KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
§
Verlagsausgabe
DOI: 10.5445/IR/1000070909
Veröffentlicht am 16.11.2018
Originalveröffentlichung
DOI: 10.5194/gmd-10-1403-2017
Scopus
Zitationen: 27
Web of Science
Zitationen: 26

Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications

Müller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Glotter, Michael; Hoek, Steven; Iizumi, Toshichika; Izaurralde, Roberto C.; Jones, Curtis; Khabarov, Nikolay; Lawrence, Peter; Liu, Wenfeng; Olin, Stefan; Pugh, Thomas A. M.; Ray, Deepak K.; Reddy, Ashwan; ... mehr

Abstract:
Crop models are increasingly used to simulate crop yields at the global scale, but so far there is no general framework on how to assess model performance. Here we evaluate the simulation results of 14 global gridded crop modeling groups that have contributed historic crop yield simulations for maize, wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference data at global, national and grid cell scales and we evaluate model performance with respect to time series correlation, spatial correlation and mean bias. We find that global gridded crop models (GGCMs) show mixed skill in reproducing time series correlations or spatial patterns at the different spatial scales. Generally, maize, wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most models. Y ... mehr


Zugehörige Institution(en) am KIT Fakultät für Physik (PHYSIK)
Institut für Meteorologie und Klimaforschung - Atmosphärische Umweltforschung (IMK-IFU)
Publikationstyp Zeitschriftenaufsatz
Jahr 2017
Sprache Englisch
Identifikator ISSN: 1991-9603, 1991-959X
URN: urn:nbn:de:swb:90-709099
KITopen ID: 1000070909
HGF-Programm 12.02.02; LK 01
Erschienen in Geoscientific model development
Band 10
Heft 4
Seiten 1403–1422
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page