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Abstract

Hydraulic circuits are widely featured in engineering systems of various kinds. Despite
their long history and important role in technology advances, analysis of hydraulic
systems from a dynamics point of view has remained poorly covered by research.
Therefore, questions of hydraulic modeling, analysis and control are treated in the
present thesis.

In the first part of this thesis, an elaborate minimal model of a translatory-type variable
displacement vane pump is derived. The model is a physical model based on the
nonlinear kinematics of the pump. It provides detailed insight into the relationship
between pump cam ring eccentricity, load pressure and internal pump forces resulting
from internal pressure distribution within the pump.

Building on the minimal model of such a pump, a classic hydraulic circuit variable dis-
placement pumps are frequently used in is then modeled. Due to switching properties
of the passive regulator valve used in such circuits, the aggregate system model features
switched system behavior. In order to make the system accessible by eigenvalue-based
stability analysis, the system model is regularized by taking into account leakage flow
in the regulator valve for which a minimal model is derived, too. Equilibrium stability
under variation of system pressure, load flow and viscosity are then discussed. The
stability discussion is prepared by stability analysis of a simplified pressure regulator
valve.

Motivated by loss of equilibrium stability under certain operating conditions, a model-
based nonlinear control approach for the volume flow provided by a variable displace-
ment vane pump is derived in the second part of the thesis. By replacing the passive
regulator valve with a (active) servo valve and appropriately modeling the resulting
aggregate system, the system can be subjected to feedback linearization in spite of
switched system behavior. The feedback linearization concept is extensively discussed
with respect to stability and extended to output feedback concepts by application of
high-gain and tracking observers.

Ultimately, feasibility of the control concept in the multiple-input-multiple-output con-
text of automotive clutch actuation is demonstrated. The concept is extended by ob-
server concepts specific to clutch actuation.
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Introduction

Motivation

In the modern world’s engineering design, hydraulics has been playing a prominent
role ever since, the origins of its technical application dating back to the end of the 18th
century. Conceived with the idea in mind to have a compressible fluid exert forces onto
reaction areas of movable components and to thereby move large loads within short
time, the field has found application in numerous solutions to man’s practical problems.
In the course of engineering history, it was a natural idea to introduce the principles
of hydraulic actuation to mobile working machinery and automotive systems as well.
Here, large forces have to be exerted under demanding operating conditions and in
many cases little mounting space. Amongst others, hydraulic systems are used for
servo-steering mechanisms as well as clutch actuation in order for a drivetrain torque
to be transferred.
While hydraulic circuits come in a variety of topologies, they all feature an energy
source in the form of a hydraulic pump. In order for these systems to work accord-
ing to specification, it is necessary to control the flow of energy provided by the pump.
This is achieved through the utilization of hydraulic resistances that can be varied in
such a way that fluid energy is allocated as desired.
The single most important element to control energy flow in a hydraulic circuit is a
valve. As hydraulic circuits come in a wide range of topologies, so do valves - their
common feature being a movable valve body or spool that is seated in a housing and
by being displaced allows a (variable) volume flow to pass through the valve.
Based upon the type of actuation of the flow-controlling valves, hydraulic systems
can be distinguished into self-regulating and externally controlled or actuated systems.
While a strict distinction cannot always be clearly made and in any circumstance all
hydraulic systems have to fulfill a certain control purpose, self-regulating systems shall
be understood in the context of this work as systems where hydraulic valves react to
changes in volume flow and pressure and by their autonomous behavior control for a
certain equilibrium themselves. Classical examples here are pressure limitation valves,
pressure control valves and volume flow control valves. Such self-regulating hydraulic
systems are essentially passive.
This stands in contrast to systems where valves can be actuated through external sig-
nals, mainly in the form of a current or voltage input. This input translates into an actu-
ation force displacing the valve spool and opening a flow area inside the valve, thereby
allowing for a control of the volume flow through the valve. Prominent examples are
systems featuring e.g. servo or proportional valves.

1



Introduction

While the underlying physical laws of hydraulic systems have been researched ex-
tensively, stability issues with self-regulating hydraulic systems have remained a phe-
nomenon barely touched by research. This should come somewhat surprisingly as os-
cillation phenomena in hydraulic systems of various kinds are a problem well-known
to practitioners.

The reasons for this underrepresentation of hydraulics in dynamics research have dif-
ferent aspects. Firstly, hydraulics are a field with strong practical relevance, indicating
that a majority of research is actually conducted in private companies so that gener-
ated insight remains undisclosed in many cases. Secondly, the dynamics of hydraulic
systems are very complex in the sense that the mathematical tools to analyze idealized
hydraulic systems with are not developed to an extent that they can easily be applied to
an arbitrary system featuring hydraulic components. Especially within the context of
self-regulating hydraulic systems, the underlying idealized dynamics inevitably lead
to a non-smooth system formulation. While methods for the stability analysis of non-
smooth systems have been conceived, they have not been researched to the extent of
general applicability to problems of hydraulics. These problems are often characterized
by critically lapped valves so that the non-smoothness of the problem implies a switch-
ing behavior innate to the system. The problem related to switching is in many cases
aggravated by the circumstance that even a single valve does not necessarily imply a
single non-smoothness interacting with one pressure state of the system. Depending
on the topology of the system and the system’s point in state space, interactions with
a varying number of capacitances in one and the same system are often encountered
and will also feature in the present work. In addition, for systems with critically lapped
valves, the equilibrium position is located on the switching surface in some cases so
that in theory, eigenvalues-based stability analysis is an invalid approach. In principle,
only Lyapunov-based methods apply for a systematic assessment of the stability prop-
erties of a certain system. Because no systematic method to devise Lyapunov function
candidates is known to date and even the simplest hydraulic valve involves two states
related to the mechanical behavior of the valve and one state related to the system
pressure, Lyapunov-based analysis is not feasible in the majority of cases. Thirdly,
hydraulic systems typically feature a large number of parameters, making them very
difficult to investigate comprehensively. Ultimately, the physical stiffness of hydraulic
systems mirrored in numerically stiff equations make a numerical treatment difficult.

Directing one’s attention towards the key sources of hydraulic energy, pumps can, for
example, be distinguished according to their mode of operation. Fixed displacement
pumps operate with a fixed charging volume so that the only possibility to adjust vol-
ume flow is to alter the pump’s revolution speed. Due to the problem of accelerating
the rotating components if the number of revolutions per minute are to be increased
or decreased, these pumps may not lend themselves ideally to applications where a
dynamically varying volume flow is required. In contrast, this can be achieved by so-
called variable displacement pumps where the charging volume is a function of the

2
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displacement of a certain component whose position can be varied according to the
requirements of the problem.
One of the most frequently used providers of hydraulic energy in mid-pressure appli-
cations are variable displacement vane pumps. In some cases, the pump is to provide
a certain volume flow while in other cases a certain pressure shall be held. Each of
these concepts is referred to as a control concept. Among the different usage scenarios,
variable displacement vane pumps are frequently used in automotive applications, i.e.
in transmission systems. Here, they typically are to provide a number of hydraulic
consumers with volume flow. The main consumer usually is a clutch while cooling
and lubrication circuits are secondary consumers. The control purpose is to ensure
a fast pressure increase in the clutch upon clutch actuation. This requires maximum
volume flow from the pump. Once this goal is achieved, the pump shall provide the
secondary consumers with volume flow. The volume flow required by the secondary
consumer(s) lies significantly below the volume flow required for achieving the main
control purpose. It is evident that there lies a significant energy saving potential in
employing variable displacement pumps in this context.

Considering today’s pronounced relevance of energy efficiency for engineering sys-
tems in general, control strategies are needed that stably control for energy efficient
system behavior. For hydraulic systems, this means stable control of volume flow and
pressure. In the past, this was achieved mainly by self-regulating hydraulic control
devices. Stability problems with self-regulating control valves aside, the developments
in nonlinear control theory in the recent past call for more sophisticated strategies
making use of servo control with approaches founded on differential geometry. It is to
be seen in how far these approaches allow for a precise control of the desired system
outputs.

Therefore, this thesis shall contribute to an improved understanding of dynamic aspects
of passive and semi-active hydraulic systems in general and present novel concepts for
the design and nonlinear control of hydraulic circuits featuring a variable displacement
vane pump.

State of Research

Analysis of Hydraulic Systems

The fundamental laws of hydraulic modeling are presented and discussed in a variety
of introductory textbooks, amongst which [4, 23, 70, 73] should be mentioned for the
classic approach they take. As for the stability and dynamics of hydraulic systems, in
[73] a small section is devoted to the occurrence of limit cycles in hydraulic systems and
appropriate countermeasures. The treatment remains qualitative, however, while most
other textbooks spare the topic. In the past few decades, a small number of researchers
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have contributed to the analysis of the dynamics and stability of hydraulic systems.
Among the first publications where stability properties of valves are analyzed, in [102]
an analytical model of a safety poppet valve is derived and numerical studies investi-
gating the dynamical behavior under different operating conditions are presented. In
[17], limit cycle conditions for a class of electrohydraulic drive systems are established.
In the neighboring field of pneumatics, in [74] a model of a pneumatic poppet-type re-
lief valve is set up and fluid structure interaction is investigated in order to uncover
destabilizing mechanisms. In [63], a poppet-type pressure relief valve’s equilibrium
position is investigated and a grazing bifurcation analysis is performed. A bifurcation-
based design approach for a classical hydraulic servo system is proposed in [57]. This
approach is built upon and extended in [100] where a bifurcation stability analysis of
a hydraulic servo system is performed. Drawing on classic systems theory, static and
dynamic behavior of different valve types are modeled and discussed in [68, 113, 128].
A comparatively large amount of research has been devoted to the stability of load
sensing pump systems featuring swash plate piston pumps. Here, for example [58, 80,
124] are to be mentioned, even though in some of that research the intricacies of non-
smooth dynamical behavior is treated with a hands-on mentality and may not in all
cases yield dependable insight.

Variable Displacement Vane Pumps

Variable displacement vane pumps can be distinguished by the type of motion they
perform when subject to a change in displacement. With pivoting type variable dis-
placement vane pumps, the element determining the pump’s charging volume rotates
about an attachment point in the pump housing while vane pumps of translatory type
feature a purely translational displacement. Unfortunately, literature on the physical
modeling of pumps in general and on minimal pump models in particular is scarce.
While for piston pumps [71] is a classic publication in the field and has provided the
foundation for a series of pump behavior modeling effort and dynamics investigations,
an equivalent for pivoting type variable displacement vane pumps can be seen in the
work presented by Karmel [45, 46, 48, 49]. This work is built on in e.g. [27], where ad-
ditional simulation results are presented. Since Karmel’s series of papers, the literature
in the field has remained stagnant more or less. In [11], a lumped parameter model for
a purely translational, linearly displacing variable displacement vane pump is derived.
The model’s complexity, however, makes it unsuitable to general stability investigations
or control design. This observation also holds for [69], where another comprehensive
pump model is presented. Neither of the mentioned references yields an autonomous
model of the pump dynamics that can easily be integrated in plant models and be uti-
lized for stability analysis and the derivation of suitable control laws. Apart from the
pure modeling aspect, several publications touching special issues related to variable
displacement pumps exist. For a general understanding of some of those problems,
[33, 34, 120] should be mentioned.
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Introduction

Control of Hydraulic Systems

In the context of hydraulic servo systems and control, [6, 41, 59, 114] are general refer-
ences frequently drawn onto. The former two focus on linear control strategies, while
the latter also cover nonlinear and other advanced concepts and present a comprehen-
sive literature overview. In most cases the goal is hydraulic actuator control, i.e. the
system to be controlled is a hydraulic cylinder which is actuated through pressure from
hydraulic fluid. In the field of pump control, most efforts have been directed towards
axial piston pumps so far. Among others, [58, 126] discuss control approaches based on
operating point linearization. In [51], a nonlinear control approach to pressure control
of an axial piston pump is given under significant model simplifications. As for variable
displacement vane pump systems, the only publications known to this thesis’ author
are [111, 112] where an optimal controller design based on quantitative feedback theory
is suggested. Despite significant advances in the theory of nonlinear control in the past
decades, especially with the techniques of exact feedback linearization, linear control
approaches continue to dominate the literature. Nevertheless, successful application of
feedback-linearizing techniques is documented in some cases, [16, 32, 98, 105, 115].

Non-smooth Dynamics

As pointed out, the behavior of ideal valves in hydraulic circuits leads to a non-smooth
problem formulation when modeled as idealized systems without valve leakage. A
significant problem with the treatment of such systems lies in its mathematical founda-
tions that just relatively recently started developing. While the field certainly is rich, an
easy-to-apply or practically usable unified treatment of systems whose equilibrium lies
on a system’s switching boundary is still not known so that in many cases one will have
to resort to physically motivated regularization approaches such as leakage smoothing
the nonlinear description of the system.
It is not the purpose at this point to provide a thorough overview on non-smooth
dynamics and analysis, for these, the reader is referred to [19, 20, 61, 99]. Instead, a
much-cited example from [9] shall be drawn on to illustrate some properties that make
these problems difficult to assess in general.

If the system

ẋ = Aix, i = 1, 2

with

A1 =

[
−1 10

−100 −1

]
, A2 =

[
−1 100

−10 −1

]

is considered for i = 1, 2, its equilibrium position clearly is x = 0 which is globally
exponentially stable. For a system switching between the two system configurations,
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however, system stability depends on the prescribed switching law. For A1 active in the
first and third quadrant and A2 active in the second and fourth quadrant, the system is
stable. In contrast, for A1 active in the second and fourth quadrant and A2 in the first
and third quadrant, the system has an unstable equilibrium. Stability of a non-smooth
or switched system can therefore not be assessed through separate consideration of
the stability of its individual subsystems. With the non-smooth modeling of critically
lapped valves in hydraulic systems, such switching behavior naturally occurs in many
practical cases.

0 2 4
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1

·106
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x
2

(a) Unstable switching.
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·10−3
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2

(b) Stable switching.

Figure 0.1: Switching of a piecewise linear system.

As for a systematic treatment of such problems, two approaches are most prominently
discussed in the literature on nonsmooth dynamics and switched systems [9, 62, 129].
The first approach entails the existence of a so called common Lyapunov function. The
line of reasoning is that if a Lyapunov function can be found whose time derivative
decreases along any of the trajectories associated with the system for i = 1, ..., j, then
this function is a common Lyapunov function, implying equilibrium stability.
With the idea of multiple Lyapunov functions attributable to [78], the concept was ex-
tended to nonlinear systems and popularized by Branicky [9], see also [99] for an outline
of the history of research in the field. Here, the concept is to find Lyapunov functions for
each subsystem and to show that the value of each of the Lyapunov functions has de-
creased upon activation relative to the last time the respective Lyapunov function was
active. Evidently, the concept of common Lyapunov function fulfills this requirement.
From a practical perspective, the concept of multiple Lyapunov functions is most likely
to be used for the design of switching laws (i.e. control design and design of switching
point location) ensuring stability of the switched system. In contrast, assessing stability
of a system subject to autonomous switching requires showing the decrease of each
of the Lyapunov functions relative to the last time of their respective activation and
thereby knowledge of the switching times. For autonomously switching systems, these
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points in time will only in rare cases be determinable in closed form – thereby making
the approach difficult to apply to systems other than those switching at pre-defined
points in time.

Thesis Purpose

The literature analysis shows contributions to the state of research can be made in sev-
eral ways.
In order to improve an understanding of the mechanisms potentially governing insta-
bility in hydraulic systems, a series of models with systematically increasing complexity
shall be built and discussed with respect to stability, incorporating a regularization ap-
proach based on the physics of leakage flow in valves where necessary. This is an effort
that has not yet been undertaken systematically. Beginning with the investigation of
a simple pressure control valve subject to different operating conditions, a hydraulic
actuation topology for an automatic transmission shall be covered, too.
The dynamics of a variable displacement vane pump used in many hydraulic circuits
shall then be modeled and assessed with respect to stability within a classic hydraulic
circuit in order to generate novel insight into stability problems with such pumps. To
this date, no physically and mathematically solid investigation of this problem complex
exists.
Building on the modeling of the circuit, a novel control approach for the volume flow
of a variable displacement vane pump making use of methods from nonlinear control
design shall be investigated. Here, questions regarding observer design are to be ad-
dressed, too. The modeling and synthesis are to be performed with application in an
automotive transmission context in mind. Automotive transmissions exhibit signifi-
cant dynamical behavior so that as little simplifications as possible should be made in
the derivation of the control approach in order to minimize effects from parasitic dy-
namics. Building on single-input-single-output volume flow control of the pump, the
approach shall then be extended to a multiple-input-multiple-output control design for
the actuation of a clutch and the volume flow delivery to secondary consumers in an
automotive transmission. In this context, different observer designs for the pressure
dynamics within a clutch cylinder shall be devised and tested for applicability.
Ultimately, a novel concept for parameter identification within a clutch actuation con-
text shall be tested for applicability. The approach rests upon Kalman Filtering and shall
be tested with virtual measurements generated by simulation.

Thesis Structure

To account for the desired purpose, this thesis is divided into two parts. The first part
covers aspects of modeling and stability of passive or semi-active hydraulic systems in
chapters 1–6 while in the second part nonlinear control approaches are discussed with
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respect to the questions outlined above. The second part extends over chapters 7–10.

As for Part I, chapter 1 provides an overview of elementary physical laws governing the
dynamics of hydraulic systems. Starting from there, in chapter 2 a modeling approach
for control edges with different notch geometries and physically based control edge
flow regularization based on leakage modeling is presented. In chapter 3 the model of
a most simple pressure control valve is discussed with respect to system stability under
different operating conditions. In chapter 4, the model of a hydraulic clutch actuation
circuit is outlined. It features a fixed displacement pump and is to provide a clutch
with actuation energy upon valve actuation. Simulation results are interpreted and
discussed with respect to the stability findings from chapter 3. With a view towards
volume flow adaptive pumps, a minimal model of a variable displacement vane pump
of translatory type is presented in chapter 5. The pump model is suitable for control
law derivation and elementary stability analysis. Integrating this model into a standard
pressure regulation circuit, structural and stability properties of this circuit are treated
in chapter 6.

In Part II, fundamental concepts of feedback linearization are briefly reviewed in chap-
ter 7. Building on this, in chapter 8 a model of a variable displacement pump system
suitable for nonlinear control actuation through a servo valve is derived and subjected
to a feedback-linearization for volume flow control. Within this context, observer and
feedforward concepts are discussed, too. The control approach is then extended to a
novel concept for clutch actuation in an automatic transmission in chapter 9. Here,
problems of clutch observer design are discussed, too. Chapter 10 covers a novel ap-
proach for system identification based on Kalman Filtering in the form of a case study
within a clutch actuation context.

The thesis then concludes with a summary of the key findings and an outlook on future
research questions.
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Part I

Modeling and Analysis of Hydraulic
Systems
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1 Fundamentals of Hydraulic Modeling

In this chapter, the most important elements of hydraulic modeling are presented and
discussed. The elements presented comprise hydraulic capacitances, hydraulic resis-
tances and hydraulic valves. Finally, damping, inductance and flow forces in hydraulic
systems are shortly discussed with respect to their relevance for this work.

1.1 Capacitances and Hydraulic Stiffness

Hydraulic capacitances are used to model the pressure dynamics in any volume extant
in a hydraulic system. Such volumes may be dead volumes in hydraulic valves, the vol-
umes contained in hydraulic pipes and the volume in pressure cylinders. The approach
to model the pressure dynamics in a possibly varying volume is to consider the mass
flow balance in such a volume under the assumption that the mass distribution is uni-
form. This assumption is very common in hydraulic modeling. It should be mentioned,
however, that it implies the neglection of fluid dynamics [41, 73, 75].
The fluid mass m(t) in a time varying volume V (t) is given by

m(t) = ρ(t)V (t) (1.1)

with time-depending fluid density ρ(t). In many cases, the volume V (t) represents a
piston volume that can be computed by V (t) = V0 + Ax(t) as shown in Figure 1.1.

Figure 1.1: Exemplary volume computation for capacitance
calculation in a hydraulic cylinder.

Here, x(t) is the piston displacement and A the piston area while V0 represents the
so called dead or base volume inherent to a piston with zero displacement. In many
practical cases, this dead volume is inevitable due to design considerations. The mass
flow in a hydraulic volume can be computed by building the time derivative on both
sides of equation (1.1):

ṁ = ρ̇V + ρV̇ . (1.2)
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1 Fundamentals of Hydraulic Modeling

The mass flow into the hydraulic volume under consideration is proportional by fluid
density ρ to the net volume flow into the volume

ṁ = ρ
∑

i

qi , (1.3)

where a positive sign of qi represents a volume inflow and a negative sign of qi a volume
outflow. In what follows, the definition of the hydraulic fluid bulk modulus is needed.
Fluid bulk modulus commonly is defined by

Efl = −V dp

dV
= ρ

dp

dρ
(1.4)

with fluid pressure p. Conceptually, the quantity Efl can be interpreted as hydraulic
stiffness and is referred to as the (isothermal) fluid bulk modulus accordingly. It is a
material property. Within the scope of this thesis, it is assumed (see [41]) that it can be
represented by

Efl = E0 +Kpp . (1.5)

Representative values for this model’s constants are E0 = 16500bar and Kp = 9.558

[41]. Up to mid-pressure applications, bulk modulus variations thus are comparatively
insignificant within this model’s scope.
With the bulk modulus definition (1.4), the density’s time derivative can be expressed
as

ρ̇ =
dρ

dp
ṗ =

ρ

Efl
ṗ, (1.6)

which, when substituted into equation (1.2) and set equal to the right hand side of (1.3),
yields

ρ
∑

i

qi = ρ̇V + ρV̇ = ρ

(
1

Efl
ṗV + Aẋ

)
. (1.7)

From this, it follows that

V0 + Ax

Efl
ṗ =

∑

i

qi − Aẋ, (1.8)

which is the well-known equation governing the pressure dynamics in a varying vol-
ume. The expression

V0 + Ax

Efl
=: Ch

is typically referred to as hydraulic capacitance. It is immediately obvious and intu-
itively understandable that the magnitude of the capacitance increases proportionally
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1.2 Hydraulic Resistances

with the total volume. The bulk modulus Efl, however, requires further consideration.
So far, it has been taken as the bulk modulus of a pure fluid. In practice, one may have
to employ an effective bulk modulus, taking into account effects of air contained in the
hydraulic fluid [6, 41] and the stiffness effects of the hydraulic chambers, pipelines etc.
Generally, air is known to appear in hydraulic systems in three ways [67]:

• free air in the form of trapped air pockets which can be removed from the system
through venting,

• entrained air in the form of air bubbles up to a diameter of about 0.6 mm,

• dissolved air which is invisible and assumed to be uniformly distributed between
molecules.

While the problems with free air can be resolved through appropriate venting and dis-
solved air has negligible effects on the bulk modulus [41, 67], the effects of entrained
air in hydraulic fluids have considerable effects on the hydraulic bulk modulus. These
effects are especially relevant when passing from high system pressure to low pressure.
At high pressure values, entrained air is compressed to a small volume and thereby
dissolved – at sufficiently low pressure values, the dissolved air expands abruptly into
entrained air which has motivated e.g. [7, 81] to approximate the fluid behavior in the
respective pressure region by unilateral constraints.
In practical applications, a large amount of effort will be directed at achieving a low
level of entrained air. Within the scope of the present thesis, fluid bulk modulus will
thus be taken in the form of equation (1.5) if not stated otherwise.

1.2 Hydraulic Resistances

In hydraulics, flow across hydraulic resistances is mostly turbulent as it takes place
across sharp edges in the majority of cases. Most prominently, one such sharp edge
is an orifice where for sufficiently large Reynolds numbers the flow can be modeled
sufficiently accurately through a nonlinear function of the pressure difference across
the orifice. Another important type of hydraulic resistance is the throttle for which a
model is frequently drawn unto which features a linear dependence of the volume flow
on the pressure difference across the resistance.

1.2.1 Orifice

The flow through a sharp-edged orifice can be derived from the Bernoulli equation
known from fluid dynamics (for further study of fluid dynamics, the excellent book by
Spurk [106] is recommended). The energy balance for incompressible, stationary flow
along a streamline with dissipation reads [6, 29]

1

2
w2
H +

pH
ρ

+ ghH =
1

2
w2
L +

pL
ρ

+ ghL +
∆pHL
ρ

. (1.9)
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1 Fundamentals of Hydraulic Modeling

In the above expression, wi denotes the fluid velocity at points i = {H,L} (“high”,
“low”) along a stream tube filament, pi the corresponding pressure and ghi the specific
potential energy from gravity. In the context treated here, it is assumed that h0 = h1.
Also, for points i = {H,L} sufficiently far away from the orifice, wH = wL = w may be
assumed due to continuity.
The term ∆pHL represents the specific energy loss from dissipation between points H
and L. It is commonly described by

∆pHL
ρ

=
1

2
ζw2 , (1.10)

where ζ is the so-called resistance number. Ultimately, with an effective area of the
orifice AOR it follows that

q = AORw =

√
2

ρζ
AOR
√
pH − pL = αd

√
2

ρ
AOR
√
pH − pL . (1.11)

The resistance number ζ is a function of the Reynolds number indicating turbulent flow.
The Reynolds number is defined as

Re =
wdH
ν

, (1.12)

with flow velocity w, hydraulic diameter dH = 4A/U whereA is the area through which
the flow passes and U the area’s cirumference and the kinematic viscosity ν. The for-
mulation featuring the so called discharge coefficient αd is more common and will be
used in the remainder of this thesis. Because it will always come alongside the square
root of 2/ρ, the following abbreviation will be used throughout this work:

αd

√
2

ρ
=: γF . (1.13)

1.2.2 Throttle

The law governing the flow behavior across a sharp-edged orifice is the most important
hydraulic nonlinearity. The nonlinearity comes from turbulence-related pressure drops.
In some cases, however, flows may be laminar, especially in the case of throttles for
which a description via the law of Hagen-Poiseuille is assumed. With l representing the
length of a circular channel of diameter D through which the fluid is to flow and ηF the
dynamic fluid viscosity, the law of Hagen-Poiseuille reads

q =
πD4

128ηF l
(pH − pL). (1.14)

In accordance with the property of laminar flow, the dependence of volume flow q on
the pressure drop across the hydraulic resistance of a throttle is linear. Most impor-
tantly in the context of this thesis, the throttle is referred to when modeling leakage
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phenomena. Leakage occurs in any hydraulic system. It cannot be avoided completely,
but only reduced with increasing manufacturing accuracy. Leakage arises in hydraulic
cylinders, valves and any moving component in a hydraulic system which is exposed
to pressurized fluid. The reason for leakage phenomena are (radial) clearances between
the moving component and its housing which allow fluid to flow from high pressure
to low pressure chambers. In many cases, leakage phenomena can be modeled by as-
suming laminar flow through a throttle. The most prominent example for such purely
laminar leakage phenomena is the laminar flow across a moving piston. In general, the
geometry of the flow problem naturally plays an important role for the specific leakage
behavior of a hydraulic component. For a piston moving within a circular housing of
diameter D, the flow passage area is an annular gap with gap height ∆r, leading to
volume flow that is commonly modeled with the following laminar (throttle) flow law
(e.g. [4, 6, 23, 122]):

q =
Dπ∆r3

12ηF l

[
1 + 1.5

(
e

∆r

)3
]

(pH − pL) . (1.15)

In the above relationship, e represents the eccentricity of the moving component’s cen-
ter relative to the (fixed) circular housing’s center. The major problem with leakage is
that the quantities constituting its magnitude can barely be determined in most cases,
such as the moving component’s eccentricity. As a consequence, such models are appro-
priate only for the qualitative description of systems featuring leakage. For practically
accurate predictions, experimental investigation is inevitable.

1.3 Damping in Hydraulic Elements

The phenomenon of leakage is closely related to damping phenomena in hydraulic
systems. While the intention at this point is not to derive a comprehensive model of
viscous damping forces for piston-like bodies moving in an annular gap filled with vis-
cous fluid, it is worthwile to qualitatively describe the origin of damping in hydraulic
systems. With radial clearances between valve spools or pistons and housings, fluid
within a radial gap exerts shear stress on a moving valve spool or piston. For New-
tonian fluids, this shear stress is proportional to shearing velocity and fluid viscosity
so that velocity-proportional forces can be expected for a piston with radial clearance
moving in its housing. With fluid viscosity varying with temperature, so will damping.
In the present work, however, damping will be modeled as viscous damping described
by a lumped damping coefficient. This is well-established practice in hydraulics mod-
eling (e.g. [2, 41, 56, 63, 68, 113]) and also due to the highly complex problem of ade-
quately modeling damping in hydraulic systems, see [2] for a brief discussion of this
problem. Since damping in valves is at times purposefully increased through incorpo-
ration of a dashpot (see e.g. [4, 122]), a lumped viscous damping coefficient for mod-
eling valve spool damping can be interpreted as a design proxy variable for dashpot
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dimensions. Notably, damping effects from a dashpot dominate over damping effects
from leakage at control edge openings. If no dashpot is designed for in a specific valve,
damping will – besides fluid viscosity and annular gap height – depend on effective
gap length within which fluid shear forces act. Then, a lumped viscous damping coeffi-
cient can be interpreted to mirror geometric properties of the valve not explicitly mod-
eled. Notably, the approach of modeling valve damping as a lumped parameter has the
benefit of allowing for a separate discussion of the effects of damping and leakage on
equilibrium stability given in chapter 6. Thereby, recommendations for the design of
the valve (i.e. dashpot dimensions, effective leakage gap length etc.) can be deduced
that may be difficult to unveil when employing a fully elaborate damping model.

1.4 Hydraulic Inductance and Flow Forces

In this chapter, fundamental elements of hydraulic modeling were discussed with their
relevance to this thesis in mind. Two aspects of modeling were spared, namely the
effect of hydraulic inductance and the effect of flow forces within a hydraulic valve. In
the majority of cases within the extant body of research on hydraulic systems, the so
called hydraulic inductance of fluid columns is neglected in models. This inductance is
typically defined as

L =
ρl

A
(1.16)

with l representing the fluid column’s length and A its cross-sectional area. The induc-
tanceL captures mass properties of fluid volume – its purpose is to allow for a modeling
of the acceleration behavior of a column of fluid. The reason this aspect of fluid dynam-
ics is usually neglected in the context of hydraulic modeling is that the force needed to
accelerate a column of fluid is usually much less than the force conveyed through the
static pressure within a system [6].
Another aspect not treated in this study are flow forces within a valve. The directional
change fluid flow is subjected to when passing into and out of a valve is associated with
reaction forces acting on the valve body. These forces can be computed from applying
the law of momentum to the fluid control volume within the valve and will depend
on the valve geometry. While for many analyses ignoring flow forces is an admissible
simplification in system modeling, it is not advisable once the flow through a valve
becomes large as for large volume flows, flow forces may be significant. Throughout
this thesis, however, it will be assumed that flow forces can be omitted.
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2 Modeling Control Edge Flow

2.1 Background

In order to model and simulate hydraulic systems, a mathematical description of flow
across control edges is necessary. Flow across valve control edges is typically modeled
as flow through an orifice of varying area. The classical flow geometry for most valves
is a rectangular orifice as shown in Figure 2.1a where the area through which flow takes
place is proportional to valve spool displacement.
Alternative geometries exist, however. Most prominently, this is a triangular notch
geometry shown in Figure 2.1b. In many cases, it is desirable to be able to very finely
control the volume flow through a valve – with the help of a triangular notch this can
be achieved well. Another advantage of triangular notches is that leakage is minimal
for a nominally closed valve. This is due to the overlap inherent to triangular notches.
A practical problem with this notch geometry is, however, that they are impossible to
manufacture accurately. Therefore, another notch geometry frequently encountered in
practice is a circular notch as shown in Figure 2.1c. These are comparatively easy to
manufacture and feature the ability to slowly vary flow area upon displacement of the
valve spool, too.

(a) Rectangular notch. (b) Triangular notch. (c) Circular notch.

Figure 2.1: Notch geometries. Grey shaded areas in b) and c) represent the nominal
valve opening area.

Idealized opening characteristics of valves go in hand with a non-smooth system de-
scription for hydraulic systems. With an eye towards real world manufacturing imper-
fections and accessibility of system models for mathematical analysis, the assumption
of ideal, non-smooth valves therefore calls for reconsideration. In practice, even valves
designed to be lapped critically will feature an overlap or underlap due to the limita-
tions of manufacturing technology. From an energetic point of view, an overlap is more
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feasible than an underlap as underlaps go along with excessive leakage and thereby
potentially significant but undesirable fluid drain from the system.
Overlaps, however, are not the only source of manufacturing imperfection. Despite
very high standards of manufacturing for hydraulic valves, radial clearance between
the valve spool and its housing is inevitable, leading to leakage phenomena and damp-
ing mechanisms intrinsic to hydraulic valve design. From a physical viewpoint, leakage
in combination with an overlap can be seen as a smoothing mechanism for an otherwise
non-smooth opening characteristic. Modeling leakage accordingly therefore yields a
system description which allows for the application of eigenvalue-based analysis to
systems that feature equilibria on switching surfaces when assuming idealized non-
smooth modeling.
Either of the discussed geometries relates to geometry-specific leakage phenomena. In
this chapter, a generic leakage model will first be outlined and then specified with re-
spect to different notch geometries. Within this context, also see [136, 147].

2.2 Generic Leakage Flow Model

For leakage in hydraulic valves, the flow situation is schematically shown in Figure 2.2.
Within the scope of this thesis, leakage flow from high pressure to low pressure regions
is assumed to be characterized by a combination of laminar and turbulent flow patterns.
Flow within the annular gap region of length lLL(x), width bLL and gap height ∆r is
assumed to be laminar and thus modeled as a throttle-type resistance while the entry
or exit of fluid through an orifice-like valve notch resistance is turbulent and should
therefore be modeled as an orifice. The necessity to draw on both elements for modeling
leakage also has an intuitive aspect: the laminar-type flow resistance varies with gap
length lLL(x) which is subject to the position of the valve spool. If leakage in a valve
were modeled without including an orifice in the model, a singularity for leakage flow
would occur once lLL(x) = 0 and the valve starts to uncover its flow passage area, see
equation (1.15). In order to account for this, leakage is modeled as a sequential coupling
of an annular gap channel and an orifice with the orifice’s flow area derived from the
specific geometry at hand. For such a sequential coupling of an orifice and a throttle as
suggested in Figure 2.2d, the volume flows are given by

qTL = γFATL
√
pH − pHL , qLL =

bLL∆r3

12ηF lLL(x)

[
1 + 1.5

(
e

∆r

)3
]

(pHL − pL) .

Here and in the remainder, index “TL”, is to indicate the turbulent leakage component
whereas index “LL” is to indicate the laminar leakage component. In the above ex-
pressions, pHL is an intermediate pressure between the two hydraulic elements. Under
the assumption that no pressure dynamics exist between the two elements, it follows
that qTL = qLL. This allows for solving for the volume flow qTL = qLL =: qL as a func-
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2.2 Generic Leakage Flow Model

(a) Pure leakage flow for x < 0. (b) Transition between pure leakage flow
and nominal control edge flow for
x = 0.

(c) Cross section through valve spool and
valve housing.

(d) Leakage model structure.

Figure 2.2: Leakage flow model.

tion of pressure difference pH − pL. Performing the necessary manipulations under the
simplifying assumption of zero spool eccentricity, e = 0, then yields

qL(x, pH , pL) = −6γ2
FA

2
TLηF

bLL∆r3
lLL(x) +

√√√√γ2
FA

2
TL (pH − pL) +

(
6γ2

FA
2
TLηF

bLL∆r3

)2

l2LL(x) .

(2.1)

From the above expression, it can clearly be seen that once the length of the annular gap
lLL(x) decreases to zero, the flow qL becomes an orifice-type flow with orifice flow area
ATL. Equivalently, overall leakage flow decreases with increasing gap length lLL(x), just
as one would expect. The above model structurally resembles the approach suggested
in [21] (also, see [22] for a discussion of this model). With a view towards experimental
validation, a problem with this modeling approach is that it requires system identifi-
cation of parameters which enter the governing equations in a nonlinear way, thereby
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making the identification problem a non-trivial one. Alternate approaches therefore
rely on data-driven modeling, see e.g. [107, 125]. In [41, 73], a data-driven approach is
recommended, too. In order to qualitatively assess the influence of different parameters
governing leakage flow, however, a discrete model as suggested above should be seen
as an appropriate approach.

2.3 Geometry-specific Leakage Flow Models

Notably, the quantities lLL, bLL, ATL needed in the preceding section’s generic leakage
model will depend on the specific notch geometry at hand and possibly vary with valve
spool position, too. For this reason, a specification of these quantities will be made for
different notch geometries in the following subsections.

2.3.1 Rectangular Notch

For a rectangular notch (index “2”) according to Figure 2.1a with zero overlap and
radial clearance, the nominal flow from high pressure pH to low pressure pL is given by
the equation

q2(x, pH , pL) =

{
0 for x < 0 ,

γF bRegx
√
pH − pL for x ≥ 0 .

(2.2)

The quantity bReg corresponds to the radius of the valve spool rV by bReg = 2πrV . When
accounting for leakage by introducing an approach such as (2.1) to the model (2.2),
different situations need to be considered: First, for negative displacements x < 0 the
flow through the valve comes from leakage exclusively. Channel length for the laminar
component of leakage then is lLL2(x) = −x, channel width is bLL2 = bReg and channel
height is given by radial clearance ∆r as shown in Figures 2.2a, 2.2c.

Once the valve spool is moved up to x = 0, the flow from leakage has to be blended
into the flow defined by (2.2). The situation at x = 0 therefore is critical to the model
and defines the area of the orificeATL2 modeling the turbulent component of leakage in
equation (2.1). Considering the view on the valve spool within the valve cylinder bore
at x = 0, area ATL2 can be computed from radial clearance ∆r and circumference bReg
of the valve spool approximately as

ATL2 = bLL2∆r = bReg∆r . (2.3)

In order to have a continuous transition from pure leakage flow in x < 0 into valve flow
with leakage for x ≥ 0, the flow area from nominal valve opening (index “V O”) with
turbulent flow is modeled as the lateral surface area of a truncated cone as spanned
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2.3 Geometry-specific Leakage Flow Models

between the valve spool and the port land at the valve cylinder (see Figure 2.3) which,
under the neglection of second order effects from radial clearance, is approximated as

AV O2(x) = bReg
√
x2 + ∆r2 . (2.4)

Figure 2.3: Leakage geometry for rectangular notch. The grey-shaded area is the trun-
cated cone surface drawn on for modeling leakage.

Clearly, AV O2(x = 0) = ATL2 so that the different flow regimes continuously blend into
each other when passing x = 0. Incorporating AV O2(x) into equation (2.2) thus yields

q(x, pH , pL) = AV O2(x)γF
√
pH − pL . (2.5)

It is obvious from equation (2.4) that with increasing spool displacement x the effect of
radial clearance on flow behavior will decrease.
Summarizing, for a valve with rectangular notch featuring leakage flow,

qL2(x, pH , pL) =
6γ2

FA
2
TL2ηF

bLL2∆r3
x+

√√√√γ2
FA

2
TL2 (pH − pL) +

(
6γ2

FA
2
TL2ηF

bLL2∆r3

)2

x2 , (2.6)

one ultimately obtains

q2L(x, pH , pL) =




qL2(x, pH , pL) for x < 0 ,

AV O2(x)γF
√
pH − pL for x ≥ 0 .

(2.7)

For x ≥ 0 the model resembles a model suggestion briefly touched upon in [127] but
discarded in favor of a model fitted to experimental data. Overlaps of magnitude u
can easily be incorporated in the above model by transforming x with x 7→ x − u.
In Figures 2.4a and 2.4b, the flow behavior of the valve is shown for representative
geometry parameters listed in Table 2.1 and a pressure difference of pH−pL = 20×105 Pa

and an overlap of u = 0.0005 m. In Figure 2.4a it can clearly be seen that the overall effect
of leakage is negligible for sufficiently large valve openings x while Figure 2.4b shows
a zoomed configuration revealing that in the vicinity of x− u = 0 leakage has effects on
the shape of the flow function.

21



2 Modeling Control Edge Flow

0 1 2 3 4 5

·10−3

0

2

4

6
·10−3

u

x [m]

q 2
,
q 2

L

[ m
3
/s
] ideal

leakage

(a) Flow through rectangular control edge.

4 4.5 5 5.5 6

·10−4

0

0.5

1

·10−4

u

x [m]

q 2
,
q 2

L

[ m
3
/s
] ideal

leakage

(b) Zoomed.

Figure 2.4: Leakage flow through rectangular notch (featuring overlap u).

Table 2.1: Control edge parameters.
Parameter Symbol Value Unit
Valve overlap u 0.0005 m

Diameter of piston bore D 0.01 m

Spool circumference bReg Dπ = 2πrV m

Triangular notch width b4 0.002 m

Triangular notch length a4 0.002 m

Circular notch radius r◦ 0.001 m

Gap height ∆r 15× 10−6 m

Fluid viscosity ηF 0.01 Pas

2.3.2 Triangular Notch

The volume flow behavior of ideal valves with triangular notch (index “4” ) is gov-
erned by two flow regimes as can be seen from Figures 2.1b, 2.5.
For x < b4, the flow is characterized by turbulent flow through a triangular orifice of
height x. For x ≥ b4, the triangular notch is fully uncovered and the total flow area is
computed from the full triangle flow area plus the displacement dependent flow area
from an ordinary rectangular orifice. Nominally, one obtains

q4(x, pH , pL) =





0 for x < 0 ,
1
2
γFnN

(
a4
b4

)
x2
√
pH − pL for 0 ≤ x < b4 ,

γF

(
bReg

(
x− b4

)
+ 1

2
nNa4b4

)√
pH − pL for x ≥ b4 .

(2.8)

Here, nN is the number of notches along the spools circumference. The triangular notch
is associated with a comparatively slowly varying flow area which is desirable in many
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(a) x < 0 (b) x = 0 (c) x > 0

Figure 2.5: Triangular notch geometry parameters and calculation of average throttle
length lLL4(x) – one triangular notch along circumference bReg.

practical cases, see e.g. [95] for further reference. Accounting for leakage in this model
is more complicated than for a model with rectangular notch because the channel length
lLL4(x) for laminar component of leakage flow will vary along the circumference of the
valve spool due to the triangular notches. Thinking of the problem as a planar problem
by unwrapping the valve spool allows a conceptualization as shown in Figure 2.5.
For x < 0, the throttle length for laminar flow is given by lLL4 = b4 − x at all points
along the circumference of the valve spool except for those points which lie below the
triangular notch. The approach taken here is to compute an average throttle length
along the circumference. It is assumed that this satisfyingly describes the flow situation.
The same line of reasoning is applicable to the situation with 0 ≤ x < b4. Performing
the respective calculations for the quantities characterizing leakage flow, one gets

lLL4(x) =





(bReg−nNa4)(b4−x)+nNa4

(
b4
2
−x

)
bReg

for x < 0 ,

(
b4 − x

) bReg−nN2 a4

(
1+ x

b4

)
bReg−nN

(
a4
b4

)
x

for 0 ≤ x < b4 .

(2.9)

The corresponding channel width for the laminar component of leakage flow bLL4 =

bLL4(x) is taken as

bLL4(x) =




bReg for x < 0 ,

bReg − nN
(
a4
b4

)
x for 0 ≤ x < b4

(2.10)

and, resulting from this,

ATL4(x) = bLL4(x)∆r. (2.11)

From (2.9) and (2.10), laminar components of leakage are considered relevant in this
model only within x < b4, i.e. as long as the flow regime for the triangular notch
prevails.
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Within the interval 0 ≤ x < b4, the nominal flow area of the triangle begins to uncover
so that, in addition to leakage flow, the turbulent flow through the uncovered tip of the
triangle occurs. Because of radial clearance, this triangle will be inclined as shown in
Figure 2.6.

Figure 2.6: Leakage geometry for triangular notch and the 0 < x < b4. The grey-shaded
area is the tilted triangle AV O4(x) through which flow from nominal valve
opening occurs.

The same will be the case for x ≥ b4. Here, the effective flow area is computed from
the sum of the fully opened inclined triangle added to the lateral surface of a truncated
cone as in the model for a rectangular notch. The corresponding opening area AV O4 of
the valve can thus be stated as

AV O4(x) =





0 for x < 0 ,

1

2
nN

(
a4
b4

)
x
√
x2 + ∆r2 for 0 ≤ x < b4 ,

1

2
nNa4

√
b2
4 + ∆r2 + nNa4(x− b4)

+(bReg − nNa4)
√

(x− b4)2 + ∆r2 for x ≥ b4 .

(2.12)

While for x ≥ b4 the above area computation is not entirely physically consistent in
that the tilted triangle area is simply extruded once x > b4 and added to the truncated
cone related to the rectangular notch section, this is deemed acceptable here because
firstly the model should be seen as only a rough approximation to the complex flow
situation anyways, but secondly because alternative modeling of the effective flow area
does barely affect the resulting flow behavior. Thirdly, this difference is not of relevance
within the main usage scenario for the model: stability assessment of a system in the
proximity of x = 0. The chosen approach does ensure continuous blending of turbulent
regimes at x = b4.
From these considerations, flow through a valve with a triangular notch featuring leak-
age can be modeled with
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qL4(x, pH , pL) = −
6γ2

FA
2
TL4(x)ηF

bLL4(x)∆r3
lLL4(x)

+

√√√√γ2
FA

2
TL4(x) (pH − pL) +

(
6γ2

FA
2
TL4(x)ηF

bLL4(x)∆r3

)2

l2LL4(x) (2.13)

as

q4L(x, pH , pL) =





qL4(x, pH , pL) for x < 0 ,

qL4(x, pH , pL) + γFAV O4(x)
√
pH − pL for 0 ≤ x < b4 ,

γFAV O4(x)
√
pH − pL for x ≥ b4 .

(2.14)

Representative simulation results are shown in Figures 2.7a, 2.7b.
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Figure 2.7: Leakage flow through triangular notch (featuring overlap u).

From a macro perspective, the effect of leakage again is not prominent. Only when
zooming into the flow Figure at x = b4 + u (taking into account overlap u) differences
between the leakage and the non-leakage case becomes noticeable. It is within the in-
terval u ≤ x < b4 + u that the aforementioned advantages of triangular notches with
respect to total leakage flow can well be seen. This valve spool displacement is related
to the transition between the flow regime from the triangular notch and the succeeding
flow regime from the rectangular notch. Accordingly, the differences visible in Figure
2.7b are comparable to those observed in 2.4b.
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2.3.3 Circular Notch

For an ideal valve with a circular notch and without leakage, the flow for a circular
notch geometry is governed by

q◦(x, pH , pL) =





0 for x < 0 ,

γFA◦(x)
√
pH − pL for 0 ≤ x < 2r◦ ,

γFπr
2◦
√
pH − pL for x ≥ 2r◦ ,

(2.15)

where

A◦(x) =
1

2
r2◦π + (x− r◦)

√
x(2r◦ − x)− r2◦arcsin

(−x+ r◦
r◦

)
(2.16)

and r◦ is the radius of the circular notch. When extending the model through the intro-
duction of leakage, it is assumed that leakage occurs only as shown in Figure 2.8.

Figure 2.8: Leakage model: circular notch.

Here, the grey shaded areas on either side of the tilted ellipse segment are the areas
through which leakage is assumed to flow. Thereby, it is implicitly assumed that no
leakage flow occurs along the circumference of the valve spool for points which do
not lie below the circular notch in axial direction. In addition, the assumption is made
that once x > r◦, leakage does not occur anymore as the circular notch is halfway
uncovered. In the model presented here, channel length for the laminar component is
again computed from an averaging consideration.
Performing the respective calculation for a single circular notch, one obtains

lLL◦(x) =





4r◦(r◦−x)−πr2◦
4r◦ for x < 0 ,

lLL◦2 for 0 ≤ x < r◦ ,
0 for x ≥ r◦ ,

(2.17)

with
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lLL◦2(x) =

(
2(x− r◦)

√
x(2r◦ − x) + 2r2◦arcsin

(√
x(2r◦ − x)

r◦

)

−4r◦ (x− r◦) − r2◦π

)/(
4
(
r◦ −

√
x (2r◦ − x)

))
.

The corresponding width of the leakage channel modeled as throttle is given by

bLL◦(x) =





2r◦ for x < 0 ,

2
(
r◦ −

√
x(2r◦ − x)

)
for 0 ≤ x < r◦ ,

0 for x ≥ r◦ ,

(2.18)

so that

ATL◦(x) = bLL◦(x)∆r (2.19)

can easily be computed.
As laid out before, the orifice area from nominal valve opening for x > 0 and ∆r 6= 0 is
a tilted ellipse. Its magnitude is governed by

AV O◦(x) =





0 for x < 0 ,

AV O◦2(x) for 0 ≤ x < 2r◦ ,
AV O◦2(2r◦) for x ≥ 2r◦

(2.20)

with

AV O◦2(x) =

(
r2◦
x

arccos

(
1− x

r◦

)
−
(
r◦
x
− 1

)√
x(2r◦ − x)

)
√
x2 + ∆r2 . (2.21)

It is worth pointing out that AV O◦(x) bears a singularity for x = 0 that requires smooth-
ing to prevent from numerical problems with this approach. Results are shown in Fig-
ures 2.9a, 2.9b, indicating that for a circular notch, too, leakage has effects on a micro
level only.
Ultimately, circular notch leakage flow thus is given by

qL◦(x, pH , pL) = −6γ2
FA

2
TL◦(x)ηF

bLL◦(x)∆r3
lLL◦(x)

+

√√√√γ2
FA

2
TL◦(x) (pH − pL) +

(
6γ2

FA
2
TL◦(x)ηF

bLL◦(x)∆r3

)2

l2LL◦(x) , (2.22)

so that circular notch flow with leakage can be stated accordingly:

q◦L(x, pH , pL) =





qL◦(x, pH , pL) for x < 0 ,

qL◦(x, pH , pL) + γFAV O◦(x)
√
pH − pL for 0 ≤ x < r◦ ,

γFAV O◦(x)
√
pH − pL for x ≥ r◦ .

(2.23)

In case of nN notches, the mapping q◦L(x, pH , pL) 7→ nNq◦L(x, pH , pL) can be applied.
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Figure 2.9: Leakage flow through circular notch (featuring overlap u).

2.4 Flow Direction, Overlap and Opening Direction
Transformations

While the above flow laws were derived for a valve opening towards the right hand
side, the transformation x 7→ −x − u allows using the same laws for a valve opening
towards the left hand side with overlap u.
As for a reversal of flow directions due to a sign change of the pressure difference
pH − pL, the transformation pH − pL 7→ |pH − pL| in combination with a subsequent
mapping qiL(x, pH , pL) = qiL(x, pH − pL) 7→ sign(pH − pL)qiL(x, |pH − pL|) can be applied
for all notch geometries i = {2,4,◦}.

2.5 Intermediate Conclusion

In this chapter, a modeling approach for leakage in hydraulic valves with discrete pa-
rameters was presented and refined with respect to notch geometries most commonly
encountered in hydraulic systems practice.

With the approach of deriving such a model with discrete parameters, results from
this model should be understood in a qualitative sense as the specific flow situation
in valves with small radial clearance and small nominal openings is highly complex
so that quantitatively accurate results are not to be expected from this model. It does
however provide a sensible approach to leakage modeling that can easily be integrated
into numerical models of aggregate hydraulic systems.
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This is best achieved by implementing the respective flows in a single function which
allows for a transformation of the displacement quantities according to the opening
direction of the valve.
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3 Modeling and Analysis of a Pressure
Control Valve

3.1 Background

Valves are cornerstone elements of hydraulic systems and come in a large variety of
functions and designs. The most important functions can be seen in the control of pres-
sure and volume flow. Because of its frequent employment in automotive transmis-
sions, a self-regulating pressure control valve shall be discussed here. The system under
investigation (see Figure 3.1) is the simplemost configuration of a hydraulic pressure
control valve. It is a hybrid system in that it has a mechanical component – the valve
spool – coupled with the dynamics of a hydraulic consumer through a piston area A
upon which system pressure acts. This coupling makes the present system represen-
tative of hydraulic systems in general. The question of stability of such valves under
different operating conditions has not yet been thoroughly investigated and shall there-
fore be treated here. The discussion here extends the results reported in [39] where a
qualitative assessment of phase space properties of this system is given. Within this
context, also see [136].

Figure 3.1: Pressure control valve.
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3.2 System Description

The valve’s function is to stabilize a certain set-point pressure level within the hydraulic
consumer modeled by a capacitance Ch. Set-point pressure shall be maintained irre-
spective of volume out- or inflows from and to the consumer. It is defined by the choice
of F0 and an appropriate level of pre-compression of the spring k. Through the feed-
back of the system pressure pC on piston area A, deviations from the desired pressure
level defined by F0 will perturb the force balance of the valve spool, thereby causing the
valve to displace accordingly towards either the tank side or the pressure supply side
control edge.
While in some situations there is no fluid outflow from Ch, in principle there may be
load flow in the system. Within the scope of the present investigation, this load is mod-
eled by an orifice AOR. Once load flow across this orifice is positive, pressure within the
capacitance drops, causing the valve to open the pressure supply sided control edge and
allowing fluid to flow across the control edge and into the system. Thereby, pressure
rises up to the desired level until the force balance on the valve spool is restored and
the control edge closes. Alternatively, if pressure rises above the desired level, the valve
will open towards the tank side, allowing fluid to flow out of the system and thereby
restoring the desired pressure level. For non-transient volume in- or outflow to or from
Ch, the valve’s equilibrium position will therefore be such that the valve permits fluid
flow across its control edges, thereby leveling out net flow within Ch.
In practical applications, the static component F0 of the force acting on the valve can
come from a variety of sources. For magnetically actuated valves, F0 will be a magnetic
force. In a lot of systems and especially in automotive engineering, the actuating force
applied to the valve spool may come from a secondary hydraulic circuit whose purpose
is not to transmit mechanical power, but to set the equilibrium position of the respective
valve. In addition, the valve spool may be subject to periodic forcing. For hydrauli-
cally actuated valves, this may be induced by oscillations in the secondary hydraulic
circuit which should not in general be assumed independent from main line pressure.
For magnetic forcing, high frequency excitation is sometimes applied to the valve in
order to achieve a dithering effect. This is done with the purpose of smoothening stic-
tion behavior of the valve, thereby enhancing responsiveness to pressure changes on its
pressure feedback area A.
The valve treated here features representative nonlinearities inherent to hydraulics: A
typical source of nonlinearity besides the orifice dynamics within hydraulic systems
are valve overlaps. These may be a design feature with the idea in mind to reduce
the effects of leakage, but can also be a consequence of variance in the manufacturing
process for nominally critically lapped valves, see the discussion in chapter 2. In either
case, the result will be a nonlinear dependence of the valve flow on the valve spool
displacement. It is important to note that overlaps directly affect the regulation quality
of a pressure valve. For example, in the case of the valve discussed in this chapter,
the bigger the overlap, the larger the pressure perturbation in the consumer needs to
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be in order to cause a valve spool displacement exceeding valve overlap. For perfect
set-point regulation, the valve should, in theory, be critically lapped. Here, however, a
nominally overlapped valve shall be considered.

3.3 System Model

The equations describing the system behavior mirror the hybrid nature of the present
system: by Newton’s second law one obtains the equation of motion for the valve and
formulating a balance equation for the fluid flow within the hydraulic consumer yields
an equation for the hydraulic dynamics of the system coupled with the mechanical
behavior by the dependence of the fluid flow on the position and the velocity of the
valve spool. A simplified mechanical model of the valve and consumer can be given as

mẍ+ dẋ+ kx = −F0 − F1sin(Ωt) + ApC , (3.1)

with consumer pressure pC = p∗ + p. The applied force F0 defines set-point pressure
p∗ so that p represents perturbations from p∗. Considering the fluid flow balance, one
obtains

Chṗ+ Aẋ = q − γFAOR
√
pC , (3.2)

where q is the fluid flow into capacitance Ch across the valve:

q = q(x, pS, pC) =





qi(−x− u, pS, pC ,Pi) if x < −u ,
0 if − u ≤ x ≤ u ,

−qi(x− u, pC , p0,Pi) if x > u .

(3.3)

In the above equation, index i = {2,4,◦} and u is the valve overlap which is assumed
to be symmetrical here. The setPi comprises all control-edge related parameters specific
to the respective notch geometry as discussed in chapter 2. The components of q are
volume flows from the pressure supply into the system capacitance for x < −u and
from Ch into the tank for x > u. As pointed out, the overlap u in both positive and
negative displacement direction implies a dead band region and thereby a non-smooth
flow description for an ideal valve. Without loss of generality, load flow is assumed
positive in what follows, i.e. a flow out of Ch is assumed.

3.4 Stability Analysis

It is well known from advanced stability theory (see e.g. [79, 121]) that in the vicinity of
an equilibrium of a nonlinear dynamical system, the nonlinear system is topologically
equivalent to that of its linearization about the respective equilibrium point if none of
the linearization’s eigenvalues features a zero real part (Hartman-Grobman theorem) –
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i.e. if the equilibrium is hyperbolic. The implication of this theorem is that a system’s
stability can be assessed by consideration of the real parts of its Jacobian’s eigenvalues
subject to the occurrence of zero real part eigenvalues.
In the following analysis, two situations will be distinguished: firstly, situations where
there is non-zero (positive or negative) load flow and secondly situations where no load
flow is extant. For the sake of simplicity, it is assumed that pS > p∗ + p > p0 = 0 at all
times.

3.4.1 Non-Dimensionalization

Non-dimensionalization with x = uX , t = Tτ , T =
√
m/k and p = p(t) = (P ∗ +

P (Tτ))p̂ = (P ∗ + P (τ))p̂, where p̂ = F0/A, yields

X ′′ + 2DωX ′ + ω2X = −F̄0 − F̄1 sin(ητ) + A1(P ∗ + P ) (3.4)

P ′ = Q− ΓOR
√
P ∗ + P − A2X

′ . (3.5)

Here,

ω2 =
kT 2

m
= 1 , D =

d

2
√
mk

, A1 =
T 2A

mu
p̂ , F̄0 =

T 2

mu
F0 , (3.6)

F̄1 =
T 2F1

mu
, ΓOR =

TγFAOR

Ch
√
p̂

, A2 =
Au

Chp̂
, η = ΩT (3.7)

andQ is non-dimensionalized control edge flow that will be specified further below. For
non-zero load flow indicated by ΓOR 6= 0 and no excitation through F̄1, the equilibrium
position X∗, P ∗ can be computed from

ω2X∗ = −F̄0 + A1P
∗ (3.8)

0 = Q(X∗, P ∗)− ΓOR
√
P ∗ . (3.9)

For positive load ΓOR > 0, the equilibrium for X∗ will fulfill X∗ < −1 while for a
negative load ΓOR < 0 it will hold that X∗ > 1. The valve spool will displace by just as
much as to compensate the load flow in order to maintain the pressure level defined by
the magnitude of F̄0.
For sufficiently large pressure differences across orifices and control edges, linearization
in the pressure coordinate is feasible. Assuming an ideal rectangular control edge, the
non-dimensional volume flow Q across the valve can therefore be taken as

Q = Q2(X,P ) =





−Γ2(X + 1)
√
PS − P ∗

(
1− 1

2(PS−P ∗)P
)

if X < −1 ,

0 if − 1 ≤ X ≤ 1 ,

−Γ2(X − 1)
√
P ∗
(
1 + 1

2P ∗P
)

if X > 1 ,

(3.10)
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for which the constant

Γ2 =
uTγF bReg

Ch
√
p̂

(3.11)

was introduced.
Alternatively, for a valve featuring a triangular notch, the volume flow in the proximity
of the dead band can be stated as

Q = Q4(X,P ) =





Γ4(X + 1)2
√
PS − P ∗

(
1− 1

2(PS−P ∗)P
)

if X < −1 ,

0 if − 1 ≤ X ≤ 1 ,

−Γ4(X − 1)2
√
P ∗
(
1 + 1

2P ∗P
)

if X > 1

(3.12)

and

Γ4 =
u2TγF

2Ch
√
p̂

a4
b4

.

Ultimately, for a circular notch, the volume flow linearized in P is

Q = Q◦(X,P ) =





Q◦1(X,P ) if X < −1 ,

0 if − 1 ≤ X ≤ 1 ,

Q◦3(X,P ) if X > 1 .

Here, the respective flows are

Q◦1(X,P ) = Γ◦
(
−(χ(X + 1) + 1)

√
1− (χ(X + 1) + 1)2

+arcsin(χ(X + 1) + 1) +
π

2

)√
PS − P ∗

(
1− 1

2(PS − P ∗)
P

)
(3.13)

and

Q◦3(X,P ) = Γ◦
(

(χ(X − 1)− 1)
√

1− (χ(X − 1)− 1)2

+arcsin(χ(X − 1)− 1) +
π

2

)√
P ∗
(

1 +
1

2P ∗
P

)
, (3.14)

where the following constants were introduced:

Γ◦ =
r2◦TγF
Ch
√
p̂
, χ =

u

r◦
. (3.15)
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3.4.2 Stability Analysis for Non-Zero Load Flow

In order to gain an elementary understanding of the system behavior, it is sensible to
further simplify the system equations by assuming that pressure changes about the
equilibrium are dominated by changes in valve displacement. This assumption is also
made in [56] for different notch geometries and in [39] for a valve with rectangular
notch. While this certainly is a strongly simplifying assumption, it allows for the ap-
proximation of the pressure dynamics through a Taylor expansion up to zeroth order,
so that ultimately the dead band region becomes the only source of nonlinearity con-
sidered in the remainder of this section.
For non-zero load flow it was argued on the foundation of physical reasoning that the
valve spool will displace by as much towards the pressure supply side that the pressure
drop from load flow will be compensated. With the assumption of constant non-zero
load flow for the present analysis, questions of stability therefore arise. With an empha-
sis on the macro effects from control edge flow and therefore a neglection of leakage
flow and first order pressure changes, conditions for the stability of the valve with equi-
librium position outside of the dead band can be given analytically in a form that allows
an intuitive, physics-based interpretation. The present analysis focuses on the case with
ΓOR > 0 but is applicable to situations with ΓOR < 0, too. In either case, non-zero load
flow ΓOR 6= 0 will lead to an equilibrium position located in X∗ ∈ (−∞,−1) ∪ (1,∞).
The general Jacobian for the system about an equilibrium X∗ = [P ∗, X∗, 0]T is given by

J(X∗) =




dQ
dP

∣∣
(X∗,P ∗) −

ΓOR
2
√
P ∗

dQ
dX

∣∣
(X∗,P ∗) −A2

0 0 1

A1 −ω2 −2Dω


 . (3.16)

With

dQ

dP

∣∣∣∣
(X∗,P ∗)

� dQ

dX

∣∣∣∣
(X∗,P ∗)

, (3.17)

the observation that
ΓOR

2
√
P ∗
� A1 (3.18)

and, thereupon, the neglection of dQ/dP 7→ 0 and ΓOR/(2
√
P ∗) 7→ 0, the simplified

Jacobian upon which to perform a qualitative stability assessment can be stated as

J(X∗) =




0 dQ
dX

∣∣
(X∗,P ∗) −A2

0 0 1

A1 −ω2 −2Dω


 . (3.19)

The corresponding characteristic equation is

λ3 + 2Dωλ2 +
(
A1A2 + ω2

)
λ− A1

dQ

dX

∣∣∣∣
(X∗,P ∗)

= 0 , (3.20)
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3.4 Stability Analysis

which suggests that the stability properties of the system at equilibrium largely depend
on the derivative of the flow function Q with respect to X in the equilibrium point for
a given set of parameters.

Stability of the control valve with rectangular notch Because for a rectangular
notch the flow function is linear in X , stability of the equilibrium position is indepen-
dent of the location of X∗ ∈ (−∞,−1) and therefore independent of the load flow ΓOR
when ignoring first order changes in P . For the flow function’s derivative in this case,
one obtains

dQ

dX

∣∣∣∣
(X∗,P ∗)

= −Γ2
√
PS − P ∗ . (3.21)

Substituting parameters in (3.20) and rearranging, after the introduction of the non-
dimensional constant

Υ =

(
Chk + A2

)
d

γFmAu
√
p̂

(3.22)

also needed for the discussion of other notch geometries, one finds the maximum al-
lowable pressure difference between supply pressure PS and working point pressure
P ∗ for which equilibrium positions X∗ ∈ (−∞,−1) are stable:

PS − P ∗ <
(

Υ
u

bReg

)2

. (3.23)

In practice, the working point of pressure control valves easily exceeds the maximum
allowable pressure difference as given by (3.23). Under most circumstances, an equi-
librium outside of X ∈ [−1, 1] will therefore be unstable. In Figure 3.2 two trajectories
for the respective situations are shown for positive load flow. In Figure 3.2a a situation
where the pressure difference between supply pressure and system working pressure
fulfills (3.23) is shown. In contrast to this, Figure 3.2b clearly shows the limit cycles ap-
pearing in the system once (3.23) is offended. The different location of the equilibrium
position is due to different pressure differences PS −P ∗ between Figures 3.2a and 3.2b.

Stability of the control valve with triangular notch For a triangular notch and
X∗ < −1, it holds that

dQ

dX

∣∣∣∣
(X∗,P ∗)

= 2Γ4(X∗ + 1)
√
PS − P ∗ . (3.24)

The Hurwitz criterion for equilibrium positions X∗ ∈ (−∞,− 1) can be rearranged into
the region within which X∗ is stable:

X∗ > −1−Υ
b4
a4

1√
PS − P ∗

. (3.25)
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(a) Condition (3.23) fulfilled.
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(b) Condition (3.23) offended through too
large a pressure difference PS − P ∗.

Figure 3.2: Trajectories about the equilibrium contingent on condition (3.23). The equi-
librium positions are highlighted by a green (stable equilibrium) and red
(unstable equilibrium) cross.

For practical parameters, the equilibrium for a triangular notch can possibly remain
stable as long as it does not transition into a rectangular opening (see chapter 2, equation
(2.8)). In Figure 3.3 simulation results are shown. In Figure 3.3a the stability condition
is fulfilled where in 3.3b the condition is offended through decreased damping so that
a limit cycle about the equilibrium position occurs.
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(b) Condition (3.25) offended through de-
creased damping - stationary process.

Figure 3.3: Trajectories about the equilibrium contingent on condition (3.25). The equi-
librium positions are highlighted by a green (stable equilibrium) and red
(unstable equilibrium) cross.
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Stability of the control valve with circular notch In the case of a circular notch with
X∗ < −1, the flow function’s derivative can, after some manipulations, be given as

dQ

dX

∣∣∣∣
(X∗,P ∗)

= −2Γ◦χ
√

1−
(
χ (−X∗ − 1)− 1

)2
√
PS − P ∗ . (3.26)

From the stability condition, one finds the range of stable equilibria accordingly:

X∗ > −1− r◦
u


1−

√
1−

(
Υ

u

2r◦
1√

PS − P ∗
)2

 . (3.27)

The implication of the above stability condition is that a valve with circular notch will be
stable in some interval in (−∞,−1) for non-zero damping. For

√
PS − P ∗ sufficiently

small to yield a negative argument for the outer square root in (3.27), equilibria are
stable. Figure 3.4 shows two different system configurations with stable (Figure 3.4a)
and unstable (Figure 3.4b) equilibrium. Comparing the resulting limit cycle from Figure
3.2b with the one in Figure 3.4b, the impact of the valve flow increasing progressively
with−X in the case of a circular notch can clearly be seen in the shape of the limit cycle:
because for a circle the flow function’s derivative with respect to X (compare equation
(3.26)) equals zero as the valve opens atX = −1, there is no discontinuity in the opening
area as the valve displacement crosses the point X = −1.
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(a) Condition (3.27) fulfilled.

−1.5 −1 −0.5 0
−1

0
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X
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(b) Condition (3.27) offended through de-
creased damping.

Figure 3.4: Trajectories about the equilibrium contingent on condition (3.27). The equi-
librium positions are highlighted by a green (stable equilibrium) and red
(unstable equilibrium) cross.

Notch geometry comparison The derivations outlined in the previous paragraphs
showed that stability of a valve’s equilibrium with open control edge depends on the
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3 Modeling and Analysis of a Pressure Control Valve

pressure difference across the control edge, non-dimensional parameter Υ and non-
dimensional geometry parameters bReg/u, a4/b4 and r◦/u for i = {2,4,◦}, respec-
tively.
Figure 3.5 visualizes the regions of stability for conditions (3.23), (3.25), (3.27) for the
parameters listed in Table 3.1.
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PS − P ∗

X
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Figure 3.5: Stability map visualizing stability conditions (3.23), (3.25), (3.27).

As pointed out above, the rectangular notch is unstable for the majority of pressure dif-
ferences – practically, its stable region is negligibly small as the corresponding vertical
stability boundary is in close proximity of PS − P ∗ = 0 irrespective of variations in Υ.
The map also reveals the qualitative superiority of a triangular notch over a circular
notch. As Υ is increased, the stable regions increase for all geometries.

3.4.3 Stability Analysis for Zero Load Flow

For an ideal valve and zero load flow (ΓOR = 0), the equilibrium position of the valve
will be set valued and lie within the interval X ∈ [−1, 1] since the flow function has
infinetely many zeros: any point X∗ ∈ [−1, 1] is a zero of the flow function and thus
an equilibrium position. This is a feature of the dead region resulting from perfect
impermeability when the valve is nominally closed. Equilibria for the resulting (linear)
ordinary differential equation lie in the dead region of the ideal valve and are indifferent
as the Jacobian

J(X∗) =




0 0 −A2

0 0 1

A1 −ω2 −2Dω


 (3.28)
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for this situation has the characteristic equation

λ3 + 2Dωλ2 +
(
A1A2 + ω2

)
λ = 0 (3.29)

and the corresponding eigenvalues

λ1 = 0 , (3.30)

λ2 = −Dω + j
√
ω2(1−D2) + A1A2 , (3.31)

λ3 = −Dω − j
√
ω2(1−D2) + A1A2 , (3.32)

so that the maximum eigenvalue real part is equal to zero, implying an indifferent equi-
librium position.
As discussed in chapter 2, ideal control valves cannot be provided by real-word man-
ufacturing technology. In practice, tolerance errors will always generate leakage flow
within the valve. It may therefore be asked in how far leakage affects the stability prop-
erties of the valve for zero load flow. For an ideal valve, the equilibrium position is
set-valued with any point within the dead region being a possible equilibrium point.
Allowing for leakage, the system obtains a unique equilibrium.
It is assumed that leakage flows at two points in the system, namely from pressure
supply into the system and from the system into the tank. After non-dimensionalizing,
leakage flow for i = {2,4,◦} and a valve spool position within the dead band reads

Q = QLi(X,P )

=− qL1i(−X − 1)LLLi(−X − 1)

+
√

(PS − P ∗ − P )qL2i(−X − 1) + q2
L1i(−X − 1)L2

LLi(−X − 1)

+ qL1i(X − 1)LLLi(X − 1)

−
√

(P ∗ + P )qL2i(X − 1) + q2
L1i(X − 1)L2

LLi(X − 1) (3.33)

with the non-dimensional functions

qL1i(X) = 6
Tuη̂F
Chp̂

bLLi(uX)

λLD
Ξγ2

F , qL2i(X) =
T 2

C2
hp̂
γ2
F b

2
LLi(uX)λ2

LD
2. (3.34)

In the above functions, the non-dimensional geometric leakage parameter λL = ∆r/D

was introduced and viscosity was scaled by η̂F = 1Pas so that it can be represented by
Ξ = ηF/η̂F . The new quantities LLLi(X − 1), LLLi(−X − 1) are the non-dimensionalized
channel lengths for the laminar components of leakage for flow into the tank and from
pressure supply into the system, respectively, as computed by equation (2.1) et sqq. for
different notch geometries i = {2,4,◦}. With this representation of volume flow, the
equilibrium position can be computed upon which the Jacobian of the system about this
equilibrium may be evaluated. Parameters used for simulation are listed in Table 3.1.
One natural choice of parameters by which to vary the system properties and to com-
pute stability maps are supply pressure PS and leakage parameter λL. For these, a
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3 Modeling and Analysis of a Pressure Control Valve

Table 3.1: Parameters of the pressure control valve.
Parameter Symbol Value Unit
Valve mass m 0.015 kg

Damping coefficient d 30 Ns/m

Spring stiffness k 1000 N/m

Force components F0, F1 135, 0–1 N

Excitation frequency Ω 240π rad/s

System capacitance Ch 10−11 m3/bar

Piston area A π/4× 0.012 m2

Supplied pressure pS 20− 50 bar

Flow coefficient γF 0.029
√

m3/kg

Valve overlap u 0.0001 – 0.0015 m

Diameter of piston bore D 0.01 m

Spool circumference bReg Dπ m

Triangular notch width b4 0.002 m

Triangular notch length a4 0.002 m

Circular notch radius r◦ 0.001 m

Gap height ∆r 15× 10−6 m

Fluid viscosity ηF 0.005 Pas

corresponding dimensional range of 20− 80bar and 1× 10−6 − 5× 10−5m were chosen,
respectively. While different system parameters do of course influence the precise lo-
cation of the equilibrium position within −1 ≤ X∗ ≤ 1, a numerical analysis reveals
that for the majority of parameter constellations investigated the partial derivatives of
the volume flow from (3.33) are such that a destabilization of the equilibrium position
within −1 ≤ X∗ ≤ 1 does not occur. In these cases, equilibria within −1 ≤ X∗ ≤ 1 are
stable irrespective of the notch geometries.
This is most notably due to the overlap u which for this type of valves typically lies in
a range of up to 1.5mm. Because decreasing LLLi(−X − 1) implies increasing LLLi(X −
1) (and vice versa), from a certain point onwards in either displacement direction the
turbulent component of leakage outflow dominates over its laminar inflow counterpart
(and vice versa) as long as valve overlap u is sufficiently large.
For comparatively small overlaps (e.g. with u = 0.5× 10−3m), however, destabilization
through leakage is possible, albeit in a parameter region rarely encountered in prac-
tice, i.e. with a very large pressure difference between supply pressure and operating
pressure. The mechanism behind this instability is visualized in Figure 3.6.
For increasing supply pressures, leakage into the system increases up to the point where
leakage outflow can not compensate leakage inflow anymore: increasing supply pres-
sures shift the equilibrium position towards an open control edge in direction of the
tank. As a consequence, the valve begins to open nominally in order to achieve zero net
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(a) Equilibrium path and limit cycle evolu-
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Figure 3.6: Birth of a stable limit cycle from supply pressure increase as bifurcation pa-
rameter. Green dots represent stable, red points unstable equilibria.

fluid flow within the capacitance and to maintain set-pressure. As outlined above and
expressed through stability condition (3.23), for a rectangular notch, an open control
edge usually yields unstable behavior with limit cycles occurring about the unstable
equilibrium. This can well be seen in Figure 3.6b: the equilibria become unstable once
they lie in X∗ > 1 + εi, where εi > 0 is a small non-dimensional quantity depending
on the leakage characteristic of the geometries i = {2,4,◦} at hand. The stable limit
cycles about the unstable equilibria therefore essentially are relaxation oscillations. The
reason some equilibria remain stable for 1 ≤ X∗ ≤ 1 + εi (i.e. within the very prox-
imity of X = 1) is that the flow function gradient blends into an instability-generating
gradient dQ/dX here as visualized in Figure 2.4b.
In Figure 3.7, a corresponding stability map for a rectangular notch for the variation
of non-dimensional supply pressure PS and non-dimensional leakage gap height λL is
shown.
It can well be seen that larger gap heights require lower supply pressures for the equilib-
rium to remain stable. Increasing viscosity increases the stable region – this is intuitive
since increasing viscosity decreases total leakage flow, thereby eventually leading to a
situation where nominal valve opening is not required anymore to compensate leakage
inflow.
For notch geometries other than the rectangular notch, destabilization through leakage
is not observed in this parameter range. While it is possible that equilibria are shifted
into a region where X∗ > 1 holds, stability conditions (3.25) and (3.27) provide the
explanation for the persistence of equilibrium stability in spite of a nominally open
control edge.
Destabilization effects from leakage within realistic pressure ranges are therefore to be
expected mainly in almost critically lapped valves and operating scenarios involving
excessively large pressure differences between supply and operating pressure. In chap-
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Figure 3.7: Stability map for a rectangular notch.

ter 6 destabilizing effects of leakage in the context of an almost critically lapped valve
will be considered further.

3.5 Forced Response of the Pressure Control Valve

In practice, certain valve types may be subjected to high-frequency excitation with
the purpose of an improved stiction behavior. For low frequency excitation and un-
der simplifying modeling assumptions, it was shown in [39] that the nonlinearities of
the present valve bear the potential for chaotic solutions upon periodic excitation. For
high-frequency excitation which commonly lies in the range of 100− 300Hz, the forced
response behavior has yet to be investigated.
To do so, a Monte-Carlo approach following e.g. [66, 77] is employed. Here, the system
is simulated from a number of random initial conditions up to stationary behavior for
which the solutions are then investigated, most commonly in form of a Poincaré section,
see [66, 77, 79, 121]. The choice of random initial conditions is motivated by the hope
to thereby obtain a large number of and possibly all stable solutions that exist for the
system. The approach does however not guarantee completeness, let alone finding
unstable solutions.
Figure 3.8 shows the Poincaré sections through stationary solutions PΣ for different
notch geometries and overlaps subject to increasing forcing amplitude F̄1.
In order to gain qualitative insight into possible bifurcation scenarios for the system, a
forcing range covering excitation force amplitudes not practically encountered in real
world settings is investigated. The underlying model is the fully nonlinear model from
equations (3.4), (3.5) featuring leakage.
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Figure 3.8: Stationary solutions for high frequency excitation, u = 0.0005m.

45



3 Modeling and Analysis of a Pressure Control Valve

The results indicate that for the parameters in Table 3.1 there is no period-doubling up to
quasi-periodicity or chaos for triangular and circular notch. For small overlaps and suf-
ficiently large excitation force, however, the rectangular notch eventually gives rise to a
period two solution. Parameters (system capacitance, damping and stiffness) were var-
ied within reasonable ranges to ensure this is not an observation related to the specific
choice of parameters – for these alternative parameter constellations similar behavior
can be observed. In the context of dithering and high frequency excitation, larger over-
laps may thus be preferable over smaller overlaps: Larger overlaps essentially prevent
the valve from control edge opening due to dither and thereby from undesired inter-
action of the pressure regulating autonomous dynamics of the valve and the external
forcing.
In [39], it was shown for a simplified model that the system features an unstable limit
cycle. This limit cycle is also extant in the model when accounting for fully nonlinear
pressure dynamics. Its location in phase space depends, amongst others, on operating
and supply pressures. The existence of an unstable limit cycle in this system yields a
stable limit cycle surrounding the unstable limit cycle in phase space, see Figure 3.9.

Figure 3.9: Phase space structure, see also
[39].
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Figure 3.10: Phase plane representation of
the system’s Poincaré map un-
der high frequency excitation
and an unstable limit cycle.

Naturally, once pressures are such that an unstable limit cycle repels the trajectory from
its equilibrium and the trajectory is then attracted towards an outer stable limit cycle,
quasi-periodic behavior can easily occur when additionally subjecting the valve spool
to high-frequency excitation with an excitation frequency different from the (stable)
limit cycle’s natural frequency. Figure 3.10 illustrates this effect for a rectangular notch.
Similar results can be expected when the system has an unstable equilibrium position in
X∗ ∈ (−∞,−1) ∪ (1,∞), since here the natural frequency of the stable limit cycle about
the unstable equilibrium will likely be incommensurable with the external excitation’s
frequency.
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3.6 Optimality Properties of the Pressure Control Valve

The design and topology of valves has – in most cases – evolved around practical ques-
tions of hydraulics engineering with solutions found by means of trial and error and en-
gineering intuition. As for the control of (pressure) equilibrium positions, the pressure
control valve discussed in this chapter is the elementary device to achieve the control
goal of equilibrium regulation.
However, one may wonder if there are meaningful topology alternatives for the regu-
lation of pressure by means of feeding back the physical states of the system to some
technical device yet to be conceived. In any case, the existence of a set of control edges
allowing for volume inflow and outflow and a displaceable mass allowing to alter the
flow area of the pair of control edges upon actuation will be needed to achieve this task,
so that an initial system configuration prior to valve design as shown in Figure 3.11 may
be assumed.

Figure 3.11: Initial valve structure for control valve synthesis.

With control theory providing a systematic approach to problems of set-point regula-
tion, it is worth an effort to investigate if control theory would predict a different design
of the pressure regulator from this chapter. The approach drawn onto will be linear
quadratic regulation (also referred to as LQR both in the literature and in the remain-
der of this chapter). In order to apply this control approach to the problem of pressure
regulation, certain simplifying assumptions have to be made for the system at hand.
The purpose of the valve is to control pressure pC within a capacitance Ch and to level
out possible perturbations in pressure p∗. Rewriting pC = p∗ + p = p∗ + ∆p with p∗ the
desired equilibrium position and ∆p = p representing the deviations from this desired
equilibrium position, the valve is to regulate ∆p = 0. The control task thus is to exert
a force upon a valve spool of mass m so that a volume inflow to and outflow of the
capacitance is such that pressure deviations from p∗ vanish. In order to make the prob-
lem accessible by LQR theory which is an inherently linear control approach, it will be

47



3 Modeling and Analysis of a Pressure Control Valve

assumed that pS = 2p∗ and that no overlap exists, i.e. u = 0. Leakage is not considered
and load flow is assumed to be zero. This leads to a smooth transition between the vol-
ume flows qi(−x−u, pS, pC ,Pi) and−qi(x−u, pC , p0,Pi) for perfect set-point regulation
to pC = p∗:

q(x, pS, pC) = q(x, pS, p
∗ + ∆p) =




−γF bRegx

√
pS − p∗ −∆p for x < 0 ,

−γF bRegx
√
p∗ + ∆p for x ≥ 0 .

(3.35)

Upon linearization in x = x∗ + ∆x about x∗ = 0 and in pC about p∗ the smooth volume
flow approximation reads

q ≈


∂q

∂x

∣∣∣∣∣
x∗,p∗


∆x+


 ∂q

∂pC

∣∣∣∣∣
x∗,p∗


∆p (3.36)

= −γF bReg∆x
√
p∗. (3.37)

Here, it is to be noted that

 ∂q

∂pC

∣∣∣∣∣
x∗=0,p=p∗


 = 0 (3.38)

due to non-existing valve overlap and thereby x∗ = 0.
With the system at this stage only comprising the valve spool and the capacitance sub-
ject to volume flow q, the system equations read

mẍ = 0 , (3.39)
Chṗ = q(x, pS, pC) (3.40)

with q(x, pS, pC) from (3.35).
Approximating linearly through equation (3.37), the perturbed and linearized equa-
tions can be written as

m∆ẍ = 0 , (3.41)

∆ṗ = − 1

Ch
γF bReg∆x

√
p∗ . (3.42)

Now, the intention is to derive a state-dependent force uV = uV (∆x,∆ẋ,∆p) acting on
the valve spool in such a way that the control purpose, i.e. the control for ∆p = 0, is
fulfilled. The perturbed system (3.41), (3.42) subject to the control input to be devised
can thus be stated as

m∆ẍ = uV , (3.43)

∆ṗ = − 1

Ch
γF bReg∆x

√
p∗ . (3.44)
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In state space formulation, this yields

ẋ = Ax + BuV (3.45)

with the system or drift matrix A, the control input matrix B and the state vector
x = [x1 x2 x3]T = [∆x ∆ẋ ∆p]T and

A =




0 1 0

0 0 0

− 1
Ch
γF bReg

√
p∗ 0 0


 , B =




0

1/m

0


 . (3.46)

The pair (A,B) has the controllability matrix

CS =
[
B AB A2B

]
(3.47)

with non-zero determinant and thus is controllable so that LQR is formally admissible.
The LQR approach is based upon the formulation of a cost functional to be minimized
by means of LQR design:

J =

∫ tF

t0

xTQx + uV BTRBuV dt . (3.48)

This cost functional penalizes deviations from the desired equilibrium x = 0 through
matrix Q and makes excessive control effort costly through matrix R. The matrices Q

and R contain weighting factors for the final deviation error and the control effort. In
order to obtain a finite value for J , x → 0 for tF → ∞. The choice of the weighting
factors defining Q and R is subject to the control design and has to be carefully made
as the resulting control law is contingent on the choice of these matrices. Generally,
both Q and R are required to be symmetric and positive definite – this guarantees the
existence of a minimum of the cost functional J . General recommendations on tuning
these matrices can be found in e.g. [10, 25, 60, 65].
In the present case, the respective matrices are chosen as

Q = diag

(
1

∆x2
max

,
1

∆ẋ2
max

,
1

∆p2
max

)
, R =

1

F 2
max

. (3.49)

This choice is motivated by [10] where the choice of individual weights is suggested as
the squared inverse of the desired maximum value of the respective states and controls.
The maximum force Fmax to be exerted on the valve spool is taken as in the range of

Fmax = O(∆pmaxAmax), (3.50)

i.e. it is chosen based on the reasoning that the force to be exerted on mass m should be
bounded by the maximum pressure deviation that can be applied to a maximum piston
area Amax.
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While the LQR approach is suitable for time-variant problems too, an optimal solution
to time-invariant problems is solved for by setting the upper integration limit in (3.48)
to infinity: tF → ∞. For a time invariant controller, the computation of the control uV
resulting in the minimization of (3.48) with respect to (3.46) is equivalent to solving the
(algebraic) Ricatti equation

0 = −SA−ATS + SBR−1BTS−Q (3.51)

for the matrix S. This is most easily solved by the so-called sweep method, simply by
integrating

Ṡ = −SA−ATS + SBR−1BTS−Q . (3.52)

backwards in time from steady state with respect to the boundary condition

S(0) = 0 .

This yields a solution for S, from which the optimal control law follows as

uV = −Kx (3.53)

with

K = −R−1BTS . (3.54)

Performing the respective computations for representative values, one obtains the ma-
trix K. It is of the form

K =
[
k1 k2 k3

]
(3.55)

with entries

k1 ∈ R+, k2 ∈ R+, k3 ∈ R−. (3.56)

This implies the necessity of a displacement-proportional restoring force (negative sign
of the force via equation (3.53)) as well as a velocity-proportional force acting in oppo-
site direction of the motion and a force proportional to the pressure deviation acting in
positive direction (positive sign via (3.53)). In order to implement the optimal control
law with purely physical elements, a spring with stiffness k = k1, a damper with
damping constant d = k2 and a piston area A = k3 feeding back the pressure deviation
on the valve thus have to be implemented in the system. However, the matrix entry
k3 6= 0 requires to feed back the pressure deviation x3 = ∆p on the valve spool – with
piston area A, only system pressure p can be fed back. The feedback of the deviation ∆p

from desired pressure p∗ can be achieved by feeding back the actual pressure in positive
x-direction on the piston area of the mass. Pre-stressing the spring by a force F0 then
leads to effectively feeding back the pressure difference ∆p = p − F0/A on the piston
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area. The spring pre-stress can therefore be interpreted as the means to physically
perform a subtraction and to implement the feedback of pressure deviation ∆p.

It is remarkable that the quantities obtained for k1, k2 and k3 from solving an optimal
control problem lie fully in the range of real-world values for a pressure control valve
with their respective signs capturing the real world pressure control valve topology. It
therefore can be concluded that a real world pressure control valve as treated in this
section has certain optimality properties. The flow Aẋ generated from valve spool mo-
tion in a real-world valve is not captured in the control design approach, but can be
seen as a parasitic effect extant in a real world valve. Naturally, its relevance rises with
decreasing capacitance of the consumer. From a theoretical perspective, valve overlaps
can be seen as parasitic effects, too – preventing an otherwise perfect set-point regulator
from achieving its goal.

3.7 Intermediate Conclusion

In this chapter, the model of a simple hydraulic pressure control device was presented
and simplified for the needs of stability analysis.

Generally speaking, it was found that equilibria which require an open control edge
(towards either side) tend to be destabilized by increasing pressure differences across
the control edge. Damping on the other hand increases stability. From a dynamics point
of view, low pressure differences across valves ought to be strived for in hydraulic sys-
tems. The feedback area A has the same effect, which is intuitive: positive valve spool
velocities in case of excess pressure will induce valve flow Aẋ which reduces pressure
in addition to flow across the tank-sided control edge, thereby stabilizing pressure at
the set-point. The same reasoning holds for negative velocities in case of a pressure
increase.

A comparison of valves with different notch geometries yielded the result that a trian-
gular notch is most advantageous from a stability point of view.

Within the scope of this analysis it also was investigated if leakage can destabilize an
equilibrium position. It was found that for certain constellations of gap height, viscos-
ity and pressure-differential between supply and operating pressure, leakage may shift
the equilibrium position towards unstable regimes. This observation remained specific
to the rectangular notch – for triangular and circular notches no such destabilization
through leakage was observed.

The model allows for a physically intuitive assessment of stability conditions. It should
be kept in mind, however, that the neglection of pressure changes in the derivation of
the stability conditions implies limited prediction quality of the model in quantitative
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terms.

Introducing further simplifications with respect to system smoothness, the pressure reg-
ulator valve as utilized in many practical instances could be shown to be structurally
optimal from an LQR point of view.
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4 Modeling and Simulating Clutch Actuation
in an Automatic Transmission

4.1 Background

Modern automotive transmissions come in a variety of possible designs and specific
actuation topologies. Among the foremost design questions, hydraulic system layout
and control design eminently determine the dynamics and performance of the trans-
mission and therefore require careful planning – especially with respect to questions of
system robustness and stability. In order to achieve the desired dynamic behavior in
a transmission, the availability of a theoretical model based on the laws of physics is
in many cases inevitable. Such models have remained scarce in the publicly available
body of research so far, mostly due to reasons related to questions of intellectual prop-
erty. In this chapter, a model for the actuation of a clutch in an automatic transmission
shall therefore be presented and discussed. Building on and relating to the analysis in
chapter 3, a loss of system stability shall be demonstrated.

4.2 System Description

In Figure 4.1, a simplified system layout of a clutch actuation circuit for an automatic
transmission is shown. In order to keep the model simple, only a single clutch cylinder
is modeled. This is without loss of generality and the model can easily be extended to
include multiple clutch cylinders.
The system comprises an energy/flow source in the form of the pump providing a
volume flow qP (uP ) contingent on pump input uP . In the system discussed here, the
pump is a fixed displacement pump whose volume flow thus depends on the pump
capacity and the revolution speed which in this context is taken as the system input.
Main system pressure pPRV in capacitance ChPRV is regulated through the piloted reg-
ulation valve shown in detail in Figure 4.2. The working principle here is similar to the
working principle of the valve discussed in chapter 3. While multiple secondary con-
sumers will be served via a prioritization of control edges in many practical cases (see
e.g. [24] for further reference), for modeling purposes and with a view towards test-bed
validation, only a single control edge connecting the valve with a tank outlet are as-
sumed here. The pilot solenoid valve shown in the upper half of Figure 4.2 is actuated
via an input current which determines valve mPRV ’s actuation pressure pY 2(uBWMDA).
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Figure 4.1: Clutch actuation circuit.
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4.2 System Description

Pressure pY 2 is supplied with fluid from capacitance ChBC5 which is separated from
main capacitance ChPRV via a simple check valve.

Moving up further in the topology shown in Figure 4.1, fluid passes a flow valve re-
stricting the volume passing to the clutch. Clutch pressure is largely controlled for
through the valve shown in Figure 4.3. The valve controls pressure pV FS upon valve
input uV FS which, after a pressure drop through orifice AORCL, then determines clutch
pressure pCL. The clutch itself is shown in Figure 4.4 and is modeled as a piston pressed
against a pre-stressed spring. Parameters for the respective elements are given in Tables
4.1 – 4.4.

Figure 4.2: Pressure valve.

Parameter Symbol Value Unit
Piston area APRV 1

π
4
× 0.012 m2

Piston area APRV 2
π
4
× 0.0152 m2

Piston mass mPRV 0.015 kg

Valve damping dPRV 5− 20 Ns/m

Spring stiffness kPRV 1000 N/m

Spring pre-stress FPRV 0 10 N

Channel length lPRV 0.005 m

Outlet width lRegPRV 0.003 m

Valve overlap uPRV 0.001 m

Table 4.1: Pressure valve parameters.

Figure 4.3: Clutch valve.

Parameter Symbol Value Unit
Piston area AV FS

π
4
× 0.0052 m2

Piston mass mV FS 0.015 kg

Valve damping dV FS 10 Ns/m

Spring stiffness kV FS 1000 N/m

Spring pre-stress FV FS0 10 N

Channel length lV FS 0.01 m

Outlet width lRegV FS 0.003 m

Valve overlap PA uV FSPA 0.001 m

Valve overlap AT uV FSAT 0.001 m

Table 4.2: Clutch valve parameters.
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Figure 4.4: Clutch cylinder.

Parameter Symbol Value Unit
Clutch area ACL

π
4
× 0.042 m2

Clutch mass mCL 3 kg

Clutch damping dCL 20 Ns/m

Clutch stiffness kCL 106 N/m

Clutch pre-stress FCL0 200 N

Table 4.3: Clutch cylinder parameters.

Table 4.4: Miscellaneous parameters.
Parameter Symbol Value Unit
Orifice area AOR3

π
4
× 0.0022 m2

Check valve orifice area AORBC5
π
4
× 0.0022 m2

Orifice area AORCL
π
4
× 0.0022 m2

Base volume VPRV 0 1× 10−4 m3

Base volume VBC50 1× 10−4 m3

Base volume VOR30 1× 10−4 m3

Base volume VBC00 1× 10−4 m3

Base volume VV FS0 1× 10−4 m3

Base volume VCL0 1× 10−4 m3

4.3 System Model

The system is modeled with discrete parameters neglecting leakage effects. Because in
many cases specific parameter knowledge for the system valves will not be available,
simplifying assumptions for the dynamics of some of the valves governing the pres-
sure dynamics in the transmission system need to be made. Mostly, valves are modeled
as static (i.e. ideal) elements even in models of sophisticated hydraulic circuits. The
assumption of static valve behavior neglects the dynamics of the valve itself, i.e. os-
cillatory behavior that may occur. While transfer functions of valves may be obtained
from system identification, the assumption of static valves can be made in many cases
with insignificant loss of model accuracy. For the model derived here, the check valve
and flow valve limiting volume flow towards the clutch cylinder are assumed as ideal.
The implication of ideal check valve behavior is a decoupling of the dynamics for main
pressure pPRV from the rest of the circuit. In a sense, this is beneficial for system func-
tionality from a stability point of view.
In addition, the pilot valve governing pressure pY 2 is assumed to exhibit ideal dynam-
ics. Along with this, pY 2 is taken as a linear function of solenoid valve input uBWMDA
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due to ideal solenoid behavior. This assumption is justified by a negligibly small pilot
actuation capacitance for mPRV with volume flows across the solenoid valve control
edges insignificant to the pressure dynamics in ChBC5.
While the simplifying assumptions outlined above do certainly not represent the ideal
approach to modeling a highly dynamic system such as an automotive transmission,
they serve as a sensible starting point for further model refinement in accordance with
test-bed measurements.
The system equations for the mechanical degrees of freedom

xm = [xPRV xV FS xCL] (4.1)

thus are

mPRV ẍPRV + dPRV ẋPRV + kPRV xPRV = −FPRV 0 − FES(xPRV , ẋPRV , lPRV )

+ pPRVAPRV 1 − pY 2(uBWMDA)APRV 2 , (4.2)

mV FSẍV FS + dV FSẋV FS + kV FSxV FS = FV FS0 − FES(xV FS, ẋV FS, lV FS)

+ pV FSAV FS − uV FS , (4.3)

mCLẍCL + dCLẋCL + kCLxCL = −FCL0 − FES(xCL, ẋCL, lCL) + pCLACL . (4.4)

In these equations, end-stop forces are modeled with a regularization approach:

FES(x, ẋ, l) =





xkES + dESmin(ẋ, 0) if x < 0 ,

0 if 0 ≤ x ≤ l ,

(x− l)kES + dESmax(ẋ, 0) if x > l .

(4.5)

Here, kES and dES are regularization parameters physically motivated by a real world’s
end stop stiffness and damping. In the above force formulation, it is assumed that
coordinates are introduced relative to the left end stop of a mass.
The general hydraulic balance equations are

Chṗ = Qq + Aẋm (4.6)

with the hydraulic states

p = [pPRV pBC5 pOR3 pBC0 pV FS pCL] (4.7)

for this system and with

Ch = diag
(
[ChPRV ChBC5 ChOR3 ChBC0 ChV FS ChCL]

)
(4.8)
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for which

ChPRV =
VPRV 0 + xPRVAPRV 1

Efl
, ChBC5 =

VBC50

Efl
, (4.9)

ChOR3 =
VOR30

Efl
, ChBC0 =

VBC00

Efl
, (4.10)

ChV FS =
VV FS0 + xFV SAV FS

Efl
, ChCL =

VCL0 + xCLACL
Efl

. (4.11)

The system volume flows are collected in vector q with

q =
[
qP qPRV qBC5 qOR3 qBC0 qV FSPA qV FSAT qORCL

]
. (4.12)

Here,

qP = qP (uP ) , (4.13)
qPRV = qPRV (xPRV , pPRV , p0,PPRV ) , (4.14)

qBC5 =




γFAORBC5

√
pPRV − pBC5 if pPRV > pBC5 ,

0 else,
(4.15)

qOR3 = sign(pBC5 − pOR3)γFAOR3

√
|pBC5 − pOR3| , (4.16)

qBC0 =




q̃BC0 if q̃BC0 < q̂BC0 ,

q̂BC0 else,
(4.17)

q̃BC0 = sign(pOR3 − pBC0)γFABC0

√
|pOR3 − pBC0| , (4.18)

qV FSPA = qV FSPA(xV FS, pBC0, pV FS,PV FSPA) , (4.19)
qV FSAT = qV FSAT (xV FS, pV FS, p0,PV FSAT ) , (4.20)

qORCL = sign(pV FS − pCL)γFAORCL
√
|pV FS − pCL| (4.21)

with PPRV ,PV FSPA and PV FSAT collecting the geometry parameters for the respective
control edges. Clearly, equation (4.15) represents the assumption of an ideal check valve
where equation (4.17) makes the ideal flow valve assumption mathematically explicit
through a flow restriction by a maximum admissible volume flow q̂BC0. The matrices Q

and A connecting the system volume flows and mechanical piston velocities with the
pressure dynamics in the system capacitances are

Q =




1 −1 −1 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 1 −1 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 1 −1 −1

0 0 0 0 0 0 0 1



, A =




−APRV 0 0

0 0 0

0 0 0

0 0 0

0 −AV FS 0

0 0 −ACL



. (4.22)
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With this model, the system can be seen as an example of a top-down circuit which is
common in hydraulic systems design: An energy source delivers volume flow which is
allocated to consumers downward. Structurally, this is mirrored in the diagonal struc-
ture of Q. Non-top down systems would not allow for a largely diagonal matrix rep-
resentation of the volume flow allocation to the capacitances. Notably, this top-down
structure is related to the neglection of pressure dynamics and volume flow balances
for pY 2. Since pY 2 is fed from pBC5, a model taking these dynamics into account would
result in a non-top-down system model. Topologically, this non-top-down property can
be seen from the loop betweenChPRV andChPBC5 and the valve components in between
in Figure 4.1. By neglecting pressure dynamics for pY 2 and the corresponding volume
flow balance, this loop structure is ignored, thus yielding the present top-down system
model.

4.4 Simulation Results

In Figure 4.5 the system inputs used for system simulation are visualized. For the
sake of an illustrative simulation, a constant pump input yielding a constant revolu-
tion speed and thus a constant pump volume flow are assumed. Pump volume flow is
chosen so that it exceeds the level needed for operating the circuit at the desired pres-
sure level pPRV as defined by the choice of uBWMDA. Consequentially, the valve has
to open the tank-sided control edge, letting excess fluid pass into the tank and thereby
bound pressure pPRV . As for the main pressure actuation force, the input uBWMDA is
chosen to yield a force jump at t = 0.25s and a force drop at t = 0.75s to a level below
the initial force input. This choice translates into a jump and a drop for pPRV , accord-
ingly. Ultimately, the clutch is to be actuated at t = 0.5s as is evident from Figure 4.5c
where the clutch valve actuation force is shown. Here, from t = 0.75s onwards, clutch
actuation pressure shall be reduced and kept at a non-zero level.
Figure 4.6 shows the simulation results for the system states in the case of a physically
unstable scenario. With the plentitude of parameters in this system, such instabilities
can easily occur – as in real world systems, too. The results clearly illustrate the de-
coupling properties of the (ideal) check-valve through which qBC5 passes. Instabili-
ties occurring in the pressure control of pPRV are largely eliminated through this valve,
therefore not showing in the subsequent pressure and mechanical states.
With a view towards the findings from chapter 3, the instability occurring upon induced
main pressure increase at t = 0.25s can be interpreted from the viewpoint of an exces-
sive pressure difference across the main pressure regulation valve. In chapter 3 it was
shown that larger pressure differences across valve edges eventually leads to a loss of
stability. The findings also allow to implement a suitable countermeasure: By increas-
ing damping, the instability can be prevented from appearing, see Figure 4.7 where the
only difference to Figure 4.6 is an increased damping dPRV . It should be kept in mind,
however, that this interpretation is admissible mainly due to the decoupling property
of the circuit’s check valve and ideal pressure dynamics for pY 2.
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(c) Clutch valve actuation force.

Figure 4.5: System inputs.

4.5 Intermediate Conclusion

In this chapter, the physical model of a hydraulic circuit employed in clutch actuation
for an automatic transmission was presented.

A stable and an unstable operating regime were discussed and interpreted against
the background findings from chapter 3. Insight from the dynamical behavior of an
isolated pressure regulation valve was drawn on to explain instability in the aggregate
system and to derive appropriate countermeasures in order to eliminate the problem.
Too large a pressure difference over the main pressure valve control edge in combina-
tion with insufficient valve damping were demonstrated to determine unstable system
behavior. The effects from the respective instability within the aggregate system is
alleviated, however, by a pressure decoupling check-valve, thereby only yielding sub-
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optimal energetic and not physically dysfunctional circuit performance.

The model outlined in this chapter lends itself to in-depth stability analysis and to the
application of identification and control techniques as frequently applied in automo-
tive engineering. In the context within which this model was developed – FFG project
850729, jointly conducted with ITM/KIT, TU Vienna and AVL List GmbH Graz, Aus-
tria – this is measurement-based hybrid modeling and systematic and advanced system
identification for energy-efficient actuation, employing methods investigated in the re-
search group of Univ. Prof. DI. Dr. Stefan Jakubek at TU Vienna, Austria. The applica-
tion of these techniques to this hydraulic circuit will be the focus of subsequent research
effort for which the present model builds a foundation.
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Figure 4.6: Unstable scenario.
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Figure 4.7: Stable scenario.
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5 Modeling of a Variable Displacement Vane
Pump

5.1 Background

Variable displacement pumps are used in a variety of applications. In contrast to fixed-
displacement pumps, they allow for an adjustment of the volume flow provided by
the pump to different requirements in a hydraulic circuit, most prominently volume
flow or pressure control. Changes in pump volume flow according to the control pur-
pose are achieved by displacing components of the pump that determine the pump’s
delivery volume. In the case of the variable displacement vane pump of translational
type (see Figures 5.1a, 5.1b ) to be discussed here, this is the so-called cam ring along
whose geometry the vanes of the pump slide and which can be displaced in horizontal
direction.

(a) Pump construction, following
[8].

(b) Cam ring with actuation components: Parameters and
forces acting on the cam ring (end stop forces not
shown).

Figure 5.1: Variable displacement vane pump.

For non-zero volume flow, this cam ring has to be displaced relative to the rotor bear-
ing the vanes, thereby changing the chamber volumes they enclose during a revolution.
This change of chamber volume leads to a compression and expansion of the enclosed
fluid over a revolution of the pump. The fluid is discharged into the line once connec-
tion of a vane chamber with the line via the so-called discharge port is established. In
contrast, volume expansion leads to fluid intake while passing the so-called intake port.

65



5 Modeling of a Variable Displacement Vane Pump

Because any pump exhibits an internal force evolution resulting from internal pressure
dynamics, the displacement of the cam ring can only be achieved by overcoming the
internal forces of the pump. Especially in mid- to high-pressure applications, the inter-
nal forces in a pump can easily become so large that a displacement based on external
actuation through servo-mechanisms is inappropriate from an energetic point of view.
For this reason, the actuation force usually comes from a hydraulic actuation mecha-
nism. In order to devise suitable actuation strategies for different control purposes or
to investigate the stability of systems featuring a variable displacement vane pump, an
autonomous model of the internal pump dynamics and the resulting internal pump
forces therefore is needed. It is the purpose of this section to derive such a model.
This will be achieved by taking relevant dynamical effects intrinsic to the working prin-
ciple of the pump into account and by averaging the corresponding internal forces
of the pump with respect to the revolution period. Averaging time-variant quanti-
ties is an approach commonly used in the assessment of hydraulic systems (see e.g.
[6, 50, 54, 71, 94, 128, 130] ) and considered valid in the case of pumps if the chamber
(= vane) frequency is larger than the undamped eigenfrequency of the cam ring [45]
(and in the context of axial piston pumps [50]). While this line of reasoning can only
be a rough assessment for the admissibility of such an approach in general, it will be
deemed feasible here, too. The resulting pump model should therefore be considered as
an idealization in that volume flow pulsation and internal force pulsation are averaged
out. In many cases, the need for considering averaged quantities is further motivated
by computation speed considerations, see e.g. [6, 45]. Within this chapter’s context, also
see [142, 143].

5.2 Pump Description

As briefly outlined in the preceding section, the working principle of the variable dis-
placement vane pump is fluid intake and discharge during a revolution upon chamber
expansion and contraction. In order to achieve chamber expansion and contraction over
pump revolution, eccentricity of the cam ring’s center OC relative to the rotor center OR

(see Figure 5.2) is neccessary. This eccentricity comprises two components: vertical and
horizontal. While vertical eccentricity remains fixed during operation, the horizontal
component of eccentricity corresponds to so-called cam ring displacement xS which is
variable and subject to cam ring actuation via hydraulic pistons of areas AS1, AS2, see
Figure 5.1b.
The internal dynamics of the pump significantly depend on system or line pressure and
the actual kinematic configuration of the displaced cam ring relative to the fixed rotor
bearing the vanes. This kinematic configuration is firstly determined by discharge port
angles αL0

R , α
L1
R and intake port angles αT0

R , αT1
R as introduced in Figure 5.2. These an-

gles are defined relative to the rotor (subscript “R”) and are fixed quantities relative to
the rotor. Secondly, cam ring eccentricity in vertical and horizontal direction affect the
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change in chamber volumes upon revolution and thereby the internal pressure dynam-
ics. These dynamics are modeled in this chapter taking into account three effects.

The first effect that is considered relevant for a model of the pump is related to the
line pressure exposure of the vane chambers. As can be seen from Figure 5.2, as a
vane chamber enters the pressure port region a uniform pressure equal to line pressure
p1 is assumed to immediately manifest itself in the respective chamber. The pressure
dynamics in the chambers thereby are assumed infinetely fast due to the high stiffness
of the hydraulic fluid and the small chamber volumes, essentially yielding very fast and
therefore negligible pressure dynamics. While this assumption neglects the pressure
build-up or reduction phase in the chamber volume as a chamber enters the pressure
port region, this effect is considered of no significant qualitative relevance; see also [90]
and [45], where this assumption is made, too.

The second (and third) effect taken into account is related to the forces generated within
distinct compression (and expansion) zones along the circumference of the cam ring
which are referred to as dead volume zones in the remainder of this chapter. These
zones are a result of port angle design: The working principle of the pump necessi-
tates the existence of two dead zones within which contraction (and expansion) of the
chamber volumes occur while passing from the tank port to the line port (and from the
line port to the tank port). The necessity of compression (and expansion) dead volume
zones derives from the need to separate intake and discharge port from another while
a chamber moves between these – in case no such separation were designed for, fluid
could flow from line to tank, resulting in hydraulic shortcut.

Another reason for these zones is that in many circumstances, pre-compression of the
chamber volumes before entering the discharge port region is necessary. Most ideally,
the chamber pressure of a vane entering the discharge port region would equal line
pressure. If the pressure at the end of the dead volume compression phase is below line
pressure, this will result in an impact-like rise in chamber pressure as soon as connec-
tion to the discharge port is established. This is a consequence of the fast dynamics of
chamber pressure: the impact-like rise in chamber pressure results from oil-backflow
from line to the vane chamber. This in turn is often related to undesired noise. In order
to reduce such noise, the pump chambers may be subjected to pre-compression while
passing through the compression dead volume zone with the pre-compression effect
augmented by fixed vertical eccentricity of the cam ring. In the interest of a consistent
derivation of the underlying kinematic relationships, the Figures in this chapter show
positive vertical displacements where in real applications it assumes negative values in
order to achieve the desired pre-compression effect.

Despite their significantly nonlinear nature, it will be demonstrated that averaging of
the pump forces resulting from line pressure exposure surprisingly will result in a
purely analytical model. As for pump forces from chamber compression and expan-
sion, comparatively simple approximations will be shown to allow averaging of the
respective forces, yielding satisfactory results.
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5 Modeling of a Variable Displacement Vane Pump

5.3 Pump Model

5.3.1 Pump Kinematics

The major problem in deriving a minimal vane pump model is the circumstance that the
pressure ports determining all relevant angles in the formulation of the force computa-
tion problem are fixed relative to the rotor bearing the vanes. However, forces resulting
from pressure and acting on the cam ring are to be computed, thereby either a mapping
between rotor-fixed geometrical quantities and cam-ring-fixed geometrical quantities
is needed or the problem has to be formulated in such a way that the necessity of this
mapping is circumvented. As it turns out, this mapping indeed is not required if the
approach presented here is taken.

Figure 5.2: Vane pump kinematics: rele-
vant angles.

Figure 5.3: Vector ray.

From Figure 5.3, the vector ray connecting the center of the rotor OR with an arbitrary
point on the cam ring parameterized by ϕR has a length r(ϕR) that is given by

ψ0 =arctan
(
h
xS

)
,

r(ϕR) =
√
x2
S + h2 cos (ϕR − ψ0)

+
√(

x2
S + h2

)
cos2 (ϕR − ψ0)− h2 − x2

S + r2
C .

From here onwards, ϕR will be taken as the first vane chamber’s leading vane’s angle.
This decision is arbitrary and does not alter the results of the analysis. It should be
noted that r(ϕR) is a function of the cam-ring displacement xS as well. In order to keep
the notation simple, however, this functional dependence will not always be explicitly
stated in what follows. Wherever relevant, dependence on xS will be noted explicitly.
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5.3.2 Pump Forces

Since pressure acts hydrostatically, forces from pressure in ex- or ey-direction can be
computed by considering the effective area in the respective direction the pressure is
acting on as shown in Figure 5.4 for the i-th vane chamber’s pressure acting on cam
ring in ex-direction.

Figure 5.4: Effective area for force from a single chamber.

As the cam ring is displaced in ex-direction, the general representation of the force from
internal pressure in ex-direction within the i-th single vane chamber (subscript “SC”)
undergoing a revolution quantified by the first chamber’s leading vane’s rotation angle
ϕR can be stated as

FP,SC(ϕR − (i− 1)θV ) = Ax(ϕR − (i− 1)θV )p(ϕR − (i− 1)θV ) (5.1)

= hP

[
r(ϕR − (i− 1)θV ) sin(ϕR − (i− 1)θV )

− r(ϕR − iθV ) sin(ϕR − iθV )
]
p(ϕR − (i− 1)θV )

where hP is pump width and θV the vane angle. The vane angle is determined by
2π/nCH with the number of vane chambers nCH . The pump force’s period thus is θV ,
accordingly.
Now, because for the average force fP (xS, p1) from the pump’s internal pressure distri-
bution the following holds

fP (xS, p1) =
1

θV

∫ θV

0

nCH∑

i=1

FP,SC(ϕR − (i− 1)θV )dϕR (5.2)

=
1

θV

nCH∑

i=1

∫ θV

0

FP,SC(ϕR − (i− 1)θV )dϕR . (5.3)

69



5 Modeling of a Variable Displacement Vane Pump

Then, with the substitution Φ = ϕR − (i− 1)θV ,

fP (xS, p1) =
1

θV

nCH∑

i=1

∫ −(i−1)θV +θV

−(i−1)θV

FP,SC(Φ)dΦ =
1

θV

∫ 2π

0

FP,SC(Φ)dΦ , (5.4)

i.e. the average force from all pump chambers acting on the cam ring in ex-direction
over one period is equal to the average force from the pressure within a single vane
chamber while passing from 0 ≤ ϕR < 2π.
For the sake of simplicity, the calculation is performed for the first vane chamber here.
Since the derivations hold for any chamber i, the distinction between Φ and ϕR will be
made void in what follows and only ϕR will be used.

5.3.2.1 Forces from Line Pressure Exposure

Noting that generally the angular difference αL1
R −αL0

R is no natural number multiple of
θV , it becomes evident that the force from line pressure exposure of all exposed cham-
bers exhibits a jump after a revolution angle of θV −∆θV where ∆θV , according to Figure
5.2, is

∆θV = θV · ceil

((
αL1
R − αL0

R

)
/θV

)
−
(
αL1
R − αL0

R

)
. (5.5)

The force FLPE from all chambers exposed to line pressure p1 (subscript “LPE”) can
then be given by

FLPE(xS, p1, ϕR) =





p1hP

(
r(Θ1(ϕR)) sin(Θ1(ϕR))

−r(Θ0(ϕR)) sin(Θ0(ϕR))
)

for 0 ≤ ϕR < θV −∆θV ,

p1hP

(
r(Θ2(ϕR)) sin(Θ2(ϕR))

−r(Θ0(ϕR)) sin(Θ0(ϕR))
)

for θV −∆θV ≤ ϕR < θV

(5.6)

with

Θ0(ϕR) = αL0
R − θV + ϕR , (5.7)

Θ1(ϕR) = αL1
R + ∆θV + ϕR , (5.8)

Θ2(ϕR) = αL1
R − (θV −∆θV ) + ϕR . (5.9)

For the parameters in Table 5.1, the force assumes the variation in revolution angle
(proportional to time) shown in Figure 5.5.
With the considerations in equation (5.2) et sqq., the average force resulting from cham-
ber exposure to line pressure can however be computed simply by averaging the force
on the cam ring over period θV for an individual chamber traversing the interval be-
tween ϕR = αL0

R and ϕR = αL1
R + θV . This is the interval within which the respective

vane chamber has connection with the discharge port. Thereby, the necessity to take the
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5.3 Pump Model

Table 5.1: Vane pump parameters.
Parameter Symbol Value Unit
Rotor radius rR 0.0445 m

Cam ring radius rC 0.048 m

Number of vane chambers nCH 11

Vane chamber angle θV
2π
nCH

rad

Vertical cam eccentricity h −0.001 m

Pump width hP 0.02 m

Pump revolution speed nP 900 rpm

Pump revolution frequency ΩP 2πnP/60 rad/s

Angle defining the beginning of discharge port αL0
R 28 deg

Angle defining the end of discharge port αL1
R 173 deg

Angle defining the beginning of tank port αT0
R 208 deg

Angle defining the end of tank port αT1
R 353 deg

Leakage parameter γ1 1.5× 10−12 m4s/kg

Leakage parameter multiple κ 1 –
Line pressure p1 30 bar

0 θV 2θV 3θV 4θV 5θV 6θV 7θV

−6

−4

−2

0

·10−4

ϕR

F
L
P
E
/p

1
[N
/P

a]

Figure 5.5: Force from line pressure exposure over revolution angle ϕR and
xS = 0.001m.
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5 Modeling of a Variable Displacement Vane Pump

jump condition in (5.6) into consideration is spared. The average force in ex-direction
from line pressure exposure can thus be written as

fLPE(xS, p1) = p1

=: fP1(xS)︷ ︸︸ ︷
hP
θV

∫ αL1
R +θV

αL0
R

[
r(ϕR) sin(ϕR)− r(ϕR − θV ) sin(ϕR − θV )

]
dϕR . (5.10)

Before continuing, a closer look at the integrand reveals the need for one further trans-
formation. If, for example, the first part of the integrand is considered and one intro-
duces the abbreviation ehxS =

√
x2
S + h2, one finds

r(ϕR) sin(ϕR) =

[
ehxS cos (ϕR − ψ0) +

√
r2
C − e2

hxS
sin2 (ϕR − ψ0)

]
sinϕR.

The subtraction of ψ0 in the arguments of the cos- and sin-functions makes the prob-
lem of finding an antiderivative unwieldy. Therefore, it is purposeful to introduce the
transformation

ψ = ϕR − ψ0. (5.11)

Hence,

r(ϕR)→ r(ψ) = ehxS cos (ψ) +
√
r2
C − e2

hxS
sin2 ψ . (5.12)

Geometrically speaking, this corresponds to counting angle ϕR from a different posi-
tion, i.e. the angle ϕR is shifted by ψ0 so that the force FP,SC acting in ex-direction can be
interpreted as a projection of the components of a force in a

(
eξ, eη

)
coordinate system

rotated by ψ0 relative to the original coordinate system, see Figure 5.6.
According to Figures 5.6 and 5.7, the effective area the dead volume pressure acts on in
ex-direction can thus be decomposed into two effective areas in eξ- and eη-directions,
respectively:

Aξ = −r(ψ) cos(ψ) + r(ψ − θV ) cos(ψ − θV ) , (5.13)
Aη = r(ψ) sin(ψ)− r(ψ − θV ) sin(ψ − θV ) . (5.14)

The corresponding force components in the respective directions therefore are

FP,SCξ = −p1hP
[
r(ψ) cos(ψ)− r(ψ − θV ) cos(ψ − θV )

]
, (5.15)

FP,SCη = p1hP
[
r(ψ) sin(ψ)− r(ψ − θV ) sin(ψ − θV )

]
. (5.16)

With

ex = cos(ψ0)eξ − sin(ψ0)eη , (5.17)
ey = sin(ψ0)eξ + cos(ψ0)eη , (5.18)
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Figure 5.6: Kinematics of coordinate trans-
formation (5.11).

Figure 5.7: Pressure area decomposition.

the force from line pressure exposure in a single chamber F = FP,SCξeξ + FP,SCηeη can
be projected onto the ex-direction:

FP,SC = F · ex (5.19)
= FP,SCξeξ · ex + FP,SCηeη · ex (5.20)
= FP,SCξ cos(ψ0)− FP,SCη sin(ψ0) . (5.21)

By applying this transformation, the force in an individual chamber whose position is
characterized by αL0

R − ψ0 ≤ ψ ≤ αL1
R + θV − ψ0 can ultimately be given as

FP,SC(xS, p1, ψ) = p1hP

[
h

ehxS

((
ehxS cosψ +

√
r2
C − e2

hxS
sin2 ψ

)
cosψ

−
(
ehxS cos (ψ − θV ) +

√
r2
C − e2

hxS
sin2(ψ − θV )

)
cos (ψ − θV )

)

+
xS
ehxS

((
ehxS cosψ +

√
r2
C − e2

hxS
sin2 ψ

)
sinψ

−
(
ehxS cos (ψ − θV ) +

√
r2
C − e2

hxS
sin2(ψ − θV )

)
sin (ψ − θV )

)]
.

(5.22)

Then, the average force from line pressure exposure is given by (compare to (5.10))

fLPE(xS, p1) =
1

θV

∫ αL1
R −ψ0+θV

αL0
R −ψ0

FP,SC(xS, p1, ψ)dψ = p1fP1(xS), (5.23)
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5 Modeling of a Variable Displacement Vane Pump

for which a closed form solution of manageable size exists for fP1(xS) that can be eval-
uated with the help of computer algebra systems such as MAPLE. It is remarkable that
in contrast to alternative ways of deriving the above force-displacement-relationship,
neither linearization of the kinematical relationships nor piecewise integration as a con-
sequence of jump conditions as implied by equation (5.6) for the number of chambers
exposed to line pressure are necessary.
Performing the respective calculations with the parameters from Table 5.1, the results
for fP1(xS) are shown in Figure 5.8.

0 0.5 1 1.5 2 2.5 3 3.5

·10−3

−3.47
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−3.44
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f P
1
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a]

h = 0m
h = −0.001m

Figure 5.8: Average force area from line pressure exposure.

5.3.2.2 Forces from Dead Volume Compression

The second force effect taken into account is due to compression and expansion effects
in the dead volumes, see Figure 5.9.

Figure 5.9: Dead volume compression: volume with intake
pressure p0 = 0 (blue) and compressed volume
(red).
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Forces acting on the cam ring in dead volume regions result from compression and
expansion and can be modeled as functions of the compression and expansion geom-
etry. As in the calculation of the forces resulting from line pressure expansion of the
vane chambers, an averaging approach with respect to vane chamber revolution will be
utilized.
The starting point of the force computation again is the vector ray in Figure 5.3 describ-
ing the kinematics of the pump. By integration, one finds the chamber volume V (ϕR)

for a specific position ϕR of the leading vane

V (ϕR) =
1

2
hP

∫ ϕR

ϕR−θV

(
r2(ϕR)− r2

R

)
dϕR

=
1

4
hP e

2
hxS

(
sin(2(ϕR − ψ0))− sin(2(ϕR − θV − ψ0))

)

+
1

2
hP r

2
C


arctan


 ehxS sin(ϕR − ψ0)√

r2
C − e2

hxS
sin2(ϕR − ψ0)




− arctan


 ehxS sin(ϕR − θV − ψ0)√

r2
C − e2

hxS
sin2(ϕR − θV − ψ0)







+
1

2
hP ehxS

[
sin(ϕR − ψ0)

√
r2
C − e2

hxS
sin2(ϕR − ψ0)

− sin(ϕR − θV − ψ0)
√
r2
C − e2

hxS
sin2(ϕR − θV − ψ0)

]
+

1

2
hP
(
r2
C − r2

R

)
θV .

(5.24)

Knowing the volume as a function of revolution angle ϕR, pressure within a chamber
in dead volume region can be computed from

dp = −Efl
dV

V (ϕR)
. (5.25)

Under the assumption of a constant bulk modulus Efl this translates into a pressure
evolution governed by

p(ϕR) = pR0 + Efl ln

(
V (ϕR0)

V (ϕR)

)
, (5.26)

where pR0 is an integration constant representing the initial chamber pressure corre-
sponding to ϕR = ϕR0. For the compression dead volume, ϕR0 = αT1

R + θV as this is the
angle where the representative vane chamber just disconnects from the intake port.
For the averaging procedure, the consideration of the revolution of a single chamber in
αT1
R + θV ≤ ϕR ≤ αL0

R renders expression (5.1) into
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FDV c(xS, ϕR) = FP,SC(xS, α
T1
R + θV ≤ ϕR ≤ αL0

R ) (5.27)

= p(ϕR)hP

[
r(ϕR) sin(ϕR)− r(ϕR − θV ) sin(ϕR − θV )

]
. (5.28)

From this, the average force from dead volume can be computed as

fP2(xS) :=
1

θV

∫ αL0
R

αT1
R +θV

FDV c(xS, ϕR)dϕR . (5.29)

It is to be emphasized here that the averaging takes place with respect to θV , the period
of all relevant forces – forces from line pressure exposure and dead volume compression
(and expansion) – but that compression dead volume forces are only active during a
fraction of the period, i.e. in the range αT1

R + θV ≤ ϕR ≤ αL0
R .

Equation (5.29) cannot be solved analytically anymore due to the formally highly non-
linear character of the function p(ϕR). In order to perform an averaging with respect to
revolution angle ϕR over a period of θV , pressure p(ϕR) can be Taylor-expanded with
respect to ϕR

p(ϕR) ≈ p(αT1
R + θV )+

dp

dϕR

∣∣∣∣
αT1
R +θV

(
ϕR − (αT1

R + θV )
)

(5.30)

+
1

2

d2p

dϕ2
R

∣∣∣∣
αT1
R +θV

(
ϕR − (αT1

R + θV )
)2

+ . . . , (5.31)

leading to an approximate representation of dead volume pressure and thereby an
integrable expression. The Taylor-expansion approach is justified by noting that the
force from dead volume compression is only active within the small angular range
αT1
R + θV ≤ ϕR ≤ αL0

R – resulting in an almost linear pressure evolution. Figures 5.10a
and 5.10b show representative results for the evolution of dead volume pressure at dif-
ferent values of xS and h featuring a visualization of the associated Taylor expansions
of dead volume pressure. Corresponding results for average forces from dead volume
compression are shown in Figure 5.11.
The above pressure computations were performed under the assumption of an ideal
pump with perfectly sealed vane chambers. No leakage was assumed, hence the pres-
sure evolution in the dead volume region is a result of pure geometric compression and
expansion. In case leakage is introduced to the model, the pressure differential equation
for a vane chamber can be given as

dp

dt
=
Efl
V

(
−dV

dt
− γ1(p− p1)− γ2(p− p0)

)
. (5.32)

In the above equation, leakage takes place in two directions as illustrated in Figure 5.12:
firstly, leakage passes from the chamber with pressure p to the line with load pressure
p1 or vice versa, depending on the sign of the pressure difference between the two. The
second source of leakage flow is the pressure difference between the vane chamber and
tank pressure p0.
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(a) Dead volume pressure evolution over
ϕR for h = 0m.
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(b) Dead volume pressure evolution over
ϕR for h = −0.001m.

Figure 5.10: Validity of the Taylor approximation (5.30).

0 0.5 1 1.5 2 2.5 3 3.5

·10−3

0

100

200

300

xS [m]

f P
2
[N

]

h = 0m
h = −0.001m

Figure 5.11: Average force from dead volume compression over xS .

In equation (5.32),

γ1 =
bh3

L

12lηF
, γ2 = κγ1 , (5.33)

with κ a multiple between γ1 and γ2 so that γ1 can be understood as a leakage flow
coefficient that depends on leakage gap height hL, slot width b, channel length l and
fluid viscosity ηF . In the following, γ1 and γ2 will be taken as a lumped parameter and
varied according to possible ranges of their constituents. This is motivated by the fact
that under operating conditions, neither of its constituents can be determined precisely.
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Figure 5.12: Leakage flows from a vane chamber in the compression dead volume re-
gion. Leakage flow towards line pressure p1 is red, leakage flow towards
the tank pressure p0 is blue.

For constant revolution speeds, it holds that ϕR = ΩP t and thus

ΩP
dp

dϕR
=
Efl
V

(
−ΩP

dV

dϕR
− γ1(p− p1)− γ2(p− p0)

)
, (5.34)

dp

dϕR
= −Efl

V

dV

dϕR
− γ1Efl

ΩP

1

V
(p− p1)− γ2Efl

ΩP

1

V
(p− p0) . (5.35)

This form of the differential equation for the chamber pressure reveals the perturbation
character of the leakage volume flow. Taking

ε =
γ1Efl
ΩP

(5.36)

it can be seen that the leakage perturbation increases with gap height and width while
it decreases with revolution speed, viscosity and gap length.
The pressure equation thus reads

p′ = −Efl
V
V ′ − ε 1

V
(p− p1)− κε 1

V
(p− p0) (5.37)

with the prime symbol denoting the derivative with respect to pump revolution angle
ϕR.
The inverse dependence of leakage on the revolution speed captures the intuitive no-
tion that for the purely geometric compression and expansion of the chamber, time or
revolution speed does not play any role as volume change and thus pressure does only
depend on the angular position of the vane chamber. However, the slower the process
of dead volume compression and decompression take place, the more time leakage has
to flow into and out of the system, thereby changing the pressure of the vane chamber.
While equation (5.37) is linear in p and therefore analytically solvable via a variation of
constants approach, the results obtained do not lend themselves ideally to an averaging
approach over θV . In order to investigate the effect of leakage, a simple perturbation
ansatz for the pressure is therefore assumed:

p = pas0 + εpas1 + ε2pas2 + . . . (5.38)
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This approach qualitatively emphasizes the perturbation character of leakage and also
allows for an extension to possible nonlinear models of pump leakage. Substituting the
expansion into the pressure differential equation yields

p′as0 + εp′as1 + ε2p′as2 + · · · = −Efl
V
V ′−ε 1

V

(
pas0 + εpas1 + ε2pas2 + · · · − p1

)

−κε 1

V

(
pas0 + εpas1 + ε2pas2 + · · · − p0

)
. (5.39)

Collecting identical orders of ε yields the following recursively solvable system of dif-
ferential equations:

ε0 : p′as0 = −Efl
V
V ′ , (5.40)

ε1 : p′as1 = − (1 + κ)
1

V
pas0 +

1

V
(p1 + κp0) , (5.41)

ε2 : p′as2 = − (1 + κ)
1

V
pas1 , (5.42)

...

εn : p′asn = − (1 + κ)
1

V
pas(n−1) . (5.43)

The solution for the unperturbed problem pas0 is given by (5.26), so that higher order
approximations can be computed recursively. In order to do so, however, it is necessary
to find expressions integrable in ϕR for 1/V (ϕR) and for pas0. As before, this is achieved
by approximating the relevant expressions as Taylor-series about ϕ∗R = αT1

R + θV , so that

1/V (ϕR) ≈ 1

V

∣∣∣∣
ϕ∗R

− 1

V 2

dV

dϕR

∣∣∣∣
ϕ∗R

(ϕR − ϕ∗R)

+
1

2

(
1

V 3

(
dV

dϕR

)2

− 1

V 2

d2V

dϕ2
R

)∣∣∣∣
ϕ∗R

(ϕR − ϕ∗R)2 + . . . (5.44)

=: cV 0 + cV 1ϕR + cV 2ϕ
2
R + . . . (5.45)

pas0 ≈ cpas00 + cpas01ϕR + cpas02ϕ
2
R + . . . . (5.46)

A solution for pas1 then is of the form

pas1 ≈ cpas10 + cpas11ϕR + cpas12ϕ
2
R + cpas13ϕ

3
R + cpas14ϕ

4
R + . . . (5.47)

from which higher order solutions can be computed in a similar fashion. While there
is no limitation to the order of approximation conceptually due to the repetitive nature
of the equation structure in the recursively defined system of equations, evaluation of
approximations of order higher than ε6 become excessively time-consuming in MAPLE.
This is, however, not a problem as approximation quality is very good for expansions
up to third order in ε, as can be seen in Figures 5.13 and 5.14 where pressure evolutions
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Figure 5.13: Dead volume pressure evolution over ϕR at a line pressure of 30bar, h =

0m, xS = 0.001m. Cases a) no leakage, b) leakage, analytical solution, c) first
order approximation to pressure evolution with leakage through asymp-
totic series, d) second order approximation, e) third order approximation,
f) fourth order approximation, g) fifth order approximation.
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Figure 5.14: Dead volume pressure evolution over ϕR at a line pressure of 30bar, h =

−0.001m, xS = 0.001m. Cases a) no leakage, b) leakage, analytical solution,
c) first order approximation to pressure evolution with leakage through
asymptotic series, d) second order approximation, e) third order approxi-
mation, f) fourth order approximation, g) fifth order approximation.

are shown for a comparatively large leakage parameter γ1 = 1.5 × 10−12m4s/kg and
xS = 0.001m.
These Figures very well illustrate the effects of leakage on dead volume chamber pres-
sure evolution: For zero vertical eccentricity and thereby no chamber volume pre-
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compression, the pressure evolution in the chamber is such that the chamber pressure
does not reach line pressure p1 = 30bar within the dead volume region. As a conse-
quence, leakage flows from the line into the chamber, leading to an increased pressure
within the chamber when compared to the non-leakage flow situation. Because leakage
flow towards the tank simultaneously takes place, the slope of the pressure evolution
with leakage is decreasing: Increasing chamber pressure will shift the net balance of
leakage flow towards the tank-directed leakage flow over ϕR.
Equivalently, for a situation with chamber pre-compression through h = −0.001m, as
long as chamber pressure is below line pressure, leakage overall increases chamber
pressure above the pressure level that would persist would no leakage be present. Once
the chamber pressure exceeds line pressure, the overall effect of leakage is the reduction
of pressure below the level of the no leakage scenario. The extent of the effect described
above is contingent on pump displacement xS which explains why in Figure 5.15 even
for h = 0 m the dead volume force without leakage may exceed the dead volume force
with leakage for large enough xS . In Figure 5.16, results are shown for a vertical eccen-
tricity h = −0.001m.
With the perturbation approach outlined above, overall compression dead volume
forces can be averaged over a revolution period of the pump, yielding

fP2 = fP2(xS, p1), (5.48)

where, in contrast to (5.29), the force from dead volume compression now also is a
function of line pressure p1.
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Figure 5.15: Compression dead volume force, h = 0m.

5.3.2.3 Forces from Dead Volume Expansion

Besides the compression dead volume between tank and discharge port, there is a sec-
ond dead volume between discharge port and tank where the fluid volume remaining
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Figure 5.16: Compression dead volume force, h = −0.001m.

in a chamber after passing the discharge port is expanded. The volume expansion goes
in hand with a pressure reduction, yielding forces fP3(xS, p1) from the expansion dead
volume. As in Karmel [45], this pressure reduction is modeled such that pressure drops
below atmospheric p0 = 0 level are neglected. The pressure reduction, too, is governed
by equation (5.25), simply with the initial conditions

ϕR0 = αL1
R + θV (5.49)

pR0 = p1 , (5.50)

from which the force from expansion dead volume pressure FDV e(xS, p1, ϕR) and thus

fP3(xS, p1) =
1

θV

∫ αT0
R

αL1
R +θV

FDV e(xS, ϕR, p1)dϕR (5.51)

can be computed. The computation of these is identical with those from the compres-
sion dead volume.
Due to the stiffness of the fluid, chamber pressure is typically reduced to zero pressure
after a very small angle of rotation in the case of non-zero vertical eccentricity h. For this
scenario, averaging the corresponding forces on the cam ring over a revolution period
θV therefore shows only minor influence of forces from dead volume expansion relative
to the forces from line-pressure exposure, which by far exceed those from dead volume
expansion. As a practical consequence, this force component can be neglected without
significantly affecting model quality. The case with zero vertical eccentricity may, how-
ever, lead to a somewhat significant contribution of expansion dead volume forces, as
can be seen from Figure 5.17, at least for small horizontal eccentricities xS . Since in the
majority of usage scenarios, vane pumps will be subject to vertical eccentricity, this is
of little practical concern.
For very large line pressures and/or zero vertical eccentricity, a simplifying approxi-
mation can be made by virtually taking αL1

R 7→ αT0
R − θV , i.e. by virtually extending the
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Figure 5.17: Average dead volume expansion forces for different vertical eccentricities
at a line pressure of 30bar.

discharge port to the intake port so that the region within which chambers are exposed
to line pressure is increased in order to get an estimate for the forces from dead volume
expansion.

5.3.3 Pump Volume Flow

In classic pump modeling theory, the volume flow provided by a pump is typically
computed from purely geometric considerations, see e.g. [120, 123]. Essentially, the
theoretical volume flow can be computed from the difference in fluid volume a vane
chamber carries when moving from ϕR = αL0

R to ϕR = αL1
R + θV :

qP = nCH
ΩP

2π

(
V (αL0

R )− V (αL1
R + θV )

)
. (5.52)

It is evident from equation (5.24) that the vertical eccentricity of the cam ring h affects
the volume and thereby the pressure evolution within a chamber. As pointed out be-
fore, h is typically chosen negative with the goal of pump noise reduction in mind. This
has the interesting consequence that, from equation (5.52) as visualized in Figure 5.19,
with h 6= 0 pump volume flow can eventually become negative for sufficiently low xS .
In practice, the pump displacement thus has to exceed a certain threshold value to de-
liver positive volume flow. This is a phenomenon common to pivoting-type variable
displacement pumps with cam offset, too, and known from [47]. Apart from this offset,
pump volume flow varies approximately in a linear fashion with pump displacement
xS so that in the remainder of the present thesis, a fitted curve represented by

qP = (xS − xoffsetS )q̂P (5.53)

shall be used to describe pump volume flow.
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Figure 5.18: Geometric volume flow from chamber volume difference.
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Figure 5.19: Pump volume flow over pump displacement.

5.4 Intermediate Conclusion

In this chapter, a minimal model for a variable displacement vane pump was derived.

The model builds on elementary kinematic considerations and internal pump forces
acting on the cam ring are averaged over the revolution period of the pump. Within
the model’s scope, three components of the force on the cam ring were modeled: forces
due to line pressure exposure of vane chambers while passing the discharge port, dead
volume compression forces and dead volume expansion forces.

For an ideal pump without leakage, the total force on the cam ring can be represented
by

f IP (xS, p1) = p1fP1(xS) + fP2(xS) + fP3(xS, p1) . (5.54)

The model was extended for compression dead volume leakage, yielding

f IPL(xS, p1) = p1fP1(xS) + fP2(xS, p1) + fP3(xS, p1) (5.55)
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and incorporating line-pressure-depending leakage flow effects through fP2(xS, p1)

with fP2 then a function of p1, too. Because the expansion dead volume force contribu-
tion to total cam ring force is small relative to the other force components, a simplified
model

f IIP (xS, p1) = p1fP1(xS) + fP2(xS) or f IIPL(xS, p1) = p1fP1(xS) + fP2(xS, p1)

(5.56)

will in many cases be sufficient to describe total cam ring force.

Ultimately, based on kinematic considerations, a simplified model for the volume flow
provided by the pump was derived which is linear in cam ring displacement xS .

The pump model obtained allows for a simple integration into complex hydraulic
circuits for dynamic investigations and derivation of control laws for the vane pump.

While the assumption of a constant bulk modulus should be the first step for every
model of a hydraulic structure, it is worth pointing out that the approach presented in
this chapter can also be made for some models of bulk modulus varying with pressure.
For example, the model for the effective bulk modulus proposed in [37] is

Eeff (p) = Emax

[
1− ek1+k2p

]
(5.57)

with Emax = 1.8 × 109 Pa, k1 = −0.4 and k2 = −2 × 10−7 /Pa. This approach results in
the following model for the pressure evolution in a dead volume

p(ϕR) = pR0 + Emax ln

(
V (ϕR0)

V (ϕR)

)
− 1

k2

ln



((

V (ϕR0)

V (ϕR)

)k2Emax
− 1

)
ek1+k2pR0 + 1


 .

(5.58)

Obviously, the possibility of an analytical solution of equation (5.25) depends on the
bulk modulus model.
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6 Modeling and Analysis of a Variable
Displacement Vane Pump System

6.1 Background

In many practical circumstances, pumps are to provide a volume flow in order to main-
tain a specific system pressure. It is in these application scenarios that variable displace-
ment pumps provide an advantage over fixed displacement pumps as the volume flow
can be adapted to the pressure requirement. Building on the minimal model for a vari-
able displacement vane pump of linearly displacing type derived in chapter 5, in this
chapter a model of a classic hydraulic system topology feauturing a variable displace-
ment vane pump is presented. The aggregate system model shall be used to discuss
relevant aspects of equilibrium stability of the system after incorporating leakage ef-
fects through the model derived in chapter 2. Within this context, also see [147] for a
stability discussion of the circuit with a simplified pump model.

6.2 System Description

In Figure 6.1, the system under consideration is shown. It features a variable displace-
ment vane pump actuated through piston areas AS1, AS2 (also, see Figure 5.1b) and a
pressure regulating valve with close resemblance to the valve treated in chapter 3. The
valve is – at least in theory – critically lapped in order to ensure satisfactory set-point
regulation.
The system’s purpose is to maintain pressure p1 independently from the hydraulic load,
i.e. how much fluid passes towards the hydraulic consumer. The load the pump pro-
vides with volume flow is modeled as a simple orifice with area AOR. Hence, load
volume flow depends linearly on load orifice area AOR.
There are two scenarios to which the regulator valve responds. If system pressure is be-
low the pressure specified by the spring pre-stress FR0, the valve will open towards the
system side and establish connection between system capacitance Ch1 and secondary
capacitance ChS . As a consequence, pressure pS acting on the pump actuation cylinder
through area AS1 increases and causes a positive cam ring displacement which goes
in hand with an increase of the pump’s volume flow and thereby system pressure p1.
The opposite scenario is a decrease in pump volume flow when system pressure p1 ex-
ceeds the set pressure. If this is the case, the regulator valve will open towards the tank
side, connecting capacitance ChS with the tank and thereby decrease pS through fluid
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outflow in ChS . This translates into a cam ring displacement in negative direction. As
a consequence, volume flow is reduced so that p1 decreases to the point where force
equilibrium on the valve spool is restored and the valve control edges are closed.

Figure 6.1: System model.

6.3 System Model

The system is modeled by means of the methodology already employed in previous
chapters. Pump forces acting on the cam ring are taken from chapter 5 as

fP (xS, p1) = f IPL(xS, p1) = p1fP1(xS) + fP2(xS, p1) + fP3(xS, p1) . (6.1)

The cam ring’s equation of motion is

mPSẍS + dPSẋS + kSxS = pSAS1 − p1AS2 + fP (xS, p1)

+ FS0 + kSlS − FES(xS, ẋS, lS) . (6.2)

where mPS is the combined mass of actuation cylinder and pump cam ring and dPS the
corresponding viscous damping coefficient.
For the regulator valve’s dynamics, the following differential equation can be given
(also, see Figure 6.2b):

mRẍR + dRẋR + kRxR = p1AR − FR0 − FES(xR, ẋR, lR) . (6.3)

The end stop forces acting on the pump actuation cylinder and the regulation valve are
modeled with a regularization approach as described by equation (4.5).
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The hydraulic balance equations the mechanical components are coupled with can be
given as:

Chṗ = Qq + Aẋm (6.4)

with

Ch =

[
Ch1 0

0 ChS

]
, Q =

[
1 −1 0 −1

0 1 −1 0

]
, A =

[
AS2 −AR
−AS1 0

]
, (6.5)

the mechanical and hydraulic states

xm =
[
xS xR

]T

, p =
[
p1 pS

]T

(6.6)

and

q =
[
qP qR qT qOR

]T

. (6.7)

In the above equations, the capacitances are computed as follows:

Ch1 =
V1(xS, xR)

Efl
=
V10 + xRAR + (lS − xS)AS2

Efl
, (6.8)

ChS =
VS(xS)

Efl
=
VS0 + xSAS1

Efl
. (6.9)

While for qP the volume flow is given by equation (5.53), the other volume flows in (6.7)
are those associated with the different notch geometries when regularized by leakage
(index “L”):

qR = qiL(−xR + lReg, p1, pS,Pi) , i = {2,◦} , (6.10)
qT = qiL(xR − lReg − 2u, pS, p0,Pi) , i = {2,◦} (6.11)

in case of a rectangular or circular notch geometry and

qR = q4L(−xR + lReg + b4, p1, pS,P4) , (6.12)
qT = q4L(xR − lReg − b4 − 2u, pS, p0,P4) (6.13)

for a triangular notch. The respective notch geometry parameters are collected in Pi,
see Table 6.1.
For the sake of a simplified notation, the respective transformations in equations (6.10)-
(6.13) for the xR-coordinate will not be written explicitly from here onwards.
Nominally, the valve is critically lapped. In order to account for leakage effects and
to make the problem accessible to numerical investigation at all, leakage is taken into
account, too. Notably, the modeling of leakage assumes an overlap u (see Figure 6.2a)
in each opening direction.
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Table 6.1: Notch geometry parameters Pi.
Parameter Symbol Value Unit
Spool / Flow passage circumference bReg 0.01 m

Flow passage area length lReg 0.004 m

Triangular notch height b4 0.0015 m

Triangular notch width a4 0.0015 m

Circular notch radius r◦ 0.001 m

Gap height ∆r 15× 10−6 m

Number of notches nN 4 -

(a) Regulator valve: flow passage area ge-
ometry and notation for rectangular
notch.

(b) Regulator valve design.

Figure 6.2: Regulator valve model. The valve’s nominal range of motion is 0 ≤ xR ≤ lR
as restricted by the end stops which are modeled through equation (4.5). The
valve spool (bold) features an overlap u on either side.

For load flow,

qOR = γFAOR
√
p1 (6.14)

is assumed.
Structurally, this system can be seen as an example of a non-top-down topology: the
main reason for this is that pressure pS for displacing the pump cam ring is fed from
system pressure p1 – which itself is governed indirectly by cam ring displacement. In
Figure 6.1, this can be seen from the loop betweenChS andCh1 and the valve in between.
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6.4 Simulation Results and Stability Analysis

An analytical treatment of this system is clearly not feasible. Its general nonlinear struc-
ture and the fact that it features six states make an analytical approach unattractive.
Notably, even when physically based regularization via leakage is introduced to the
model, non-smoothness remains a system characteristic on macro scale, see Figures 2.4,
2.7, 2.9.

Actually, the system’s non-smoothness is uncommon due to its lack of symmetry: When
the regulator valve establishes connection between Ch1 into ChS , the volume flow bal-
ances of the two corresponding pressure dynamics are affected while for a tank-sided
valve opening only the fluid balance in ChS will be affected when fluid is discharged
into the tank.

A numerical assessment, however, is non-standard, too, due to an exceptionally large
number of parameters the model features (over thirty) and because the numerical
properties of the system are those of a highly stiff problem (see Tables 6.2, 6.1),
making it a challenge to compute solutions. In order to ease numerical analysis, a
non-dimensionalization therefore is to be performed before investigating stability.

Table 6.2: Base system parameters.
Parameter Symbol Value Unit
Regulator valve mass mR 0.015 kg

Regulator valve damping dR 20 Ns/m

Regulator valve spring stiffness kR 16000 N/m

Regulator valve spring pre-stress force FR0 29 N

Regulator valve piston area AR 5× 10−5 m

Regulator valve channel length lR 0.0082− 0.0114 m

Pump and actuator mass mPS 0.32 kg

Pump damping dPS 10 Ns/m

Pump actuator spring stiffness kS 5000 N/m

Pump actuator spring pre-stress force FS0 25 N

Actuator reaction area AS1 π/4× 0.052 m2

Actuator reaction area AS2 0.7AS1 m2

Actuator channel length lS 0.0035 m

Actuator base volume VS0 0.0001 m3

Line base volume V10 0.001 m3

Valve overlap u 1.2− 4.8× 10−4 m
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6.4.1 Non-Dimensionalization

The system equations can be non-dimensionalized by the transformations

xS = lSXS , xR = lRXR , p1 = p̂P1 , pS = p̂PS , t = Tτ , (6.15)

with

p̂ =
FS0

AS1

, T =
√
mPS/kS . (6.16)

Thus,

X ′′S +DSX
′
S +KSXS = ĀS1PS − ĀS2P1 + F̄S0

+ F̄0 + FP (XS, P1)− F S
ES(XS, X

′
S, 1) , (6.17)

X ′′R +DRX
′
R +KRXR = ĀRP1 − F̄R0 − FR

ES(XR, X
′
R, 1) (6.18)

for the mechanical part and

P ′1 =

E0

p̂

(
1 +Kp

p̂
E0
P1

)

1 + ¯̄ARXR − ¯̄AS2XS

(
QP (XS)−QR(XR, P1, PS,Pi)

− ¯̄ARX
′
R + ¯̄AS2X

′
S − ¯̄AOR

√
P1

)
, (6.19)

P ′S =

E0

p̂

(
1 +Kp

p̂
E0
PS

)

1 + ¯̄AS1XS

(
QR(XR, P1, PS,Pi)

V10

VS0

−QT (XR, PS, P0,Pi)− ¯̄AS1X
′
S

)

(6.20)

for the hydraulic balance equations. In the above representation of the system dynam-
ics, the following non-dimensional constants were introduced:

DS =
dPST

mPS

, KS =
kST

2

mPS

= 1 , DR =
dRT

mR

, KR =
kRT

2

mR

,

κ =
AS2

AS1

, ĀS1 =
AS1p̂T

2

mPSlS
, ĀS2 = κĀS1 , ĀR =

ARp̂T
2

mRlR
,

F̄S0 =
FS0T

2

mPSlS
, F̄0 =

kSlST
2

mPSlS
, F̄R0 =

FR0T
2

mRlR
,

¯̄AS1 =
AS1lS
VS0

, ¯̄AS2 = κ
AS1lS
V10

, ¯̄AR =
ARlR
V10

, ¯̄AOR =
γF
√
p̂TAOR
V10

.

Along with this, system functions were non-dimensionalized as follows:

FR
ES(XR, X

′
R, 1) =

T 2

mRlR
FES(lRXR,

(
lR
T

)
X ′R, lR) ,

F S
ES(XS, X

′
S, 1) =

T 2

mPSlS
FES(lSXS,

(
lS
T

)
X ′S, lS) ,
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FP (XS, P1) =
T 2

mPSlS
fP (lSXS, p̂P1) ,

QP (XS) =
T

V10

qP (lSXS) ,

QR(XR, P1, PS,Pi) =
T

V10

qR(lRXR, p̂P1, p̂PS,Pi) ,

QT (XR, PS, P0,Pi) =
T

VS0

qT (lRXR, p̂PS, p̂p0,Pi) .

Key non-dimensional parameters are given in Table 6.3.

Table 6.3: Reference non-dimensional system parameters used for analysis if not stated
otherwise.

Parameter Symbol Value
Non-dimensional regulator valve damping DR 10.66

Non-dimensional regulator valve stiffness KR 68.25

Non-dimensional regulator valve piston area ĀR 0.33

Non-dimensional regulator valve pre-stress force F̄R0 15

Non-dimensional pump damping DS 0.25

Non-dimensional pump actuator spring stiffness KS 1

Non-dimensional pre-stress force F̄0 1

Non-dimensional pre-stress force F̄S0 1.43

Non-dimensional actuator reaction area ĀS1 1.43

Non-dimensional piston flow area ¯̄AR 4.14× 10−4

Non-dimensional piston flow area ¯̄AS1 0.0687

Non-dimensional piston flow area ¯̄AS2 0.0048

Force scaling factor T 2/(mRlR) 0.5178 /N

Force scaling factor T 2/(mPSlS) 0.0571 /N

Volume flow scaling factor T/V10 8 s/m3

Volume flow scaling factor T/VS0 80 s/m3

6.4.2 Simulation Results

Simulation results for a run-up simulation are shown in Figures 6.3, 6.4. Here, the
system runs up from maximum pump displacement induced by pre-stress force FS0

at zero system pressure, rapidly building pressure within the system up to set-point
pressure for p1. This causes the regulator valve spool to displace in positive direction
from XR = 0 at t = 0s and thereby to close the load-sided control edge. Along with this,
pump flow decreases accordingly. At t = 1s, the area of ¯̄AOR is multiplied by a factor
of 10, simulating a load increase by a factor of 10. The system responds by increasing
volume flow accordingly: The volume flow provided by the pump after the load jump
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is increased by a factor of 10, too, while pressure p1 remains approximately equal to the
pre-load-change situation.
The simulation results in Figure 6.3 reveal the effects of overlap u on set-point regula-
tion: as briefly noted already in chapter 3, larger overlaps induce higher set-point pres-
sure deviation since for a non-leaking valve any position within the overlap dead band
is a possible equilibrium position. In principle, this also holds for systems with leaking
valves even though the effect is less significant, see Figure 6.4. For valves with major
leakage flow, the location of the unique equilibrium position of the regulator valve will,
however, depend on leakage parameters and thereby be subject to variations over the
operation period. Figure 6.4 shows that larger overlaps make the system with leaking
valve slower in terms of time needed for load adaption.
The results illustrate the superior performance of hydraulic systems in terms of dy-
namic fastness: both run-up time and reaction time for the load change remain well
below 100ms for a system with little or no leakage. However, such systems are known
to be prone to stability issues which is why an assessment of stability properties of this
system will be presented in the subsequent section.

6.4.3 Stability Analysis

6.4.3.1 Equilibrium Computation

With respect to an assessment of the system’s stability under different operating condi-
tions and parameter configurations, the system dynamics need to be linearized about
the equilibrium points.
For the non-smooth case with perfectly critically lapped regulator valve, the equilib-
rium position is uniquely determined by

QP (XS)− ¯̄AOR
√
P ∗1 = 0 (6.21)

where P ∗1 is determined from the zero-flow condition

QR(XR, P1, PS,Pi) = QT (XR, PS, P0,Pi) = 0 , (6.22)

which requires

X∗R =
lReg + δ4b4

lR
(6.23)

with δ4 = 1 in case of a triangular notch and δ4 = 0 in case of a rectangular or circular
notch. From this, with the corresponding force balance of the regulator valve, it follows
that

P ∗1 =
kR(lReg + δ4b4) + FR0

ARp̂
. (6.24)

In contrast, when considering the system featuring leakage and overlap u, the equilib-
rium needs to be computed from two equations. Because of the overlap u introduced
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Figure 6.3: Run-up simulation with load change at t = 1s. i)u = 2.4× 10−4m,
ii)u = 4.8× 10−4m, minor valve leakage (for illustrating purposes only)
with ∆r = 1.5× 10−6m.

in the model along with leakage, equation (6.23) is not necessarily the equilibrium con-
dition for the regulator anymore. The equilibrium conditions for the system’s flow
balance now read

0 = QP (X∗S)− ¯̄AOR
√
P ∗1 −QR(X∗R, P

∗
1 , P

∗
S ,Pi) , (6.25)

0 = QR(X∗R, P
∗
1 , P

∗
S ,Pi)−QT (X∗R, P

∗
S , P0,Pi) . (6.26)

Taking into account

P ∗1 =
kRlRX

∗
R + FR0

ARp̂
, (6.27)

95



6 Modeling and Analysis of a Variable Displacement Vane Pump System

0 0.5 1 1.5 2
0

0.5

1

t [s]

X
S
=
x
S
/l
S

i)
ii)

(a) Pump displacement, normalized by
maximum pump displacement.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

t [s]

X
R
=
x
R
/l
R

i)
ii)

(b) Regulator position, normalized by max-
imum valve displacement.

0 0.5 1 1.5 2

10

20

30

·105

t [s]

p 1
,
p S

[P
a]

p1, i)
pS, i)
p1, ii)
pS, ii)

(c) Main pressure and actuator capacitance
pressure.

0 0.5 1 1.5 2
0

2

4

6
·10−4

t [s]

q P
[m

3
/s
]

i)
ii)

(d) Pump volume flow.

Figure 6.4: Run-up simulation with load change at t = 1s. i)u = 2.4× 10−4 m,
ii)u = 4.8× 10−4m, major valve leakage with ∆r = 15× 10−6m.

P ∗S =
1

AS1p̂

(
p̂P ∗1AS2 + kSlS (X∗S − 1)− FS0 − fP (lSX

∗
S, p̂P

∗
1 )
)

(6.28)

and substituting these into (6.25), (6.26), the equilibrium conditions essentially are two
coupled nonlinear equations in the non-dimensional displacement variables XR and
XS . These two equations can readily be solved by numerical computing packages such
as MATLAB, providing the fsolve routine for such problems.

6.4.3.2 Stability Maps

Due to the dependence of the system’s capacitances on both pressures and displace-
ments, the Jacobian upon which to perform the stability analysis is of significant size
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and complexity and can not sensibly be given explicitly. In addition, the governing laws
for leakage flow through valves with different notch geometries further complicate an
explicit statement of the Jacobian.
With a view on the large number of parameters the system features the question of
which of these to investigate with respect to equilibrium stability is raised. In hydraulic
systems, the most important operating parameters are hydraulic load and system pres-
sure. Therefore, it is purposeful to investigate equilibrium stability with respect to these
two quantities. In terms of parameters of the system model, they are determined by
both load orifice area ¯̄AOR and spring stiffness KR or pre-stress F̄RO.
In order to cover large system operating pressures, the stability maps in Figures 6.5,
6.6 feature spring-stiffness as a proxy for operating pressure since a variation of system
pressure through spring pre-stress may be confined to comparatively small pressure
intervals.
Another parameter of significant importance that is likely to change during operation is
the system’s viscosity. This parameter strongly varies with temperature. For this reason,
stability maps shall be computed for varying levels of fluid viscosity ηF which for a non-
dimensional consideration shall be varied in the form of Ξ = ηF/(1Pas). This parameter
mainly determines leakage behavior which for very small overlaps as featured in this
system strongly influences equilibrium stability.
Figures 6.5, 6.6 and 6.7, 6.8 show the stability maps for the system with different notch
geometries, different pump models and different regulator valve dampings DR. Fig-
ure 6.5 shows the stability map results for an ideally sealed pump (i.e. fP (xS, p1) =

f IP (xS, p1)) while Figure 6.6 shows the corresponding maps with a pump allowing for
leakage (i.e. fP (xS, p1) = f IPL(xS, p1)). Figures 6.7 and 6.8 replicate the results for a
regulator valve damping DR multiplied by a factor of two.
In terms of local stability, the rectangular notch yields the least advantageous results of
all three notch geometries: For low viscosities, the region within which the system is
stable is comparatively small. This is alleviated with increasing viscosity. For higher
viscosity, the upper stability boundary is shifted towards higher stiffnesses (i.e. oper-
ating pressures), thereby increasing the stable parameter region. Triangular notch and
circular notch yield comparable stability regions.
As for the impact of pump leakage on stability, the findings suggest that pump leakage
does not significantly affect system stability. The differences between the stability maps
in Figure 6.5 and 6.6 are marginal with pump leakage negligibly increasing unstable
parameter regions. The same holds true when regulator valve damping is increased by
a factor of two. Upon reconsideration of Figures 5.15, 5.16, this may be explained by
the circumstance that pump leakage does not significantly alter the gradient of force
component fP2(xS).
Contrary to intuition, a comparison between Figures 6.5, 6.7 and 6.6, 6.8 reveals that
increasing regulator valve damping actually increases the unstable operating regions
for all notch geometries. These findings are in line with the analysis in [147] conducted
for the simplified pump model fP (xS, p1) = f IIP (xS, p1).
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Figure 6.5: Stability maps: sealed pump.
Damping DR = 5.33.
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Figure 6.6: Stability maps: leaking pump.
Damping DR = 5.33.
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(c) Circular notch.

Figure 6.7: Stability maps: sealed pump.
Damping DR = 10.66.
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Figure 6.8: Stability maps: leaking pump.
Damping DR = 10.66.
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In Figure 6.9, a representative root locus is shown, indicating a Hopf-type loss of stabil-
ity.

−6 −5 −4 −3 −2 −1 0 1

−100

0

100

¯̄AOR ↓

Real axis

Im
ag

in
ar

y
ax

is

−6 −5 −4 −3 −2 −1 0 1

−100

0

100

¯̄AOR ↓

Real axis

Im
ag

in
ar

y
ax

is

Figure 6.9: Representative (non-dimensional) root locus for variation of ¯̄AOR, indicating
a Hopf-type loss of stability.

The overall indication of stability analysis within the scope of the present model is that
low operating pressures related to low regulator stiffnesses and small hydraulic loads
tend to negatively affect system stability. Considering a variation of spring pre-stress
F̄R0, Figure 6.10 shows that larger operating pressures induced by increased regulator
spring pre-stress increases the unstable regions. It should thus be strived for governing
system operating pressure largely by regulator spring stiffness and not by spring pre-
stress.
Concluding, the results indicate that valve leakage is a major determinant in pump
equilibrium stability.

6.4.3.3 Phase Space Structure

Equilibrium stability is a necessary condition for a functional system. Because its eval-
uation through eigenvalues is an essentially local approach, the concept of equilibrium
stability does not permit a statement about the magnitude of an equilibrium’s basin of
attraction in the case of a nonlinear system. While an equilibrium may be stable, its
basin of attraction can possibly be so small that equilibrium stability is of little prac-
tical relevance. Thus, a sufficient criterion for a functional pump regulation system is
equilibrium attractiveness over the full operating range in addition to a stable equilib-
rium. In the context of the present system, an insufficiently small basin of attraction of
the equilibrium is associated with an unstable limit cycle that prevents the system from
reaching its equilibrium position so that system functionality is jeopardized.
In order to make dependable inferences about the structure of phase space, a Monte-
Carlo-like approach similar to that outlined in section 3.5 is employed. More specifi-
cally, this means that the system is simulated from a variety of initial conditions and
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Figure 6.10: Stability maps: sealed pump. Damping DR = 10.66, viscosity Ξ = 0.01.

stationary solutions are then investigated with respect to their qualitative characteris-
tics. The initial conditions are firstly those associated with a classical run-up situation,
i.e. XS(τ = 0) = 1 and zero initial conditions for all other states, and secondly lightly
perturbed equilibrium initial conditions. While for stable equilibria the stationary so-
lution upon small perturbation is expected to result in the equilibrium solution, the
run-up situation may yield a stable limit cycle centered about the equilibrium position
which in turn implies an unstable limit cycle in-between the stable equilibrium position
and the (outer) stable limit cycle.
Figure 6.11 shows simulation results for the three notch geometries discussed in this
work. Notably, stable solutions for the XS-coordinate are shown as a Poincaré section
through X ′S = 0. For these simulations, valve overlap was chosen u = 3.6 × 10−4m so
that all equilibria are locally stable, i.e. possible instability effects from leakage are ruled
out.
The results demonstrate that an unstable limit cycle can be a system property irrespec-
tive of the valve’s notch geometry. For rectangular and triangular notch geometries,
the system’s unstable limit cycle leads to stable periodic solutions whose magnitude for
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Figure 6.11: Phase space structure for different notch geometries: stable solutions. Equi-
libria are plotted green, stable limit cycle maxima and minima (X ′S = 0) in
blue.

some κ is restricted by the end stops at XS = 0 and XS = 1. Representative results for
limit stable limit cycle oscillations about the equilibrium are shown in Figure 6.12.
The unstable limit cycle identified in the system by an inverse inference can be at-
tributed to the switching nonlinearity introduced through the regulator valve. An un-
stable limit cycle can be observed for the simple pressure regulation valve in chapter
3 and was discussed under simplifying assumptions in [39], see also Figure 3.9. No-
tably for the pump system, all geometries feature the possibility of an unstable limit
cycle, potentially preventing the system from operating as desired. This suggests that
for practical implementations of this system type, parameters have to very carefully be
chosen in order to avoid this undesired phenomenon.
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Figure 6.12: Representative stable limit cycle oscillations about the (stable) equilibrium
position, relating to Figure 6.11.

6.5 Intermediate Conclusion

In this chapter, the model of a classic hydraulic circuit featuring a variable displacement
vane pump was developed. Relevant stability properties were discussed for an almost
critically lapped valve design.

For all notch geometries investigated, the findings suggest that small regulator spring
stiffness and small hydraulic loads may render the system’s equilibrium position un-
stable. Increasing operating pressure through increased regulator spring pre-stress is
detrimental to stability, too.

Loss of stability due to decreased load is practically relevant in that the pump is to
provide reduced volume flow for reduced demand: when demand falls short of a
certain level, the system eventually becomes unstable. Increased valve leakage (via
decreased viscosity) increases unstable regions. When set-point regulation accuracy
and load adaption time is less of a concern, local instabilities from (valve) leakage can
in any case be avoided by deliberately choosing large enough a valve overlap u. Pump
leakage, in contrast, barely affects equilibrium stability.

A wide-reaching finding is the existence of an unstable limit cycle within the system
that can be attributed to the macro non-smooth behavior of the regulator valve (even
when regularized by leakage on a micro level). While this is a structural property re-
lated to valve design, careful parameter choice may alleviate the problem of trajectory
rejection from an unstable limit cycle. Regrettably, general statements with respect to
which parameter determines the location of the limit cycle in parameter space can not
be made as it strongly depends on the specific parameter constellation at hand. The
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system shows pronounced sensitivity with respect to parameter choice, so extensive
simulations remain a necessity.

It stands to reason that the occurrence of an unstable limit cycle is a phenomenon that is
structurally related to control valves featuring two control edges in other settings, too.
Given their wide application in technical systems, this points to a novel interpretation
of instabilities in hydraulic systems confronting practitioners.
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7 Fundamentals of Feedback-Linearizing
Control

Within the recent past, control theory has seen significant contributions and extensions
in the field of nonlinear control problems. While still far from having access to generally
applicable methodology, one of the major developments can be seen in geometrically
motivated nonlinear control. With the advent of these methods, a systematic approach
for a comparatively large class of nonlinear problems with significant practical rele-
vance was found. Most prominent and well-known, the feedback-linearizing control
technique has marked its relevance in these contexts. For general reference here, see
e.g. [40, 53, 91, 103].
With the notion of feedback-linearization effectively covering the methods of both
input-output linearization and full-state linearization – ultimately, these terms some-
times are used interchangeably at times – a short explanation of these concepts shall
be given in this chapter with a view on single input-single-output as well as multiple-
input-multiple-output systems.

7.1 Fundamentals of Single-Input-Single-Output
Feedback-Linearizing Control

Input-output linearization is a control strategy applicable to a variety of nonlinear sys-
tems. Its core idea is to transform the general nonlinear single input, single output
(SISO) system with n states

ẋ = f(x, u) = fd(x) + g(x)u , (7.1)
y = h(x) (7.2)

by a number of nonlinear state transformations in such a way that a control law can be
derived that makes the input-output map of the system linear. In the above representa-
tion of the system dynamics, fd(x) is the so-called drift term. This nomenclature stems
from the notion that in the absence of a control u being applied to the system through
the control input matrix g(x), the system will drift along its trajectory according to the
dynamics defined by fd(x).
While fairly general in its approach, input-output linearization is considered feasi-
ble only under certain conditions. Conditions for the applicability of input-output-
linearization commonly named are:
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• availability of an accurate model of the system to be controlled,

• so-called bilinear or affine control input,

• smoothness of the system function fd(x),

• availability of the system states for feedback.

The first condition needs to be fulfilled by the majority of control strategies available ex-
cept for special techniques from robust control where model uncertainties are included
in the control design. In practice, a majority of systems will also feature affine control
inputs.
The input-output-linearization approach essentially comprises the following steps:

• determination of the relative degree of the system,

• definition of a nonlinear state transformation specific to the problem at hand,

• transformation of the system and investigation of internal dynamics,

• synthesis of the input-output linearizing control law.

With feedback-linearization belonging to the class of geometrically motivated control
strategies, Lie derivatives require introduction in order to make use of the method.
Differentiating the scalar function h(x) with respect to time along a trajectory of a parti-
cle whose dynamics are governed by (7.1) – that is, building the gradient of h(x) along
fd(x, t) + g(x)u – the time derivative can be obtained by building the scalar product of
the gradient of h(x) and fd(x):

dh(x)

dt
=
∂h(x)

∂x
· ẋ (7.3)

= ∇h(x) ·
(
fd(x) + g(x)u

)
(7.4)

= Lfdh(x) + Lgh(x)u , (7.5)

where the Lie operators

Lfd( ) = ∇( ) · fd(x) , (7.6)
Lg( ) = ∇( ) · g(x) (7.7)

were introduced to allow for a simplified notation.
Repeated derivation of h(x) along a vector field fd(x) or g(x) can be written as

Lifd( ) = ∇Li−1
fd

( ) · fd(x), Lig( ) = ∇Li−1
g ( ) · g(x) . (7.8)

With the major mathematical tool now at hand, the input-output-linearization routine
can be outlined in what follows.
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Determining the relative degree of a SISO system As in linear systems control
theory there exists the notion of a relative degree for nonlinear systems control theory.
While in the case of a linear system the relative degree is simply the excess of a system’s
transfer function’s poles over its zeros [108], in the nonlinear case the definition is more
involved and requires the application of the Lie derivatives defined above.
To obtain the relative degree of a nonlinear system as defined by (7.1), the output equa-
tion y = h(x) is derived with respect to time along the trajectories of (7.1) as many times
as needed until the system input u appears explicitly in the respective time derivative
of h(x):

y = h(x) , (7.9)
ẏ = ∇h(x) ·

(
fd(x) + g(x)u

)

= Lfdh(x) + Lgh(x)︸ ︷︷ ︸
=0

u , (7.10)

ÿ = ∇Lfdh(x) ·
(
fd(x) + g(x)u

)
,

= L2
fd
h(x) + LgLfdh(x)︸ ︷︷ ︸

=0

u (7.11)

...

y(r) = Lrfdh(x) + LgLr−1
fd

h(x)
︸ ︷︷ ︸

6=0

u . (7.12)

That is, the relative degree r of system (7.1) is determined by the lowest natural number
r for which

LgLr−1
fd

h(x) 6= 0 (7.13)

holds. In order for the relative degree computed from the above procedure to be a well-
defined relative degree, equation (7.13) must hold in the entire operating space D ⊂ Rn

of the system.

Transforming a SISO system into normal form As state descriptions of a system’s
dynamics are not unique, the description of a system’s dynamics based on the laws of
physics may be transformed to other representations with less intuitive character. As
stated in Proposition 4.1.3. in [40], a system’s output’s derivatives along the trajectories
of the respective system as outlined above define one such coordinate transformation
(partly for r < n), at least locally. As for input-output linearization, these time deriva-
tives of the output are drawn on to define a (partial) set of new coordinates and to
bring the system to a state space representation that is suitable for the derivation of
nonlinearity-compensating control laws. The most general corresponding normal form
to which a system may in some cases be transformed is the so-called Byrnes-Isidori nor-
mal form. It not only allows for the simple derivation of the desired control laws but
also a simplified investigation of relevant stability properties of the system. Hence, the
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Byrnes-Isidori normal form will typically be strived for when devising control strategies
for a system. Due to the non-uniqueness of state space representations of a system’s dy-
namics, it does not, however, need to be the only form a system may be transformed to.
There are two possible cases for the relative degree r, which shall be explained briefly
with respect to their relevance for the Byrnes-Isidori normal form.
In case that the relative degree of the system equals the system order, r = n, the output
y = h(x) is referred to as a differentially flat output and so called full-state linearization
in the stricter sense of meaning can be performed. Under these circumstances, trajectory
design and tracking form a control task that can easily and elegantly be solved because
all states of the system can be algebraized by the system ouput and its n−1 derivatives.
The state transformation from x to the new states ξ allowing to synthesize the desired
control law is then given by

ξ =




ξ1

ξ2

...
ξn−1

ξn




= Φ(x) =




h(x)

Lfdh(x)
...

Ln−2
fd

h(x)

Ln−1
fd

h(x)



. (7.14)

According to Proposition 4.1.3. in [40], the time derivatives up to r−1th order of the out-
put equation constitute diffeomorphism between ξ and x and guarantee that ξ = Φ(x)

is invertible with x = Φ−1(ξ), again at least locally. For a system with full relative de-
gree, r = n, the Byrnes-Isidori normal form becomes the nonlinear control normal form.
Because for systems with full relative degree (i.e. flat systems) the output allows for an
algebraization of the system through the output and its derivatives only, it is of inter-
est to find such an output that can possibly be a virtual output by which the concrete
output of interest can then be represented, too.
In case the relative degree r of the system is not equal to the system order (i.e. r < n)
which by far is the more common case, one speaks of input-output-linearization. With
this situation, a diffeomorphism transforming between x and a set of new coordinates
ξ,η can be constructed by

z =

[
ξ

η

]
=




ξ1

ξ2

...
ξr
η1

...
ηn−r




= Φ(x) =




h(x)

Lfdh(x)
...

Lr−1
fd

h(x)

Φr+1(x)
...

Φn(x)




, (7.15)

where Φr+1(x) . . .Φn(x) can be chosen arbitrarily but in such a way that [ξ η]T = Φ(x)

is a diffeomorphism, that is
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det
∂Φ

∂x
6= 0 . (7.16)

In the context of input-output-linearization, the η coordinates are the so-called internal
coordinates. After performing an input-output-linearization, these coordinates cannot
be observed from the system output anymore and are required to possess stable dy-
namics in order for input-output-linearization to be feasible, even though elaborated
techniques exist to also cope with unstable internal dynamics, see e.g. [36] and [91] for
further reference. Stability of the internal dynamics can most straightforwardly be as-
sessed if one succeeds in transforming the system into Byrnes-Isidori normal form. For
systems with non-full relative degree, this normal form is characterized by the absence
of the system input u in the dynamics for the internal coordinates so that the internal
coordinates are decoupled from system input u. In order to obtain a system’s Byrnes-
Isidori normal form in this case, the internal coordinates ηi = Φr+i, i = 1, . . . , n− r have
to be chosen in such a way that for the Φr+i in equation (7.15)

∂Φr+i(x)

∂x
· g(x) = 0 for i = 1 . . . n− r (7.17)

is fulfilled. In many cases, one will have to confine oneself to a choice of η subject to
condition (7.16) due to the mathematical intricacies one encounters when solving (7.17).
For the general case of r 6= n and (7.17) not fulfilled, the state transformation (7.15) then
leads to the following dynamics

ż =

[
ξ̇

η̇

]
=




ξ̇1

ξ̇2

...
ξ̇r
η̇1

...
η̇n−r




=




ξ2

ξ3

...
α(ξ,η) + β(ξ,η)u

q1(ξ,η) + p1(ξ,η)u
...

qn−r(ξ,η) + pn−r(ξ,η)u




, (7.18)

y = ξ1 (7.19)

in the new coordinates ξ,η. In equation (7.18),

α(ξ,η) = Lrfdh(Φ−1(ξ,η)) , (7.20)
β(ξ,η) = LgLr−1

fd
h(Φ−1(ξ,η)) (7.21)

with

h(Φ−1(ξ,η)) = y .

If the Byrnes-Isidori normal form is obtained, then

η̇1 = q1 (ξ,η) , (7.22)
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...
η̇n−r = qn−r (ξ,η) , (7.23)

that is, the input u does not appear in any of the dynamics for ηi, i = 1, . . . , n− r by the
choice of ηi fulfilling (7.17). The transformed dynamics (7.18) consist of two parts. The
first part constitutes a chain of integrators for the external coordinates ξ. The second
part constitutes the internal dynamics of the system. They are a consequence of both the
system structure and the chosen output y. As pointed out before, the states η1 . . . ηn−r
are unobservable from the system output for an input-output-linearizing control law
so that, as a consequence, the internal dynamics cannot be controlled for by the sys-
tem input u either and therefore have to be stable or at least bounded to yield feasible
control.

Synthesizing the control law Drawing on the transformed system representation
(7.18), a controller yielding a linear map between the system input u and the system
output y = h(Φ−1(ξ,η)) can be synthesized easily. A prescription of the control law

u =
ν − α(ξ,η)

β(ξ,η)
(7.24)

with the new input ν that can be chosen according to the situation’s needs leads to a can-
cellation of the nonlinear terms in the integrator chain of (7.18). Conceptually, α(ξ,η)

can be interpreted as the drift-term or plan-nonlinearity-compensating component of
the control while β(ξ,η) is to compensate for control-input nonlinearities. Applying
the control law (7.24) to (7.18) yields

ż =

[
ξ̇

η̇

]
=




ξ̇1

ξ̇2

...
ξ̇r
η̇1

...
η̇n−r




=




ξ2

ξ3

...
ν

q1(ξ, η) + p1(ξ, η)u
...

qn−r(ξ, η) + pn−r(ξ, η)u




. (7.25)

The linear input-output map in (7.25) allows for prescribing the desired behavior of
the output and controlling for it by means of linear feedback theory. If, for example,
trajectory tracking of a desired output trajectory y∗(t) = ξ∗1 is intended, then

ξ̇r = ν

= y∗,(r) − kr(ξr − y∗,(r−1))− kr−1(ξr−1 − y∗,(r−2))− . . .− k1(ξ1 − y∗) (7.26)

can be interpreted as an integrator chain ξ̇r = y∗,(r) complemented by a linear trajectory
error feedback controller−kr(ξr−y∗,(r−1))−kr−1(ξr−1−y∗,(r−2))−. . .−k1(ξ1−y∗) ensuring
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that the desired trajectory is to be tracked. The coefficients k1, k2, . . . , kr can be derived
from pole placement techniques. It is to be noted that this approach requires the desired
trajectory to have smooth derivatives ẏ∗, ÿ∗, . . . , y∗,(r).

Investigating the zero dynamics In classical regulation problems, an equilibrium
ξ = 0 is to be stabilized. This leads to the so called output-zeroing problem where an
input u has to be devised such that the equilibrium is stabilized. What remains then
are the dynamics of the internal coordinates, i.e. the internal dynamics. For a system
transformed to Byrnes-Isidori normal form, setting all external states ξ equal to zero in
the equations for the internal dynamics leads to the zero dynamics

η̇1 = q1(0,η) , (7.27)
...

η̇n−r = qn−r(0,η) (7.28)

of the problem. For a system not in Byrnes-Isidori normal form, the zero dynamics can
be obtained from substituting

u = −α(0,η)

β(0,η)
(7.29)

into

η̇ = q (0,η)− p (0,η)
α(0,η)

β(0,η)
, (7.30)

see also [40, 91] for further reference. In either case, the zero dynamics’ equilibrium’s
stability is a sufficient condition for stability of the internal dynamics as excited by the
external dynamics, however not a necessary one [40, 119].

Generating the desired trajectory The control approach discussed above is applica-
ble to different types of tracking signals. Most typically, however, a change in operating
points of the system will be desired. This change of operating points for a system with
relative degree r = 3 implies a certain type of desired trajectory y∗(t) that is most easily
described by a polynomial of third order

y∗(t) = a0 + a1t+ a2t
2 + a3t

3 (7.31)

is an appropriate ansatz-function with smooth derivatives. This ansatz allows for a
smooth transition between operating points. If the change of operating point is from y0

to yT during a transition time tT , i.e. during a time interval t ∈ [t0, t0 +tT ], the conditions

y∗(t0) = y0 , ẏ∗(t0) = 0 , (7.32)
y∗(t0 + tT ) = yT , ẏ∗(t0 + tT ) = 0 (7.33)
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have to be fulfilled by (7.31). Conditions ẏ∗(t0) = 0 and ẏ∗(t0 + tT ) = 0 impose the
smoothness requirement on (7.31), while y∗(t0) = y0 and y∗(t0 + tT ) = yT simply com-
mand the change of operating points.
Substituting (7.31) into (7.33) and solving for the unknown coefficients a0, a1, a2, a3, the

y∗(t) = y0 + 3
yT − y0

(tT − t0)2
(t− t0)2 − 2

yT − y0

(tT − t0)3
(t− t0)3 (7.34)

function is obtained. While this is the most easily implementable trajectory type for
the present control problem, more sophisticated trajectory generation approaches may
solve for an optimal trajectory with respect to a certain criterion, e.g. control effort for
problems where this is of concern.

7.2 Fundamentals of Multiple-Input-Multiple-Output
Feedback-Linearizing Control

As for multiple-input-multiple-output (MIMO) problems, a generic formulation of an
affine input MIMO control problem with m inputs and outputs is given by

ẋ = fd(x, t) +
m∑

j=1

gj(x)uj ,

y1 = h1(x) ,

...
ym = hm(x) ,

(7.35)

which can be seen as a simple extension of the SISO description through additional
inputs gj(x) and outputs hj(x) with j = 2, ..,m.
Below, the respective concepts from SISO feedback linearization control are extended to
the notion of MIMO systems where necessary. Structurally, the steps in MIMO feedback
linearization control synthesis are identical with the procedure in SISO systems.

Determining the relative degree of a MIMO system The notion of a system’s relative
degree can easily be extended to MIMO systems. Instead of a scalar relative degree as
in the case of a SISO system, one speaks of a vectorial relative degree in the case of a
MIMO system. The main idea is to apply the concept of a single output’s relative degree
to each of themMIMO system’s outputs individually. If an output hj(x) has the relative
degree rj , then the vectorial relative degree of system (7.35) is given by

r = {r1, r2, . . . , rm} . (7.36)

As in the SISO case, the relative degree is necessarily restricted by the system order,
r =

∑m
j=1 rj ≤ n. The relative degree is well-defined in a set x ∈ D, if firstly

LgjLkfdhi(x) = 0, j = 1, . . . ,m, i = 1, . . . ,m, k = 0, . . . , ri − 2 (7.37)
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for all x ∈ D and secondly the so-called decoupling matrix

B(x) =




Lg1Lr1−1
fd

h1(x) Lg2Lr1−1
fd

h1(x) . . . LgmLr1−1
fd

h1(x)

Lg1Lr2−1
fd

h2(x) Lg2Lr2−1
fd

h2(x) . . . LgmLr2−1
fd

h2(x)
...

... . . . ...
Lg1Lrm−1

fd
hm(x) Lg2Lrm−1

fd
hm(x) . . . LgmLrm−1

fd
hm(x)




(7.38)

is regular in D. Note that B(x) is an (m×m) square matrix. Clearly, B(x) is the equiva-
lent matrix formulation of β(x) as defined by equation (7.21) – the invertibility require-
ment for B(x) therefore captures the analogous intuition of the non-zero requirement
for β(x).

From the definition of (7.38) it follows that system output i and its time derivatives are
given by

yj = hj(x) ,

ẏj = Lfdhj(x) + Lg1hj(x)︸ ︷︷ ︸
=0

u1 + . . .+ Lgmhj(x)︸ ︷︷ ︸
=0

um ,

ÿj = L2
fd
hj(x) + Lg1Lfdhj(x)︸ ︷︷ ︸

=0

u1 + . . .+ LgmLfdhj(x)︸ ︷︷ ︸
=0

um ,

...

y
(rj−1)
j = Lrj−1

fd
hj(x) + Lg1L

(rj−2)
fd

hj(x)
︸ ︷︷ ︸

=0

u1 + . . .+ LgmL
(rj−2)
fd

hj(x)
︸ ︷︷ ︸

=0

um ,

y
(rj)
j = Lrjfdhj(x) + Lg1L

(rj−1)
fd

hj(x)u1 + . . .+ LgmL
(rj−1)
fd

hj(x)um

(7.39)

with rj the smallest integer such that at least one of the LgiL
(rj−1)
fd

hj(x) 6= 0 for
i = 1, . . . ,m and some x. In matrix notation, the respective rj-th time derivative of
the m system outputs then are given by




y
(r1)
1
...

y
(rm−1)
m−1

y
(rm)
m




=




Lr1fdh1(x)
...

Lrm−1
fd

hm−1(x)

Lrmfd hm(x)




︸ ︷︷ ︸
=:a(x)

+ B(x)




u1

...
um−1

um




︸ ︷︷ ︸
=: u

. (7.40)
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Transforming a MIMO system into normal form In parallel to the procedure for
SISO systems, a diffeomorphism transforming the original state variables x to new state
variables z for a MIMO system can be constructed and is of the form

z =




z1

z2

...
zn




=

[
ξ

η

]
=




ξ1,1

...
ξ1,r1

ξ2,1

...
ξ2,r2

...
ξm,1

...
ξm,rm
η1

...
ηn−r




= Φ(x) =




h1(x)
...

Lr1−1
fd

h1(x)

h2(x)
...

Lr2−1
fd

h2(x)
...

hm(x)
...

Lrm−1
fd

hm(x)

Φr+1(x)
...

Φn(x)




. (7.41)

As for SISO systems, the variables Φr+1(x) . . .Φn(x) again represent the internal
dynamics of the system which are associated with the zero dynamics upon input-
output-linearization. In contrast to the SISO system case, they can be chosen to yield
LgjΦk(x) = 0, j = 1, . . . ,m, k = r + 1, . . . , n only if the span of {g1, . . . ,gm} is invo-
lutive, see [91] for further treatment of this topic. In order for (7.41) to constitute a
diffeomorphism, condition (7.16) has to be fulfilled.
Applying the transformation then yields the dynamics

ż =




ξ̇1,1

ξ̇1,2

...
ξ̇1,r1

...

...
ξ̇m,1
ξ̇m,2

...
ξ̇m,rm
η̇1

...
η̇n−r




=




ξ1,2

ξ1,3

...
a1(Φ−1(ξ,η)) +

∑m
j=1B1j(Φ

−1(ξ,η))uj
...
...

ξm,2
ξm,3

...
am(Φ−1(ξ,η)) +

∑m
j=1 Bmj(Φ

−1(ξ,η))uj
q1(ξ,η) +

∑m
j=1 p1,m(ξ,η)uj
...

qn−r(ξ,η) +
∑m

j=1 pn−r,m(ξ,η)uj




. (7.42)
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Here, the ai and Bij are the entries of matrix a and B, respectively. In case a suitable
transformation can be found, the system may also be transformed to Byrnes-Isidori
normal form. For this system representation,

pi,j = 0 for i = 1, . . . n− r, j = 1, ..,m . (7.43)

Synthesizing the control law A control law input-output linearizing the system in
Byrnes-Isidori normal form (7.42) can be found from (7.40). The control law immedi-
ately presents itself as

u = B−1(Φ−1(ξ,η))(ν − a(Φ−1(ξ,η)) (7.44)

with the vector-type new input ν subject to control design. The matrix B−1(Φ−1(ξ,η))

can be understood as a means to invert the nonlinearities of the different control input
matrices. As noted earlier, the invertibility of B(Φ−1(ξ,η)) is crucial to the function-
ing of the control strategy as devised here. The result is a system with m decoupled
integrator chains of orders r1, ..., rm respectively.
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8 Nonlinear Volume Flow Control of a Variable
Displacement Vane Pump

8.1 Background

The self-regulating vane pump system discussed in chapter 6 is one means to provide a
system with volume flow. Its natural advantage lies in the fact that it can by itself adapt
to varying consumer loads. The results show, however, that stability problems may
occur. In practice, instabilities in the context of such systems are well-known so that it
is worthwile to investigate alternative ways of controlling volume flow in a vane pump
system. One option is to replace the self-regulating valve with a servo valve actuated by
a prescribed control input voltage or current. Here, instabilities from valve oscillations
are largely prevented due to stable actuation of the servo valve. The governing law
for the valve input will then be subject to control design. Therefore, in this chapter, a
control approach based on nonlinear control theory shall be proposed and discussed for
a variable displacement vane pump system featuring a servo valve. Within this context,
also see [140, 141].
The approach of choice is the feedback linearization method outlined in the previous
chapter. While a common objection to feedback linearization is a potentially large or
costly control effort needed to implement the control laws, one of its advantages can
be seen in its applicability to a comparatively large class of nonlinear systems where
control theory otherwise falls short of providing a general approach to for a systematic
treatment. The control effort argument against feedback linearization rests upon the
reasoning that the associated control laws suppress rather than make use of the natural
dynamics of the underlying system – especially in the manipulation of robotic systems
this may lead to “costly” control due to large inertia within such systems. In the case
of hydraulic systems, however, the argument does not apply. This is rooted in the am-
plifier property inherent to valves (see e.g. [4, 23] for a discussion of this property):
in some instances the output power of a valve can be up to 106 times the input power
needed for valve actuation. As a consequence, physical control effort when employ-
ing servo valves as actuation elements is very small so that especially in the context of
hydraulic servo systems, feedback linearization is a feasible means.
Alternative approaches that have established their relevance in the field of hydraulics
control are surveyed in [41]. The classification comprises classic and state techniques,
adaptive control, feedforward and variable structure control, fuzzy and neuro-control
and even – given the physical stiffness of such systems – predictive control approaches.
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8.2 System Description

The system is identical to the system described in chapter 6 except for the servo valve
replacing the self-regulating valve, see Figure 8.1. The servo valve is actuated by an
input current or voltage input and will respond to this input by valve spool displace-
ment. It is assumed to be critically lapped (see e.g. [30, 32]) which is commonly seen as
an appropriate assumption even though in practical cases, servo valves may feature a
(negligible) underlap.

Figure 8.1: Variable displacement vane pump system with servo valve.

8.3 SISO Model

In applications featuring hydraulic (servo-)systems, it is common to model systems
with hydraulic elements by assuming that (servo) valves operate infinitely fast and do
not exhibit relevant dynamic behavior. From a practical viewpoint, this assumption
holds for modern servo-valves in many cases and greatly simplifies the resulting con-
trol laws, see e.g. [30, 32] for further reference. The reasoning of "ideal" or, equivalently,
static valve dynamics is attributed to the low mass of valves and relatively high stiffness
of valve springs compared to the mass and stiffness of control pistons or pump units.
In most cases, servo valves are modeled as ideal PT2 elements, governed by

ẍv + 2Dvωvẋv + ω2
vxv = K̃vω

2
vxv,maxu . (8.1)
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Here, xv is the actual valve opening. The parameter ωv is the so-called valve limit fre-
quency. Modern servo valves can reach up to 400Hz [18], for the simulations in this
chapter however, a valve with 250Hz is assumed. Damping Dv is typically close to 1

and thus critical damping within the valve is achieved. The valve gain K̃v characterizes
the translation of a voltage input u to the valve in a corresponding normalized valve
opening. Servo valves are designed such that this parameter is close to 1, too. Practi-
cally, this model can also be written as

ẍv + 2Dvωvẋv + ω2
vxv = Kvω

2
vxv,nom , (8.2)

where now the nominal valve opening xv,nom is considered as a control input. With the
assumption of a static valve and Kv = 1,

xv = xv,nom. (8.3)

This then allows the derivation of control laws in xv,nom representing the nominal valve
opening needed to achieve the control purpose at hand. Since the regulator valve from
chapter 6 is now replaced by a servo valve, xR = xv and for an ideal valve, xR = xv =

xv,nom =: uR .
Introducing the states

x1 = xS , x2 = ẋS , x3 = p1 , x4 = pS , (8.4)

the state x of the system under the assumption of a static valve is represented by

x = [x1 x2 x3 x4]T . (8.5)

In state space, the dynamics of the vane pump system with an ideal servo valve can
then be expressed as

ẋ =




f1(x, uR)

f2(x, uR)

f3(x, uR)

f4(x, uR)


 (8.6)

with

f1(x, uR) =x2 , (8.7)

f2(x, uR) =
1

mPS

[
−kSx1 − dPSx2 − AS2x3 + AS1x4 + fP (x1, x3)

+kSlS + FS0 − FES(x1, x2, lS)

]
,

(8.8)

f3(x, uR) =
1

Ch1

[
q̂P (x1 − xoffsetS )− sign(x3 − pC)γFAOR1

√
|x3 − pC |

−qR(uR, x3, x4) + AS2x2

]
,

(8.9)
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f4(x, uR) =
1

ChS

[
−AS1x2 + qR(uR, x3, x4)− qT (uR, x4, p0)

]
, (8.10)

where

qR =





0 for uR ≥ 0 ,

sign(x3 − x4)γF bReg|uR|
√
|x3 − x4| else ,

(8.11)

qT =





sign(x4 − p0)γF bReg|uR|
√
|x4 − p0| for uR ≥ 0 ,

0 else .
(8.12)

This is the model of the SISO system that shall be drawn onto for the control design.
In what follows, the following assumptions will be made for the sake of a simplified
analysis:

• Capacitances ChS and Ch1 are treated constant in the analysis of the obtained con-
trol laws. Implementation in the numerical model of the system will, however,
includes variations of the system capacitances with the system state x as modeled
by

Ch1 =
V10 + (lS − x1)AS2

Efl
, ChS =

VS0 + x1AS1

Efl
. (8.13)

• Neglecting pump forces from dead volume expansion and the influence of leakage
on dead volume pressure, pump force fP (x1, x3) will be represented as the sum of

fP (x1, x3) = f IIP (x1, x3) = x3fP1(x1) + fP2(x1) , (8.14)

i.e. as the sum of a purely displacement-dependent component fP2(x1) and the
product of system pressure x3 multiplied by a displacement-dependent effective
area function fP1(x1). The results from chapter 5 show that the force from dead
volume expansion and the effect of leakage on total pump force is not significant
relative to the force contributions from x3fP1(x1), fP2(x1) so that the simplifica-
tions related to a choice of fP (x1, x3) = f IIP (x1, x3) are not crucial to the derivation
of the resulting control laws. Ultimately, this allows for an analytical discussion
of aspects of stability and boundedness of the proposed control approach.

8.4 Feedback-Linearizing Control

From the system representation (8.6), the standard input-affine representation

ẋ = fd(x) + gR(x)uR
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needed for feedback linearization can be derived. Because this representation is contin-
gent on whether uR ≥ 0, i.e. whether the system is in what shall further be referred to as
the tank-sided operating condition or whether uR < 0 so that the system is in so-called
load-sided operating condition, these representations will be derived separately in the
following two subsections, so that

gR(x) =





gRT if uR ≥ 0 ,

gRL if uR < 0 .
(8.15)

Intuitively, uR > 0 is related to a decrease in pump volume flow since a pressure de-
crease in ChS related to this operating condition will cause the cam ring to displace to
the left and thereby reduce pump volume flow. Accordingly, for uR < 0, pressure in
ChS will increase, thereby displacing the cam ring to the right.
In order for input-output linearization to be applicable to a certain control problem,
smoothness of the system dynamics has to be ensured. In the case at hand, there is a
right hand side with the non-smooth functions qR and qT . Yet, the functions are smooth
piecewise, potentially allowing for a piecewise synthesis of a suitable control strategy. It
will be seen that this goes in hand with identical external coordinates for both operating
conditions.

8.4.1 Control Synthesis for a Drop in Volume Flow

As mentioned above, a drop in volume flow requires uR ≥ 0 and thereby

qR = 0 , (8.16)

qT = sign(x4 − p0)γF bReguR
√
|x4 − p0| . (8.17)

Thus, upon substitution of the above relationships into (8.6) the control system in affine
form

ẋ =




fd1(x)

fd2(x)

fd3(x)

fd4(x)


+




0

0

0

− sign(x4−p0)bReg
ChS

γF
√
|x4 − p0|




︸ ︷︷ ︸
=: gRT(x)

uR (8.18)

is obtained, where

fd1(x) =x2 , (8.19)

fd2(x) =
1

mPS

[
−kSx1 − dPSx2 − AS2x3 + AS1x4 + fP (x1, x3) + kSlS + FS0

]
, (8.20)

fd3(x) =
1

Ch1

[
q̂P (x1 − xoffsetS )− sign(x3 − pC)γFAOR1

√
|x3 − pC |+ AS2x2

]
, (8.21)
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fd4(x) =− AS1

ChS
x2 . (8.22)

In the above system description, the end-stop forces acting on the lumped pump and
cylinder mass mPS are assumed equal to zero which implies that the control to be de-
vised shall only act within the natural operating range D of the system. For a concrete
pump run at a certain pump revolution speed, this operating range is to the largest part
determined by the pump end stops with 0 ≤ xS ≤ lS . With (8.18), the system now is in a
form that allows for synthesizing a nonlinear controller by input-output-linearization.

Determining the relative degree The output of the system for pump volume flow
control is given by the pump displacement variable h(x) = x1 = xS . Accounting for the
possible volume flow offset due to vertical cam ring eccentricity h 6= 0 as outlined in
section 5.3.3, the system output thus is

h(x) = x1 − xoffsetS . (8.23)

Building the successive Lie derivatives

h(x) =x1 − xoffsetS , (8.24)
LgR

h(x) =0 , (8.25)
Lfdh(x) =x2 , (8.26)

LgR
Lfdh(x) =0 , (8.27)

L2
fd
h(x) =− 1

mPS

(
kSx1 − AS1x4 + AS2x3

+dPSx2 − x3fP1(x1)− fP2(x1)− kSlS − FS0

)
, (8.28)

LgR
L2

fd
h(x) =− AS1

mPSChS
sign(x4 − p0)γF bReg

√
|x4 − p0| (8.29)

shows that the relative degree of the system defined by (8.18) and (8.23) is r = 3 which
implies first order internal and zero dynamics. The relative degree is well defined in
state space x ∈ D except for the case when x4 = pS = p0 = 0. This does not pose a
problem for the control law to be designed practically as the control shall not act in a
way that reduces the volume flow of the pump to zero in an equilibrium position. Yet,
for non-zero pC , this would be the only circumstance under which x4 could become
equal to the tank pressure.

Transforming into normal form In order to transform the system (8.18) into Byrnes-
Isidori normal form, a fourth state variable η representing the internal state of the sys-
tem has to be defined in such a way that the matrix Φ(x) yields an invertible map be-
tween the new coordinates z = [ξ η]T and x. In accordance with the notation used so far,
for the tank-sided operating condition η = ηT . As discussed in the theoretical outline of
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feedback-linearization in section 7.1, this fourth state variable can either be determined
freely subject to invertibility of the state transformation matrix demanded by equation
(7.16) or it can be computed as the solution of the partial differential equation given by
(7.17).
Considering the system dynamics at hand, the fourth state transformation can be de-
fined as

ηT = x3 − pC . (8.30)

It is easily seen that this choice for the internal coordinate fulfills (7.17) so that the sys-
tem can be transformed into Byrnes-Isidori normal form by the choice of (8.30). The full
state transformation then reads

z = Φ(x) =




h(x)

Lfdh(x)

L2
fd
h(x)

x3 − pC


 (8.31)

=




x1 − xoffsetS

x2

− 1
mPS

(
kSx1 − AS1x4 + AS2x3 + dPSx2 − x3fP1(x1)− fP2(x1)− kSlS − FS0

)

x3 − pC


 .

(8.32)

Building the Jacobian of the transformation yields

∂Φ
∂x

=




1 0 0 0

0 1 0 0

−kS−x3 ∂fP1
∂x1
− ∂fP2

∂x1

mPS
− dPS
mPS

−AS2−fP1

mPS

AS1
mPS

0 0 1 0



. (8.33)

Clearly, since det∂Φ
∂x

= −AS1/mPS condition (7.16) holds irrespective of the current sys-
tem state so that (8.32) constitutes a diffeomorphism.
Conceptually, from the choice of η, the internal dynamics for the tank-side flow con-
dition uR > 0 are the volume flow balance of volume V1 and have to yield stable zero
dynamics.
Applying the transformation defined by (8.32), the Byrnes-Isidori normal form of (8.18)
reads




ξ̇1

ξ̇2

ξ̇3

η̇T


 =




ξ2

ξ3

α(ξ, ηT ) + β(ξ, ηT )uR
qT (ξ, ηT )


 , (8.34)

y = ξ1. (8.35)
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The above form of the system dynamics immediately reveals the structure for the
control input uR that is needed in order to compensate the control input nonlinear-
ity and the drift system nonlinearities. In physical coordinates x, the nonlinearity-
compensating components of the control law can be given as

α(ξ, ηT ) = L3
fd
h(Φ−1(ξ, ηT )) = L3

fd
h(x))

=
1

mPS

[
−dPS(kSlS + FS0)

mPS

+
dPSkS
mPS

x1 −
AS2

Ch1

q̂P

(
x1 − xoffsetS

)

+

(
d2
PS

mPS

− kS −
A2
S1

ChS
− A2

S2

Ch1

)
x2 +

dPS
mPS

(AS2x3 − AS1x4)

+

(
AS2

Ch1

− fP1(x1)

Ch1

)
sign(x3 − pC)γFAOR1

√
|x3 − pC |

+
q̂P
Ch1

(x1 − xoffsetS )fP1(x1) +
AS2

Ch1

fP1(x1)x2

− dPS
mPS

(
x3fP1(x1) + fP2(x1)

)
+ x2

(
x3
∂fP1(x1)

∂x1

+
∂fP2(x1)

∂x1

)]
,

(8.36)

β(ξ, ηT ) = LgR
L2

fd
h(Φ−1(ξ, ηT )) = LgR

L2
fd
h(x)

= −AS1

ChS
sign(x4 − p0)γF

bReg
mPS

√
|x4 − p0| . (8.37)

Synthesizing the control law As outlined in chapter 7, a control law linearizing the
input-output relationship in physical coordinates x is given by

uR =
ν − α(ξ,ηT )

β(ξ,ηT )

with α(ξ,ηT ) and β(ξ,ηT ) from equations (8.36) and (8.37). The new input ν is chosen
to be

ν = −k1(ξ1 − ξ∗1)− k2(ξ2 − ξ̇∗1)− k3(ξ3 − ξ̈∗1) +
...
ξ
∗
1 (8.38)

= [k1 k2 k3] e +
...
ξ
∗
1 , (8.39)

feeding back the components of the trajectory tracking error e = ξ∗−ξ with weights k1,
k2 and k3 such that the error system is stable and the system dynamics stably track the
desired trajectory ξ∗1 . The controller structure is visualized in Figure 8.2.

Investigating the zero dynamics As for the internal dynamics,

η̇T = qT (ξ, ηT ) =
1

Ch1

(
q̂P ξ1 + AS2ξ2 − sign(ηT )γFAOR1

√
|ηT |

)
. (8.40)
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1
β(Φ(x)) ẋ = fd(x) + gR(x)uR y = h(x)

[
ξ

η

]
= Φ(x)

−α(Φ(x))k3k2k1

k2

k1

k3

1

w uR

ξ3 = ÿ

ξ2 = ẏ

ξ1 = y

-

y∗

ẏ∗

ÿ∗

...
y ∗

Figure 8.2: Feedback-linearizing control approach.

The corresponding first order zero dynamics resulting hence are obtained from setting
ξ = 0, so that

η̇T (ξ = 0, ηT ) = −γFAOR1

Ch1

sign (ηT )
√
|ηT | . (8.41)

To prove asymptotic stability of the above zero dynamics, it is necessary to draw on
Lyapunov stability theory. A Lyapunov function candidate is chosen as

V =
1

2
Ch1η

2
T , (8.42)

which is positive definite in an arbitrary neighborhood of ηT = 0.
The Lyapunov candidate’s derivative along trajectories of ηT then is

V̇ = Ch1ηT η̇T (8.43)

= −ηT sign(ηT )
√
|ηT |γFAOR1 (8.44)

= −|ηT |
√
|ηT |γFAOR1 , (8.45)

which is negative definite as V̇ can only become zero for ηT = 0. Therefore the zero
dynamics are asymptotically stable.
Equation (8.41) does have a unique equilibrium at ηT = 0, so all solutions starting
from ηT0 ∈ R converge to zero so that the system is asymptotically stable and input-
output-linearization can be performed for this system configuration. With a view on
theorems on bounded tracking of trajectories, however, the zero dynamics indeed are
only asymptotically, but not globally exponentially stable, as can be seen from consid-
eration of the closed solution of the zero dynamics. If, for example, the case where the
sign-function in the zero dynamics yields a positive value, is considered, one finds that

ηT > 0 : η̇T = −γFAOR1

Ch1

√
ηT (8.46)
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⇒ ηT =

(√
ηT0 − 2

γFAOR1

Ch1

(t− t0)

)2

. (8.47)

So the convergence speed to the stable equilibrium solution is of second order which
implies that a relationship

∣∣ηT (t)
∣∣ ≤ |ηT0|me−α(t−t0) (8.48)

as required for exponential stability in [91] with α > 0 as the rate of convergence and
m > 0 a positive constant is not fulfilled for all ηT0 ∈ R+ by the zero dynamics’ solu-
tion. While some theorems for bounded/asymptotic trajectory tracking control work
with converse Lyapunov theorems based on (global) exponential stability, non-global
exponential stability of the zero dynamics in this case is not an obstacle to the method,
as in [40] a theorem for bounded trajectory tracking is presented. However, especially
in the field of adaptive control, global exponential stability is desirable since most con-
vergence proofs rely on converse Lyapunov theorems requiring (global) exponential
stability. From an engineering point of view, global exponential stability of the zero
dynamics can be associated with a robustness to perturbations.

8.4.2 Control Synthesis for a Rise in Volume Flow

In case a rise in pump volume flow is required, the system operates under the condition
that uR < 0 and thereby

qT = 0 , (8.49)

qR = sign(x3 − x4)γF bReg|uR|
√
|x3 − x4|. (8.50)

Substituting these relationships into the system equation (8.6), the system equations in
input-affine form for this operating condition are

ẋ =




fd1(x)

fd2(x)

fd3(x)

fd4(x)


+




0

0
sign(x3−x4)bReg

Ch1
γF
√
|x3 − x4|

− sign(x3−x4)bReg
ChS

γF
√
|x3 − x4|




︸ ︷︷ ︸
=: gRL(x)

uR . (8.51)

It needs to be emphasized that the input uR now appears in two state equations through
the structure of gRL(x). Since the drift term fd(x) remains unaffected from the change
in the control input matrix, fd1(x), fd2(x), fd3(x) and fd4(x) are given by (8.19), (8.20),
(8.21) and (8.22), respectively.
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Determining the relative degree Again assuming the system output to be given by
(8.23), the output and its first two time derivatives are identical with (8.24) to (8.28),
respectively. However, due to the structurally different input vector, for LgR

L2
fd
h(x) one

obtains

LgR
L2

fd
h(x) =−

(
AS2 − fP1(x1)

Ch1

+
AS1

ChS

)
sign(x3 − x4)γF

bReg
mPS

√
|x3 − x4| . (8.52)

The relative degree is r = 3 for x3 6= x4 and thereby the same in the operating condition
where a decrease in pump volume flow is required.

Transforming into normal form The state transformation for the external coordinates
is defined by the output and its time derivatives up to r−1-th order. These quantities are
identical with those obtained for uR ≥ 0, so that the external coordinates are identical
for the two operating conditions. Finding an appropriate coordinate transformation
for the internal dynamics remains a question to be treated, as the obvious candidates
ηL = x3 and ηL = x4 can easily be shown to result in internal dynamics depending on
the system input uR. While this is no major drawback in general, it does complicate the
investigation of the stability of the internal dynamics for the load-sided flow condition.
For this not to be the case, a solution of (7.17) has to be found.
Formulating the equation for the problem at hand, one obtains

[
1

Ch1

∂Φ4

∂x3

− 1

ChS

∂Φ4

∂x4

](
bRegγF

√
|x3 − x4|

)
= 0 . (8.53)

A solution candidate for this equation is given by

Φ̃4 = η̃L = Ch1x3 + ChSx4 . (8.54)

Scaling the above solution candidate by a factor Ψ1 and adding a constant Ψ2 will not
structurally alter the solution property of the thus obtained result for the partial differ-
ential equation in (8.53), so that Φ4 is chosen to be

Φ4 = ηL = Ψ1(Ch1x3 + ChSx4) + Ψ2 . (8.55)

With respect to obtaining the simplemost expression for the zero dynamics with an
equilibrium located at zero, it is purposeful to choose

Ψ1 =
AS1

AS1Ch1 + AS2ChS − ChSfP1(xoffsetS )
, (8.56)

Ψ2 = ChS
FS0 + kS(lS − xoffsetS ) + fP2(xoffsetS )

AS1Ch1 + AS2ChS − ChSfP1(xoffsetS )
− pC . (8.57)

Due to fP1(ξ1+xoffsetS ) ≤ 0 for the whole operating range of ξ1 ( see Figure 5.8), it follows
that Ψ1 > 0. The full state transformation then reads

z = Φ(x) =




h(x)

Lfdh(x)

L2
fd
h(x)

Ψ1 (Ch1x3 + ChSx4) + Ψ2



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=




x1 − xoffsetS

x2

− 1
mPS

(
kSx1 − AS1x4 + AS2x3 + dPSx2 − x3fP1(x1)− fP2(x1)− kSlS − FS0

)

Ψ1(Ch1x3 + ChSx4) + Ψ2


 .

(8.58)

As in the case of the valve opening in the tank-sided direction, the Jacobian of the sys-
tem

∂Φ
∂x

=




1 0 0 0

0 1 0 0

−kS−x3 ∂fP1
∂x1
− ∂fP2

∂x1

mPS
− dPS
mPS

−AS2−fP1

mPS

AS1
mPS

0 0 Ψ1Ch1 Ψ1ChS




(8.59)

is regular for all states x ∈ R4 so that the transformation suggested by (8.58) constitutes
a diffeomorphism.
With the transformation derived above, the Byrnes-Isidori normal form follows as




ξ̇1

ξ̇2

ξ̇3

η̇L


 =




ξ2

ξ3

α(ξ, ηL) + β(ξ, ηL)uR
qL(ξ, ηL)


 , (8.60)

y = ξ1. (8.61)

Synthesizing the control law The control law leading to a linear input output rela-
tionship again is

uR =
ν − α(ξ,ηL)

β(ξ,ηL)
(8.62)

with α(ξ,ηL) given by (8.36) and β(ξ,ηL) given by (8.52) accordingly. The new input ν
is again given by (8.38) as there is no switching behavior for the external variables ξ.
In order to obtain stable trajectory tracking, the new input ν is chosen to be the same
as for the tank-sided flow condition, i.e. as in equation (8.38). Since for both flow
conditions the external coordinates are the same, choosing ν to be identical for tank- and
load-sided flow conditions will yield asymptotic tracking in the external coordinates ξ
irrespective of the system’s switching behavior.

Investigating the zero dynamics The first order internal dynamics again can physi-
cally be interpreted as a net fluid flow balance in the system with the main capacitance
Ch1 now connected with the secondary capacitance ChS :

η̇L = Ψ1

(
q̂P ξ1 + (AS2 − AS1)ξ2 − sign(Ψ3(ξ, ηL))γFAOR1

√
|Ψ3(ξ, ηL)|

)
(8.63)
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with

Ψ3(ξ, ηL) =
ChS

(
−dPSξ2 + kSlS + FS0 − kS(ξ1 + xoffsetS )

)

AS1Ch1 + AS2ChS − ChSfP1(ξ1 + xoffsetS )

+
−mPSξ3 + fP2(ξ1 + xoffsetS )

AS1Ch1 + AS2ChS − ChSfP1(ξ1 + xoffsetS )

+
AS1ηL − AS1Ψ2(

AS1Ch1 + AS2ChS − ChSfP1(ξ1 + xoffsetS )
)

Ψ1

− pC (8.64)

= Ψ3ξ(ξ) + Ψ3ηL(ξ)ηL . (8.65)

Here, it should be noted that

Ψ3ηL(ξ) > 0 ∀t , (8.66)

since again fP1(ξ1 + xoffsetS ) ≤ 0.
Setting ξ = 0 yields the zero dynamics of the system:

η̇L(ξ = 0, ηL) = −sign(ηL)Ψ1γFAOR1

√∣∣ηL| . (8.67)

This representation of the zero dynamics motivated the transformation as suggested
in (8.55) – had another transformation been chosen, the resulting internal and corre-
sponding zero dynamics would have yielded a more complicated form with non-zero
equilibrium position. With (8.67), from a physical point of view the zero dynamics are
very similar to the zero dynamics of the valve opening towards the tank-side, essen-
tially representing a volume flow balance in the main capacitance now connected with
the actuator capacitance ChS . With Ψ1 > 0, a nonlinear stability analysis as presented in
equation (8.42) et sqq. reveals that the zero dynamics are asymptotically stable.
It is of note that the most obvious alternative coordinate transformation, namely the
transformation suggested for the tank-sided flow condition expressed in (8.30), would
have led to a representation of the zero dynamics of the kind expressed in equation
(7.30), i.e.

η̇T (0, ηT ) =
1

Ch1

(
−sign(ηT )γFAOR1

√
|ηT |)

−|uR(0, ηT )|sign
(
x3(0, ηT )− x4(0, ηT )

)
γF bReg

√∣∣x3(0, ηT )− x4(0, ηT )
∣∣
)
, (8.68)

which upon manipulation can be converted into

η̇T (0, ηT ) = −sign(ηT )Ψ1γFAOR1

√∣∣ηT | . (8.69)
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Because stability of internal dynamics is a structural property that does not depend on
the chosen coordinate transformation, stability is given for (8.68) as well. Then (8.42)
can be taken as a common Lyapunov function for both flow conditions whose time
derivative is negative along trajectories for both flow conditions, showing the internal
dynamics to be asymptotically stable irrespective of the flow condition, see [99] for
further background on common Lyapunov functions. This implies that the system with
switched internal dynamics is stable.
Interpreting this from a physical perspective, a stable control of output y = h(x) im-
plies a stably controlled pump as energy source within the system so that the internal
dynamics do not have an energy source to draw on for potentially unstable behavior
since the pump behavior is prescribed through control. Even though the capacitances
Ch1 and ChS provide an interacting set of capacitances potentially allowing for pressure
oscillations between each other, pressure oscillations in hydraulic systems are typically
related to instabilities of the control valve – because the control valve by assumption is
a stably actuated servo valve, no such instabilities are to be expected within this system.

8.4.3 Boundedness of Tracking

Applying the control strategy presented in this chapter separates the state variables
x into observable transformed state variables ξ and unobservable state variables
η = {ηT , ηL}. The latter correspond to internal dynamics and zero dynamics associated
with these internal dynamics under the assumptions of the output-zeroeing problem.
While for the external dynamics asymptotic tracking is achieved by means of nonlin-
earity compensation and appropriate pole-placement, the boundedness of the full state
x is a requirement for the control strategy to be feasible. Since the state x is obtained
from the internal variables ξ and η through the inverse of Φ(x), once the internal
variables lack stability, they possibly become unbounded, thereby rendering the state
x unbounded. This evidently is a problem because from a certain point onwards, the
nonlinearity compensation will become impossible due to physical bounds on the input
required to compensate nonlinearities featuring unbounded states. It therefore remains
to be shown that the system yields bounded states for the two possible configurations
of the control input matrix gR.
In this section, it will be shown that the suggested control approach leads to the desired
outcome. The approach relies on a theorem suggested in [40]. Because for input-output
linearization (i.e. systems with non-full relative degree) it is not asymptotic stability for
the tracking error of all transformed states but only boundedness for the full state vector
that is required, it follows that if both control systems (tank-sided and load-sided valve
opening, i.e. uR ≥ 0 and uR < 0) can be shown to yield bounded tracking, then the sys-
tem will show bounded tracking as a whole – the non-smoothness of the control input
matrix hence is of no relevance for the functionality of the proposed control approach.
In [91], an alternative theorem on the boundedness of tracking is proposed that is fre-
quently drawn onto in the extant body of research. It does, however, require global
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exponential stability of the zero dynamics – a condition that is not fulfilled here due
to only locally exponentially stable zero dynamics. For such cases, theorem 1 due to
Isidori [40] (see Appendix A) states sufficient conditions for bounded tracking (see also
[97]) .
According to this theorem, in order to show that the tracking is bounded in ξ, η, it has
to be shown that η(t) is bounded and uniformly asymptotically stable upon excitation
through ξR for both flow conditions. The assumption here is that for the external co-
ordinates ξ, exact tracking is achieved so that ξ = ξR drive the internal dynamics. To
show boundedness of the response of ηT and ηL with respect to their excitations by the
reference signals theorem 3 from [53] is drawn onto (see Appendix A).
The first part of theorem 3 makes a statement on the conditions of boundedness while
the second part provides correlating existence conditions that may in some cases allow
calculating the bounds.
To show boundedness of

ηT = qT (ξR, ηT ),

the Lyapunov candidate

V =
1

2
Ch1η

2
T (8.70)

is assumed which is radially unbounded and positive definite. It thereby is guaranteed
that α1 and α2 according to theorem 3 exist.
With ξR = [ξ1R ξ2R ξ3R]T, the time derivative of V will be then manipulated as fol-
lows:

V̇ = ηT (q̂P ξ1R + AS2ξ2R)− |ηT |
√
|ηT |γFAOR1 (8.71)

≤ |ηT |
√
ξ2

1R + ξ2
2R

√
(q̂P )2 + (AS2)2

︸ ︷︷ ︸
=: fT (t)

−|ηT |
√
|ηT |γFAOR1 (8.72)

= |ηT |fT (t)− (1− θ)|ηT |
√
|ηT |γFAOR1 − θ|ηT |

√
|ηT |γFAOR1 (8.73)

≤ |ηT |KfT − (1− θ)|ηT |
√
|ηT |γFAOR1 − θ|ηT |

√
|ηT |γFAOR1 (8.74)

with KfT representing the upper bound on fT resulting from bounded ξ1R and ξ2R and
0 ≤ θ ≤ 1. Hence,

V̇ ≤ −(1− θ)|ηT |
√
|ηT |γFAOR1, ∀

√
|ηT | ≥

KfT

θ

1

γFAOR1

. (8.75)

Thus, for bounded reference signals ξ1R and ξ2R it follows that ηT is bounded.
The same approach can be used to show boundedness of ηL subject to excitation through
the reference signal ξR.
With (8.58) and (8.63) , the dynamics of ηL have the representation
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8 Nonlinear Volume Flow Control of a Variable Displacement Vane Pump

η̇L =

=: f(t)︷ ︸︸ ︷
Ψ1

(
q̂P ξ1R + (AS2 − AS1)ξ2R

)

− γFAOR1Ψ1sign
(
Ψ3ξ(t) + Ψ3ηL(t)ηL

)√∣∣Ψ3ξ(t) + Ψ3ηL(t)ηL
∣∣ . (8.76)

Now, with Ψ3ξ(t) + Ψ3ηL(t)ηL = Ψ3ηL(t)
(

Ψ3ξ(t)

Ψ3ηL
(t)

+ ηL

)
introducing a new coordinate ζ is

sensible:

ζ =

=: Ψ4(t)︷ ︸︸ ︷
Ψ3ξ(t)

Ψ3ηL(t)
+ηL , (8.77)

ζ̇ = Ψ̇4(t) + η̇L. (8.78)

This allows writing

ζ̇ = f(t) + Ψ̇4(t)− γFAOR1Ψ1sign(Ψ3ηLζ)
√
|Ψ3ηLζ| (8.79)

and choosing the Lyapunov function candidate

V =
1

2
ζ2. (8.80)

With (8.66), the Lyapunov function’s time derivative then is

V̇ = ζζ̇ (8.81)

= ζ
(
f(t) + Ψ̇4(t)

)
− 1

Ψ3ηL(t)
sign(Ψ3ηL(t)ζ)

√
|Ψ3ηL(t)ζ|(Ψ3ηL(t)ζ) (8.82)

= ζ
(
f(t) + Ψ̇4(t)

)
− 1

Ψ3ηL(t)
|Ψ3ηL(t)ζ|

√
|Ψ3ηL(t)ζ| (8.83)

≤ |ζ|
(
|f(t)|+ |Ψ̇4(t)|

)
− 1

Ψ3ηL(t)
|Ψ3ηL(t)ζ|

√
|Ψ3ηL(t)ζ| (8.84)

≤ |ζ|
(
|Kf |+ |KΨ̇4

|
)
− 1

Ψ3ηL(t)
|Ψ3ηL(t)ζ|

√
|Ψ3ηL(t)ζ| (8.85)

≤ |ζ|
(
|Kf |+ |KΨ̇4

|
)
− 1

KΨ3ηL

|LΨ3ηL
ζ|
√
|LΨ3ηL

ζ| (8.86)

= |ζ|
(
|Kf |+ |KΨ̇4

|
)

− (1− θ) 1

KΨ3ηL

|LΨ3ηL
ζ|
√
|LΨ3ηL

ζ| − θ 1

KΨ3ηL

|LΨ3ηL
ζ|
√
|LΨ3ηL

ζ| . (8.87)

In the above derivations, Kf , KΨ̇4
, KΨ3ηL

are the upper bounds on f(t), Ψ̇4(t) and Ψ3ηL ,
respectively and LΨ3ηL

is the lower bound on Ψ3ηL . The necessity of these functions to
be bounded may impose restrictions on the choice of ξR. Ultimately, it follows that

V̇ ≤ −(1− θ) 1

KΨ3ηL

|LΨ3ηL
ζ|
√
|LΨ3ηL

ζ| ∀
√
|ζ| >

Kψ3ηL

(
|Kf |+ |KΨ̇4

|
)

θ
∣∣∣LΨ3ηL

∣∣∣
√∣∣∣LΨ3ηL

∣∣∣
. (8.88)
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so that solutions for ζ are bounded by the boundedness of the reference trajectories ξR,
Ψ̇4, f(t) and Ψ3ηL . Now, because ζ is bounded, so is ηL.
In order to show uniform asymptotic stability, the dynamics of the difference between
the actual trajectory ηT and the reference trajectory ηR = ηTR for the tank-sided internal
dynamics ηT arising from perfect tracking of ξR

∆ηT = ηT − ηTR (8.89)

is considered locally through linearization about ηTR. The implication then is that dis-
turbances imposed on the initial conditions in ηT or along the tracked trajectory are
restricted in their magnitude in a way that a linearized system description remains fea-
sible. For the tank-sided operating condition, the error dynamics from (8.89) read

∆η̇T = −γFAOR1

Ch1

1

2
√
|ηTR|

∆ηT , (8.90)

which are uniformly asymptotically stable for all times t ≥ t0 according to theorem 2
(see Appendix A) by the boundedness for ηT (and ηTR as well) as shown above: with a
Lyapunov candidate as in equation (8.70), it holds that

V̇ = −γFAOR1
1

2
√
|ηTR|

∆η2
T ≤ −γFAOR1

1

2
√
|KηTR |

∆η2
T , (8.91)

where KηTR is the bound on the tank-sided reference trajectory for ηT so that the in-
ternal dynamics are uniformly asymptotically stable. Considering the load-sided op-
erating condition, the same approach can be applied accordingly, yielding the same
result so that bounded tracking with uniformly asymptotically stable internal dynam-
ics is ensured for both operating conditions from which bounded tracking follows for
the system as a whole. Thus, because solutions for ηR are bounded and at least locally
uniformly asymptotically stable, the control law devised by equations (8.36), (8.37) and
(8.62) yields asymptotic output tracking with bounded states irrespective of the operat-
ing condition. Ultimately, the system as a whole can stably be controlled for trajectory
tracking.

8.4.4 Simulation Results

The simulations results in Figures 8.3 and 8.4 clearly show a high tracking performance
for the pump eccentricity and thereby for volume flow control. Overshoots are marginal
and subject to linear feedback design with valve dynamics showing a small effect on
tracking behavior mainly in a transient phase. The simulation results thereby clearly
indicate positive behavior of the input-output linearization.
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Figure 8.3: Without valve dynamics.
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Figure 8.4: With valve dynamics.
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8.5 Adaptive Feedback-Linearizing Control

A remark on adaptive control techniques is in order. Up to this point, it was assumed
that all system parameters are fully known. From a practical viewpoint, this assump-
tion may not hold up well for system damping which may be subject to changes over
operating time. It may therefore be asked if a control law adaption to damping is pos-
sible.
Another parameter varying over the life time of a valve is flow coefficient γF which –
as is common in the extant body of research – in this thesis is generally assumed iden-
tical for all control edges. Relaxing this assumption and allowing for variations in γF
over time, this should be done for each control edge separately as pressure differences
across control edges typically are not identical so that effects of wear and soiling will
differ among separate control edges. For parameter adaption, this entails switching pa-
rameters for which adaption is then seeked. Because the scope of the methods drawn
onto in this section does not allow for such a structural switching, only variations in
damping dPS will be considered.
However, even the problem of controlling linear systems with adaption algorithms is
a complex task as by multiplicative parameter state coupling the corresponding sys-
tem equations become nonlinear. Controlling nonlinear systems adaptively is a task of
significant difficulty to which no generally applicable systematic solution has yet been
found.
In general, two directions can be distinguished in classical adaptive control – indirect
and direct adaptive control.

• Indirect adaptive control: here, one designs a control law (depending on unknown
parameters) and then designs a method to update the parameters appropriately.
Intuition then suggests that parameter estimates converging to the true parame-
ter values will result in a control law asymptotically linearizing the input output
behavior of the system. It should be emphasized that this is a heuristic approach
– commonly referred to as certainty equivalence principle, see e.g. [110]. Indirect
adaptive control approaches employ an observation error to update the plants in-
stead of using an output error. Works in this field are [110] and references cited
therein.

• Direct adaptive control: the parameter update law does not have to be such that
parameters converge to their true values in order to achieve the desired control
purpose. Prominent works in this field are [44, 93, 109]. For further reference and
a discussion of different relevant approaches, see [110].

All the work available in feedback-linearization based adaptive control theory currently
makes certain assumptions about the plant that the system at hand offends in at least
one assumption. A standard assumption is linearity in the unknown parameters. Ex-
isting control schemes then impose either uncertainty constraints on the unknown pa-
rameters or restrictions on the nonlinearities in the scheme. Nonlinearity restrictions
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8 Nonlinear Volume Flow Control of a Variable Displacement Vane Pump

typically are global Lipschitz properties. These are offended by the square root func-
tions in the volume flow laws across orifices – while the underlying adaptive control
may possibly converge nevertheless, [96] show that divergence can easily occur if the
requirements for the control laws are offended. While for the square root functions a
regularization scheme might be conceived to remedy this lack of Lipschitz continuity,
higher order nonlinear models for the pump may possibly lead to a violation of the
requirements.
In contrast, uncertainty constraining schemes impose geometric/structural conditions
on the appearance of the unknown parameters in the systems. These constraints are
commonly expressed in so-called matching conditions, amongst which exact and ex-
tended matching conditions can be distinguished. While exact matching conditions are
met only by a small class of systems, the extended matching condition introduced in
[44] for full-state feedback linearizable systems is somewhat less restrictive. It allows,
for example, for the successful implementation of a MIMO adaptive control scheme
for induction motor systems with non-full relative degree, as shown in [72]. Systems
that do not fulfill a matching condition for the uncertainty will entail so-called over-
parameterization in the adaptive control laws in order to account for higher order
derivatives of the unknown parameter. This commonly complicates the control design
which is why in general, designs based on matching conditions are preferable.
Among the available methods, only the approach outlined in [72] making use of an
extended matching condition is applicable to the problem at hand. Here, too, the as-
sumption is linearity in the unknown parameters which are assumed to be constant
within the derivation of the adaptive control law but may actually vary with time. If
the SISO system with p unknown parameters θ =

[
θ1, . . . , θp

]
has the representation

ẋ = f̃d(x,θ) + g(x,θ)u (8.92)

= fd(x) + g0(x)u+
l∑

i=1

θifi(x) +

p∑

i=l+1

θigi(x)u (8.93)

with fd representing the nominal drift term of the system and fi,gi representing the en-
try matrices of the i-th uncertain parameter in the drift and in the control input, respec-
tively, then the exact matching condition for a fully state-feedback linearizable system
reads [55]

fi,gj ∈ span{g0} i = 1 . . . l, j = l + 1 . . . p , (8.94)

while the extended matching condition is given by

fi ∈ span{g0, adfdg0} i = 1 . . . l , (8.95)
gi ∈ span{g0} j = l + 1 . . . p (8.96)

with adfdg0 = [fd,g0] representing the Lie bracket of fd and g0 which is defined by

[fd,g0] (x) =
∂g0(x)

∂x
fd(x)− ∂fd(x)

∂x
g0(x) . (8.97)
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The intuitive meaning of the matching condition is that the unknown parameters are
at most “one integrator away” from the system inputs which can then counteract the
parameter uncertainty, see also [28]. As a consequence of this condition, only first order
derivatives of the unknown parameters will appear in the control designs which can be
subjected to appropriate update laws.
In the majority of adaptive feedback designs and in the present context, too, Barbalat’s
lemma (see Lemma 1 in Appendix) is of paramount importance.
From the lemma it follows that in case g ∈ L2 and dg

dt
is bounded,

lim
t→∞

g(t) = 0 , (8.98)

see e.g. [3, 92]. To show error convergence and parameter convergence, the lemma is
typically invoked in the form of a deductive argument, as is here. From the bounded-
ness of an error signal e and its time derivative ė it follows that

lim
t→∞
|e(t)| = 0 (8.99)

so that asymptotic trajectory tracking is achieved.
Introducing unknown deviations from nominal damping dPS in (8.18), (8.51) as param-
eter p to be adapted, the system description is

ẋ = fd(x) + pf1(x) + gR(x)uR . (8.100)

The matrix through which p enters the system dynamics is

f1(x) =




0

− x2
mPS

0

0


 . (8.101)

Now the following transformation based on h(x) = x1 − xoffsetS and the nominal system
(p = 0) is defined:

y1 = h(x) = Φ1 , (8.102)
y2 = Lfdh(x) = Φ2 , (8.103)
y3 = L2

fd
h(x) = Φ3 , (8.104)

y4 = Φ4 . (8.105)

Here, Φ4 represents the coordinate transformation for the internal dynamics of the sys-
tem as in the case for ordinary, non-adaptive input-output-linearization.
Transforming the nominal system with the nominal transformation to Byrnes-Isidori nor-
mal form yields, as was already shown in section 8.4,

ẏ1 = y2 , (8.106)
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ẏ2 = y3 , (8.107)
ẏ3 = L3

fd
Φ1 + LgR

L2
fd

Φ1uR , (8.108)
ẏ4 = Lfd

Φ4 . (8.109)

Now, the nominal transformation is applied to the perturbed system featuring the un-
known parameter p 6= 0: That is, the perturbed system (8.100) is transformed with
the coordinate transformation of the nominal system (8.102)-(8.105). Interpreting this
step from another perspective, the transformed coordinates of the nominal system are
derived along the trajectories of the perturbed system. With

˙( · ) =
[
Lfd

+ pLf1
+ uRLgR

]
( · ) (8.110)

one gets

ẏ1 =
[
Lfd

+ pLf1
+ uRLgR

]
Φ1

= Lfd
Φ1 = x2 = y2 , (8.111)

ẏ2 =
[
Lfd

+ pLf1
+ uRLgR

]
Lfd

Φ1

= L2
fd

Φ1 + p Lf1
Lfd

Φ1

= y3 + pLf1
Lfd

Φ1 , (8.112)

ẏ3 =
[
Lfd

+ pLf1
+ uRLgR

]
L2

fd
Φ1

= L3
fd

Φ1 + pLf1
L2

fd
Φ1 + uRLgR

L2
fd

Φ1 , (8.113)

ẏ4 =
[
Lfd

+ pLf1
+ uRLgR

]
Φ4

= Lfd
Φ4 . (8.114)

From this, it can be seen that ideally, with perfect knowledge of p, the transformation for
the perturbed system that depends on an estimate of parameter p should be

z1 = y1 , (8.115)
z2 = y2 , (8.116)
z3 = y3 + pLf1

Lfd
Φ1 , (8.117)

z4 = y4 . (8.118)

If p = p(t) were known exactly, equations (8.115)–(8.118) would be identical with the
transformations discussed in section 8.4. Since only an estimate p̂ is available for p, the
following will be taken

z3 = y3 + p̂Lf1
Lfd

Φ1 . (8.119)

Introducing the parameter estimate error ep = p− p̂, the system in z-coordinates based
on the estimate p̂ reads

ż1 = ẏ1 = y2 = z2 , (8.120)
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ż2 = ẏ2 =
[
Lfd + pLf1 + uRLgR

]
LfdΦ1

= y3 + pLf1
Lfd

Φ1

= y3 + p̂Lf1
Lfd

Φ1 + epLf1
LfdΦ1

= z3 + epLf1
Lfd

Φ1 , (8.121)
ż3 = ẏ3 + d

dt
(p̂Lf1

Lfd
Φ1)

=
[
Lfd

+ pLf1
+ uRLgR

]
L2

fd
Φ1 + p̂

[
Lfd

+ pLf1
+ uRLgR

]
Lf1
Lfd

Φ1

+ ˙̂pLf1
Lfd

Φ1 (8.122)
= L3

fd
Φ1 + pLf1

L2
fd

Φ1 + uRLgR
L2

fd
Φ1 + p̂Lfd

Lf1
Lfd

Φ1

+ p̂pL2
f1
Lfd

Φ1 + ˙̂pLf1
Lfd

Φ1 , (8.123)
ż4 = ẏ4 = Lfd

Φ4 . (8.124)

Now the nonlinearity compensating feedback-law based on the parameter estimate p̂ is
derived from (8.122) as

u =
1

LgR
L2

fd
Φ1

[
−L3

fd
Φ1 − p̂Lf1

L2
fd

Φ1 − p̂Lfd
Lf1
Lfd

Φ1

−p̂2L2
f1
Lfd

Φ1 − ˙̂pLf1
Lfd

Φ1 + ν
]

(8.125)

with the new input ν chosen to be

ν = −k1(z1 − ξ∗1)− k2(z2 − ξ∗2)− k3(z1 − ξ∗3) + ξ̇∗3

= k1e1 + k2e2 + k3e3 + ξ̇∗3 . (8.126)

For z3, it then follows with the above control law

ż3 = (p− p̂)Lf1
L2

fd
Φ1 + p̂(p− p̂)L2

f1
Lfd

Φ1 + k1e1 + k2e2 + k3e3 + ξ̇∗3

= epLf1
L2

fd
Φ1 + p̂epL2

f1
Lfd

Φ1 + k1e1 + k2e2 + k3e3 + ξ̇∗3 . (8.127)

From this, the following error system is obtained:

ė =




0 1 0

0 0 1

−k1 −k2 −k3


 e +




0

Lf1
Lfd

Φ1

Lf1
L2

fd
Φ1 + p̂L2

f1
Lfd

Φ1


 ep

= Ke + W(z, p̂)ep . (8.128)

where W(z, p̂) is referred to as regressor. From this representation, a suitable param-
eter update law for the dynamics of p̂ can be deduced and the standard argument for
parameter convergence in this context can be made.
To do so, it is assumed that P is the positive definite, symmetric, solution to the Lya-
punov equation

KTP + PK = −Q (8.129)
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with Q positive definite.
Then the following Lyapunov-function candidate with Γ > 0 is chosen:

V = eTPe + Γe2
p . (8.130)

Its time derivative follows as

V̇ = eT
(
KTP + PK

)
e + 2epW

TPe + 2Γepėp . (8.131)

To render V̇ at least negative semidefinite the parameter error update law

ėp = − 1

Γ
WTPe (8.132)

is chosen from which the parameter update law

˙̂p = − 1

Γ
WTPe (8.133)

follows immediately since p is assumed constant.
With this choice of the parameter update law,

V̇ = −eTQe . (8.134)

Since V̇ is negative semidefinite, the trajectory error e and the parameter error ep are
bounded. It also follows from this that e is an L2 signal, see [72]. Because ep is bounded,
so is p̂. For a large class of tracking signals, the state z then is bounded, too, due to the
Hurwitz design of the trajectory error feedback with appropriately chosen k1, k2, k3.
Performing the respective calculations for the components of the regressor,

Lf1
Lfd

Φ1 = − 1

mPS

z2 , (8.135)

Lf1
L2

fd
Φ1 = − dPS

mPS

z2 , (8.136)

L2
f1
Lfd

Φ1 =
1

m2
PS

z2 , (8.137)

it can be seen that the regressor components are bounded by the boundedness of z2. As
in [72], it thus follows that ė is bounded, too. Now with e being a bounded signal with
bounded derivative ė, it follows from Barbalat’s lemma that

lim
t→∞
||e(t)|| = 0 (8.138)

so that asymptotic trajectory tracking based on the suggested control approach can be
achieved.
In simulations, however, it is seen that the parameter dPS has negligible impact on track-
ing quality. The input-output-linearization approach from section 8.4 is sufficiently ro-
bust with respect to even large variations in dPS so that complicating the control law by
inclusion of the parameter adaptive law (8.125) with (8.133) may not be required and
unnecessarily complicate the control implementation.
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8.6 Nonlinear Observer Design

While state space methods allow for control strategies in some cases superior to fre-
quency space methods, they pose the problem of how to obtain knowledge of the sys-
tem states. As measuring the states of a system comprehensively is not generally feasi-
ble, it is purposeful to design an observer to fulfill the task of estimating the respective
system states. Even though observer theory is well developed for linear systems, re-
sults for nonlinear systems have remained particular to certain types of problems. In
the following two sections, two such nonlinear observers – a high gain observer and a
nonlinear local observer – shall be discussed with respect to their applicability to the
problem of controlling the variable displacement pump system.

u = r(x̂,w)
ẋ = fd(x) + g(x)u

y = h(x)
w u y

+

l(x̂)

˙̂x = fd(x̂) + g(x̂)u+ χ

ŷ = h(x̂)

y − ŷ

χ

ŷ

−

x̂

x̂

Figure 8.5: General structure for the nonlinear observers as treated in this chapter.

8.6.1 High Gain Observer

With the task of designing a nonlinear observer being comparatively straightforward
for a nonlinear system with full relative degree (see e.g. [1]), a non-full relative degree
system requires additional considerations due to the internal dynamics of the system.
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Understanding the problem of observer design as a dual to the problem of nonlinear
control, [42] approach the problem from a control based perspective. Their contribution
has experienced several extensions, amongst which [85, 86] should be named for their
relevance in the context treated here.
Under the assumption of a well-defined relative degree r, the generic SISO system

ẋ = fd(x) + g(x)u , (8.139)
y = h(x) (8.140)

can be transformed into either Byrnes-Isidori normal form or into a non-Byrnes-Isidori
form as outlined in section 7.1:

[
ξ̇

η̇

]
= fdΦ(ξ, η) + gΦ(ξ, η)u

or, equivalently,

ξ̇ = Aξ + b(α(ξ, η) + β(ξ, η)u), y = cTξ , (8.141)
η̇ = q(ξ, η) + p(ξ, η)u . (8.142)

The above form implies that for the observer design, the transformation does not neces-
sarily need to be the Byrnes-Isidori transformation as p(ξ, η) 6= 0 in (8.142). In equation
(8.141),

A =




0 1 . . . 0

0 0
. . . 0

... . . . 1

0 0 . . . 0



, b =




0
...
0

1



, c =




1

0
...
0



. (8.143)

The triple A,b, c associated with the external dynamics ξ is in so-called Brunovsky-
form. If an observer is to be constructed for a system that can be brought into the form
of (8.141) and (8.142) the question of observability first has to be answered.
In the case of the external dynamics, observability is granted in any case, since all co-
ordinates ξ1, . . . ξr are related by repeated differentiation with respect to time. Hence, if
the system output is known, all these states can be reconstructed accordingly. By def-
inition, the states η1, . . . ηn−r are unobservable from the system output for the control
laws discussed here as the system output is not affected by these states. However, the
high-gain observer suggested in [42] and extended in [85, 86] is of the form

˙̂
ξ = Aξ̂ + b

(
α(ξ̂, η̂) + β(ξ̂, η̂)u

)
+ k(y − cTξ) , (8.144)

˙̂η = q(ξ̂, η̂) + p(ξ̂, η̂)u (8.145)
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with k ∈ Rr subject to observer design. This observer consists of a high gain observer
for the external dynamics ξ and a simulation-based estimation of the internal dynamics
η. Noting that ξ1 − ξ̂1 = y − h(x̂) and transforming (8.144) back into x̂-coordinates via

[
ξ̂

η̂

]
= Φ(x̂),

[
˙̂
ξ
˙̂η

]
= fdΦ

(
Φ(x̂)

)
+ gΦ

(
Φ(x̂)

)
u+

(
k

0n−r

)
(y − h(x̂)) = Φ′(x̂) ˙̂x

(8.146)

⇒ ˙̂x =
(
Φ′(x̂)

)−1


fdΦ

(
Φ(x̂)

)
+ gΦ

(
Φ(x̂)

)
u+

(
k

0n−r

)
(
y − h(x̂)

)

 , (8.147)

the observer in x̂-coordinates is thus given by

˙̂x = fd(x̂) + g(x̂)u+
(
Φ′(x̂)

)−1

(
k

0n−r

)

︸ ︷︷ ︸
=: l(x̂)

(y − h(x̂)) . (8.148)

The original approach in [42] and of several of its successors requires globally expo-
nentially stable zero dynamics. As was shown in section 8.4, this is not given with the
system at hand. However, in [85, 86] an approach is proposed which requires the exis-
tence of an output-to-state Lyapunov function that allows for non-exponentially stable,
but possibly only asymptotically stable zero dynamics, see the example given in [86].
In order for the suggested observer design to generate asymptotically stable observer
error dynamics ξ̃ = ξ̂ − ξ and η̃ = η̂ − η, the following conditions ought to be fulfilled
within the operating range of the system which is characterized by a set D positively
invariant under the flow of (8.139). Practically, this set can be assumed to exist and to be
bounded for the vane pump system because of the end stops for cam ring displacement:
0 ≤ xS ≤ lS and finite pump volume flow will yield finite pressures within the system
if load flow through AOR1 is non-zero.
Specifically it ought to be ensured that

• the system given by (8.141) and (8.142) has a well-defined relative degree in D,

• the state transformation given by (7.15) is a global diffeomorphism in D,

• α and β are globally Lipschitz, which means that for bounded u

|α(ξ̂, η̂) + β(ξ̂, η̂)u− α(ξ,η)− β(ξ,η)u| ≤ γ1||ξ̂ − ξ||+ γ2||η̂ − η|| (8.149)

with γ1, γ2 > 0 This requirement is common in high-gain design, see also [85].
Roughly speaking, its meaning is that nonlinearities are such that their influence
can be suppressed by choosing a sufficiently strong feedback of the signal of in-
terest (measurement error in the case of observer design and control error in the
case of controller design). This assumption is satisfied by many systems from a
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8 Nonlinear Volume Flow Control of a Variable Displacement Vane Pump

practical viewpoint – even for the square root type of nonlinearity common in hy-
draulics – as Lipschitz-continuity depends on the operating range the system is
designed for [82, 83, 84].

In the case of the pump system discussed here, the square root functions in
α(ξ, η), β(ξ, η) with η = {ηT , ηL} make it necessary to exclude x3 − x4 = 0 and
x3 − pC = x4 = 0 from the operating region of the observer in order to guarantee
Lipschitz properties of the mappings α(ξ, η) and β(ξ, η). Ideally, x4 will always
remain sufficiently far away from x3. This is no severe restriction as x3 − x4 = 0

has already been excluded from admissible working points due to generating
an ill-defined relative degree. The other exclusions x3 − pC = x4 = 0 are not a
problem either as the pump is not supposed at this working point as these config-
urations imply zero pump flow. Again, D should be bounded, thereby requiring
a bounded operating region in order for α(ξ, η), β(ξ, η) to be Lipschitz. Further
discussion of the physical aspects of these requirements will be given below.

• There exist a positive definite matrix P2 ∈ R(n−r)×(n−r) and constants γ3, γ4 > 0

for the system given by (8.141) and (8.142) so that for the Lyapunov candidate
V2(η̃) = η̃TP2η̃ it holds that

∂V2(η̃)

∂η̃

(
q(ξ̂, η̂) + p(ξ̂, η̂)u− q(ξ,η)− p(ξ,η)u

)
≤ γ3||ξ̃||2 − γ4||η̃||2 . (8.150)

This Lyapunov function can be interpreted as an output-to-state Lyapunov func-
tion. Finding such a function is difficult in general. In the present case, such a
function can, however, be found as internal dynamics are one-dimensional. Natu-
rally, higher order internal dynamics significantly complicate the problem of find-
ing a Lyapunov function candidate. The constant γ3 can be interpreted as a mea-
sure of how strongly the external observer error dynamics influence the internal
dynamics error system. It therefore has to be bounded to allow for a functional
observer – a requirement fulfilled in many practical circumstances.

The purpose of the following section is to assess if the observer problem has a solu-
tion for volume flow control of the pump system despite the switching behavior of the
system’s control input matrix gR. To do so, the same coordinate transformation will
be applied to both system descriptions, yielding transformed system dynamics whose
observation errors can be investigated. Because identical transformations are applied
to (8.18) and (8.51), the transformed coordinates have the same meaning for both op-
erating conditions. This is required in order to conclude stability of the system with
switched input matrices. For transforming the system, the tank-sided transformation
(8.31) will be employed.
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8.6 Nonlinear Observer Design

8.6.1.1 Tank side valve opening

For the tank-side flow condition, the internal dynamics read

η̇T =
1

Ch1



(
q̂PRT

1 + AS2R
T
2

)

︸ ︷︷ ︸
=: RT

T

ξ − γFAOR1sign(ηT )
√
|ηT |


 (8.151)

with RT
1 = [1 0 0] and RT

2 = [0 1 0].
Building the nonlinear observer error η̃T = η̂T − ηT , one obtains

˙̃ηT =
1

Ch1

(
RT
T ξ̃ − γFAOR1

(
sign(η̂T )

√
|η̂T | − sign(ηT )

√
|ηT |

))
. (8.152)

Applying the mean value theorem,

f(x2)− f(x1) = f ′(xλ)(x2 − x1) (8.153)

with xλ = x1(1− λ) + x2λ and λ ∈ (0, 1), one can write

˙̃ηT =
1

Ch1

(
RT
T ξ̃ − γ̃OR1T η̃T

)
, ηTλ = ηT (1− λ) + η̂Tλ, λ ∈ (0, 1) . (8.154)

Here,

γ̃OR1T :=
γFAOR1

2
√
|ηTλ|

. (8.155)

Before continuing it is noted that
(
√
µT η̃T −

1√
µT
ξ̃TRT

)2

≥ 0

⇒ µT η̃
2
T +

1

µT
ξ̃TRTRT

T ξ̃ ≥ 2η̃TRT
T ξ̃

⇒ 1

2

(
µT η̃

2
T +

1

µT
‖RT‖2‖ξ̃‖2

)
≥ |η̃T | ‖RT

T ξ̃‖ (8.156)

holds for any µT > 0.
Now the Lyapunov function candidate

V2 =
Ch1

2
η̃2
T (8.157)

yields the following time derivative along error trajectories

V̇2 = Ch1η̃T ˙̃ηT (8.158)

= η̃TRT
T ξ̃ − γ̃OR1T η̃

2
T (8.159)

≤ |η̃T |‖RT
T ξ̃‖ − γ̃OR1T η̃

2
T (8.160)

≤ 1

2µT
‖RT‖2‖ξ̃‖2 −

(
γ̃OR1T −

1

2
µT

)
η̃2
T (8.161)

for any µT > 0.
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8.6.1.2 Load side valve opening, alternative coordinate transformation

While the coordinate transformation leading to Byrnes-Isidori normal form certainly
is advantageous in many cases, in the context of a high gain observer with switched
system dynamics it is more purposeful to employ the same coordinate transformations
for both flow conditions of the system. This is needed in order to show asymptotic
stability of the observer error.
Essentially, through (8.148) the coordinate transformation employed defines the state
dependent component of the observer gain. Drawing on (8.31) and applying it to the
load side flow condition, one finds the internal coordinate now depending on the sys-
tem input uR, however noting that uR < 0 so that uR = −|uR|. The inverse coordinate
transformation leads to the following representation

x4 =− kSlS + FS0

AS1

+
kS
AS1

ξ1 +
dPS
AS1

ξ2 +
mPS

AS1

ξ3

+ (η + pC)
1

AS1

(
AS2 − fP1(ξ1 + xoffsetS )

)
− 1

AS1

fP2(ξ1 + xoffsetS )

=− kSlS + FS0

AS1

+ RT
L2ξ + (η + pC)

1

AS1

(
AS2 − fP1(ξ1 + xoffsetS )

)

− 1

AS1

fP2(ξ1 + xoffsetS ) (8.162)

of x4 where

RT
L2 =

[
kS
AS1

dPS
AS1

mPS

AS1

]
. (8.163)

For the benefit of a clear presentation of the following analysis, a hybrid notation will be
pursued in the beginning for the representation of the internal coordinate’s dynamics
which will feature simultaneous use of x and ξ, ηT coordinates.
With uR = −|uR|, the dynamics of the internal coordinate ηT for the load side flow
condition become

η̇T =
1

Ch1

((
q̂PRT

1 + (AS2 − AS1) RT
2

)

︸ ︷︷ ︸
=: RT

L1

ξ − γFAOR1sign(ηT )
√
|ηT |

− |uR| γF bRegsign(ηT + pC − x4)
√
|ηT + pC − x4|

)
. (8.164)

When building the observer error dynamics for the internal coordinate ηT , the manipu-
lation

sign(η̂T + pC − x̂4)
√
|η̂T + pC − x̂4| − sign(ηT + pC − x4)

√
|ηT + pC − x4|

=
1

2

√∣∣∣ηTλ1 + pC − x4λ1

∣∣∣
(η̃T − x̃4) (8.165)
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with

x̃4 = RT
L2ξ̃ −

1

AS1

(
fP2(ξ̂1 + xoffsetS )− fP2(ξ1 + xoffsetS )

)
+
AS2

AS1

η̃T

− 1

AS1

(
(η̂T + pC) fP1(ξ̂1 + xoffsetS )− (ηT + pC) fP1(ξ1 + xoffsetS )

)
. (8.166)

and repeated use of the mean value theorem (8.153) will be needed. In the above deriva-
tions, the index i = 1 in λi signifying the first application of the mean value theorem.
Applying the mean value theorem again, one finds

fP2(ξ̂1 + xoffsetS )− fP2(ξ1 + xoffsetS ) =
∂fP2

∂ξ1

∣∣∣∣∣
λ2

RT
1 ξ̃ (8.167)

and

(η̂T + pC) fP1(ξ̂1 + xoffsetS )− (ηT + pC) fP1(ξ1 + xoffsetS )

=

[
∂fP1

∂ξ1

∣∣∣
λ2

(ηTλ2 + pC) 0 0 fP1

∣∣∣
λ2

]
·
[
ξ̃

η̃T

]

= ∂fP1

∂ξ1

∣∣∣
λ2

(ηTλ2 + pC)RT
1 ξ̃ + fP1

∣∣∣
λ2
η̃T . (8.168)

In the above manipulations, the abbreviated form

∂fPi
∂ξ1

∣∣∣
λ2

= ∂fPi
∂ξ1

∣∣∣
ξ1λ2

i = 1, 2 (8.169)

was used.
The error x̃4 thus is ultimately given by

x̃4 = RT
L2ξ̃ +

AS2

AS1

η̃T −
1

AS1

∂fP2

∂ξ1

∣∣∣
λ2

RT
1 ξ̃

− 1

AS1

(
∂fP1

∂ξ1

∣∣∣
λ2

(ηTλ2 + pC) RT
1 ξ̃ + fP1

∣∣∣
λ2
η̃T

)
. (8.170)

Now building the observer error dynamics with

γ̃OR1L :=
γFAOR1

2
√
|ηTλ1|

> 0 , (8.171)

γ̃R :=
γF |uR|bReg

2
√
|ηTλ1 + pC − x4λ1|

> 0 (8.172)

for the internal coordinate ηT , one obtains
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˙̃ηT =
1

Ch1

(
RT
L1ξ̃−γ̃OR1Lη̃T−γ̃R

(
1

AS1

∂fP2

∂ξ1

∣∣∣
λ2

RT
1 +

1

AS1

∂fP1

∂ξ1

∣∣∣
λ2

(ηTλ2 + pC) RT
1−RT

L2

)
ξ̃

− γ̃R
(

1− AS2

AS1

+
1

AS1

fP1

∣∣∣
λ2

)
η̃T

)
. (8.173)

Because asymptotic stability is to be shown for the switched system, the Lyapunov
function candidate

V2 =
Ch1

2
η̃2
T (8.174)

is again assumed, this time as a common Lyapunov function candidate. For the tank-
sided operating condition, it could already be shown that the system (8.18) has property
(8.150) with this Lyapunov function. In order to show property (8.150) is fulfilled for
the load sided operating condition, too, the time derivative of V2 along trajectories for
the load sided operating condition has to be investigated:

V̇2 = Ch1η̃T ˙̃ηT

=

=: RT
L(λ1,λ2)︷ ︸︸ ︷(

RT
L1 + γ̃RRT

L2 − γ̃R
(

1

AS1

∂fP2

∂ξ1

∣∣∣
λ2

RT
1 +

1

AS1

∂fP1

∂ξ1

∣∣∣
λ2

(ηTλ2 + pC) RT
1

))
ξ̃η̃T

− γ̃R
(

1− AS2

AS1

+
1

AS1

fP1

∣∣∣
λ2

)
η̃2
T − γ̃OR1Lη̃

2
T .

(8.175)

Since no magnitude comparison of γ̃OR1L and γ̃R can be made per se, in order to make a
statement about the positiveness or negativeness of η̃2

T in equation (8.175) it has to hold
that

1− AS2

AS1

+
1

AS1

fP1

∣∣∣
λ2
≥ 0. (8.176)

This requirement translates into

AS1 − AS2 + fP1

∣∣∣
λ2
≥ 0, (8.177)

which practically holds as a result of pump design, as otherwise the pump could not be
displaced in positive direction because for typical situations pS < p1.
As a result,

V̇2 = Ch1η̃T ˙̃ηT

= η̃TRT
Lξ̃ −

(
γ̃OR1L + γ̃R

(
1− AS2

AS1

+
1

AS1

fP1

∣∣∣
λ2

))
η̃2
T
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≤ |η̃T |‖RT
Lξ̃‖ − γ̃OR1Lη̃

2
T

≤ 1

2µL
‖RL‖2‖ξ̃‖2 −

(
γ̃OR1L −

1

2
µL

)
η̃2
T (8.178)

for any µL > 0.

8.6.1.3 Asymptotic stability of the switched error system

Upon consideration of (8.161), (8.178) and noting that within the operating range D

min(γ̃OR1T ) = min(γ̃OR1L) =: γ̃OR1, (8.179)

it holds that

V̇2 ≤





1
2µ
‖RT‖2‖ξ̃‖2 −

(
γ̃OR1 − 1

2
µ
)
η̃2
T for uR ≥ 0 ,

1
2µ
‖RL‖2‖ξ̃‖2 −

(
γ̃OR1 − 1

2
µ
)
η̃2
T for uR < 0

(8.180)

for a choice of µ = µT = µL with µ ∈ (0, 2γ̃OR1). Thus,

V̇2 ≤
1

2µ

(
‖RT‖2 + ‖RL‖2

)
‖ξ̃‖2 −

(
γ̃OR1 −

1

2
µ

)
η̃2
T . (8.181)

However, RL = RL(λ1, λ2) and thereby a function of the interval the system is assumed
to operate on, i.e. D. Hence, for an unbounded operating range and operating points
for which x3 = x4 and/or x3 = pC hold, RL may theoretically assume infinite values. In
order for

1

2µ

(
‖RT‖2 + ‖RL‖2

)
≤ γ3 = const (8.182)

and thus to fulfill (8.150), the operating range of the system needs to be bounded and
exclude x3 = x4. This was already required in the context of Lipschitz continuity for
α(ξ, η), β(ξ, η) with η = {ηT , ηL} and does not pose a practical problem either since,
from physical reasoning, finite pump flow from 0 ≤ x1 ≤ lS will generate finite system
pressure contingent upon non-zero consumer flow so that D is bounded.
In many cases, the operating range of the system will indeed be known in advance.
Situations with x3 = x4 will not be encountered when the system is at any point
0 < xS = x1 < lS and uR < 0 (with x1 − xoffsetS being the system output) because of
condition (8.177) and the flow dynamics generated by the piston flow x2AS2. Because
of (8.177), as soon as x3 − x4 becomes smaller than some value depending on the actual
geometry parameters AS1, AS2, cam ring radius rC , pump width hP and the port angles,
the combined spring force and pressure force acting on AS1 will exceed the counteract-
ing internal force of the pump and pressure force onAS2 and thereby displace the pump
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in positive direction, resulting in a volume flow x2AS1 which will reduce x4 and thereby
restore the pressure difference x3−x4. In addition, due to increased x1, x3 undergoes an
increase as well. It is notable that because of condition (8.177), the situation x1 = lS can
nevertheless be reached without x3 = x4. For x1 = lS , however, system input uR must
be decreased to zero then in order to prevent x3 to become equal to x4 for t→∞. Thus,
excluding these points fromD and dismissing the corresponding inputs uR = const < 0

leading to such a situation is no restriction either (see [84], where a related problem is
discussed).
It is noteworthy that because γ3 depends on the specific operating range of the system
through (8.182), so will observer gain. Ultimately, one obtains

V̇2 ≤ γ3‖ξ̃‖2 − γ4|η̃T |2 . (8.183)

Then, from

∣∣∣α(ξ̂, η̂T ) + β(ξ̂, η̂T )uR − α(ξ, ηT )− β(ξ, ηT )uR

∣∣∣

≤




γ1T‖ξ̃‖+ γ2T |η̃T | for uR ≥ 0 ,

γ1L‖ξ̃‖+ γ2L|η̃T | for uR < 0
(8.184)

it follows that
∣∣∣α(ξ̂, η̂T ) + β(ξ̂, η̂T )uR − α(ξ, ηT )− β(ξ, ηT )uR

∣∣∣
≤ (γ1T + γ1L)︸ ︷︷ ︸

=: γ1

‖ξ̃‖ + (γ2T + γ2L)︸ ︷︷ ︸
=: γ2

|η̃T | . (8.185)

The above relationships are subject to the same line of reasoning about the system op-
erating range as for the constant γ3. With these considerations in mind, the proof for
asymptotic stability of the observer from [86] can be applied to showing the asymptotic
stability of the switched observer error system.
The common Lyapunov function candidate for both flow conditions is assumed to be

V (ξ̃, η̃T ) = ξ̃TPξ̃ +
Ch1

2
η̃2
T , (8.186)

where P is the positive definite, symmetric solution to the following Ricatti-like in-
equality:

(
A− kcT

)T

P + P
(
A− kcT

)
+ νPbbTP + ρI < 0 . (8.187)

A positive definite, symmetric solution for P is guaranteed if A− kcT has real nega-
tive eigenvalues, while ν and ρ are arbitrary positive real constants. In the context of
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the switched system treated here, V (ξ̃, η̃T ) shall be considered as a common Lyapunov
function candidate.
With [85], it can then be seen that the Lyapunov function’s time derivate is less than
zero irrespective of which flow condition holds:

V̇ (ξ̃, η̃T ) = ξ̃T

[(
A− kcT

)T

P + P
(
A− kcT

)]
ξ̃ + Ch1η̃T ˙̃ηT

+ 2ξ̃TPb
[
α(ξ̂, η̂T ) + β(ξ̂, η̂T )uR − α(ξ, ηT )− β(ξ, ηT )uR

]

≤ ξ̃T

[(
A− kcT

)T

P + P
(
A− kcT

)]
ξ̃ + γ3||ξ̃||2 − γ4|η̃T |2

+ 2ξ̃TPb
[
α(ξ̂, η̂T ) + β(ξ̂, η̂T )uR − α(ξ, ηT )− β(ξ, ηT )uR

]
. (8.188)

Then, from (8.149), (8.185)

2ξ̃TPb
[
α(ξ̂, η̂T ) + β(ξ̂, η̂T )uR − α(ξ, ηT )− β(ξ, ηT )uR

]

≤ 2γ1|ξ̃TPb| · ||ξ̃||+ 2γ2|ξ̃TPb| · |η̃T |

≤
(
γ2

1 +
γ2

2

µ

)
ξ̃TPbbTPξ̃ + ξ̃Tξ̃ + µη̃2

T , (8.189)

follows where a manipulation similar to those in (8.158) and (8.161) was used in the last
step.
Ultimately, using the bound estimate (8.189) in (8.188) and taking ν = γ2

1 + γ2
2/µ and

ρ = γ3 + 1 yields

V̇ (ξ̃, η̃T ) ≤ ξ̃T

[(
A− kcT

)T

P + P
(
A− kcT

)
+ νPbbTP + ρI

]
ξ̃ − (γ4 − µ)η̃2

T ,

(8.190)

which is negative definite by the choice of P. The Lyapunov function candidate there-
fore is a common Lyapunov function, proving the observer error to asymptotically ap-
proach zero for the switched system with an appropriate choice of k. This result funda-
mentally rests on the relative degree and the transformation for the external coordinates
being identical for both flow conditions. The result should however only be understood
in the sense that the observer problem does have a solution for the system treated here
– no precise statement is made on how to specifically choose the observer gain to ensure
stability. In [86], it is remarked that k will commonly be chosen via pole placement.
The switched system has an interesting geometrical interpretation with respect to ob-
server gain computation. In [85, 86], a simplified computation of the observer gain is
suggested under certain additional assumptions. Because in many cases the internal
dynamics can be difficult to derive analytically, the ability to compute an appropriate
observer gain without explicit knowledge of the internal dynamics is highly feasible.
In [85], a choice for the observer gain relying only on the known transformation for the
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external coordinates is presented which guarantees asymptotic stability under certain
additional assumptions. To do so, a Moore-Penrose-Inverse based observer gain com-
putation is performed. The idea is to separate the Jacobian of the transformation matrix’
external and internal coordinates

Φ′(x) =

[
Q(x)

R(x)

]
, (8.191)

where Q(x) is the so called reduced observability matrix, associated with the external
coordinates and thereby unique and R(x) is not, representing the Jacobian of the coor-
dinate transformation for the internal coordinates:

Q(x) =



τT

1 (x)
...

τT
r (x)


 =




grad
(
h(x)

)
...

grad
(
Lr−1

fd
h(x)

)


 , R(x) =




grad
(
Φr+1(x)

)
...

grad
(
Φn(x)

)


 . (8.192)

The suggested observer gain is then proposed as

l(x) = QT(x)
(
Q(x)QT(x)

)−1

k . (8.193)

This simplified design rule is restricted to cases where the span of the reduced observ-
ability matrix is involutive. The span of the reduced observability matrix

∆(x) = span
{
τ1(x), . . . , τr(x)

}
(8.194)

is a so-called distribution which is characterized by a mapping of a point x ∈ Rn to
a vector space ∆x ⊆ Rn. Involutivity can be understood as a generalized principle of
commutativity of partial derivatives and requires the Lie brackets of

[
τi, τj

]
(x) =

∂τj(x)

∂x
τi(x)− ∂τi(x)

∂x
τj(x) i, j = 1 . . . r (8.195)

to lie within the span of ∆(x) [40]. It is to be noted that the rows of Q(x) are linearly
independent by (7.16) so that (8.194) is regular. The proof in [86] for the applicability
of a Moore-Penrose-Inverse based observer gain computation relies on the Frobenius
theorem (see e.g. [40] for reference) which essentially states that if ∆(x) is involutive,
then it is integrable so that there exist functions Φr+1(x), . . . ,Φn(x) for which

grad
(
Φi(x)

)
· τ (x) = 0 ∀τ (x) ∈ ∆(x) i = r + 1, . . . , n . (8.196)

This is a restriction for the system structure. For the pump system, Q(x) is the same
irrespective of the flow condition and it holds that

[
τ1(x), τ2(x)

]
=
[
0 0 0 0

]T

, (8.197)
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[
τ1(x), τ3(x)

]
=

1

mPS

[
∂2fP (x1,x3)

∂x21
0 ∂2fP (x1,x3)

∂x1∂x3
0
]T

, (8.198)

[
τ2(x), τ3(x)

]
=
[
0 0 0 0

]T

. (8.199)

It can easily be checked that

Rank

([
τ1(x) τ2(x) τ3(x)

[
τ1(x), τ2(x)

] [
τ1(x), τ3(x)

] [
τ2(x), τ3(x)

]])
= 4 ,

(8.200)

implying that the distribution ∆(x) is not involutive in a strict sense of meaning so that
a computation of the observer gain based on Q(x) alone is not formally admissible.
However, equation (8.196) can be interpreted geometrically as a scalar product, thereby
essentially yielding an orthogonality statement. That is, in order to see how strongly
the distribution (8.194) violates the orthogonality statement with the internal dynamics
for tank-side and load-side flow condition of the valve, the scalar product and the cor-
responding angle between gradΦ4(x) and the τi, i = 1, 2, 3 can be computed. For the
tank-side flow condition with uR ≥ 0, the gradient of Φ4(x) is given by

grad
(
Φ4(x)

)
= [0 0 Ch1 0] . (8.201)

Due to the structure of τ1 and τ2, the corresponding angles with gradΦ4 are orthogonal.
For τ3, the angle with gradΦ4 is given by

cos
(
∠(τ3, grad (Φ4))

)
=

−AS2 + ∂fP
∂x3√(

−kS + ∂fP
∂x1

)2

+
(
−AS2 + ∂fP

∂x3

)2

+ A2
S1 + d2

PS

. (8.202)

For the load side flow condition the transformation for the internal coordinate ηL yields
a gradient

grad
(
Φ4(x)

)
= [0 0 Ψ1Ch1 Ψ1ChS] (8.203)

and the corresponding angle computed from the scalar product between τ3 and gradΦ4

is

cos
(
∠(τ3, grad (Φ4))

)
=

Ch1

(
−AS2 + ∂fP

∂x3

)
+ ChSAS1

√
C2
h1 + C2

hS

√(
−kS + ∂fP

∂x1

)2

+
(
−AS2 + ∂fP

∂x3

)2

+ A2
S1 + d2

PS

.

(8.204)

A numerical evaluation of these quantities for representative parameters shows that
the scalar product between gradΦ4 and τ3 typically lies in the range of O(1 × 10−8) so
that from a practical perspective, the involutivity condition required for (8.193) to be an
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8 Nonlinear Volume Flow Control of a Variable Displacement Vane Pump

admissible approach to observer gain computation can be considered as given. The im-
plication of this with respect to the observer gain computation for the switched system
is that essentially, the switching behavior is of no relevance for the calculation of the
observer gain since it can be computed based on the Moore-Penrose-Inverse. Recon-
sidering the demonstration that the observer problem has a solution for the switched
system at hand as outlined above, the same observation can be made because the sys-
tem here was transformed by the same coordinate transformation irrespective of the
sign of uR. Intuitively, the “practical” applicability of the Moore-Penrose-Inverse based
observer gain calculation therefore suggests observer stability for the switched system
if stability can be shown for the systems separately.

8.6.1.4 Simulation Results

The simulation results in Figures 8.6, 8.7 show that the observer has excellent conver-
gence properties. Initial conditions for the observer x̂0 were set close to zero, the ob-
server converges in very short time nevertheless. This holds well for the simulation
results with valve dynamics, too. Here, the observer even seems to alleviate transients
from valve dynamics when comparing the results with Figure 8.6.

8.6.2 Nonlinear Local Observer

The observer presented in the previous section prominently lends itself to the imple-
mentation of an observer for the variable displacement vane pump system. However,
exploring other observer concepts is worthwile with regard to practical questions such
as the measurability of the system output y = x1. As an alternative to the high gain
observer presented in the preceding section, a nonlinear local tracking observer based
on linearization of the system dynamics about a desired or nominal trajectory in state
space x∗ can be constructed. The idea behind the corresponding observer is to choose
the observer gain l(x) such that the linearized error dynamics are asymptotically stable.
The observer gain is chosen according to a pole-placement technique for time-varying
systems. The concept is extensively discussed in [87, 88, 89, 132] in the context of differ-
entially flat systems to which it can be applied in the most straightforward fashion. In
physical state coordinates x, the observer has the representation

˙̂x = fd(x̂) + g(x̂)û+ l(t)(y − h(x̂)) , (8.205)

where in contrast to the high gain form observer presented before y = h(x̂) does not
need to be cam ring displacement but can be any other state variable in agreement with
the observability criterion.
Combining (8.205) with the system dynamics given by (7.1), (7.2) yields dynamics for
the observation error x̃ = x̂− x which are of the following form:

˙̃x = fd(x̂) + g(x̂)û− fd(x)− g(x)û+ l(t)
(
h(x)− h(x̂)

)
, (8.206)
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Figure 8.6: Without valve dynamics.
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Figure 8.7: With valve dynamics.
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x̃(0) = x̂0 − x0 . (8.207)

It is to be emphasized that the above representation of the observer error dynamics
expresses the fact that the system input u = û is synthesized as a function of the state
estimates provided by the observer.
Now linearizing about x∗ = x∗(t), u∗ = u∗(t) yields

∆ ˙̃x =

[
A(t)∆x̂ + B(t)∆û+ l(t)

(
cT(t)∆x− cT(t)∆x̂

)]

︸ ︷︷ ︸
observer

−
[
A(t)∆x + B(t)∆û

]
︸ ︷︷ ︸

plant

=
(
A(t)− l(t)cT(t)

)
∆x̃ . (8.208)

Here, the time varying matrices are

A(t) =
∂(fd(x)+g(x)û)

∂x

∣∣
x∗,u∗ , B(t) =

∂(fd(x)+g(x)û)
∂û

∣∣
x∗,u∗ , cT(t) = ∂h(x)

∂x

∣∣
x∗ .

Introducing the operator

M0
A ◦ ( · ) = ( · ) , (8.209)

M1
A ◦ ( · ) = d

dt
( · ) + ( · ) A (8.210)

M i
A ◦ ( · ) = M1

A

(
M i−1

A ◦ ( · )
)

(8.211)

with v = v(t) and A = A(t), the time-varying observability map for a system with n

states can be defined as follows:

O(cT(t),A(t)) =




M0
AcT(t)

M1
AcT(t)

...
Mn−1

A cT(t)



. (8.212)

The system

∆ẋ = A(t)∆x + B(t)∆u , (8.213)
∆y = cT(t)∆x (8.214)

is called observable if rank
(
O(cT(t),A(t))

)
= n. For the SISO system considered at this

stage, this is equivalent to showing the determinant of the observability matrix does
not become zero along the desired trajectory x∗, u∗. It can easily be seen that applying
the definition for the observability of a time-varying system to a time-invariant system
yields the observability matrix well known from linear time invariant theory. If observ-
ability is given, the system can be transformed to so called observability normal form.
To do so, another operator first requires introduction. The operator

N0
A ◦ ( · ) = ( · ) , (8.215)
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N1
A ◦ ( · ) = − d

dt
( · ) + A ( · ) , (8.216)

N i
A ◦ ( · ) = N1

A

(
N i−1

A ◦ ( · )
)

(8.217)

allows for the construction of the inverse of matrix transforming the system to observ-
ability normal form.
The inverse of the transformation matrix is computed as

V−1(t) =
[
N0

Av(t) N1
Av(t) . . . Nn−1

A v(t)
]

(8.218)

with

v(t) = O−1(cT(t),A(t))




0
...
0

c̃n−1(t)




(8.219)

and c̃n−1(t) constituting a degree of freedom in the design of the observer. It ought to
be chosen in such a way that v(t) assumes the simplemost form. Typically, an effort
will be made to choose c̃n−1(t) in such a way that it will render the representation for
v(t) constant, if possible. Applying the transformation z(t) = V(t)∆x(t) yields the
observability normal form




ż1

ż2

...
żn−1

żn




=




0 0 . . . 0 −ã0(t)

1 0 . . . 0 −ã1(t)
... . . . ...
0 0 . . . 0 −ãn−2(t)

0 0 . . . 1 −ãn−1(t)







z1

z2

...
zn−1

zn




+




b̃1(t)

b̃2(t)
...

b̃n−2(t)

b̃n−1(t)



u, z(t = 0) = z0 ,

(8.220)

∆y =
[
0 0 . . . 0 c̃n−1(t)

]




z1

z2

...
zn−1

zn



. (8.221)

Transforming the linearized error dynamics to observability normal form with ζ(t) =

V(t)∆x̃(t), one gets

d
dt
ζ(t) =




0 0 . . . 0 −ã0(t)− l̃0(t)

1 0 . . . 0 −ã1(t)− l̃1(t)
... . . . ...
0 0 . . . 0 −ãn−2(t)− l̃n−2(t)

0 0 . . . 1 −ãn−1(t)− l̃n−1(t)




︸ ︷︷ ︸
=: E(t)

ζ(t), ζ(t = 0) = ζ0 . (8.222)
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The idea then is to chose l̃(t) in a way that renders the matrix E(t) time invariant and
assigns poles with strictly negative real parts to E(t) = E. Transforming back to ∆x̃

coordinates, the observer gain required for asymptotic stabilization of the observer error
is l(t) = V−1(t)̃l(t).
In the case of the present variable displacement vane pump system, one obtains

A(t) =





AT (t) for uR ≥ 0 ,

AL(t) for uR < 0
(8.223)

with

AT (t) =




0 1 0 0
x∗3

∂fP1
∂x1

∣∣
x∗1

+
∂fP2
∂x1

∣∣
x∗1
−kS

mPS
− dPS
mPS

fP1(x∗1)−AS2
mPS

AS1
mPS

q̂P
Ch1

AS2
Ch1

−1
2

γFAOR1

Ch1
√
|x∗3(t)−pC |

0

0 −AS1
ChS

0 −1
2

γFu
∗
R(t)bReg

ChS
√
|x∗4(t)−p0|




, (8.224)

AL(t) =




0 1 0 0
x∗3

∂fP1
∂x1

∣∣
x∗1

+
∂fP2
∂x1

∣∣
x∗1
−kS

mPS
− dPS
mPS

fP1(x∗1)−AS2
mPS

AS1
mPS

q̂P
Ch1

AS2
Ch1

AL33 −1
2

γFu
∗
R(t)bReg

Ch1
√
|x∗3(t)−x∗4(t)|

0 −AS1
ChS

−1
2

γFu
∗
R(t)bReg

ChS
√
|x∗3(t)−x∗4(t)|

1
2

γFu
∗
R(t)bReg

ChS
√
|x∗3(t)−x∗4(t)|




(8.225)

and

AL33 =
1

2Ch1

(
γFu

∗
R(t)bReg√

|x∗3(t)− x∗4(t)|
− γFAOR1√

|x∗3(t)− pC |

)
. (8.226)

The control input matrix for the linearized system is

B(t) =





BT (t) for uR ≥ 0 ,

BL(t) for uR < 0
(8.227)

with

BT (t) =




0

0

0

− 1
ChS

sign(x∗4 − p0)γF bReg
√
|x∗4 − p0|


 , (8.228)
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BL(t) =




0

0
1
Ch1

sign(x∗3 − x∗4)γF bReg
√
|x∗3 − x∗4|

− 1
ChS

sign(x∗3 − x∗4)γF bReg
√
|x∗3 − x∗4|


 (8.229)

and

cT = [0 0 1 0] . (8.230)

To evaluate the above matrices, the nominal trajectory x∗ which is being linearized
about has to be generated. As a differentially flat output is not available for the system,
the generation of a nominal trajectory requires the integration of the internal dynamics
as excited by the external dynamics ξ∗. This integration is complicated by the switching
behavior of the internal dynamics as a function of valve input uR. Given a desired tra-
jectory x∗ ∈ R4, however, the corresponding nominal control input u∗R can be computed
as well so that linearization of the system dynamics about x∗, u∗R can be performed.
It is to be remarked at this point that the approach outlined above and applied to
the system with switched control input matrix is expected to yield asymptotically
stable error dynamics as the eigenvalues of the error dynamics are identically placed
for both tank-sided and load-sided operating conditions. While this is intuitive, the
observer gain calculation depends on each system configuration’s normal form. These
normal forms are different for tank-side and load-side flow condition, as AT 6= AL.
Therefore, z(t) will not have the same meaning when applied to the tank-side and
the load-side flow condition, respectively, so that in fact one obtains zT (t) and zL(t),
respectively. Ultimately, each system configuration will yield asymptotically stable
error dynamics as derived from the corresponding normal form – this will, however,
not generally guarantee asymptotic stability of the switched error system in a strict
sense as is easily demonstrated by the example from Branicky presented in the intro-
duction as stability will also depend on the switching law that switches between the
tank-side and load-side flow condition. Because the switching behavior up to this stage
of analysis has not yet shown any dysfunctional properties, it is likely that the observer
approach based on system linearization will work and should therefore be investigated.

In the next two subsections, two nonlinear local observers based on system linearization
about the desired trajectory are thus presented. Observer I makes use of two separate
pressure measurements, p1 and pS , or x3 and x4 in state space coordinates. Observer
II is constructed as a full observer and requires measurement of only p1 = x3 for the
estimation of all states.

8.6.2.1 Nonlinear Local Observer I

Assuming the availability of an additional measurement of x4, it is possible to construct
a reduced observer for which only an estimation of x1, x2 and x3 needs then to be per-
formed as x4 is taken to be known from measurement – it is the very knowledge of x4
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that allows for the construction of this reduced observer only partially estimating states.
The matrices (8.224) and (8.225) can thereby be reduced by the fourth column and row
each, allowing for a simplified observer design. This additional measurement may not
only improve the observer performance in general, but can possibly be relevant in case
the capacitance ChS can not be taken constant. Because the associated volume is smaller
than that of the main capacitance, ChS is much more prone to showing a dependence
on pump displacement than is Ch1. With an appropriate choice of the design parameter
c̃n−1(t), the simplemost structure of v(t) is the same for both flow conditions:

v(t) = vT (t) = vL(t) =



−AS2

q̂P

1

0


 . (8.231)

The length of c̃n−1(t) = {c̃n−1,T (t), c̃n−1,L(t)} makes it unsuitable for stating it here ex-
plicitly – in its derivation, the symbolic computation abilities of MAPLE were intensely
used. From this vector, the repeated application of the N -operator allows the deriva-
tion of the three-component error-stabilizing observer gain also known as time-variant
Ackermann formula

lT (t) =
1

c̃n−1,T (t)

[
a0N

0
AT

v(t) + a1N
1
AT

v(t) + a2N
2
AT

v(t) +N3
AT

v(t)
]
, (8.232)

lL(t) =
1

c̃n−1,L(t)

[
a0N

0
AL

v(t) + a1N
1
AL

v(t) + a2N
2
AL

v(t) +N3
AL

v(t)
]
, (8.233)

where the ai, i = 0, 1, 2 are the coefficients of the characteristic polynomial defining the
desired pole locations for the observer.

8.6.2.2 Nonlinear Local Observer II

If only a measurement of p1 = x3 can be made and the displacement dependence of ChS
is negligible for the linearization quality about x∗, u∗R, a full observer can be constructed
in similar fashion as described above for a reduced observer.
Here, the respective operators are applied to the full linearization matrices from (8.224)
and (8.225), starting from a vector v(t) for the tank side which, through an appropriate
choice of c̃n−1(t) assumes the form

vT (t) =




−AS1A
2
S2

q̂PAS1AS2

0

A2
S2

∂fP
∂x1
−mPS q̂

2
P + dPSAS2q̂P − A2

S2kS


 . (8.234)

The structural similarity of this vector in its first three components with (8.231) is evi-
dent. As for the corresponding vector vL(t), its length is prohibitive for stating it explic-
itly. The resulting observer gains for each flow condition, however, are
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lT (t) =
1

c̃n−1,T (t)

[
a0N

0
AT

vT (t) + a1N
1
AT

vT (t)

+a2N
2
AT

vT (t) + a3N
3
AT

vT (t) +N4
AT

vT (t)
]
, (8.235)

lL(t) =
1

c̃n−1,L(t)

[
a0N

0
AL

vL(t) + a1N
1
AL

vL(t)

+a2N
2
AL

vL(t) + a3N
3
AL

vL(t) +N4
AL

vL(t)
]

(8.236)

with ai, i = 0, . . . , 3 again being the coefficients of the desired characteristic polynomial
for the observer.

8.6.2.3 Simulation Results

Simulation results for the reduced observer are shown in Figure 8.8.
The results indicate that in principle, state estimation with the reduced observer is pos-
sible. A closer look at the results in Figure 8.9 reveal, however, that the convergence
behavior of the observer featuring valve dynamics is not ideal as a comparatively ex-
tensive transient is evident in the simulation results. While convergence was achieved
in the example here, other trajectories to be tracked yielded non-converging results. In
addition, extensive simulations revealed that the observer is sensitive with respect to
observer initial conditions and numerically sensitive, too.
For the full observer, simulation results are shown in Figures 8.10 and 8.11.
While observer and control convergence was achieved, it should be pointed out that this
rests heavily upon a significantly increased mass mPS for these simulations: instead of
0.32kg as in all other simulations, a total mass of 1kg had to be chosen in order to achieve
the results shown in Figure 8.10. This makes the applicability of the full nonlinear local
tracking observer questionable. As for both reduced and full nonlinear local tracking
observer, numerical instability and sensitivity towards observer initial conditions are
an issue frequently encountered during simulation, see Figure 8.12 for an example of a
non-converging solution.
Ultimately, this observer type is far from being implemented easily. To conclude, even
though theoretically applicable in some cases, the nonlinear local tracking observers
can not be expected to generally yield satisfactory results in the context of this system
so that only state estimation based on cam ring displacement appears to be a feasible
observer approach.

163



8 Nonlinear Volume Flow Control of a Variable Displacement Vane Pump

0 0.5 1 1.5
0

1

2

3

·10−3

t [s]

x
S
,
x̂
S
,
x
∗ S
[m

]

x∗S
x̂S
xS

(a) Pump displacement.

0 0.5 1 1.5
0

1

2

3

·106

t [s]

p 1
,
p̂ 1

[P
a]

p̂1
p1

(b) Main chamber pressure.

0 0.5 1 1.5
0

1

2

3

·106

t [s]

p S
,
p̂ S

[P
a]

p̂S
pS

(c) Actuation chamber pressure.

Figure 8.8: Reduced observer: Without
valve dynamics.
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Figure 8.9: Reduced observer: With valve
dynamics.
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Figure 8.10: Full observer: Without valve
dynamics.
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Figure 8.11: Full observer: With valve dy-
namics.
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Figure 8.12: Pump displacement for non-convergent simulation – non-zero consumer
pressure pC > 0.

8.7 Feedforward-Linearizing Control

The nonlinear control strategy presented in section 8.4 is suitable for the system at
hand in so far that it imposes a linear system behavior by feedback compensation of
the nonlinearities of the system. Its functionality rests on a sufficiently accurate model
of the system. Unmodeled dynamics or modeling errors of different kinds may prevent
the nonlinearity compensation inherent to input-output linearization from functioning
well. Even though the control strategies discussed so far show robust behavior, inves-
tigating alternative approaches to controlling the system may be worthwile. As an al-
ternative to input-output-linearizing strategies, it is possible to construct a feedforward
control in accordance with the desired output trajectory. The problem with pure feed-
forward control, however, is a sensitivity to disturbances and initial condition errors
which cannot be compensated and therefore may lead to deviations from the desired
trajectory or even destabilize the system. Therefore, control effectiveness is typically
enhanced by superposing a possibly linear feedback controller whose purpose it is to
stabilize the system about the desired output trajectory, see Figure 8.13. This is known
as two-degree-of-freedom control design as the feedforward control is conceived inde-
pendently from the feedback control.
The determination of the feedforward control nominally yielding the desired output
trajectory is related to system inversion. The problem of determining the control sig-
nal(s) required for a certain desired output trajectory is easy to answer for fully actuated
systems which can be inverted directly with the computed torque method. Fundamen-
tal results treating the question of system inversion have been presented in [35], ad-
dressing the question of system inversion for underactuated systems, too.
In the recent past, it has been found that the same differential-geometrical considera-
tions allowing for a nonlinearity-compensating input-output-linearizing control of non-
linear systems can also be used to construct feedforward control laws. Practically, the
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ξ∗ = ξ∗(y∗, ẏ∗, ÿ∗)

η̇ = q(ξ∗, η)

∫

ÿ∗

ẏ∗

y∗
−α(ξ∗,η)
β(ξ∗,η)

ξ∗, η u∗R
ẋ = fd(x) + gR(x)uR

uR
y = h(x)

x

P

I

∫

-

Figure 8.13: Feedforward-linearizing control approach with PI output feedback.

nominal control input for a non-flat SISO system to follow a desired output trajectory
y∗ can be computed from [91]

u∗ =
y∗,(r) − α(ξ∗,η)

β(ξ∗,η)
. (8.237)

From this it can be seen that a SISO system is invertible only if it has a strict relative
degree. The η dynamics can be computed from

η̇ = q(ξ∗,η) (8.238)

with arbitrary initial conditions. Now in order for the system to perfectly track the
desired output trajectory, it has to hold that

ξ(0) = ξ∗(0) . (8.239)

As this will not practically be fulfilled in many cases which is why for exact output
tracking this feedforward control will be superposed with an appropriate feedback con-
troller. Most popularly, this is the well-known PID control or one of its phenotypes, i.e.
PI or PD control etc. For differentially flat systems, this approach has become widely
treated in the literature as in e.g. [31, 89, 131].
Applying this approach to the vane pump system at hand yields the advantage that in
case a simple PI controller works for stabilizing the system about the desired trajectory
ξ∗, the problem of state estimation is resolved in that essentially an output-feedback
technique is used.
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Figure 8.14: Feedforward control: with-
out valve dynamics.

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

·10−3

t [s]

x
S
,
x
∗ S
[m

]

x∗S
xS

(a) Pump displacement.

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2
·107

t [s]

p 1
[P
a]

(b) Main chamber pressure.

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2
·107

t [s]

p S
[P
a]

(c) Actuation chamber pressure.

Figure 8.15: Feedforward control: with
valve dynamics.
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8.8 Intermediate Conclusion

Simulation results Simulation results for the feedforward-linearizing control featur-
ing PI feedback control are shown in Figure 8.14 for a system with an ideal valve and in
Figure 8.15 for a system with a non-ideal valve. The results show that stable trajectory
tracking with negligible error can be achieved. Transients from valve dynamics show
minor influence.

8.8 Intermediate Conclusion

In this chapter, a feedback-linearizing control approach for the nonlinear volume flow
control of a variable displacement vane pump system was suggested under the assump-
tion of perfect actuator dynamics, i.e. an ideal servo valve.
With the system behavior showing switching behavior in the control input matrix
because, it was shown that the internal dynamics of the system feature a switching
behavior accordingly. Stability of the internal dynamics was discussed within the
available frameworks, indicating stable system behavior as essentially the external
coordinates that are asymptotically stabilized about a desired output trajectory do not
have switching properties.

Simulation results show excellent tracking performance of the system, even when ac-
tuating the system with the inclusion of valve dynamics and the input derived from a
system without valve dynamics.

To account for the need of state availability within the control approach suggested, two
different observer types were assessed with respect to their applicability within this
context. A high-gain nonlinear observer effectively dominating system nonlinearities
yielded very good observation and tracking results too. In addition, a nonlinear local
tracking observer was investigated. While results here indicate that this observer can
in principle be applied to the observation problem at hand, numerical simulations
showed severe sensitivity in terms of observer initialization and physical parameters,
so that overall, this observer type is likely to remain a theoretical concept.

The investigation of a feedforward-linearizing control law was shown to bear the po-
tential to remedy the disadvantages of full state control. With the feedforward control
law computable offline, a simple stabilizing PI output feedback was shown to yield
very good results for trajectory tracking.

As for the assumption of a static valve in the derivation of the control laws in this
section, inclusion of valve dynamics is no promising approach for two reasons: Firstly,
as pointed out in [32], inclusion of valve dynamics significantly complicates the control
law and secondly and more importantly, inclusion of the valve dynamics in the plant
model for control law derivation can easily be shown to result in switching external
coordinates. In the control approach suggested here, only the one-dimensional internal
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8 Nonlinear Volume Flow Control of a Variable Displacement Vane Pump

dynamics show switching behavior as a consequence of the switching input matrix gR

while the external coordinate errors are stabilized. Control laws with switching external
coordinates can, if at all, not in general be expected to yield stable tracking behavior.
Stability proofs here are expected to be of significant difficulty as the switching system’s
stability will have to be analyzed for all six states so that the inclusion of valve dynamics
in this problem is advised against for future research.
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9 Nonlinear Control of a Transmission
Featuring a Variable Displacement Vane
Pump

9.1 Background

With ever increasing needs to reduce energy consumption in automotive transmissions,
a variable displacement vane pump is a means to do so by adapting volume flow to
varying needs of the hydraulic consumer(s). In order to investigate the SISO control
approach suggested in chapter 8 in the context of a clutch actuation circuit, the pump
needs to be integrated in an according hydraulic circuit conceptually so that an ap-
propriate model of the system can be derived. Naturally, the interaction of the pump
dynamics with potentially a multitude of dynamically responding elements makes non-
linear control within automotive transmissions a challenging task. Until now, control
concepts for hydraulic control units in automotive transmissions have largely remained
linear which is partly due to the use of mainly solenoid valves with pressure feedback.
The concept presented in this chapter demonstrates the possibility of alternative control
approaches based on purely servo-valve-based control for pressures and pump volume
flow.

9.2 System Description

The clutch actuation system to be controlled with multiple inputs is shown in Figure
9.1. The pump is again to provide the volume flow for the system whose pressures
are controled through the inputs to the servo valves with inputs uM and uC . The main
pressure valve is to maintain the system pressure whereas the clutch valve is to control
the clutch which represents the main hydraulic consumer. The secondary hydraulic
consumer is modeled as an ideal consumer with consumer pressure pC . As with uR in
the preceding chapter, inputs uM and uC will be taken as nominal valve openings.

171
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Figure 9.1: Clutch actuation system with servo valves.
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9.3 MIMO Model

The following model is assumed for the dynamics of the clutch:

mCLẍCL + dCLẋCL + kCLxCL = pCLACL − FCL0 − FES(xCL, ẋCL, lCL) . (9.1)

The clutch spring is pre-stressed by FCL0 so that in order to actuate the clutch, this pre-
stress has to be overcome. End stop forces are again described by (4.5). As in the case of
the SISO control problem, the hydraulic balance equations of the system can be stated
as

Chṗ = Qq + Aẋm , (9.2)

where

Ch =




Ch1 0 0 0

0 ChS 0 0

0 0 ChM 0

0 0 0 ChCL


 , Q =




1 −1 0 −1 0 0 0

0 1 −1 0 0 0 0

0 0 0 1 −1 1 0

0 0 0 0 0 −1 −1


 ,

A =




AS2 0

−AS1 0

0 0

0 −ACL


 , (9.3)

and the mechanical and hydraulic degrees of freedom

xm =
[
xS xCL

]T

, p =
[
p1 pS pM pCL

]T

. (9.4)

The volume flows appearing in equation (9.2) are

q =
[
qP qR qT qOR1 qM qCLPA qCLAT

]T

. (9.5)

The volume flows qR and qT are known from (8.11) and (8.12), respectively. The other
volume flows are governed by the equations

qOR1 = sign(p1 − pM)γFAOR1

√
|p1 − pM | , (9.6)

qM =





sign(pM − pC)γF bMuM
√
|pM − pC | for uM ≥ 0 ,

0 for uM < 0 ,
(9.7)

qCLPA =





0 for uC ≥ 0 ,

sign(pM − pCL)γF bCLuC
√
|pM − pCL| for uC < 0 ,

(9.8)
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qCLAT =





sign(pCL − p0)γF bCLuC
√
|pCL − p0| for uC ≥ 0 ,

0 for uC < 0 .
(9.9)

The capacitances are computed from (6.8) and (6.9) and read

ChM =
VM0

Efl
, ChCL =

VCL0 + ACLxCL
Efl

. (9.10)

The parameters related to the modeling of the elements new to this chapter are given in
table 9.1.

Table 9.1: Parameters of the transmission system.
Parameter Symbol Value Unit
Clutch mass mCL 3 kg

Clutch damping dCL 60 Ns/m

Clutch stiffness kCL 10× 105 N/m

Clutch cylinder area ACL π/4× 0.052 m

Main volume VM0 5× 10−4 m3

Clutch volume VCL0 5× 10−4 m3

In the situation at hand, the purpose is to synthesize a control law controlling the system
by means of three system inputs. One input, uR is to act on the regulator valve as
outlined in section 8.4. The two other inputs are applied to the main pressure control
valve and the clutch valve: uM is to act on the main pressure valve in order to ensure
the line pressure is kept at the desired level and uC to the clutch valve. Again assuming
servo valves with ideal, i.e. static behavior, the state space formulation of the plant
model derived from equation (9.1) et sqq. reads

ẋ = fd(x) + gR(x)uR + gC(x)uC + gM(x)uM (9.11)

with the state space vector

x =
[

xS ẋS p1 pS pM pCL xCL ẋCL

]T

(9.12)

=
[

x1 x2 x3 x4 x5 x6 x7 x8

]T

. (9.13)
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The drift term for the model thus is

fd(x) =




x2
1

mPS

[
kSlS + FS0 − kSx1 − dPSx2 − AS2x3 + AS1x4 + fP (x1, x3)

]

1
Ch1

[
q̂P (x1 − xoffsetS )− sign(x3 − x5)γFAOR1

√
|x3 − x5|+ AS2x2

]

−AS1
ChS

x2

1
ChM

sign(x3 − x5)γFAOR1

√
|x3 − x5|

− ACL
ChCL

x8

x8
1

mCL
[−FCL0 + ACLx6 − kCLx7 − dCLx8]




.

(9.14)

The input matrices are

gR(x) =




0

0
1
Ch1

δLq̃R
1

ChS
[−δLq̃R − δT q̃T ]

0

0

0

0




, (9.15) gM(x) =




0

0

0

0

− δM
ChM

q̃M
0

0

0




, (9.16)

gC(x) =




0

0

0

0
1

ChM
δCLPA q̃CLPA

1
ChCL

(
−δCLPA q̃CLPA − δCLAT q̃CLAT

)

0

0




, (9.17)

with

q̃R = sign(x3 − x4)γF bReg
√
|x3 − x4| , (9.18)

q̃T = sign(x4 − p0)γF bReg
√
|x4 − p0| , (9.19)

q̃M = sign(x5 − pC)γF bM
√
|x5 − pC | , (9.20)

q̃CLPA = sign(x5 − x6)γF bCL
√
|x5 − x6| , (9.21)

q̃CLAT = sign(x6 − p0)γF bCL
√
|x6 − p0| . (9.22)
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In (9.15) – (9.17), dummy variables δi were made use of to allow for a concentrated
notation. Specifically,

δL =





1 if uR < 0 ,

0 else
δT = 1− δL , (9.23)

δM =





1 if uM ≥ 0 ,

0 else
(9.24)

δCLPA =





1 if uC < 0 ,

0 else
δCLAT = 1− δCLPA . (9.25)

To complete the system description, the system outputs, according to controling volume
flow via xS−xoffsetS = x1−xoffsetS , main pressure pM = x5 and clutch pressure pCL = x6,
are taken as

h1(x) = x1 − xoffsetS , (9.26)
h2(x) = x5 , (9.27)
h3(x) = x6 . (9.28)

9.4 Feedback-Linearizing Control

With the input-affine state space representation (9.14) et sqq. of the system dynamics,
the system is now in the form to be subjected to the feedback-linearizing control tech-
nique outlined in chapter 7.

9.4.1 Control Synthesis

Determining the relative degree Performing the Lie derivations for the first system
output, the pump displacement x1 − xoffsetS , shows that (8.24) to (8.29) yield the respec-
tive expressions for the Lie derivatives of the system h1(x) = x1−xoffsetS and of Ljfdh1(x)

along gR for j = 0, 1, 2. Building the derivatives of Ljfdh1(x) along gR,gM,gC for j = 0, 1

shows that

LgR
h1(x) = 0 , LgM

h1(x) = 0 , LgC
h1(x) = 0 , (9.29)

LgR
Lfdh1(x) = 0 , LgM

Lfdh1(x) = 0 , LgC
Lfdh1(x) = 0 (9.30)

and, for j = 2,
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LgR
L2

fd
h1(x) =

[
δL

(
−
(
AS2 + AS1

Ch1

ChS

)

+
∂fP (x1, x3)

∂x3

)
sign(x3 − x4)γF bReg

√
|x3 − x4|

−δTAS1
Ch1

ChS
sign(x4 − p0)γF bReg

√
|x4 − p0|

]
1

mPSCh1

, (9.31)

LgM
L2

fd
h1(x) = 0 , (9.32)

LgC
L2

fd
h1(x) = 0 , (9.33)

so that the relative degree of output h1(x) is r1 = 3.

For system output h2(x) = x5, the following expressions can be derived:

LgR
h2(x) = 0 , (9.34)

LgM
h2(x) = − δM

ChM
sign(x5 − pC)γF bM

√
|x5 − pC | , (9.35)

LgC
h2(x) =

1

ChM
δCLPAsign(x5 − x6)γF bCL

√
|x5 − x6| . (9.36)

The relative degree of output h2(x) therefore is r2 = 1.

Ultimately, the relative degree of the third output, h3(x) = x6 is computed from

LgR
h3(x) = 0 , (9.37)

LgM
h3(x) = 0 , (9.38)

LgC
h3(x) = − 1

ChCL

(
δCLPAsign(x5 − x6)γF bCL

√
|x5 − x6|

+δCLAT sign(x6 − p0)γF bCL
√
|x6 − p0|

)
, (9.39)

so that r3 = 1, too.

Transforming into normal form The internal dynamics for the pump unit and its
control valve are equivalent to those of the SISO-case. As now a hydraulic consumer
model is connected to the pump outlet, the internal dynamics have to be investigated.
From physical considerations, these can be linked with the dynamics of the clutch mass,
thus leading to a choice of x7, x8 for the internal dynamics associated with the third
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system output, h3(x). From this it follows that the transformation law for the change of
coordinates can be stated as

[
ξ

η

]
=




ξ1,1

ξ1,2

ξ1,3

ξ2,1

ξ3,1

η1,1

η2,1

η2,2




= Φ(x) =




h1(x)

Lfdh1(x)

L2
fd
h1(x)

h2(x)

h3(x)

δL(Ψ1 (Ch1x3 + ChSx4) + Ψ2) + δTx3

x7

x8




(9.40)

=




x1 − xoffsetS

x2

− 1
mPS

(
kSx1 − AS1x4 + AS2x3 + dPSx2 − fP (x1, x3)− kSlS − FS0

)

x5

x6

δL(Ψ1 (Ch1x3 + ChSx4) + Ψ2) + δTx3

x7

x8




.

(9.41)

Its Jacobian,

dΦ(x)
dx

=




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

J31 − dPS
mPS

J33
AS1
mPS

0 0 0 0

0 0 0 0 1 0 0 0

0 0 J53 J54 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




(9.42)

with

J31 =
−kS + ∂fP

∂x1

mPS

, J33 =
−AS2 + ∂fP

∂x3

mPS

,

J53 = δLΨ1Ch1 + δT , J54 = δLΨ1ChS ,

fulfills the invertibility condition, so that (9.40) constitutes a diffeomorphism in D irre-
spective of the flow condition of the regulator valve, i.e. whether uR ≥ 0 or uR < 0.
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Using the diffeomorphism found, the Byrnes-Isidori normal form becomes



ξ̇1,1

ξ̇1,2

ξ̇1,3

ξ̇2,1

ξ̇3,1

η̇1,1

η̇2,1

η̇2,2




=




ξ1,2

ξ1,3

a1(Φ−1(ξ,η)) +B11(Φ−1(ξ,η))uR
a2(Φ−1(ξ,η)) +B22(Φ−1(ξ,η))uM +B23(Φ−1(ξ,η))uC

a3(Φ−1(ξ,η)) +B33(Φ−1(ξ,η))uC
Φ̇6(x)

Φ̇7(x)

Φ̇8(x)




(9.43)

with the inverse of the decoupling matrix which in physical coordinates is

B(Φ−1(ξ,η)) = B(x) =



B11 B12 B13

B21 B22 B23

B31 B32 B33




=



LgR
L2

fd
h1(x) 0 0

0 LgM
h2(x) LgC

h2(x)

0 0 LgC
h3(x)


 , (9.44)

making use of (9.31) to (9.39) and with the transformed plant nonlinearities which in
physical coordinates can be given as

a(Φ−1(ξ,η)) = a(x) =



L3

fd
h1(x)

Lfdh2(x)

Lfdh3(x)




=




1
mPS

((
∂fP
∂x1
− kS − A2

S1

ChS

)
fd1(x)− dPS

mPS
fd2(x)− AS2−

∂fP
∂x3

Ch1
fd3(x)

)

1
ChM

sign(x3 − x5)γFAOR1

√
|x3 − x5|

− 1
ChCL

ACLx8



.

(9.45)

Here, fd1(x), fd2(x), fd3(x) are the first three entries of the drift matrix (9.14), respec-
tively. Unsurprisingly, the first entry in a is identical with expression (8.36) from chapter
8 when substituting pC for x5.

Synthesizing the control law The corresponding plant- or drift-nonlinearity com-
pensating control is determined by expression (9.45). Thus, with equation (7.44), the
control law is

u = B−1(Φ−1(ξ,η))(ν − a(Φ−1(ξ,η))
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9 Nonlinear Control of a Transmission Featuring a Variable Displacement Vane Pump

featuring matrix B(Φ−1(ξ,η)) given by (9.44) and with the new input ν chosen as

ν =



−k11(ξ1,1 − ξ∗1,1)− k12(ξ1,2 − ξ̇∗1,1)− k13(ξ1,3 − ξ̈∗1,1) +

...
ξ
∗
1,1

−k21(ξ2,1 − ξ∗2,1) + ξ̇∗2,1
−k31(ξ3,1 − ξ∗3,1) + ξ̇∗3,1


 (9.46)

in order to stabilize the system about the desired trajectory ξ∗ by appropriate choice
(pole placement design) of the factors kij with i, j ∈ [1, 3].

Investigating the zero dynamics The internal dynamics η1,1 are essentially identical
with the internal dynamics discussed in section 8.4. As for η2,1, η2,2, the dynamics are
given by the clutch dynamics

η̇2,1 = η2,2 , (9.47)

η̇2,2 =
1

mCL

(
ξ3,1ACL − dCLη2,2 − kCLη2,1 − FCL0 − FES(η2,1, η2,2, lCL)

)
(9.48)

and, by setting ξ = 0, the following globally exponentially stable zero dynamics

η̇2,1 = η2,2 , (9.49)

η̇2,2 =
1

mCL

(
−dCLη2,2 − kCLη2,1 − FCL0 − FES(η2,1, η2,2, lCL)

)
. (9.50)

9.4.2 Simulation Results

The simulation results in Figures 9.2 and 9.3 demonstrate that a nonlinear multiple in-
put, multiple output control approach yields potential for real life application in the
context of clutch actuation.
The simulation results show trajectory tracking for an increase in pump flow needed
for clutch actuation. Main pressure is to be held constant with a step change at t = 0.75s

while the clutch pressure shall track a signal leading to clutch actuation. For a system
with an ideal valve, very good trajectory tracking results are achieved. Figure 9.3 shows,
however, that transients from valve dynamics may play a more significant role than in
a SISO-system. While transients from valve dynamics are known to possibly play a
role (e.g. [41]) in hydraulic servo systems, to the best of this thesis’ author’s knowledge
transients from valve dynamics have not been researched thoroughly in the context
of multiple input systems. The results in Figure 9.3 indicate that transient interaction
within multiple input system is detrimental to system performance. It stands to reason
that this type of effect will also be observed in experiments.

180



9.4 Feedback-Linearizing Control
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Figure 9.2: Control outputs: without
valve dynamics.
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Figure 9.3: Control outputs: with valve
dynamics.
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Figure 9.4: Auxiliary states: without valve
dynamics.
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Figure 9.5: Auxiliary states: with valve
dynamics.
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9.5 Observer Designs for Clutch Actuation

9.5 Observer Designs for Clutch Actuation

The control approach presented is to provide the clutch cylinders with pressure so
that synchronization in the transmission can take place according to the specification
at hand. With the MIMO input-output-linearizing control being a state space method,
an obvious question to ask how to implement the clutch actuation control law uC as it
features the clutch displacement velocity ẋCL = x8, see equation (9.45). The proposed
control law features and thus requires knowledge of not only the current clutch pres-
sure, but also the volume flow generated from ẋCL . While this may be measured under
test-rig conditions, measurement of clutch displacement is not feasible in mass produc-
tion because sensors would have to be placed on transmission components with very
high revolution speeds. Therefore, methods for the estimation of the volume flow from
clutch velocity ought to be investigated. A natural approach is to devise an observer
reconstructing not only the axial clutch cylinder displacement velocity, but clutch dis-
placement, too. Such a full state observer will, however, be confronted with uncertainty
about the cylinder damping which may be subject to slow, but significant changes over
the operating timeframe. This will likely affect the estimation quality for both transient
and stationary processes and in turn decrease control performance. Two approaches to
overcome this difficulty are thus presented in this section.
The first approach is a disturbance observer, for which asymptotic stability can be es-
tablished analytically. The other approach is a Proportional-Integral observer which in
different settings has proven to be robust against parameter uncertainties to a certain
extent. In both cases, the volume flow generated from clutch displacement velocity will
be considered as a disturbance d(t) of the nominal system consisting of a simple volume
to be filled with fluid. In the interest of an eased discussion of the methods, the clutch
cylinder will be considered as an independent subsystem of the hydraulic circuit. With
the system pressure controlled by the main pressure valve, the net volume flow into the
clutch can be controlled by knowledge of pM = x5 and pCL = x6, so that the following
model of the clutch is sufficient to represent the clutch dynamics:

ṗCL =
1

ChCL
(qCL − ACLẋCL) , (9.51)

ẋCL = vCL , (9.52)

v̇CL =
1

mCL

(
pCLACL − FCL0 − FES(xCL, vCL, lCL)− kCLxCL − dCLvCL

)
(9.53)

with qCL = −qCLPA + qCLAT , i.e. qCL representing the control input related volume flow
into and out of the clutch.
Within the scope of the above model, the input-output-linearizing control law for clutch
pressure control can be represented as

qCL = ACLẋCL︸ ︷︷ ︸
= :−d(t)

−ChCLk31(pCL − p∗CL) + ChCLṗ
∗
CL (9.54)
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9 Nonlinear Control of a Transmission Featuring a Variable Displacement Vane Pump

with k31 being chosen as in equations (9.46) such that asymptotic reference tracking of
p∗CL is ensured. Interpreting the term ACLẋCL as a disturbance d(t), the control is to
counteract this disturbance.

9.5.1 Disturbance Observer

Disturbance observers are an important and comparatively novel concept in control en-
gineering. Relevant publications in the field, among others, are [14, 15]. Generally, two
approaches can be distinguished. The first approach relies on a disturbance model, in
many cases linear, generating the disturbance to be observed. Then, by pole-placement-
like techniques observer gains are derived that guarantee asymptotic stability of the
disturbance error. This approach is not applicable here because even though a model
for the disturbance behavior could be stated in the form of the clutch dynamics, the un-
certain damping parameter dCL will feature in the equation and therefore again cause a
misrepresentation of the actual disturbance behavior in the plant. The second approach
relies on the construction of an internal disturbance-observer-related variable whose
dynamics are designed in such a way that the sum of the internal variable and another
function to be devised which is driven by the available measurement signal guarantee
disturbance error convergence. This is the approach chosen for the problem at hand.
General approaches to the design of the required functions do not seem to be available
as of yet – in the case at hand it certainly is beneficial that the pressure dynamics in the
clutch are essentially linear in qCL for zero disturbance.
From

ṗCL =
1

ChCL

(
qCL + d(t)

)
, (9.55)

the disturbance can be expressed as

d(t) = ChCLṗCL − qCL. (9.56)

The observer is then taken as

˙̂
d(t) = −Θ(pCL)d̂(t) + Θ(pCL) (ChCLṗCL − qCL) (9.57)

= −Θ(pCL)
(
d̂(t)− d(t)

)
(9.58)

= −Θ(pCL)δ̃(t) . (9.59)

Here, Θ(pCL) is a function yet unknown, but to be designed according to the conver-
gence requirement for the disturbance error δ̃ = d̂ − d. It is driven by the available
measurement(s), clutch pressure pCL in this case. In a lack of knowledge of the exact
disturbance dynamics, ḋ = 0 is now assumed in order to derive the disturbance error
dynamics. This assumption is made in [15], too, along with the reasoning that in or-
der for this assumption to be plausible, the observer dynamics simply have to be much
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9.5 Observer Designs for Clutch Actuation

faster than the disturbance dynamics. Whether this is given depends on the very struc-
ture of Θ(pCL). While in some cases the freedom to design this function is restricted or
not given at all, it will be seen that in the present case it can be chosen in such a way that
the assumption of sufficiently fast disturbance error dynamics is fulfilled. With ḋ = 0,
it follows that

˙̃δ = −Θ(pCL)δ̃ . (9.60)

Now, the following internal observer variable σ is defined:

σ := d̂− Λ(pCL). (9.61)

In the above expression, Λ(pCL) is a second function also depending on measurable out-
put pCL that has to be devised so that the disturbance observation error will converge.
Here, it is chosen to fulfill

Θ(pCL) =
∂Λ(pCL)

∂pCL

1

ChCL
. (9.62)

The internal observer variable’s dynamics thus are

σ̇ =
˙̂
d− dΛ(pCL)

dt
=

˙̂
d− ∂Λ(pCL)

∂pCL
ṗCL (9.63)

= −Θ(pCL)d̂+ Θ(pCL)d−Θ(pCL)ChCLṗCL (9.64)
= −Θ(pCL)

(
σ + Λ(pCL)

)
+ Θ(pCL) (ChCLṗCL − qCL)−Θ(pCL)ChCLṗCL (9.65)

= −Θ(pCL)
(
σ + Λ(pCL)

)
−Θ(pCL)qCL . (9.66)

Hence, the dynamics of the disturbance observer are

σ̇ = −Θ(pCL)σ + Θ(pCL)
(
−qCL − Λ(pCL)

)
, (9.67)

d̂ = σ + Λ(pCL) . (9.68)

With the error dynamics given by (9.60), the following choice for Θ(pCL) makes the
disturbance observer error dynamics linear and time-invariant with an arbitrary con-
vergence rate c:

Θ(pCL) = c. (9.69)

As for Λ(pCL), it follows as

Λ(pCL) = cChCLpCL . (9.70)

In order to employ Λ(pCL) in a concrete control law, ChCL is taken as a fixed quantity, i.e.
its clutch displacement dependence will be ignored. It thus is to be expected that the
observer will yield good results only as long as the change in clutch capacitance is not
significant. Simulations show, however, that this is given even for comparatively small
clutch cylinder volumes of 1 × 10−4m3. Results for the estimation of disturbance and
the related control are shown in Figures 9.6, 9.7. The simulation results suggest overall
good performance of the observer, both without and with valve dynamics so that it can
be seen as a sensible approach to estimating the volume flow generated through clutch
displacement velocity.
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Figure 9.6: Disturbance observer: without
valve dynamics.
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Figure 9.7: Disturbance observer: with
valve dynamics.

9.5.2 PI-Observer

In [64], a proportional-integral (“PI”) observer is suggested for the robust observation
and control of input-output-linearizable systems. Based on the Byrnes-Isidori normal
form of a system a pole placement technique can be applied to the estimation of both
unknown disturbances and states. This being a fairly recent contribution, its appeal
lies especially in the applicability to general, possibly MIMO input-output-linearizable
systems featuring disturbances. Considering the clutch as a SISO system, the core idea
is to transform a general system perturbed by bounded, but unknown disturbances
d(x, t) which enter the system dynamics through a matrix E

ẋ = fd(x) + g(x)u+ Ed(x, t) , (9.71)
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y = h(x) (9.72)

via the coordinate transformation associated with the Lie derivatives of the system out-
put into

ξ̇1 = ξ2 , (9.73)
...

ξ̇r−1 = ξr (9.74)

ξ̇r = α(ξ,η) + β(ξ,η)u+ δ(x, t) (9.75)

in its external coordinates ξ. Here, δ(x, t) are the transformed unknown disturbances.
For a system with relative degree r = 1 as is the case with the clutch actuation system
here and with ξ1 according to equation (9.73) corresponding to ξ3,1 in the transformation
defined in (9.40), the transformed system (with α(ξ,η) = 0 in the present special case)
reads

ṗCL =
1

ChCL
qCL +

1

ChCL
d(t)

= ξ̇3,1 = β(ξ3,1)uC + δ(x, t) , (9.76)

which, after performing input-output linearization can be stated as

ξ̇3,1 = ν + δ(x, t) (9.77)

with the new input ν. As pointed out before, the external dynamics are observable and
controllable. The PI-observer then assumes the form [64, 104]




˙̂
ξ3,1

˙̂
δ


 =

[
0 1

0 0

]

︸ ︷︷ ︸
=: Ae

[
ξ̂3,1

δ̂

]
+

[
1

0

]
ν +

[
l1
l2

]
(y − ŷ) , (9.78)

ŷ = [1 0]︸ ︷︷ ︸
=: ce

[
ξ̂3,1

δ̂

]
. (9.79)

The observability criterion is fulfilled for the extended pair (Ae, ce). Because the above
observer not only proportionally feeds back the observer error ŷ− y but also feeds back
δ̂ to the dynamics of ξ̂3,1 (see also Figure 9.8), it features an integral component, thus
being referred to as a PI-observer. This integral component is advantageous in that it
is commonly associated with certain robustness properties towards plant uncertainties
not only beneficially exploited here, but in other contexts as well [5, 118].
The corresponding observer error dynamics ξ̃3,1 = ξ̂3,1 − ξ3,1 and δ̃ = δ̂ − δ thus are




˙̃ξ3,1

˙̃δ


 =

[
−l1 1

−l2 0

][
ξ̃3,1

δ̃

]
−
[

0

δ̇

]
. (9.80)
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Now, for bounded δ̇, the observation errors ξ̃3,1 and δ̃ can be reduced to a non-zero,
but arbitrarily small value through an appropriate, high-gain choice for l1 and l2, see
[64, 104]. The PI-observer therefore estimates not only the external coordinate ξ3,1, but
also the disturbance δ. Since the disturbance d physically is a volume flow generated
from a clutch cylinder moving with finite velocity and subject to finite, i.e. bounded
acceleration, boundedness of d = d(t) can be considered as given so that disturbance
estimation with this approach should be feasible. In Figure 9.10, simulation results are
shown, both for an ideal valve and a non-ideal valve with a valve frequency of 250Hz.
While only an arbitrarily small, but non-zero tracking error can be expected from the
PI-observer, its robustness property leads to a control performance superior to the per-
formance of the disturbance observer when taking into account valve dynamics, even
though asymptotic stability is guaranteed for the disturbance observer from section
9.5.1.

β(ξ3,1)

ξ̇3,1 = δ + β(ξ3,1)u
∫

C

u

δ(x, t)

+
+

ξ3,1 y

+

β(ξ̂3,1)
˙̂
ξ3,1 = χ+ β(ξ̂3,1)u

∫
C

l1

l2
∫

1

+
ξ̂3,1

ŷ

−

P-loop

I-loopδ̂
+

+χ
+

Figure 9.8: PI-observer for the clutch actuation system.
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Figure 9.9: PI-observer results: without
valve dynamics.
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Figure 9.10: PI-observer results: with
valve dynamics.
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9.6 Intermediate Conclusion

Building on the results for SISO nonlinear volume flow control from chapter 8, a
nonlinear MIMO control approach for a clutch actuation circuit featuring a variable
displacement pump was suggested.

The nonlinear control laws were generated under the assumption of ideal servo valve
behavior. Simulations with the generated control laws for a system featuring valve
dynamics were benchmarked against simulation results without valve dynamics and
showed satisfactory behavior, however pointing to possibly complex transient in-
teraction between various capacitances that allegedly can be attributed to dynamic
imperfections of real world valves.

In order to account for unknown and practically unmeasurable volume flow generated
from clutch cylinder displacement, two novel observer concepts were suggested – a
disturbance observer with asymptotic convergence properties and a robust PI-observer
that yields arbitrarily small bounded tracking error. Both observers provide a possible
solution to the disturbance estimation problem.
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10 Identification of a Hydraulic Consumer

10.1 Background

In many technical applications, detailed knowledge about system parameters is re-
quired in order to model the system adequately. With large numbers of parameters
commonly unavailable to systems engineers, the question of parameter identification
and estimation is of utmost practical importance. In this chapter, a feasibility study
for an approach to identifying system parameters and parameter-free state maps of a
nonlinear clutch system as treated in [137, 138] is presented.
The method makes use of the well-known Kalman filter technique and applies its state
estimation approach to the estimation of the system parameters and state maps of the
system. As the functionality of the Kalman filter is subject to system observability and
its potential for parameter estimation is presumably constrained by system complexity,
a strategy how to structurally break down a complex system into subsystems to which
the filter technique can be applied will need to be devised. In the present chapter, such
an approach shall be made for a minimal model of a clutch actuation mechanism as
encountered in automatic transmissions. The purpose of this chapter is to evaluate the
potential of a Kalman-Filter based identification routine in this context.
A standard filtering tool in control systems theory with significant industrial relevance,
the Kalman filter was originally conceived as an observer with the core purpose to
provide optimal state estimates for a system whose measurements are corrupted by
measurement noise. While the original Kalman filter was designed for linear systems
exclusively, its conceptual approach has found an extension to nonlinear systems in
the form of the extended Kalman filter which today is the most frequently drawn onto
observation approach in an industrial context. With the extended Kalman filter – sim-
ilarly to the pole placement technique based on system linearization about a trajectory
as discussed in section 8.6.2 – the observer gain law is based on the linearization about
a trajectory. The trajectory that is being linearized about, however, is not the desired
or actual trajectory, but the observed trajectory. As with other classic observation con-
cepts, a state estimate x̂ is computed by feeding back the observation error h(x̂)− h(x)

multiplied by an observer gain l(x̂) whose computation is at the core of the observer
design:

˙̂x = f(x̂, û) + l(x̂)(y − h(x̂)) = fd(x̂) + g(x̂)û + l(x̂)(y − h(x̂)) .

Since its inception, the Kalman filter has also found application in the field of parameter
identification. The idea behind this step is to introduce unknown parameters as addi-
tional states which the Kalman filter is to generate an estimate for. Due to its conceptual

191



10 Identification of a Hydraulic Consumer

origin in least square minimization, it is sometimes also presented in a systems identi-
fication context such as in [76], where its similarity with the recursive least squares al-
gorithm, a prominent system identification technique, is pointed out. The Kalman filter
has been successfully applied to numerous identification problems, albeit theoretically
so in most cases. In [38], the identification of mass and stiffness of a chain of oscillators
is presented, whereas in [52], an approach to the non-parametric identification of pos-
sibly non-smooth restoring forces and damping forces for different mechanical systems
is exemplified.
As pointed out, Kalman filtering is contingent on system observability. In the case
of a nonlinear SISO system, to compute the observability map, the same intuition is
followed as in linear time-invariant or line time-varying systems, namely to consider
whether the map obtained from building the time derivatives of the system output up
to n− 1-th order

q =




h(x)

Lfh(x)
...

Ln−1
f h(x)




yields full rank information. Building the gradient of q, local nonlinear observability is
given (see e.g. [1]) if the observability matrix

O =
dq

dx
(10.1)

has full rank

rank (O) = n ∀x ∈ D, (10.2)

over the full domain D of x. This is the formulation for the nonlinear (local) observabil-
ity criterion in contrast to the linear (time varying) formulation presented in equation
(8.212).
Conceptually summarizing the Kalman filter approach to state estimation, the concept
is to use the last best possible estimate for state and state covariance to predict the next
best estimate taking into account the known control input and an uncertain but quan-
tifiable noise disturbance of both plant and measurement. For additional background
on the concepts of Kalman filtering see e.g. [25, 26, 101].
The gain computation for the extended Kalman filter comprises several steps which
shall briefly be outlined in the following.
In this chapter, the system and the measurements are synchronized in discrete time by
an algorithm for the extended Kalman filter from [101] suitable for discrete systems
given as follows:
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xk = fk−1 (xk−1,uk−1,wk−1) , (10.3)
yk = hk (xk,vk) , (10.4)
wk ∼ (0,Qk) , (10.5)
vk ∼ (0,Rk) . (10.6)

Here, the signals w and v represent process and measurement noise with zero mean
each and covariance Qk and Rk, respectively. To apply the Kalman filter to the system,
in a first step the state estimate x̂ and the estimate for the state covariance matrix P are
initialized with their respective expected values:

x̂+
0 = E(x0) , (10.7)

P+
0 = E

[
(x0 − x̂+

0 )(x0 − x̂+
0 )T
]
. (10.8)

This initialization, along with the choice for Qk, is crucial to the results the Kalman filter
gives. Because in Kalman filtering a distinction between pre- and post-measurement
quantities is necessary, the superscripts “+” and “−” are used to indicate post-
measurement and pre-measurement estimates, respectively.
For k = 1, 2, . . ., the following are then to be computed:

Fk−1 =
∂fk−1

∂x

∣∣∣∣∣
x̂+
k−1

, Lk−1 =
∂fk−1

∂w

∣∣∣∣∣
x̂+
k−1

. (10.9)

Clearly, Fk−1 is the system Jacobian and Lk−1 is the Jacobian with respect to the process
noise. In that the Jacobian is evaluated about x̂+

k−1 it becomes evident that linearization
about the estimated state is performed. The time update of the state estimate and the
estimation error covariance for the next time step before availability of a measurement
update can then be computed as

P−k = Fk−1P
+
k−1F

T
k−1 + Lk−1Qk−1L

T
k−1 , (10.10)

x̂−k = fk−1

(
x̂+
k−1,uk−1,0

)
. (10.11)

The following partial derivative matrices constituting measurement equation Jacobians
with respect to system state x and noise v, respectively,

Hk =
∂hk
∂x

∣∣∣
x̂−k
, Mk =

∂hk
∂v

∣∣∣
x̂−k
, (10.12)

then allow for the computation of the measurement-driven update of the state estimate
and estimation-error covariance as follows:

Kk = P−k HT
k

(
HkP

−
k HT

k + MkRkM
T
k

)−1

, (10.13)

x̂+
k = x̂−k + Kk

[
yk − hk(x̂

−
k ,0)

]
, (10.14)

P+
k = (I−KkHk)P

−
k . (10.15)
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After performing the respective updates, the state estimates are available for manipu-
lation by control laws. Notably, the Kalman filter requires a valid system model and
quantitative knowledge of the measurement and process noise.
The core purpose of Kalman filtering is to provide valid state estimates for noise-
corrupted measurements. When in need for parameter estimates and willing to sac-
rifice the filter’s original purpose for the sake of the parameter estimates needed, the
Kalman filter can be altered as such: In the state space formulation of the system model,
the state space is augmented by the parameters to be estimated. The right hand side
of these (formally parameter) states is set equal to zero, assuming constant parame-
ters. Then the Kalman filter is initialized accordingly and used to estimate all system
states including the parameters to be estimated. As the parameter to be identified was
introduced to the state space formulation of the system, so it is estimated.
This routine is fairly well-known in control systems and identification theory. However,
it should be emphasized once more that this principle cannot be extended to an arbi-
trary degree. In any case, fulfilling the observability criterion (which clearly depends
on the structure of the system and thus on the number of parameters to be estimated)
is a necessary, but not sufficient requirement for the filter to deliver meaningful results.
An important aspect when initializing the respective matrices in order to obtain param-
eter or state map estimates of non-smooth forces or volume flow therefore is to allow
for process noise in the model and to introduce a non-zero matrix Qk capturing model
uncertainty. This matrix is an important tuning parameter of the filter in order to fulfill
its parameter estimation function. Increasing values for the entries of Qk imply that
the filter has room for adjusting the respective state variable according to the updated
measurements – matrix Qk’s entries can be thus be understood as the strength of time
variance of the respective states [76].

10.2 System Description

Figure 10.1 shows the reduced model of a reduced clutch actuating system. The purpose
of the mechanism is to provide a system pressure such that a certain clutch force in the
spring-damper-combination is achieved by which clutch torque MCL is transmitted via
friction with coefficient µ.
To do so, a flow source provides a specified and adjustable volume flow qP , causing
the pressure in the system to rise with dynamics specified by system capacitance Ch.
By increasing pressure, the clutch mass is moved in positive xCL-direction. The system
pressure is limited by the pressure limitation valve. Once the maximum pressure is
reached, the valve opens so that the fluid flowing through the valve is equal to the flow
provided by the pressure source.
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Figure 10.1: Clutch system.

Parameter Symbol Value Unit
Piston area ACL

π
4
× 0.0452 m2

Clutch mass mCL 3 kg

Clutch damping dCL 30 Ns/m

Clutch stiffness kCL 105 N/m

Valve area AV
π
4
× 0.012 m2

Valve mass mV 0.015 kg

Valve damping dV 2 Ns/m

Valve stiffness kV 2000 N/m

Valve overlap u 0.005 m

Capacitance Ch 8× 10−11 m3/bar

Table 10.1: System parameters.

10.3 System Model

In order to account for the purpose of a conceptual assessment of the proposed identi-
fication approach, a most simple model of the clutch system is drawn on – the system
is thus modeled as follows:

mCLẍCL = −kCLxCL − dCLẋCL + ACLpCL , (10.16)
mV ẍV = −kV (xV − uV )− dV (ẋV − u̇V ) + AV pCL , (10.17)
ChṗCL = qP − qV − ACLẋCL − AV ẋV , (10.18)

with the volume flow qV governed by the nonlinear law

qV =





0 if xV ≤ u ,

γF bV (xV − u)
√
pCL − p0 else .

(10.19)

Here, u is the valve overlap and uV an imposed spring displacement yielding a spring
pre-stress or valve actuation force. Notably, end stop forces are ignored in this model to
keep the model as simple as possible.
The hydraulic components are a source of significant nonlinearity, thereby certainly
challenging the Extended Kalman filtering approach. First, the flow through any orifice
(in this case, the valve) is a nonlinear function of the pressure of the system. In addi-
tion, due to a positive overlap of the valve, there is a dead band u implying that the
valve does not open before a threshold valve displacement is exceeded. In the course
of the identification approach, it is assumed that system pressure pCL and clutch force
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FCL = kCLxCL + dCLẋCL can be measured, so that the measurement equation is given
by

y =

[
pCL

kCLxCL + dCLẋCL

]
. (10.20)

10.4 Identification Approach

The identification comprises several steps: First, system capacitance is identified from a
simple consideration of the pressure dynamics while the clutch is blocked and the valve
closed. Then, with a blocked valve, an effort is made to identify relevant parameters of
the clutch, i.e. clutch mass, stiffness and damping. Once these are determined, in a next
step the valve can be identified. Here, an approach with two substeps is used: To keep
the system as simple as possible for the identification of valve mass and stiffness, an
effort is made to exploit the valve-inherent overlap by exciting the valve without per-
mitting fluid outflow. The idea is that the valve translation reveals information on the
dynamic behavior of the valve without involvement of the nonlinear flow behavior that
would otherwise make a simultaneous identification difficult. Once the valve stiffness
and mass are known, the system is excited in such a way that the valve opens, thereby
revealing information about the flow characteristic of the valve.

10.4.1 Identification of the System Capacitance

In an initial step, the capacity of the system is to be determined. By means of a known
and constant volume flow excitation qP considered as input, the measurement of the
system pressure allows for a determination of the capacity by noting that the pressure
increase over time is linear with qP = const. It is assumed that both clutch mass and
valve mass are blocked, i.e. their position is fixed. Considering pressure differences
in the system as measured over a time period sufficiently long to prevent errors from
measurement noise to have a significant influence, the capacity can be computed from:

ṗCL =
qP
Ch
, (10.21)

yielding, upon integration,

pCL = p0 +
qP
Ch
t , (10.22)

from which an estimate of the capacitance may be computed by algebraic manipulation.

10.4.2 Identifcation of the Clutch

For the identification of the clutch, in a first step it is assumed that the pressure control
valve is pre-stressed by so large a force that it will not open and not even move within
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the time interval considered. This reduces the system to the following state-space rep-
resentation of the remaining dynamics:

ẋ =




x2

− kCL
mCL

x1 − dCL
mCL

x2 + ACL
mCL

x3

−ACL
Ch

x2 + qP
Ch


 , (10.23)

y = h(x) =

[
x3

kCLx1 + dCLẋ2

]
+

[
v1

v2

]
(10.24)

with x = [xCL ẋCL pCL]T = [x1 x2 x3]T. With respect to the estimation of the
parameters kCL and dCL, these are introduced as states x4 and x5 with trivial dynamics
in the corresponding slave model

ẋ =




x2

− x4
mCL

x1 − x5
mCL

x2 + ACL
mCL

x3

−ACL
Ch

x2 + qP
Ch

0

0



, (10.25)

y = h(x) =

[
x3

x4x1 + x5x2

]
+

[
v1

v2

]
. (10.26)

For this first step of the identification approach, the observability matrix for the first
output x3 shall be given. It can be computed as

O =




1 0 0 0 0

0 1 0 0 0

− x4
mCL

− x5
mCL

ACL
mCL

− x1
mCL

− x2
mCL

x5x4
m2
CL

O42 −x5ACL
m2
CL

−x2mCL+x1x5
m2
CL

O44

O51 O52 O53 O54 O55



, (10.27)

with

O42 =
Ch(x

2
5 − x4mCL)− A2

CLmCL

m2
CLCh

, (10.28)

O44 =
−ACLx3 + 2x5x2 + x4x1

m2
CL

, (10.29)

O51 =
(A2

CLmCL − Chx2
5 + Chx4mCL)x4

m3
CLCh

, (10.30)

O52 =
(2A2

CLmCL − Chx2
5 + 2Chx4mCL)x5

m3
CLCh

, (10.31)

O53 =

(
x4mCLCh + x2

5Ch − A2
CLmCL

)
ACL

m3
CLCh

, (10.32)
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O54 =

(
(−ACLx3 + 2x5x2 + 2x4x1)mCL − x2

5x1

)
Ch + A2

CLmCLx1

m3
CLCh

, (10.33)

O55 =

(
2x4x2mCL + 2x5

(
ACLx3 − 3

2
x5x2 − x4x1

))
Ch

m3
CLCh

+
ACLmCL (2ACLx2 − qP )

m3
CLCh

. (10.34)

As can be seen from its determinant

det(O) = − ACL
m5
CLCh

(
A2
CLChx

2
3 + A2

CLmCLx
2
2 − ACLChx5x2x3

−2ACLChx4x1x3 + Chx5x4x1x2 + Chx
2
4x

2
1 − Chx4mCLx

2
2 − ACLmCLx2qP

)
, (10.35)

the system can be expected to be locally observable from output h1 = x3 alone, at least
for some trajectories. From this perspective, the additional measurement of the clutch
torque or clutch force can be interpreted as an additional measurement made with the
prospect of easing the convergence process of the filter.
The state estimate is then initialized with

x̂+
0 =

[
0 0 x30 0.5kCL 0.5dCL

]T

, (10.36)

so that estimates for the unknown parameters kCL and dCL are as good as fifty percent
of their true values.
The filter is initialized with

P̂+
0 = diag

([
0.0012 0.00022 0.12 (0.1kCL)2 (0.1dCL)2

])
(10.37)

Q0 = diag
([

0.0012 0.00022 0.12 3(0.1kCL)2 3(0.1dCL)2
])

. (10.38)

Results are shown in Figure 10.2. As can be seen, convergence behavior is good and
the true values of both kCL and dCL are met with satisfactory precision in compara-
tively short time. The convergence pattern in this case is even better than is the case for
textbook illustrative examples from nonlinear adaptive observer theory, e.g. [133, 134],
where, despite proven convergence for the observer formulation for state-affine nonlin-
ear systems the convergence rate cannot be prescribed arbitrarily. It is worth to point
out that in order to identify clutch damping, volume flow excitation through qP needs
to be such that the clutch performs oscillatory motion.
As an alternate approach, mCL could have been identified instead of dCL. Efforts to
simultaneously identify mCL, dCL and kCL however did not yield converging results.

10.4.3 Identification of the Valve

The simplest method to determine further parameters of the system is to allow valve
displacement for a given qP > 0, but to suppress the volume flow related to an open
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Figure 10.2: Clutch estimates.

valve. This will allow for valve dynamics to show in the measurements without the
complicating effects from fluid outflow across an open valve. Essentially, this under-
mines the pressure limitation functionality of the valve. While this is possible theoret-
ically, it should not be done in a real-world system as an (even artificially so) disabled
pressure limitation valve will increase the risk of irreversible system failure. Instead,
the valve shall be actuated in such a way that it can be identified within the time in-
terval during which it translates in the overlap region without opening. Even for large
valve overlap, this demands rather short convergence intervals and a large number of
available measurement data points for the Kalman Filter.
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The system dynamics including the valve have the following state-space representation
and fully represent the system shown in Figure 10.1:

ẋ =




x2

− kCL
mCL

x1 − dCL
mCL

x2 + ACL
mCL

x5

x4

− kV
mV

(x3 − uV )− dV
mV

(x4 − u̇V ) + AV
mV
x5

−ACL
Ch

x2 − AV
Ch
x4 − qV

Ch
+ qP

Ch



, (10.39)

y = h(x) =

[
x5

kCLx1 + dCLẋ2

]
+

[
v1

v2

]
(10.40)

with x = [xCL ẋCL xV ẋV pCL] and qV from equation (10.19).
The valve is pre-stressed by uV . In the course of the present investigation, it is assumed
that this pre-stress can be manipulated in order to prevent the valve from opening.
The system dynamics (10.39) feature the volume outflow qV across the pressure limita-
tion valve. In the corresponding slave model, this volume outflow will not be included
as the valve is, by assumption, actuated in such a way that it does not open. While
the slave model will exhibit the same dynamical behavior as the system for zero valve
outflow qV = 0, there will be a significant model mismatch once the valve opens so
that a Kalman filter based on the mismatched slave model can not be expected to show
convergent behavior anymore.
From the viewpoint of parameter identification, the slave model can be used for identi-
fication purposes only as long as the valve translates within the overlap region, yielding
a zero opening area for the valve and thus zero outflow qV = 0. The slave model fea-
turing the unknown parameters kV and mV as states x6 and x7, respectively, therefore is
assumed as

ẋ =




x2

− kCL
mCL

x1 − dCL
mCL

x2 + ACL
mCL

x5

x4

−x6
x7

(x3 − uV )− dV
x7

(x4 − u̇V ) + AV
x7
x5

−ACL
Ch

x2 − AV
Ch
x4 + qP

Ch

0

0




, (10.41)

y = h(x) =

[
x5

kCLx1 + dCLẋ2

]
+

[
v1

v2

]
. (10.42)

It is to be noted here that dCL and kCL are assumed to be known from section 10.4.2,
therefore they appear as known parameters in the model.
The filter is initialized with

P̂+
0 = diag

([
0.0012 0.00022 0.00012 0.000022 0.12 (0.1kV )2 (0.1mV )2

])
,

(10.43)
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Q0 = diag
([

0.0012 0.00022 0.00012 0.000022 0.12 (0.1kV )2 (0.1mV )2
])

,

(10.44)

x̂+
0 =

[
0 0 0 0 x50 0.5kV 0.8mV

]T

. (10.45)

Exciting the full system with volume flow qP , for certain choices of uV the valve will
show oscillations and displacement during a short time while not permitting fluid out-
flow. This is due to the valve overlap and shall here be exploited for the estimation
of the valve parameters. Because the valve exhibits dynamics relevant for parameter
estimation while not permitting fluid outflow for only a short time, it is important to
generate sufficiently many measurement points during this time interval relevant for
parameter estimation. In Figure 10.3 the estimation results are shown. In contrast to
the estimation results shown before, the time interval shown in the Figure is only 0.1s,
i.e. one tenth of the intervals considered before. The filter provides a good estimate of
the true valve parameters even though the results suggest the estimation routine would
have profited from a longer time interval during which the valve remains closed. The
simulations also demonstrate the aforementioned effect of model mismatching: once
the valve opens at ≈ 0.05s, the slave model no longer matches the master model and
the filter diverges.
While the simulation results in principle indicate feasibility of the approach presented,
it should be stressed that in practice, the identification of mass and stiffness properties
of the valve is expected to be highly cumbersome, if possible at all. The reason for this
lies in small overlaps leaving little room for filter convergence and only minor influence
of the volume flow AV ẋV generated by valve motion on the overall system pressure, es-
pecially relative to the volume flow from clutch motion. Hence, the revelatory relevance
of valve motion and corresponding volume flow AV ẋV in a real-world setting likely is
very limited.
Ultimately, the knowledge of valve mass and stiffness may be employed in an effort
to determine the flow characteristic of the valve. The system dynamics are given by
(10.39) while the slave model with qV = x6 reads

ẋ =




x2

− kCL
mCL

x1 − dCL
mCL

x2 + ACL
mCL

x5

x4

− kV
mV

(x3 − uV )− dV
mV

(x4 − u̇V ) + AV
mV
x5

−ACL
Ch

x2 − AV
Ch
x4 − 1

Ch
x6 + qP

Ch

0




, (10.46)

y = h(x) =

[
x5

kCLx1 + dCLẋ2

]
+

[
v1

v2

]
. (10.47)

While the structure of the governing law for the volume flow across a valve is known
and could in theory be substituted in the estimation problem above (with the purpose
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Figure 10.3: Valve estimates.

of determining the flow coefficient), the distinct nonlinearity and the coupling of states
in (10.19) would significantly complicate the estimation problem. With an eye towards
robustness of the estimation procedure, the volume flow across the valve is therefore
modeled as an aggregate state x6. Since estimates for the valve displacement and sys-
tem pressure obtained (as of all other states) are obtained from the Kalman filter, it is
possible to plot the flow through the valve as a function of these two states, yielding a
parameter free state-volume-flow map. In order to cover as large a domain as possible
for the state-volume-flow map (i.e. as many different triples {x̂, p̂CL, q̂V } over as wide a
range as possible), the pressure limitation valve is subjected to an oscillatory excitation
with increasing amplitude and frequency:

uV =





0 if t ≤ t1 ,

ûV sin
(
2πfV (t− t1)

)
(t− t1) else .

(10.48)
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The filter is then initialized with

P̂+
0 = diag

([
0.0012 0.00022 0.00012 0.000022 5× 104 2× 10−4

])
, (10.49)

Q0 = diag
([

0.0012 0.00022 0.00012 0.000022 1× 102 1× 106
])

, (10.50)

x̂+
0 =

[
0 0 0 0 x50 0

]T

. (10.51)

Figures 10.4 – 10.6 show the estimation results of the volume flow as a function of valve
displacement and system pressure.
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Figure 10.4: Estimate of clutch displacement.

Displaying estimated volume flow over estimates of valve displacement and system
pressure eliminates the time dependency of these state variables from the estimation
results. For each estimation triple (x̂V , p̂CL, q̂V ) at some point in time, a blue dot is shown
in Figures 10.5 and 10.6, the blue dots hence are the unprocessed estimation results. In
contrast, the black dots are processed data generated from the blue points through a
partitioning of the blue points into parcels along linearly spaced intervals of x̂V and p̂CL.
Within these parcels, available data is partitioned further into sub-parcels, averaged
within the sub-parcels, checked for sufficiency of information content on parcel level
and then subjected to a parcel-wide linear regression over the averaged sub-parcel data.
This allows the extrapolation of available estimation data at specified sampling points
within whose proximity estimation data may not be available. The evaluation of the
parcel-wide regression data at the sampling points yields the data represented by the
black dots. The procedure is motivated by the problem that excitation through an input
of choice for the system may not necessarily yield sufficiently finely sampled estimation
data along the intervals of x̂V and p̂CL, a property that is difficult to control through a
choice of system inputs.
All parameters of the system were assumed to be known, i.e. the sole estimation pur-
pose was the state map for the valve flow. Under these (ideal) circumstances for the
numerical experiment, the results are satisfying. The valve overlap causing a zero vol-
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Figure 10.5: Identified volume flow across valve, view 1.

Figure 10.6: Identified volume flow across valve, view 2.

ume flow unless the valve displacement exceeds the overlap can clearly be seen, so can
the pressure difference square root law once the valve is open.
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10.5 Intermediate Conclusion

In this chapter, an approach for the systematic identification of a hydraulic consumer
in the context of an automatic transmission was presented.

As there is no universally applicable procedure for the initialization of the Kalman
filter, significant tuning effort and expert knowledge is to be expected as a requirement
when a system needs to be identified in a real world setting. To the best of this thesis’
author’s knowledge, the Kalman filter works satisfyingly well for simple estimation
problems not involving any state maps. Here, the results indicate a good overall es-
timation quality for unknown parameters. The potential of the filtering method can
possibly be enhanced by combining it with other forms of parameter estimation in
order to obtain good approximations of the parameter values to initialize the Kalman
filter with. Naturally, the better the filter initialization – i.e. the initial estimates for the
unknown parameters – the better the identification result. In this context, some authors
have suggested an iterative procedure for filtering in combination with parameter
estimation problems, see [38] for example.

The major formal and mathematically concise limitation to the proposed method is the
observability criterion. Generally, one would expect that the number of parameters that
can be estimated increases with the number of sensors applied to the system in order
to prevent the observability matrix to lose full rank. In the context of unknown-input
observers, [12, 13] discuss structural restrictions as to where unknown quantities may
enter the system dynamics. Its stands to reason that similar structural restrictions may
exist for Kalman filter based identification.

It also has been found in this study that the estimation of highly nonlinear physical re-
lationships does pose a problem to Kalman filtering, an issue well-known to practition-
ers. This does not come as a surprise insofar that the extended Kalman filter employs an
observer gain computation principle that is based upon the linearization of the system
about the observed trajectory. It cannot be expected in general that a linearization-based
estimation routine will be a suitable approach for a system with nonlinearities of arbi-
trary degree. Here, the unscented Kalman filter as suggested in [43, 117] which takes
the Kalman filtering approach to truly nonlinear problems may provide a promising
alternative. Additionally, in [145] an approach based on a homotopy method suggested
in [116] is discussed, showing positive indication for applicability in the present set-
ting. To conclude, the positive indication for the applicability of this chapter’s approach
should be seen in the light of the simplifying assumptions made for the present mini-
mal model. It is to be expected that in a real world setting, a more realistic model will
complicate the identification task.
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Conclusion and Outlook

In the present thesis, selected problems of hydraulic modeling and simulation, analysis
and control were discussed. The thesis’ context relates most closely to applications in
automotive engineering but is general in its overall scope. With a view towards the
research questions outlined in the introduction, the findings can be summarized as
follows.

Variable displacement vane pumps of translational type can sensibly be modeled based
on elementary physical and kinematic considerations. The pump cam ring is subject to
three force components listed in the sequence of decreasing relevance for the validity
of a pump model: forces from line pressure exposure, forces from dead volume com-
pression and forces from dead volume expansion. The autonomous model derived in
the present thesis allows for a simple integration in hydraulic circuits for the purpose
of stability analysis and control design.

Prominent examples of passive hydraulic circuits with a variable displacement vane
pump feature a modified pressure regulator valve which yields switched system be-
havior. From the perspective of stability, two aspects are relevant:

• from a macro perspective, the pressure regulator valve structurally introduces an
unstable limit cycle to the system that possibly prevents the system from reaching
an otherwise stable equilibrium position. This type of limit cycle has been ob-
served in isolated pressure regulators before. It is of utmost importance to chose a
parameter constellation for the respective system that moves this limit cycle into
a region in state space that is not relevant for the intended operating scenarios.

• from a micro perspective, system equilibrium stability depends on operating
point, the choice of notch geometry in the regulator valve and valve leakage. For
almost critically lapped regulator valves with different notch geometries, larger
loads tend to yield stable operating points – ceteris paribus. Too low a regula-
tor spring stiffness (and thus operating pressure) may be detrimental to system
stability – higher stiffnesses appear to have a beneficial effect for equilibrium sta-
bility. Increasing operating pressure through increased regulator valve pre-stress,
however, increases regions of instability. Increasing regulator valve damping may
destabilize equilibria irrespective of the underlying notch geometry. Pump leak-
age does not significantly affect equilibrium stability. Increasing valve leakage via
decreasing viscosity increases regions of instability. At the cost of losing set-point
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regulation accuracy and load adaption time, increasing regulator valve overlap
can help stabilize the system equilibrium by reducing leakage.

As to novel concepts for the nonlinear volume flow control of a variable displacement
vane pump, analysis showed that

• Nonlinear SISO feedback-linearizing control can theoretically be employed in
conjunction with a servo valve to obtain stable high-performance volume flow
trajectory tracking for a variable displacement vane pump. In order to achieve full
state knowledge, a nonlinear state observer may be made use of. Alternatively,
feedforward-linearizing control with a simple PI-output-feedback control can
achieve stable trajectory tracking without the need for full state estimation.

• The nonlinear feedback-linearizing control can be extended to a comprehensive
clutch actuation circuit by making use of MIMO feedback-linearizing control.
Pressure regulation for clutch actuation by means of a servo valve may require
the employment of a disturbance observer. Here, both asymptotic disturbance
observer and PI-observer are promising approaches.

The aforementioned key results were supported by the following background analyses
and extended in different directions:

• Hydraulic pressure regulators with sufficiently large overlap yield stable equi-
libria within the overlap-related dead band for zero load flow. For a valve with
sufficiently small overlap (or an unsuitable combination of pressure differences
across its control edges) at given viscosity, a rectangular notch geometry and zero
load flow, leakage may cause the equilibrium position to move towards a nomi-
nally open valve position, thereby destabilizing the equilibrium. No such effect
was observed for triangular or circular notches.

For non-zero load flow and an open control edge, equilibrium stability depends
largely on notch geometry, valve damping and pressure difference across the re-
spective control edge. Larger pressure differences tend to destabilize equilibria
requiring an open control edge.

• Kalman filtering bears potential for identification of hydraulic systems. While ap-
plication to a clutch actuation unit requires extensive expert knowledge for filter
initialization and the approach may not be robust in all circumstances, results ob-
tained in this study indicate a positive outlook in principle.

Relating to these findings, several points may be worth addressing in future research,
deriving both from assumptions made for the models discussed in the present work
and from conceptual extensions to what has been covered here:
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• Future research may address problems of pressure-depending bulk modulus.
While fluid bulk modulus in hydraulics can in many cases be assumed constant,
significant bulk modulus variations may contribute to system stability to an
extent unforeseen by the models outlined in the present work.

With regard to the control approaches discussed, bulk modulus variations from
pressure differences are expected to not fundamentally alter the effectiveness of
the control designs. The reason lies in the systems’ relative degrees: Pressure dy-
namics enter the Lie derivatives at r-th order in all cases discussed here – thereby
system capacitances enter the control laws as parameters which no further deriva-
tives are needed for. As a consequence, bulk modulus variations can – in theory
– be compensated for by the control laws accordingly. Selected numerical exper-
iments conducted in this context support this expectation as the control designs
have shown to be robust with respect to bulk modulus variations.

• Damping in hydraulic valves was modeled with a simple viscous damping ele-
ment in the present work. Thereby, damping was implicitly taken as a system
parameter of its own without any explicit relation to operating conditions, most
importantly temperature. As laid out in chapter 1, damping in hydraulic elements
derives from fluid shear forces acting on valve spools subject to displacement to
a large extent. While the modeling approach pursued in this thesis allowed for
a separate consideration of leakage and damping effects on equilibrium stability
especially in chapter 6 and thereby for regulator valve or dashpot design recom-
mendations, a refined model for damping from fluid viscosity in ring gaps may
be worth pursuing.

• Other modeling aspects possibly worth incorporating in future models of hy-
draulic systems are friction elements capturing valve spool friction. This is an
additional nonlinearity with the potential to introduce complex effects to the dy-
namics of hydraulic systems. In addition, effects from flow forces may be investi-
gated.

• Another aspect whose relevance for dynamic phenomena in hydraulic systems
has remained largely ignored in the research community is the effect of pressure
and volume flow pulsations stemming from a finite number of pump chambers.
Incorporating this into dynamic analysis necessitates a Floquet theory approach.
Given the significant number of physical parameters in hydraulic systems, the
numerical stiffness and non-smoothness that stands to qualitatively characterize
such systems on macro scale even after leakage regularization, the success of such
effort is uncertain, however.

• While the theoretical assessment and the simulation results of the control designs
proposed in this work are a positive indication, questions of robustness with re-
spect to unmodeled dynamics, noisy measurements or time delays to be expected
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in real-world actuation hardware are an important issue to be addressed when
implementing the designs on a test-rig. Here, future research may shed further
light on these aspects. In addition, refined trajectory planning may be needed.

• Conceptually, the control concepts discussed in the second part of this work may
be extended in the direction of a data-driven identification and control implemen-
tation approach, i.e. grey box modeling. This will likely be required in order to
respond to changes in operating conditions – most commonly due to temperature
changes – and otherwise unknown parameters or parasitic dynamics. While this
was the original research intent of FFG-Project 850729, the system topology pro-
posed in the second part of the present work proved too complex to build on a
test-rig from scratch after project kick-off, making a stepwise approach based on
the system modeled in chapter 4 necessary.
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Theorem 1. [40]: Suppose yR(t), ẏR(t), . . . y
(r−1)
R (t) are defined for all t ≥ 0 and bounded.

Let ηR(t) denote the solution of

η̇ = q(ξR(t),η) (A.1)

satisfying ηR(0) = 0. Suppose this solution is defined for all t ≥ 0, bounded and
uniformly asymptotically stable. Finally, suppose the roots of the polynomial

sr + cr−1s
r−1 + . . .+ c1s+ c0 = 0 (A.2)

all have negative real part. Then, for sufficiently small a > 0, if

|ξi(t0)− y(i−1)
R (t0)| < a, 1 ≤ i ≤ r, ||η(t0)− ηR(t0)|| < a (A.3)

the corresponding response ξi(t), η(t), t ≥ t0 ≥ 0, of the closed loop system (7.1), (7.24),
(7.26) is bounded. More precisely, for all ε > 0, there exists δ > 0 such that

|ξi(t0)− y(i−1)
R (t0)| < δ ⇒ |ξi(t)− y(i−1)

R (t0)| < ε for all t ≥ t0 ≥ 0 , (A.4)
||η(t0)− ηR(t0)|| < δ ⇒ ||η(t)− ηR(t)|| < ε for all t ≥ t0 ≥ 0 . (A.5)

Theorem 2. [53]: Let x = 0 be an equilibrium point for ẋ = f(t,x) and D ⊂ Rn be a
domain containing x = 0. Let V : [0,∞) × D → R be a continuously differentiable
function such that

W1(x) ≤ V (t,x) ≤ W2(x) , (A.6)
∂V

∂t
+
∂V

∂x
f(t,x) ≤ −W3(x) (A.7)

∀ t ≥ 0, ∀x ∈ D, where W1(x), W2(x) and W3(x) are continuous positive definite func-
tions on D. Then x = 0 is uniformly asymptotically stable.

Theorem 3. [53]: Let D ⊂ Rn be a domain that contains the origin and V : [0,∞)×D →
R be a continuously differentiable function such that

213



A Theorems

α1(||x||) ≤ V (t,x) ≤ α2(||x||) , (A.8)
∂V

∂t
+
∂V

∂x
f(t,x) ≤ −W3(x), ∀||x|| ≥ µ > 0 (A.9)

∀t ≥ 0 and ∀x ∈ D, where α1 and α2 are class K functions and W3(x) is a continuous
positive definite function. Take r > 0 such that Br ⊂ D and suppose that

µ < α−1
2 (α1(r)). (A.10)

Then, there exists a class K L function β and for every initial state x(t0), satisfying
||x(t0)|| < α−1

2 (α1(r)), there is T ≥ 0 (dependent on x(t0) and µ) such that the solution
of

ẋ = f(t,x) (A.11)

satisfies

||x(t)|| ≤ β(||x(t0)||, t− t0), ∀t0 ≤ t ≤ t0 + T , (A.12)
||x(t)|| ≤ α−1

2 (α1(r)), ∀t ≥ t0 + T . (A.13)

Moreover, if D = Rn and α1 belongs to K∞, then (A.12) and (A.13) hold for any initial
state x(t0), with no restriction on how large µ is.

Lemma 1. (Barbalat’s Lemma) [3] : If g is a real function of a real variable t, defined and
uniformly continuous for t ≥ 0 and if the limit of the integral

∫ t

0

g(s)ds (A.14)

exists as t tends to infinity and if it is a finite number, then

lim
t→∞

g(t) = 0. (A.15)

A much used consequence of Barbalat’s lemma (see also [3]) is that if g ∈ L2 and dg/dt

is bounded, then

lim
t→∞

g(t) = 0. (A.16)
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