple properties. For example,

the first trigonometric moment is not only a measure

of the density’s position but also of its dispersion. The

parameters for some distributions, such as the wrapped

normal and the von Mises distribution, can be derived

from the first trigonometric moment [18]. As trigono-

metric moments express a lot about the density, sev-

eral filters in the circular case approximate trigono-

metric moments and make use of them. Due to the

close relationship of some of the Fourier coefficients

to trigonometric moments, the Fourier filters are no ex-

ception.

For the kth moment of multivariate densities, we

simply stack all kth moments of all variates. Thus, in

the d-variate case, the kth moment is given by

mk =

266664
mk,1

mk,2

...

mk,d

377775=
266664
E(eikx1 )
E(eikx2 )
...

E(eikxd )

377775=
2666664

R
[0,2¼)d

f(x)eikx1dxR
[0,2¼)d

f(x)eikx2dx

...R
[0,2¼)d

f(x)eikxddx

3777775 :
(2)

E. Circular Mean Direction

The circular mean direction, which can be thought

of as an analogue to the linear mean, only describes the

density’s location and can be calculated from the first

trigonometric moment via [10, Sec. 2.2]

¹= atan2(I(m1),R(m1)): (3)

A useful property on linear domains is the linearity

of the expected value, which does not hold for the

circular mean direction [11, Sec. 2.2.1]. For the circular

mean direction in the d-variate case, we simply calculate

the circular mean direction for every component of the

moment vector according to (3), yielding

¹=

2664
atan2(I(m1,1),R(m1,1))

...

atan2(I(m1,d),R(m1,d))

3775 :
F. Angular Correlation Coefficients

A variety of measures of correlation of two angu-

lar random variables have been introduced in the liter-

ature. Examples include the correlation coefficients by

Jammalamadaka and Sarma [31], Johnson and Wehrley

[32], and Jupp and Mardia [33]. One of the correlation

coefficients is used by the only assumed density filter

for bivariate toroidal problems [23] that we know of. As

shown in Appendix D, a limited number of Fourier co-

efficients contain all information necessary to calculate

all correlation coefficients mentioned.

Key to this is the close relationship of the correla-

tion coefficients to a certain covariance matrix. In the

bivariate case, all of these correlation coefficients can

be calculated using entries of the covariance matrix

§ = E

0BBBB@
0BBB@
26664
cos(x1)

sin(x1)

cos(x2)

sin(x2)

37775¡¹c
1CCCA
0BBB@
26664
cos(x1)

sin(x1)

cos(x2)

sin(x2)

37775¡¹c
1CCCA
T
1CCCCA

with

¹
c
= E([cos(x1) sin(x1) cos(x2) sin(x2)]

T),

which can be calculated via

¹
c
= [R(m1,1) I(m1,1) R(m1,2) I(m1,2)]T:

Thus, efficient calculation of this matrix allows efficient

calculation of all correlation coefficients. It is easy to



extend this covariance matrix to arbitrary multivariate

distributions by stacking the terms for all individual

variates, yielding

§ = E

0BBBBBBBB@

0BBBBBBB@

266666664

cos(x1)

sin(x1)

...

cos(xd)

sin(xd)

377777775
¡¹

c

1CCCCCCCA

0BBBBBBB@

266666664

cos(x1)

sin(x1)

...

cos(xd)

sin(xd)

377777775
¡¹

c

1CCCCCCCA

T
1CCCCCCCCA

with

¹
c
= E([cos(x1) sin(x1) ¢ ¢ ¢ cos(xd) sin(xd)]

T):

IV. BASICS OF FOURIER SERIES

In this section, we give a brief introduction to multi-

dimensional Fourier series, the second concept essential

to this paper. For details regarding Fourier series, we

refer the reader to the two-volume book series about

trigonometric series by Zygmund [34] and books about

harmonic analysis [35].

A. One-Dimensional Fourier Series

Using Fourier series, it is possible to approximate

functions on [0,2¼) using complex exponential func-

tions. The set of functions

feikx j k 2 Zg
is an orthogonal basis that can be used to represent

any square-integrable (also called square-summable)

complex function defined on [0,2¼) using a square-

summable sequence of Fourier coefficients [35, Sec. I-

5]. Since densities encountered in practice are usually

square-integrable, we can write their density f(x) as a

Fourier series

f(x) =

1X
k=¡1

cke
ikx, (4)

where the Fourier coefficients ck 2C fulfillX
k2Z
jckj2 <1:

The Fourier coefficients can be calculated from the

density according to

ck =
1

2¼

Z 2¼

0

f(x)e¡ikxdx:

For real functions, c¡k = c̄k holds [34, Ch. I], causing
imaginary parts to cancel out in (4). Furthermore, it is

also possible to use real basis functions and coefficients

to represent real functions. In this alternative represen-

tation, the series in (4) becomes a weighted sum of sine

and cosine functions of different frequencies.

B. Higher-Dimensional Fourier Series

The straightforward generalization of one-dimen-

sional Fourier series to the d-dimensional case is to use

functions of the orthogonal system

fei(k1x1+k2x2+¢¢¢+kdxd) j k 2 Zdg
to represent functions on the d-dimensional hypercube

[34, Ch. XVII] (or in our case hypertorus) [0,2¼)d. In

the following, we write the basis functions described

above using a dot product as eik¢x and use a vector-
valued index k 2 Zd to specify individual entries ck
of the d-dimensional Fourier coefficient tensor. Using

this notation, a multidimensional Fourier series can be

written as
f(x) =

X
k2Zd

cke
ik¢x:

The individual Fourier coefficients can then be calcu-

lated via

ck =
1

(2¼)d

Z
[0,2¼)d

f(x)e¡ik¢xdx: (5)

In this paper, our focus is on Fourier series for which

only n specific coefficients are nonzero and we only

consider sets of indices J that are subsets of the integer

lattice Zd with an equal subset of Z in each dimension.
If every subset of Z ranges from ¡kmax to kmax in each
dimension, the total number of Fourier coefficients is

n= (2kmax +1)
d. Similar to the one-dimensional case,

c¡k = c̄k holds for real functions.

REMARK 1. The formulae for the Fourier coefficients

bear a close resemblance to the trigonometric moments.

The kth trigonometric moment mk can be calculated

from the Fourier coefficients via

mk = (2¼)
d[c¡k,0,:::,0 c0,¡k,0,:::,0 ¢ ¢ ¢c0,:::,0,¡k]T:

Thus, all trigonometric moments and especially the first

trigonometric moment required for the calculation of

the circular mean direction can be calculated efficiently

from the Fourier coefficients. On the other hand, cal-

culating arbitrary Fourier coefficients from the trigono-

metric moments is, in general, only possible in the one-

dimensional case. For higher dimensions, many entries

of the Fourier coefficient tensor do not have correspond-

ing entries in the moment vectors as defined in (2). We

visualize this for the two-dimensional case in Fig. 2.

In Appendix D, we show that there is a relationship

between the covariance matrix described in Sec. III-F

and other entries of the Fourier coefficient tensor.

V. RELATED WORK AND KEY IDEA

For our approach, it is important to note that many

important multivariate densities–such as the multi-

variate wrapped normal density–are square-integrable

and thus lend themselves well to approximations using

Fourier series. Mardia also states this observation for the

univariate case in his book [10, Ch. 3—4], noting that if

the Fourier coefficients are square-summable, the cor-

responding density is equal to the Fourier series almost

everywhere.

Willsky discusses optimal filtering using non-

truncated Fourier series with an infinite number of co-



Fig. 2. Visualization of the relationship between the Fourier

coefficients and the trigonometric moments of a bivariate

distribution. Fourier coefficients that are unrelated to all

trigonometric moments are shown in blue, coefficients that are

related to the first entry of a trigonometric moment vector are shown

in green, and coefficients that are related to the second entry are

shown in yellow. The zeroth coefficient in the middle determines

both entries of the zeroth trigonometric moment vector and is

identical for all (normalized) densities.

efficients in [6]. Since infinite series cannot be handled

computationally, he discusses practical implementations

in [16]. Willsky deems the performance of a filter work-

ing with truncated Fourier series to be insufficient for

few coefficients and suggests making the assumption

that the density is distributed according to a wrapped

normal distribution, which we believe is too restrictive.

Fernández-Durán [36] observes that when approxi-

mating densities using Fourier series, the truncation of

the coefficient vector can cause negative function values

and suggests a computationally expensive way to en-

sure nonnegativity. In the context of nonlinear filtering

for linear domains, Brunn et al. [37], [38] argue that ap-

proximating a transformed version of the pdf allows the

reconstruction of a valid density with only nonnegative

values in every time step.

Based on this idea, we have presented a filter for

univariate periodic densities in [21] that ensures the

validity of a density function

f : [0,2¼)!R+0
by approximating the square root of the density. Ap-

proximating the square root g(x) =
p
f(x) of the den-

sity is reasonable as the square root of every density is

square-integrable sinceZ
[0,2¼)

g(x)2dx=

Z
[0,2¼)

f(x)dx= 1

Fig. 3. Different representations that are used by the filters.

holds. Therefore, the Fourier coefficients are square-

summable and thus converge to zero, facilitating the

approximation via a Fourier series. Furthermore, if gk
max

denotes the truncated Fourier series respecting the co-

efficients from ¡kmax to kmax, the convergence of

gk
max

k
max
!1¡!
p
f also implies g2k

max

k
max
!1¡! f

almost everywhere. For this representation, we showed

in [21] how prediction and filter steps can be calculated

efficiently and accurately using the Fourier coefficients

for univariate estimation problems. In a scenario featur-

ing bimodality, the filter presented outperformed both a

grid filter and a particle filter.

In this paper, we generalize the approach presented

in [21] to higher dimensions and approximate multivari-

ate periodic densities or their square root using multi-

dimensional Fourier series. Based on these approxima-

tions, we describe how the prediction and filter steps

of a recursive Bayesian estimator can be calculated effi-

ciently in the multivariate case. Since run time is crucial

for high numbers of variates, we put emphasis on com-

paring configurations of equal run time. Furthermore,

we closely regard the IFF, which has disadvantages in

theory but features a lower run time when using an iden-

tical number of coefficients.

VI. RECURSIVE BAYESIAN ESTIMATION BASED ON
FOURIER SERIES

In this section, we present how a recursive Bayesian

estimator can be implemented based on approximating

the density or its square root using a Fourier series. For

the SqFF, we are dealing with a total of four representa-

tions that can be used to obtain values of the probability

density (see Fig. 3). These include the original func-

tion, the Fourier coefficients of the original function, the

square root of the function, and the Fourier coefficients

thereof. Only the first two representations are used in

the IFF. Deriving a Fourier series representation for a

function is commonly referred to as Fourier analysis

whereas reconstructing the function is frequently called

Fourier synthesis. As the different representations have

implications for the algorithmic implementation of the

operations, we will make a clear notational distinction

between Fourier coefficient tensors representing the ac-

tual density Cid and coefficient tensors representing the



square root of the density Csqrt and apply the same no-
tation to the individual entries of the tensors denoted by

cidk and c
sqrt
k with the vector-valued index k.

For the upper two representations in Fig. 3, there

are important dualities that we make use of. The con-

volution of two functions corresponds to a Hadamard

(entrywise) product of their Fourier coefficient tensors.

Furthermore, the multiplication of two functions rep-

resented as a d-dimensional Fourier series can be per-

formed using a d-dimensional discrete convolution of

the coefficient tensors.

In order to perform (or at least approximate) the pre-

diction and filter steps described in Sec. II, we first need

to be able to transform arbitrary densities and likeli-

hoods into the two Fourier series representations. Sec-

ond, we need to be able to perform multiplications and

normalizations for the filter step in the respective rep-

resentation. Third, convolutions are necessary to per-

form prediction steps for an identity model with addi-

tive noise (1). While exact results for both operations

can be obtained in the IFF, an increase in the number of

coefficients would be inevitable. While we may allow

the number of coefficients to vary over time, parameter

reduction becomes inevitable in the long run. Parame-

ter reduction generally induces an approximation and is

also necessary for the SqFF. For our implementation of

the filters, we do not allow the number of coefficients

to vary over time and truncate to an identical number

of coefficients after each prediction and filter step.

In the following, we describe how the filter step,

the prediction step, and the parameter reduction can

be performed in O(n logn) for n Fourier coefficients.

Further properties that are useful to applying the filter in

practice but are not essential to the filter and prediction

step are given in the appendix.

A. Transforming Multivariate Densities

An efficient approach to Fourier analysis was pro-

posed by Cooley and Tukey [39]. This approach has

become widespread for calculating the closely related

discrete Fourier transform [40, Ch. 2] and is nowadays

known as the fast Fourier transform (FFT) [41], which

is also how we will refer to it and its higher-dimensional

generalizations for the remainder of this paper.

The complexity of the FFT is O(n logn) for a total

number of n coefficients. However, for a fixed kmax, the

number of coefficients still grows exponentially with

the dimensionality of the space. This is not a serious

problem for low numbers of variates and we have veri-

fied good filter results with fast run times for densities

with up to five variates. To obtain a Fourier series ap-

proximation of the square root of a density using the

FFT, there is (aside from calculating the square root of

each function value) no additional overhead involved.

In the one-dimensional case, we were able to derive

closed-form formulae for the coefficients for many im-

portant univariate densities [21]. In Appendix A of this

paper, we provide the formula for the Fourier coeffi-

cients of the multivariate wrapped normal distribution.

While closed-form formulae can lead to lower run times,

the cost of calculating n coefficients is always at best in

O(n) when at least n coefficients are required for an

exact representation of the density.

For identity system and measurement models with

independent, time-invariant additive noise terms, we can

reduce the computational effort involved in obtaining

the required Fourier coefficients. In these cases, it is not

necessary to transform the density of the system noise

and the likelihood in each time step. The density of the

system noise simply stays identical while the likelihood

is only influenced by the measurement via a shift.

For example, for an additive system noise that is

distributed according to a multivariate wrapped normal

distribution, the density of the system noise is

fwt (wt) = fWN(wt;¹,CWN)

in every time step. Similarly, we can avoid the need for

transforming the likelihood multiple times for additive

noise terms. If the likelihood is

fLt (z t j xt) = fWN(z t;xt,CWN) = fWN(xt;z t,CWN)
we can initially transform the likelihood when setting

z = 0 (meaning, fWN(x;0,CWN) in our case) and then
calculate the Fourier coefficients of the actual likelihood

respecting the current measurement z t from these coef-

ficients. The individual Fourier coefficients cshiftedk for a

function shifted by z can be calculated according to

cshiftedk = cke
¡ik¢z, (6)

which is a straightforward generalization of the shift-

ing operation for the scalar case (Theorem 1.1 (iv) in

[34, Sec. II-1]).

B. Filter Step

To implement the filter step, two operations have to

be performed for the two filters. The first operation is

a multiplication of the prior density f
p
t (xt j z1, : : : ,z t¡1)

and the likelihood fLt (z t j xt). The coefficient tensors for
the intermediate, unnormalized results will be called
³Ce,idt and ³Ce,sqrtt . In the second step, the densities are

normalized to yield the coefficient tensors Ce,idt and

Ce,sqrtt to be used in the next prediction (or filter) step.

The filter steps for the two Fourier filters are illustrated

in Fig. 4 and the necessary operations are explained in

detail in the following.

1) Multiplication of Two Densities: The first operation
necessary to perform the filter step of our Bayesian filter

is the multiplication operation. Let us now denote the

Fourier coefficient tensor of f
p
t (xt j z1, : : : ,z t¡1) as Cp,idt

and refer to the Fourier coefficient tensor of fLt (z t j xt)
(for a fixed measurement z t, depending only on the state

xt) as C
L,id
t . For the IFF, we can then directly obtain



Fig. 4. Filter step of the IFF and the SqFF. (a) Illustration of the

filter step of the IFF. (b) Illustration of the filter step of the SqFF.

the coefficient tensor ³Ce,idt for the new Fourier series

representing the unnormalized multiplication of the two

functions via
³Ce,idt =Cp,idt ¤CL,idt ,

in which ¤ denotes the discrete convolution.
The discrete convolution can be performed in

O(n logn) using FFT-based convolution approaches or

by using alternative convolutions methods tailored to

the multidimensional tensor convolution [42]. Since the

discrete convolution of two tensors results in a larger

tensor, parameter reduction as explained in Sec. VI-C

becomes necessary.

The multiplication can be performed similarly for

the SqFF. Owing to the fact that for all functions f
p
t (xt j

z1, : : : ,z t¡1) and f
L
t (z t j xt) and for all vectors xt and z t

in the respective domainsq
f
p
t (xt j z1, : : : ,z t¡1) ¢

q
fLt (z t j xt)

=
q
f
p
t (xt j z1, : : : ,z t¡1)fLt (z t j xt)

holds, we can simply multiply the functions in the

square root representation. Thus, the multiplication can

be performed analogously to the IFF. For the Fourier

coefficient tensors Cp,sqrtt of
q
f
p
t (xt j z1, : : : ,z t¡1) and

CL,sqrtt of
p
fLt (z t j xt) (again, for a fixed measurement),

we can calculate the unnormalized coefficient tensor
³Ce,sqrtt in the square root representation using

³Ce,sqrtt =Cp,sqrtt ¤CL,sqrtt :

2) Normalization: The second operation necessary

for the filter step is the normalization. We use ³ct,k to

refer to an entry of the coefficient tensor to be nor-

malized, such as ³Ce,idt or ³Ce,sqrtt as obtained from the

multiplication above. For the normalization, we need to

integrate over the whole domain of the function, which

is easy when a Fourier series is used to represent a real

function. In the integral, all terms except the one stem-

ming from the first coefficient integrate to zero. This

is obvious since the exponential functions for all other

coefficients can be converted (pairwise) into sine and

cosine functions of differing (but nonzero) frequencies

using Euler’s formula. Integrating these trigonometric

functions over [0,2¼) always yields zero. Therefore, the

integral over the whole function can be calculated ac-

cording toZ
[0,2¼)d

X
k2Zd

³cidt,ke
ik¢xdx=

Z
[0,2¼)d

³cidt,0dx= (2¼)
d³cidt,0

in the non-rooted representation. Thus, we can normal-

ize the density by dividing all coefficients by (2¼)d³cidt,0,

which ensures that the coefficient with index 0 of the

new, normalized density is cidt,0 = 1=(2¼)
d.

For the square root version, we can calculate the

integral of the function by determining the Fourier co-

efficient with index 0 of the non-rooted representation.

The coefficient ³cidt,0 can be calculated from the coeffi-

cients ³c
sqrt
t,k of the square root representation via

³cidt,0 =
X
k2J

³c
sqrt
t,k
³c
sqrt
t,¡k =

X
k2J
j³csqrtt,k j2:

Based on this insight, we can ensure that the density

represented by the Fourier series integrates to one by

dividing all ³c
sqrt
t,k by

q
(2¼)d

P
k2J j³csqrtt,k j2. Since calcu-

lating the sum of the square of the absolute values is in

O(n) and the division of all coefficients is also in O(n),

normalization is possible in O(n) for both representa-

tions.

C. Parameter Reduction

The need for parameter reduction in the Fourier fil-

ters is reminiscent of nonlinear filters on linear domains.

Except for very simple problems, representing the exact

result of both convolution and multiplication operations

usually results in an increase in the number of parame-

ters. In the long run, parameter reduction becomes nec-

essary and usually requires approximations. A popular

example of nonlinear estimators are estimators based on

Gaussian mixtures. For mixtures, component reduction

is a non-trivial and expensive operation, in which the

density has to be approximated using a lower number

of components while preserving the shape of the density

as well as possible [30].

Parameter reduction is also essential for our pro-

posed approach using Fourier series. As described in

Sec. VI-B.1, the multiplication operation requires calcu-

lating a discrete convolution of the coefficient tensors,

resulting in an increase in the size of the tensor. As

common densities and especially their square roots are

square-integrable, the coefficients tend to zero in every

dimension. Therefore, the influence of the coefficients

on the shape of the function converges to zero for in-

creasing kkk and it is thus reasonable to use truncation
as an easy way for parameter reduction.

As can be seen in Sec. VI-B.2, renormalization is

necessary after truncation for the SqFF as the integral



Fig. 5. Prediction step of the IFF.

depends on the sum of the squared absolute values of

the coefficients. For the IFF, the integral only depends

on cidt,0 and renormalization is thus not required.

D. Prediction Step

To perform the prediction step for an identity sys-

tem model with additive noise (1), we only need to be

able to convolve two densities. Convolving two func-

tions using their Fourier coefficient tensors is possible

very efficiently as this only involves a Hadamard prod-

uct. The prediction step for nonlinear system models

usually requires more than a convolution operation. An

approach for arbitrary transition densities that can easily

be extended to the multivariate case is laid out in [43].

1) Prediction Step of the IFF: As illustrated in Fig. 5,

we can directly use the rule for the convolution of

two functions to obtain the Fourier coefficient tensor

of the result. If Ce,idt and Cw,idt are the truncated Fourier

coefficient tensors of fet (xt j z1, : : : ,z t) and fwt (¢), we can
obtain the coefficient tensor Cp,idt+1 for

f
p
t+1(xt+1 j z1, : : : ,z t) = (fet ¤fwt )(xt+1)

via the use of the Hadamard product ¯ according to
Cp,idt+1 =C

e,id
t ¯Cw,idt :

2) Prediction Step of the SqFF:Matters are more com-
plicated when aiming to obtain the coefficient tensor

Cp,sqrtt representing the square root of the convolution

of the densities. Since we intend to obtain the Fourier

coefficients forq
f
p
t+1(xt+1 j z1, : : : ,z t) =

p
(fet ¤fwt )(xt+1),

we cannot simply use the Hadamard product of the

coefficient tensors Cp,sqrtt and Cw,sqrtt as this would yield

the coefficient tensor for the Fourier series representingq
fet (xt j z1, : : : ,z t) ¤

p
fwt (¢),

which is, in general, unequal top
(fet ¤fwt )(xt+1):

Instead, we first calculate the Fourier coefficient ten-

sor for (fet ¤fwt )(xt+1) and then determine the coeffi-
cients of the square root, which we lay out in the follow-

ing and illustrate in Fig. 6. First, we derive the Fourier

coefficients for the non-rooted densities fet (xt j z1, : : : ,z t)

Fig. 6. Prediction step of the SqFF. The colors indicate the

respective representation as laid out in Fig. 3.

and fwt (¢) from the square root representations. These

coefficient tensors are denoted by C̃e,idt and C̃w,idt to

emphasize that they contain more coefficients than the

original coefficient tensors Ce,sqrtt and Cw,sqrtt . We can use

the multiplication explained in Sec. VI-B.1 to derive the

formulae

C̃e,idt =Ce,sqrtt ¤Ce,sqrtt and C̃w,idt =Cw,sqrtt ¤Cw,sqrtt :

Based on this, we can use the discrete convolution to

obtain the Fourier coefficient tensor C̃p,idt+1 for f
p
t+1(xt+1 j

z1, : : : ,z t) via

C̃p,idt+1 = C̃
e,id
t ¯ C̃w,idt :

As the next step, we wish to obtain the Fourier

coefficient tensor for the square root representation with

a specified number of coefficients. For this, we first

calculate n function values of f
p
t+1(xt+1 j z1, : : : ,z t) on

an equidistant grid, take the square root these function

values, and then use the FFT to obtain the Fourier

coefficient tensor. To obtain the function values on an

equidistant grid, we could now naïvely evaluate the

Fourier series with coefficient tensor C̃p,idt+1 on all n grid

points. However, to achieve a good run time behavior,

we have to keep one more issue in mind. Unless there is

a reason to do otherwise, it is reasonable that the number

of coefficients to calculate for the result is linearly

dependent on the number of coefficients used in the

coefficient tensor C̃p,idt+1. Since each function evaluation

is in O(n), n function evaluations would be in O(n2).

Therefore, it is significantly cheaper to use the inverse



FFT with a complexity of O(n logn) to calculate the

required n function values.

With the function values of f
p
t+1(xt+1 j z1, : : : ,z t) at

our disposal, we can calculate the square root of each

value toobtain n functionvaluesof
q
f
p
t+1(xt+1j z1, : : : ,z t).

These function values can then to be used to approxi-

mate n Fourier coefficients via the FFT. Since the most

expensive operations are the inverse FFT, the FFT, and

the discrete convolution, all of which are in O(n logn),

the total effort is in O(n logn).

In the step of calculating the square root, approxi-

mation errors are caused because taking the square root

induces higher frequencies that are not accounted for.

Furthermore, as the discrete convolutions used in the

calculation of C̃e,idt and C̃w,idt result in an increase in the

number of coefficients, we need to perform parameter

reduction if the coefficients should not be allowed to

increase with every prediction step. The parameter re-

duction can be performed as described in Sec. VI-C.

Afterward, a normalization step is required due to the

approximations performed.

VII. EXPERIMENTS AND EVALUATION

In this section, we compare our implementations

of the two Fourier filters to each other and to other

applicable filters. Both filters are available as part of

libDirectional [44], a Matlab toolbox for directional

statistics with a focus on recursive Bayesian estimation.

In Sec. VII-A, we lay out theoretical benefits of the

SqFF and describe an experiment to compare the filter

steps of the Fourier filters in the univariate case. In the

experiment, measurements are simulated regardless of

how likely they are. This means we simulate both very

likely measurements and unlikely measurements that we

would rarely obtain if all underlying assumptions of

the filter are correct. For all of these measurements,

we evaluate the circular mean direction (3) and the

approximation quality of the posterior density provided

by the IFF and SqFF.

In the second subsection, we evaluate the error in the

form of an angular distance for the two Fourier filters in

two bivariate scenarios and one trivariate scenario with

additive, wrapped normally distributed noise terms and

compare the results with those of other applicable filters

in these scenarios. While there is a bivariate wrapped

normal filter for toroidal manifolds [23], the only ap-

proach to the knowledge of the authors that is applicable

to arbitrary multivariate angular estimation problems is

the particle filter. Since the number of coefficients used

by the Fourier filters and the number of particles used

by the particle filter has a major impact on the filter per-

formance, we evaluated several possible configurations.

In the scenarios in the second subsection, the likelihoods

to be used in each time step can be efficiently calculated

using an initial transformation of the likelihood that is

shifted according to the measurement obtained.

In the third subsection, we simulate an application of

the filters to estimating the angles of a robotic arm based

on measurements of the position of the end effector.

This application shows that we can use our filter as

long as we have a likelihood function and do not require

a periodic measurement space. However, this scenario

requires more computational effort for the Fourier filters

as a Fourier series approximation of the likelihood has

to be performed in each time step.

Unlike our evaluation of the circular SqFF in [21],

we do not regard the quality of the pdfs and cdfs for the

multivariate cases. First, it is difficult to derive a con-

tinuous pdf from an SIR particle filter and comparing

the cdf becomes increasingly difficult for higher dimen-

sions, especially as a starting point of the integration

has to be chosen on periodic domains. Second, we do

not have any other filter to numerically approximate the

ground truth with at our disposal. In our current evalua-

tion, we also compare the run time of the filters and take

the run times into account when assessing the individual

filters.

A. Comparing the IFF and the SqFF for Varying
Measurements

Allowing the function approximating the density to

become negative has many inherent theoretic disad-

vantages as several useful concepts depend on valid

pdfs.1 Based on an approximation of the pdf with neg-

ative function values, no valid cdf can be derived. Fur-

thermore, sampling the density using equally weighted

samples may not be possible and sampling schemes

such as Metropolis—Hastings sampling [46] do not

work. Moreover, some measures of similarity between

two densities, such as the Kullback—Leibler divergence

[47, Sec. 8.5] and the Hellinger distance [48], cannot be

calculated due to the logarithm or square root involved.

In most cases, we observed the approximation qual-

ity of the prior density or likelihood function to be al-

ready superior for the square root representation when

compared with the non-rooted representation with an

identical number of coefficients. An example of this is

shown in Fig. 7. In the following, we regard the fil-

ter step of the Fourier filters and show how both filters

perform when comparing the posterior densities and cir-

cular mean directions obtained.

Even if no truncation is performed in the filter

operations described in Sec. II-B, the approximation

errors in the prior density and the likelihood function

cause errors in the filter result. The severity of this

effect strongly depends on the actual prior density and

likelihood function. One important factor influencing

the quality of the approximation of the posterior density

1Negative probabilities [45] can be a viable tool as long as they

only appear as intermediate results or if implications are made for

other properties that are unobservable simultaneously in the context

of physics. In our case, they have no special semantic but stem from

approximation errors and have a negative impact on our estimator.



Fig. 7. Von Mises distribution with ¹= ¼ and ·= 10 and

corresponding Fourier series approximations using 7 coefficients.

is the overlap of regions of high and low function values

of the prior density and the likelihood function.

To understand this effect, we have to take a closer

look at the convergence of the Fourier series. A Fourier

series converges in the L2 distance, which is a mea-

sure of the squared absolute deviation. Due to the close

relationship between the L2 distance and the Hellinger

distance, optimizing the L2 distance is reasonable when

regarding one density individually. However, when re-

garding the product of two functions, one also has to

regard the relative deviation to make statements about

the quality of the approximation of the (normalized)

multiplication result. Since the Fourier series converges

regarding the absolute deviation and not regarding the

relative deviation, we expect to see a higher relative de-

viation in regions of low density than in regions of high

density.

This has profound implications for the result of the

multiplication of two functions. Let us assume both

the prior density and the likelihood are unimodal and

are close to zero except for values §¼=2 around their
modes, such as the von Mises distribution with ·= 10

that we show in Fig. 7. The prior distribution shall now

have a mean of ¹= 3
4
¼ and the likelihood of ¹= 3

2
¼.

Then, as can be seen in Fig. 8, the relative error of the

approximation of the likelihood using 7 coefficients is

very high in regions far from the mode, especially when

approximating the function directly. When multiplying

the prior with the likelihood, the small deviations visible

in Fig. 7 are massively amplified in regions of high

relative deviation of the likelihood (and also the other

way around). This leads to a high deviation from the

actual posterior in total. In this example, we can see that

the approximation used in the SqFF is advantageous as

the relative error is significantly less.

However, there is another effect occurring in the fil-

ter step that strongly differs for the two filters. While

it is possible to efficiently ensure that a density repre-

sented by its Fourier coefficients integrates to one both

for the non-rooted and the square root representation

(see Sec. VI-B.2), the underlying pdfs that are integrated

differ substantially. For the square root representation,

Fig. 8. Approximations of the likelihood and the relative error of

the approximations when using Fourier series with 7 coefficients.

The likelihood follows a von Mises distribution with ¹= 3
2
¼ and

·= 10.

the integral is over nonnegative values, whereas negative

function values are possible for the non-rooted version.

Always normalizing to one induces a higher total devi-

ation from the abscissa for functions with negative parts

as positive and negative parts cancel out. Furthermore,

if more than half of the supposed density is negative,

normalization to one causes negative parts to become

positive and vice versa.

In Fig. 9, we show the filter results for different

distances between the modes when the prior density and

the likelihood are von Mises distributions with ·= 10.

Both the prior density and the likelihood function were

approximated using five Fourier coefficients for both

filters and the Fourier series for the posterior densities

were also truncated to five coefficients. Fig. 9a and

Fig. 9b show the posterior density for the two filters

when the modes of the prior density and likelihood

function are ¼=2 apart. While the normalized result of

the Fourier identity filter shows highly negative parts

and has the lowest probability density around the peak

of the true posterior, the main peak of the SqFF matches

that of the true posterior. Furthermore, the result of

the SqFF captures the circular mean direction of the

posterior density correctly, while the IFF is off by ¼.

Fig. 9c and Fig. 9d show the results when the modes of

the two functions are almost ¼ apart. In this case, the

true posterior is much flatter than the filter results that

bear more of a resemblance to a mixture of the original

densities. However, the mean is still correctly captured

by the SqFF, while the IFF is off by ¼.

In Fig. 10, we provide an evaluation depending on

the distance ® between the two modes of the von Mises

distributions. As the first criterion, we evaluate the

quality of the posterior density. Since we are unable to

use the Kullback—Leibler divergence and the Hellinger

distance to compare the result of the IFF to the ground

truth, we calculate the total variation [48] between the

true densities and the filter results according to

d(h1,h2) =

Z
[0,2¼)

jh1(x)¡ h2(x)jdx,



Fig. 9. Examples for posterior densities provided by the two Fourier filters after a single filter step when using five coefficients. The circular

mean directions of the posterior densities are shown as a vertical line in the respective color. (a) Result obtained using the IFF when the

densities are at a distance of ¼=2. (b) Result obtained using the SqFF when the densities are at a distance of ¼=2. (c) Result obtained using

the IFF when the densities are at a distance of almost ¼. (d) Result obtained using the SqFF when the densities are at a distance of almost ¼.

in which h1 = f1f2=kf1f2kL1 denotes the true density af-
ter the filter step and h2 is the result obtained by the

respective variant of the filter. As the second criterion,

we regard the quality of the point estimates. For this, we

calculate the circular mean direction of the Fourier se-

ries approximation from the first trigonometric moment

that can be easily obtained as described in Remark 1.

Then, we calculate the shorter of the two arc lengths be-

tween the true circular mean direction ¯ and the circular

mean direction of the filter result ° via [11, Ch. 1.3.2]

dUV(¯,°) = min(¯¡ °,2¼¡ (¯¡ °)): (7)

A more in-depth discussion of metrics on the circle is

given in [49, Sec. 2.2.2].

In the experiment, we limit ourselves to the range

® 2 [0,¼¡ 0:01] as the true posterior for ®= ¼ is the
wrapped uniform distribution that does not have a circu-

lar mean direction. The plots clearly show the sensitivity

of the filters to larger distances between the modes. The

two filters tend to perform worse for ® 2 [¼=2,¼¡ 0:01]
than for ® 2 [0,¼=2] both regarding the circular mean
direction and the total variation. Comparing the two fil-

ters with each other, the total variation between the filter

result and the true posterior, as shown in Fig. 10a, can

be seen to be higher in most cases when using the IFF.

This was to be expected as negative function values are

possible for the result of the IFF. Both the negative parts

and the highly positive parts required to cancel out the

negative parts result in a higher total deviation. There-

fore, deviations that are higher than the usual maximum

of the total variation2 can be observed, e.g., in the case

shown in Fig. 9a. The circular mean direction shown

in Fig. 10b is correct for most distances between the

means for both filters. This is because the circular mean

direction of the result is calculated only from the first

trigonometric moment, which is approximated well. Er-

rors in the trigonometric moment usually occur over

multiple time steps as an incorrectly shaped density is

used for the next filter step, resulting in a wrong circular

mean direction. However, as apparent in Fig. 10b, the

circular mean direction can also become totally off in

a single filter step. Using this criterion, the IFF is also

more susceptible to errors than the SqFF. All in all, our

results suggest that the SqFF is more robust when un-

likely measurements are obtained. Furthermore, we can

see that results obtained by the IFF can become totally

unlike the true posterior density and can strongly violate

the properties of valid densities.

2The total variation usually cannot exceed the value of two for valid

densities.



Fig. 10. Comparison of the performance of the IFF and the SqFF

depending on the distance between the modes of the functions

multiplied. (a) Total variation between the true posterior density and

the densities obtained by the two filters. (b) Distance dUV between

the true circular mean direction and the circular mean directions

provided by the filters.

REMARK 2. Approximating the square root of the den-

sity is not the only option. However, using the square

root ensures nonnegativity of the reconstructed density

while necessitating only few approximations to main-

tain this representation. An alternative would be to use

the logarithm, but the logarithm is highly nonlinear and

especially regions with density values close to zero (in

which the logarithm approaches ¡1) need to be treated
with caution. Nonetheless, we plan to consider other

transformations than the square root in future work.

B. Evaluation of the Circular Mean Direction

Having compared the two proposed Fourier filters

for one filter step in the previous subsection, we now

evaluate the Fourier filters against other state-of-the-

art approaches to multivariate angular filtering by com-

paring the estimation performance and run times when

multiple filter and prediction steps are performed. In all

scenarios, we initialized the filters using an approxima-

tion of the actual prior density used for the simulation.

We have simulated the entire system behavior and the

measurements for 50 time steps and performed alter-

nating prediction and filter steps. A total of 1500 runs

were performed and the true states and the estimation

results at each time step were saved for the calculation

of our evaluation criterion. As the regarded scenarios

feature multivariate estimation problems, we generalize

the distance dUV given in (7) to a vector of angles ¯ and

° as

dMV(¯,°) =

vuut dX
i=1

(min(¯i¡ °i,2¼¡ (¯i¡ °i)))2:

This distance measure is similar to the Euclidean dis-

tance but takes periodicity into account. We calculate

the distance between the ground truth vector and the

estimate provided by the respective filter as a measure

of the error of the estimator. To assess the estimation

quality over all time steps and runs, we calculate the

average of the errors over all time steps and all runs.

Comparing the two Fourier filters regarding the av-

erage error is also an important part of our evaluation.

While the results regarding the approximation of the

density in the previous subsection were much more

promising for the SqFF, the error in the circular mean

direction was identical when the modes of the prior den-

sity and the likelihood function were close, which is a

very common case. Furthermore, as the SqFF requires

more convolution and FFT operations in the prediction

step, the IFF can be used with more coefficients at an

identical run time. Therefore, it is not obvious a priori

which Fourier filter performs better when evaluating the

average error for configurations of equal run time.

All filters were implemented in Matlab without so-

phisticated optimizations and were compared on a lap-

top with an Intel Core i7-5500U processor, 12 GB of

RAM, and Matlab 2016b running on Windows 10. The

run times given are the average run times for each of

the 50 time steps. For all filters, multiple different num-

bers of parameters were used. As kmax was chosen to be

equal in every dimension, the numbers of parameters

for the Fourier filter were always odd integers taken to

the second (bivariate scenarios) or third (trivariate sce-

nario) power. In all evaluations in this subsection, the

likelihood at each time step can be obtained by shifting

an initially transformed likelihood and this was used to

reduce the effort necessary for the Fourier filters.

In the following, we provide evaluation results

for three scenarios. An identity model with additive

noise (1) is used as the system and the measurement

model in all scenarios. The first scenario features bivari-

ate, unimodal transition densities and likelihood func-

tions on the torus. The measurement and system noises

are additive noise terms distributed according to mul-

tivariate wrapped normal distributions. This scenario is

well suited for the use of the bivariate wrapped normal

filter. The second scenario evaluated is also a bivari-

ate scenario but features bimodal likelihoods instead of

unimodal ones. The bimodality is introduced by using



Fig. 11. Average errors and run times for the different filters in the

bivariate scenario with unimodal likelihoods. (a) Error of the

different filters depending on the number of particles or coefficients

used. (b) Run times of the different filters for one time step

depending on the number of particles or coefficients used.

a mixture of two multivariate wrapped normal distribu-

tions at a distance of one radian in each dimension as

additive measurement noise. Both mixture components

are centered 0.5 radians away from the actual mean

of the density along each axis. Approximating an arbi-

trary likelihood function using a (potentially unnormal-

ized) wrapped normal distribution is no trivial matter

and therefore we have not used the bivariate wrapped

normal filter for this scenario and only compared our

filters with the particle filter. The third scenario features

trivariate densities on the three-dimensional hypertorus.

The likelihoods are bimodal again and consist of two

multivariate wrapped normal distributions at a distance

of one radian in each dimension.

1) Bivariate, Unimodal Scenario: The results shown

in Fig. 11 confirm our intuition that the bivariate

wrapped normal filter is well suited to this scenario.

However, as the results of the Fourier filters show, the

performance of the wrapped normal filter can be slightly

exceeded by the Fourier filters that approximate the

whole posterior density more accurately, facilitating bet-

ter performance in future time steps. While the Fourier

Fig. 12. Average errors and run times for the different filters in the

bivariate scenario with bimodal likelihoods. (a) Error of the different

filters depending on the number of particles or coefficients used.

(b) Run times of the different filters for one time step depending on

the number of particles or coefficients used.

filters already appear to reach their optimal accuracy

using approximately 100 coefficients, the particle filter

does not yet achieve as good of an accuracy for thou-

sands of particles.

When taking the run times into account, the Fourier

filters outperform the bivariate wrapped normal filter.

The quality of the result of the bivariate wrapped normal

filter can be surpassed with numbers of coefficients that

still compare favorably in terms of the run time. While

fast, the particle filter never comes close to the accuracy

of the Fourier filters and the Fourier filters achieve better

results using fast configurations with few coefficients.

The IFF and the SqFF have almost identical estimation

quality, but the IFF is faster. However, the filters achieve

a quality that is close to its optimal estimation quality

using only approximately 100 coefficients–a configu-

ration at which the two filters differ only little in their

run time.

2) Bivariate, Bimodal Scenario: In the results of this

scenario, as shown in Fig. 12, the SqFF can be seen

to provide better convergence when compared with



the IFF with identical numbers of coefficients. How-

ever, one can argue that the IFF is significantly faster

and that, when comparing configurations with approxi-

mately equal run time, the IFF performs better than the

SqFF.

The results of the particle filter do not reach the ac-

curacy of the Fourier filters even for high numbers of

coefficients. The particle filter using over 2000 parti-

cles is outperformed by the SqFF with less than 500

coefficients in both accuracy and run time. Similarly,

this holds for the IFF, whose estimation quality quickly

surpasses that of the particle filter and which is sig-

nificantly faster, resulting in a better performance for

configurations with comparable run time.

This scenario shows that the run time performance

of the particle filter depends heavily on how fast the

likelihood can be evaluated and even a mixture of

two components instead of a single wrapped normal

distribution can make a clear difference. For the Fourier

filters, this does not hold for the identity model with

additive noise as the likelihood is only transformed once

and shifted afterward.

3) Trivariate, Bimodal Scenario: In the trivariate sce-

nario, the possible configurations of the Fourier filters

become more limited as we only use numbers of coef-

ficients that can be written as an odd integer taken to

the third power. However, as can be seen in Fig. 13, the

superiority of the SqFF over the particle filter is evident.

Its performance with corresponding numbers of param-

eters is better in terms of both the error and the run

time, yielding a significant advantage when comparing

configurations of comparable run time. Compared on

a run time basis, the IFF also outperforms the particle

filter since it can handle over 2000 coefficients with a

run time that is lower than that of the particle filter with

200 particles.

The bad run time performance of the particle filter

is caused by the high computational effort required for

evaluating the trivariate wrapped normal density used

as the likelihood. As the number of variates increases,

the effort involved in evaluating the wrapped normal

distribution grows exponentially. To the knowledge of

the authors, there is, in general, no other way to calcu-

late the density of a wrapped normal distribution with

an arbitrary number of variates other than to sum up

some of the addends of the infinite sum. The number of

addends required to approximate the density with suffi-

cient accuracy increases exponentially with the number

of variates. Thus, the particle filter not only requires

more particles for an increasing number of variates, the

evaluation of the likelihood also becomes exponentially

more expensive. If the filter is used for a large num-

ber of time steps, the problem is far less severe for the

Fourier filters. For an arbitrary number of time steps,

the likelihood and the noise density only have to be

approximated once if the likelihood is shifted in the

computationally efficient way given in (6) in each time

Fig. 13. Average errors and run times for the different filters in the

trivariate scenario with bimodal likelihoods. (a) Error of the different

filters depending on the number of particles or coefficients used.

(b) Run times of the different filters for one time step depending on

the number of particles or coefficients used.

step. Therefore, the expensive likelihood only has to be

evaluated on a grid once at the beginning.

C. Estimating the Joint Angles of a Robotic Arm
In this subsection, we estimate the joint angles of a

robotic arm based on measurements of the position of

the end effector that are perturbed by multivariate Gaus-

sian noise. Such a task could, e.g., arise when trying to

validate the proper functionality of the robotic arm using

external observations. The robotic arm, its joints, and

the angles to be estimated are illustrated in Fig. 14. For

simplicity, we assume that both joints can move freely

and attain any angle. Only point measurements of the

point in red on the end effector are obtained. As the end

effector can only attain positions on a two-dimensional

plane, the measurement is a vector comprising two com-

ponents. To simplify the measurement equation, we set

the zero coordinate of our coordinate system to the cen-

ter of the first joint indicated in green in Fig. 14.

Given the kinematics of the system, we obtain the

measurement equation

h(®) =

·
cos(®1)

sin(®1)

¸
l1 +

·
cos(®1 +®2)

sin(®1 +®2)

¸
l2



Fig. 14. Illustration of the robotic arm modeled in the simulation.

for ®= [®1 ®2]
T. In our evaluation, we set the joint

lengths l1 = 2 m and l2 = 1 m. To simulate sensor noise,

the measurements are generated according to

z t = h(® t) + v t

with a multivariate Gaussian distributed noise term v t »
N (v;¹,C) with the parameters

¹=

·
0

0

¸
m and C=

·
0:2 0

0 0:2

¸
m2:

While the measurement noise is uncorrelated in the

measurement space, the likelihood function

fL(z t j ®t) =N (z t;h(®t),C)
is, as shown in Fig. 15 for z t = [0 2:3]

T m, asymmet-

ric and the estimation problem thus cannot be trivially

split up into univariate problems. Unlike in the previous

subsection, the measurement equation is nonlinear and

the likelihoods for differing measurements cannot be

obtained by shifting an initial approximation of the like-

lihood. Therefore, a Fourier series approximation has to

be performed in each time step, negatively affecting the

run times of the Fourier filters.

As the system model, we use a periodic analogue to

a random walk model. This means ®t evolves accord-
ing to

® t+1 =® t+w t mod 2¼,

with a time-invariant, multivariate wrapped normally

distributed additive system noise term w t and a modulo

operator that ensures that the angles are always between

0 and 2¼. The parameters ¹ and C of the system noise

w t are identical to those of the measurement noise but

the units are rad and rad2 instead of m and m2.

The scenario was simulated for 50 time steps with

alternating filter and prediction steps. As in Sec. VII-B,

we determine the error dMV in each time step and cal-

culate the average over all 50 time steps and over 1500

runs. The results are depicted in Fig. 16 and are in line

with the results obtained in the other bivariate scenar-

ios. Both Fourier filters outperform the particle filter as

configurations using only few coefficients provide bet-

ter results than the particle filter using 2000 particles.

Fig. 15. Likelihood when the measurement z
t
= [0 2:3]T m is

obtained.

Fig. 16. Average errors and run times for the different filters in the

scenario featuring a simulated robotic arm. (a) Error of the different

filters depending on the number of particles or coefficients used.

(b) Run times of the different filters for one time step depending on

the number of particles or coefficients used.

However, as expected, the run time of the Fourier filters

is slightly worse than in the previous scenarios as the ap-

proximation of the likelihood in every time step causes

additional overhead. The IFF is faster than the SqFF

with equal results, but the difference in the run time

is not that pronounced when using the lowest number

of coefficients necessary to obtain the highest accuracy

achievable for the Fourier filters in this scenario.



VIII. CONCLUSION

In this paper, we have proposed filters based on

Fourier series for multivariate angular estimation prob-

lems that fill a gap in recursive Bayesian estimation on

hypertoroidal manifolds and allow for good estimation

results even when likelihood functions or densities oc-

curring are multimodal. In our evaluation of the error in

the circular mean direction, the proposed IFF and SqFF

achieve better results than the particle filter when com-

paring configurations of equal run time. The Fourier fil-

ters also outperform the bivariate wrapped normal filter

in a scenario for which the latter is well suited.

Out of the proposed Fourier filters, the SqFF tends

to perform better when comparing the error on a per

coefficient basis. However, compared on a run time ba-

sis, the IFF is superior when only the estimation quality

of the circular mean direction is evaluated. Since the

SqFF prevents negative function values in the result-

ing approximation of the posterior density, it has sig-

nificant theoretical advantages. As shown in Sec. VII-

A, the SqFF is clearly the better choice if an accurate

approximation of the posterior pdf is to be provided.

Based on these experiments, we also recommend using

the SqFF for additional robustness when the likelihood

and the prior density share only little common regions

of high function values (such as when an unlikely mea-

surement is observed). All in all, we advise the users to

employ the SqFF whenever feasible given the run time

constraints to benefit from its higher robustness and the

expressiveness of the pdf and to use the IFF when run

time constraints are tight.

In future research, we intend to inspect the differ-

ences between the IFF and the SqFF more closely to

be able to give recommendations for which filter to use

given the likelihoods, transition densities, run time re-

quirements, and measures of deviation to be minimized.

Furthermore, automatically finding the lowest number

of coefficients that results in close to optimal results

may help users that want to utilize the filter with high es-

timation quality while saving computational effort. The

number of parameters could be further reduced by us-

ing sparse representations of the Fourier coefficient ten-

sors. Additional insights could also result from consid-

ering other transformations than the square root. Finally,

using other basis functions or targeting other periodic

manifolds will also be a subject of future research.
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APPENDIX

In the following, we describe some useful formulae

and properties that, despite not being essential to our

filter, are important when working with filters and den-

sities in general. We only present the formulae for the

non-rooted representation. To use the formula for the

Fourier coefficients of the multivariate wrapped normal

distribution presented in Appendix A for the SqFF, the

approach to derive the Fourier coefficients of the square

root from the Fourier coefficients of the original density,

as presented in the prediction step in Sec. VI-D.2, can

be used. This, however, will not yield a higher accuracy

than directly evaluating the square root of the density

on a grid and then using the FFT. To use the formu-

lae and properties in Appendix B—D for coefficient ten-

sors representing the square root, we can simply derive

the coefficients for the non-rooted representation in the

computationally inexpensive way described in Sec. VI-

B.1.

A. Fourier Coefficients for the Multivariate Wrapped
Normal Distribution

Calculating Fourier coefficients for multivariate

wrapped normal distributions in the non-rooted repre-

sentation is possible using closed-form formulae. For

this, we show that we can use the characteristic func-

tion of a regular multivariate normal distribution to de-

rive the Fourier coefficients for the multivariate wrapped

normal distribution. The characteristic function 'x(k) of

a random vector x on Rd with density fx is defined as

'x(k) =

Z
Rd
eik¢xsfx(x)dx:

Now, let us assume that x is normally distributed.

Since eik¢x is 2¼-periodic in every dimension,

'x(k) =

Z
Rd
eik¢xN (x,¹,C)dx

=

Z
[0,2¼)d

eik¢x
X
j2Zd

N (x+2¼j,¹,C)dx (8)

holds. Aside from a constant factor and a difference in

a sign, the last line of the equation (8) is identical to the

formula for the Fourier coefficients (5) of a multivariate

wrapped normal distribution parametrized by ¹ and C.
Now, we write the formula for the Fourier coefficients of

the multivariate wrapped normal distribution depending

on the characteristic function of the multivariate nor-

mal distribution [50, Table C] to obtain a closed-form

solution. This leads to the formula

ck =
1

(2¼)d
'x(¡k) =

1

(2¼)d
e¡ik¢¹¡k

TCk=2:

B. Integrating Fourier Series over Hyperrectangles

For a density given as a Fourier series, it is possible

to efficiently calculate the integral over any axis-aligned



hyperrectangle directly from the Fourier coefficients.

Let us first regard the one-dimensional case. In this case,

we can rewrite the integral over a (truncated) Fourier

series from l to r asZ r

l

k
maxX

k=¡k
max

cke
ikxdx=

k
maxX

k=¡k
max

ck

Z r

l

eikxdx| {z }
h
k

and regard each addend hk separately to obtain

h0 = ck[x]
r
l = ck(r¡ l)

and

8k 6= 0, jkj · kmax : hk = ck
1

ik
[eikx]rl

=¡ck
i

k
(eikr¡ eikl)

via common integration rules. We now use ck = c̄¡k and
obtain

hk + h¡k =¡ck
i

k
(eikr¡ eikl)¡ c̄k

i

¡k (e
¡ikr¡ e¡ikl)

=
i

k
(¡ck(eikr¡ eikl)+ ck(eikr¡ eikl))

=
2

k
I(ck(eikr¡ eikl)),

with I(¢) denoting the imaginary part of the term. As
expected, the sum of the pairs are real values. Based on

this, we can calculate the integral viaZ r

l

k
maxX

k=¡k
max

cke
ikxdx= ck(r¡ l) +

k
maxX
k=1

2

k
I(ck(eikr¡ eikl)):

The integration formula provided can easily be ex-

tended to higher dimensions. If we use J ½ Zd to de-
note the index set comprising all indices of the nonzero

Fourier coefficients,Z r

l

X
k2J

cke
ik¢x =

X
k2J

ck

Z r

l

eik1x1 ¢ ¢ ¢eikdxddx

=
X
k2J

ck

ÃZ r
1

l
1

eik1x1dx1 ¢ ¢ ¢
Z r

d

l
d

eikdxddxd

!

holds and we can thus split the integration up and use

the integration rule for the one-dimensional case to

obtain the result in O(nd).

C. Marginalizing Out Specific Dimensions

Calculating the Fourier coefficients for a marginal-

ized density is computationally inexpensive. Without

loss of generality, we marginalize the first dimension

out. We denote the index set of all nonzero Fourier

coefficients by J and rewrite the integral

Z 2¼

0

X
k2J

cke
ik
1
x
1 ¢ ¢ ¢eikdxddx1

=
X
k2J

cke
ik
2
x
2 ¢ ¢ ¢eikdxd

Z 2¼

0

eik1x1dx1

and then use that the integral is always zero for k1 6= 0

=

k
maxX

k
2
=¡k

max

¢ ¢ ¢
k
maxX

k
d
=¡k

max

eik2x2 ¢ ¢ ¢eikdxd c0,k
2
,:::,k

d

Z 2¼

0

1dx1

=

k
maxX

k
2
=¡k

max

¢ ¢ ¢
k
maxX

k
d
=¡k

max

2¼eik2x2 ¢ ¢ ¢eikdxd c0,k
2
,:::,k

d
:

Thus, we can calculate the new coefficient tensor by

discarding all entries for which the index of the respec-

tive dimension is unequal to zero and then multiplying

all remaining entries by 2¼.

D. Calculating the Covariance Matrix

The covariance matrix mentioned in Sec. III-F is

useful for calculating angular correlations and can be

calculated efficiently for densities in a Fourier series

representation. For higher dimensions, we first intro-

duce a notational trick for Fourier coefficients represent-

ing a density after certain dimensions have been margin-

alized out. We write ck
r
,k
t
= (2¼)d¡2c0,:::0,k

r
,0,:::0,k

t
,0,:::0 for

the Fourier coefficients of the density with all di-

mensions unequal to r 2 f1,2, : : :dg and t 2 f1,2, : : :dg
marginalized out and specify the exact coefficient via

ck
r
=a,k

t
=b for a 2 Z, b 2 Z. We use a similar notation to

index Fourier coefficients of densities with all dimen-

sions except one marginalized out and write them as

ck
r
= (2¼)d¡1c0,:::0,k

r
,0,:::0 and denote specific entries via

ck
r
=a. For additional brevity and clarity, we assign the

real and the imaginary part of the first trigonometric

moment the names p=R(m1) and q= I(m1).
The general term for entries of the covariance matrix

§ is
E((trig1(xr)¡ ur)(trig2(xt)¡ vt)),

in which trig1 and trig2 can be sine or cosine functions.

If trig1 is cos, then ur = pr, if trig1 is sin, then ur = qr
and the same applies to trig2 and vt. We present the

formulae for the individual entries of the covariance

matrix § without a derivation as the derivations are long
and not essential to this paper.

As higher coefficients are lost in the integral in-

volved in calculating the expectation value, only few

coefficients are necessary for each entry. Furthermore,

we can use the redundancy in the complex Fourier co-

efficients to arrive at even easier formulae depending on

the real and complex parts of the Fourier coefficients.

We further use

8i 2 f1, : : :dg : pi = 2¼R(ck
i
=1) and qi =¡2¼I(ck

i
=1)

to write the formulae in an even more compact manner.



For the formulae for the individual entries of the
covariance matrix, keep in mind that § is a 2d£ 2d
matrix. In the covariance matrix, an odd column index
(i.e., 2r¡ 1) indicates that trig1 is the sine function,
while an even column index (i.e., 2r) indicates that
trig1 is the cosine function. The relationship is the same
between trig2 and the row index.
For all r 6= t, we obtain the formulae
¾2r¡1,2t¡1 = E((cos(xr)¡pr)(cos(xt)¡pt))

= 2¼2R(ck
r
=1,k

t
=1)+2¼

2R(ck
r
=1,k

t
=¡1)

¡prpt
and
¾2r¡1,2t = E((cos(xr)¡pr)(sin(xt)¡ qt))

=¡2¼2I(ck
r
=1,k

t
=1)+2¼

2I(ck
r
=1,k

t
=¡1)¡prqt

(9)

for the respective entries of the covariance matrix. Due
to the symmetry of the covariance matrix §, we can use
¾2r,2t¡1 = ¾2t¡1,2r to calculate these entries using (9). For
the terms with two sines, we obtain

¾2r,2t = E((sin(xr)¡ qr)(sin(xt)¡ qt))
=¡2¼2R(ck

r
=1,k

t
=1)+2¼

2R(ck
r
=1,k

t
=¡1)¡ qrqt

If r = t, other coefficients are involved in the calcu-
lation. In this case, we obtain

¾2r¡1,2r¡1 = E((cos(xr)¡pr)2)
= ¼R(ck

r
=2)¡p2r + 1

2
,

¾2r¡1,2r = E((cos(xr)¡pr)(sin(xr)¡ qr))
= ¼I(ck

r
=2)¡prqr: (10)

Again, we can use the symmetry of § to obtain
¾2r,2r¡1 = ¾2r¡1,2r, allowing us to use (10). Lastly, we
get

¾2r,2r = E((sin(xr)¡ qr)2)
=¡¼R(ck

r
=2)¡ q2r + 1

2
:
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