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Abstract: We generate record-high line rates of 400 Gbit/s (100 GBd 16QAM) using a silicon-

based IQ modulator. With a BER=1.9×10
-2

 we transmit a net data rate of 333 Gbit/s, the highest 

value for a semiconductor-based modulator. 
OCIS codes: (060.1660) Coherent communications; (060.233) Fiber optics communications; (130.4110) Integrated 

Modulators 

1. Introduction 

With the per-fiber capacity being pushed to its limit, dense photonic integration together with high electro-optic 

bandwidths are promising approaches to further reduce the cost per bit in coherent optical communication systems.  

Recently, a signal with a data rate of 1.08 Tbit/s (504 Gbit/s per polarization) has been generated with a lithium-

niobate modulator using polarization-division multiplexed (PDM) 64-quadrature amplitude modulation (64QAM) at 

a symbol rate of 90 GBd [1]. While lithium-niobate modulators offer good performance, they are not well suited for 

dense integration. Semiconductor-based modulators are considered promising alternatives. Using InP modulators, a 

77 GBd 32QAM PDM signal was generated corresponding to a data rate of 770 Gbit/s (385 Gbit/s per polarization) 

[2]. However, in contrast to InP, the silicon (Si) photonic platform allows small form factors combined with low-

cost fabrication and mature CMOS processes. The generation of up to 227 Gbit/s has been demonstrated using 

conventional Si modulators [3], [4]. However, these devices suffer from a rather low modulation efficiency with -

voltage-length products of the order of 10 Vmm [5], which usually requires comparatively high drive voltages of 

several volts and increases the power dissipation in the associated drive amplifier stages. In [6]–[12], we 

demonstrated that silicon-organic-hybrid (SOH) modulators, combining Si slot waveguides with highly efficient 

electro-optic cladding materials, allow high-speed modulation up to 63 GBd 16QAM [9] (252 Gbit/s on a single 

polarization) at -voltage-length products of 1 Vmm and below. Using a thin-film polymer-on-silicon modulator the 

authors of [13] demonstrated 90 GBd quadrature-phase-shift keying (QPSK), however the -voltage of their device 

is 3.5 V [14]. 

In this paper, we demonstrate an SOH modulator with a -voltage of 1.6 V which supports 100 GBd operation 

with higher-order modulation formats. We generate 16QAM signals at 50 GBd, 80 GBd, and 100 GBd 

corresponding to a line rate of up to 400 Gbit/s on a single polarization. This is, to the best of our knowledge, the 

highest single-polarization data rate reported for a semiconductor-based optical modulator. The electrical energy 

dissipation in the modulator amounts to 30 fJ/bit per bit –a record-low value for a semiconductor-based modulator at 

this symbol rate.  

2. Silicon-Organic Hybrid (SOH) Modulator 

Our SOH inphase/quadrature (IQ) modulator in a nested Mach-Zehnder modulator (MZM) configuration comprises 

600 µm long phase shifter sections, the cross-section of which is depicted in Fig. 1a. The optical field is strongly 

confined within the 120 nm wide slot between two silicon (Si) rails, which is filled with the organic electro-optic 

(EO) material SEO250. This material offers good stability [15], similar to the previously used material SEO100, for 

which operation at 80 °C was demonstrated [12]. The silicon rails are connected to the coplanar ground-signal-

ground (GSG) electrodes via thin n-doped silicon slabs and electrical vias [7]. In this configuration, the modulating 

electric field strongly overlaps with the optical field, which leads to a high modulation efficiency. The device used 

in this experiment was fabricated in a standard 248 nm deep-UV (DUV) process at A*Star IME, Singapore, and is 

co-integrated with other silicon-photonic devices such as germanium photodiodes and thermal phase shifters on the 

same wafer. The EO material is deposited in a post-processing step, and the chromophores in the EO material are 

aligned in a dedicated one-time poling process such that push-pull operation of the MZM is achieved when applying 

a signal to the signal electrode [6]. For DC voltages, we measured a voltage of 1.6 V, corresponding to a -

voltage-length product of UL = 1 Vmm. The bandwidth of SOH modulators is limited by an inherent RC-

characteristic resulting from the capacitance of the slot waveguide which is charged and discharged via the Si slabs. 
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When applying a so-called gate field, an electron accumulation layer increases the slabs’ conductivity, and 

consequently increases the modulation bandwidth. Using a gate field, an SOH MZM with a bandwidth of 100 GHz 

has been demonstrated [16]. 

3. Experimental Setup 

The experimental setup is depicted in Fig. 1b. For the signal generation we use a BiCMOS digital-to-analog 

converter (DAC, Micram DAC4). It features a continuously adjustable sampling rate of up to 100 GSa/s at a 

physical resolution of 6 bit. The effective number of bits (ENoB) remains above 4.5 bit up to the Nyquist frequency. 

The analog 3 dB bandwidth is as high as 40 GHz and shows a smooth roll-off to -6 dB at the Nyquist frequency. 

More detailed information on the DAC can be found in [17]. The quaternary I and Q drive signals are derived from a 

random symbol sequence with a length of 2
15

 symbols. The signals are amplified to a peak-to-peak voltage of 

approximately 1.5 Vpp using two 70 GHz radio-frequency amplifiers. The drive signals are coupled to the GSG 

transmission lines of the MZMs using RF microwave probes. The optical carrier is provided by an external-cavity 

laser (ECL), and is coupled to and from the SOH IQ modulator via grating couplers. We apply a gate field of 

0.1 V/nm. At the receiver, the signal is fed to a two-stage erbium-doped fiber amplifier (EDFA) to compensate the 

modulator’s insertion loss. The fiber-chip coupling loss amounts to 4.5 dB per interface, caused by non-optimized 

grating couplers. The on-chip insertion loss of the IQ modulator amounts to approximately 11 dB, which contains 

the intrinsic 3 dB loss of the nested MZM structure. Upon optimization of the device, we expect that the on-chip 

losses can be reduced to less than 5 dB [8]. An optical bandpass filter with a 1.5 nm passband removes out-of-band 

amplified spontaneous emission (ASE) noise. We use a coherent receiver with a bandwidth of 45 GHz (Tektronix 

OM4245), and record waveforms using a four-channel 70 GHz oscilloscope (Tektronix DPO77002SX). Signal 

analysis is performed using offline digital signal processing (DSP) in Matlab. The DSP includes a digital timing 

recovery, a 33-tap fractionally spaced adaptive feed-forward equalizer that is adapted using a least-mean-square 

stochastic gradient scheme. Finally, we count the bit errors after hard decision. 

4. Experimental results 

We generate 16QAM data signals at symbol rates of 50 GBd, 80 GBd and 100 GBd. The received constellation 

diagrams are shown in Fig. 2. For the 200 Gbit/s signal (50 GBd 16QAM), we measure a BER of 1.5 × 10
-5

. At 

80 GBd (320 Gbit/s), the measured BER is 4.4 × 10
-3

. Both measurements yield values below the threshold of 

4.5 × 10
-3 

for hard-decision forward error correction (FEC) with a 7% overhead [18]. Considering the FEC overhead, 

this leads to net data rates of 186 Gbit/s and 299 Gbit/s, respectively. At 100 GBd, 16QAM modulation results in a 

line rate of 400 Gbit/s, and we measure a BER of 1.88 × 10
-2

. The OSNR (in a spectral width of 0.1 nm) is 27.5 dB 

from which we find an implementation penalty of 8.5 dB at 100 GBd. Considering a 20 % FEC overhead, this 

results in a net data rate of 333 Gbit/s. This experiment constitutes the fastest signal generation experiment using a 

 
Fig. 1: Silicon-organic hybrid (SOH) IQ modulator for 100 GBd operation. (a) Cross-section of the SOH Mach-Zehnder modulator (MZM). 

Electrical vias and n-doped silicon slabs connect the ground-signal-ground (GSG) transmission line to the silicon rails. The 120 nm wide slot 

between the silicon rails is filled with the electro-optic material SEO250. In order to align the chromophores in the same direction in both arms of 

the MZM (green arrows), a poling voltage is applied across the floating ground electrodes in a dedicated poling procedure at elevated 
temperatures. Applying signals to the GSG transmission line then leads to electrical fields (red arrows) oriented in the same direction as the 

chromophores in one arm, and in the opposite direction in the other arm of the MZM. This results in push-pull operation. A gate voltage between 

ground and Si substrate induces an electron accumulation layer, leading to an increased RC device bandwidth. (b) Experimental setup for signal 
generation. The IQ modulator consists of two nested MZMs. The electrical drive signals from the Micram DAC4 are amplified to a peak-to-peak 

voltage of approximately 1.5Vpp, and are fed to the GSG lines of the SOH MZMs via RF probes. Bias tees are used to apply DC voltages in order 

to set the device’s operating point. An external 50 Ω impedance terminates the transmission lines. At the receiver, we amplify the optical signal 
using two erbium-doped fiber amplifiers (EDFA).We remove out-of-band noise using an optical bandpass filter, and finally detect the signal 

using a coherent receiver (Coh. Rx) 



semiconductor-based device reported so far. Considering the peak-to-peak drive voltage of 1.5 Vpp for the 

400 Gbit/s data signal, we find an electrical energy consumption of 30 fJ/bit which is the lowest value achieved for 

modulators of its class. 

4. Conclusion 

Using an SOH IQ modulator, we generate 16QAM data streams at symbol rates of up to 100 GBd, resulting in line 

rates of up to 400 Gbit/s on a single polarization. This represents the highest values reported for modulators 

integrated on a semiconductor substrate to date, thereby paving the path towards highly integrated coherent 

transmitters with unprecedented data rate and energy efficiency. Based on these results, we believe that the SOH 

technology is a promising candidate for single-wavelength transmission of data rates approaching or even exceeding 

1 Tbit/s. 

Acknowledgements 

We acknowledge support from Tektronix for lending the optical receiver and high-speed real-time oscilloscopes and from Jingdong Luo and Alex 

Jen from Soluxra for providing the electro-optic polymer. We acknowledge support by the European Research Council (ERC Starting Grant 

‘EnTeraPIC’, 280145), the EU-FP7 projects PhoxTroT and BigPipes, the Alfried Krupp von Bohlen und Halbach Foundation, the Helmholtz 
International Research School for Teratronics (HIRST), the Karlsruhe School of Optics and Photonics (KSOP), and the Karlsruhe Nano-Micro 

Facility (KNMF). 

References

[1] G. Raybon et al., “Single Carrier High Symbol Rate Transmitter 

for Data Rates up to 1.0 Tb/s,” in Optical Fiber Communication 

Conference, 2016, p. Th3A.2. 
[2] M. Y. S. Sowailem et al., “770-Gb/s PDM-32QAM Coherent 

Transmission Using InP Dual Polarization IQ Modulator,” IEEE 

Photonics Technol. Lett., vol. 29, no. 5, pp. 442–445, Mar. 2017. 
[3] Y. Fang et al., “Silicon IQ Modulator Based 480km 

80x453.2Gb/s PDM-eOFDM Transmission on 50GHz Grid with 

SSMF and EDFA-only Link,” in Optical Fiber Communication 

Conference, 2015, p. M3G.5. 

[4] J. Geyer et al., “Practical Implementation of Higher Order 
Modulation Beyond 16-QAM,” in Optical Fiber Communication 

Conference, 2015, p. Th1B.1. 

[5] D. Petousi et al., “High-Speed Monolithically Integrated Silicon 
Photonic Transmitters in 0.25 μm BiCMOS Platform,” ECOC 

2016; 42nd Eur. Conf. Opt. Commun., pp. 604–606, 2016. 

[6] C. Koos et al., “Silicon-Organic Hybrid (SOH) and Plasmonic-
Organic Hybrid (POH) Integration,” J. Lightw. Technol., vol. 34, 

no. 2, pp. 256–268, Jan. 2016. 

[7] S. Koeber et al., “Femtojoule electro-optic modulation using a 
silicon–organic hybrid device,” Light Sci. Appl., vol. 4, no. 2, p. 

e255, Feb. 2015. 

[8] M. Lauermann et al., “40 GBd 16QAM Signaling at 160 Gb/s in 
a Silicon-Organic Hybrid Modulator,” J. Lightw. Technol., vol. 

33, no. 6, pp. 1210–1216, Mar. 2015. 

[9] S. Wolf et al., “An Energy-Efficient 252 Gbit/s Silicon-Based 
IQ-Modulator,” in Optical Fiber Communication Conference, 

2016, p. Th3J.2. 

[10] M. Lauermann et al., “Low-power silicon-organic hybrid (SOH) 
modulators for advanced modulation formats,” Opt. Express, vol. 

22, no. 24, pp. 29927–29936, Nov. 2014. 

[11] S. Wolf et al., “DAC-less Amplifier-less Generation and 

Transmission of QAM Signals Using Sub-Volt Silicon-organic 
Hybrid Modulators,” J. Lightw. Technol., vol. 33, no. 7, pp. 

1425–1432, 2015. 

[12] M. Lauermann et al., “Generation of 64 GBd 4ASK signals using 
a silicon-organic hybrid modulator at 80°C,” Opt. Express, vol. 

24, no. 9, pp. 9389–9396, May 2016. 

[13] G. Raybon et al., “180-Gb/s ( 90-GBd QPSK ) Single Carrier 

Transmitter Using a Thin Film Polymer on Silicon I/Q 

Modulator,” in ECOC 2016; 42nd European Conference on 
Optical Communication, 2016, pp. 31–33. 

[14] H. Huang, J. Yang, Y. Yue, Y. Ren, S. R. Nuicco, and R. Dinu, 

“100-Gbit/s Amplitude and Phase Modulation Characterization of 
a Single-Drive, Low-Vπ Polymer Mach-Zehnder Modulator,” in 

Optical Fiber Communication Conference and Exposition 

(OFC/NFOEC), 2012, p. OW4F.5. 
[15] S. Shahin, S. Mehravar, P. Gangopadhyay, N. Peyghambarian, R. 

a. Norwood, and K. Kieu, “Multiphoton microscopy as a 

detection tool for photobleaching of EO materials,” Opt. Express, 
vol. 22, no. 25, p. 30955, Dec. 2014. 

[16] L. Alloatti et al., “100 GHz silicon–organic hybrid modulator,” 

Light Sci. Appl., vol. 3, no. 5, p. e173, May 2014. 
[17] K. Schuh et al., “100 GSa/s BiCMOS DAC Supporting 400 Gb/s 

Dual Channel Transmission,” in ECOC 2016; 42nd European 

Conference on Optical Communication, 2016, pp. 37–39. 
[18] F. Chang, K. Onohara, and T. Mizuochi, “Forward error 

correction for 100 G transport networks,” Commun. Mag. IEEE, 

vol. 48, no. 3, pp. 48–55, 2010. 

 

 
Fig. 2: Experimental results. 16QAM constellation diagrams received at 50 GBd (200 Gbit/s, left), 80 GBd (center), and 100 GBd (right). For 

50 GBd and 80 GBd (320 Gbit/s), the measured values for the bit error ratio (BER) are 1.5 × 10-5 and 4.4 × 10-3, respectively. Both values are 

within the threshold for forward error correction (FEC) with 7% overhead, leading to net data rates of 186 Gbit/s and 299 Gbit/s. At 100 GBd, the 
measured BER is 1.88 × 10-2. Considering a FEC with 20% overhead, the net data rate is 333 Gbit/s. 


