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Abstract

This thesis provides a unified framework for the error analysis of non-conforming space discretiza-
tions of linear wave equations in time-domain, which can be cast as symmetric hyperbolic systems
or second-order wave equations. Such problems can be written as first-order evolution equations in
Hilbert spaces with linear monotone operators. We employ semigroup theory for the well-posedness
analysis and to obtain stability estimates for the space discretizations. To compare the finite dimen-
sional approximations with the original solution, we use the concept of a lift from the discrete to
the continuous space. Time integration with the Crank–Nicolson method is analyzed.

In this framework, we derive a priori error bounds for the abstract space semi-discretization
in terms of interpolation and discretization errors. These error bounds yield previously unkown
convergence rates for isoparametric finite element discretizations of wave equations with dynamic
boundary conditions in smooth domains. Moreover, our results allow to consider already investigated
space discretizations in a unified way. Here it successfully reproduces known error bounds. Among
the examples which we dicuss in this thesis are discontinuous Galerkin discretizations of Maxwell’s
equations and finite elements with mass lumping for the scalar wave equation.
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Introduction

Motivation

The original goal of this thesis was to analyze the numerical discretization of wave equations with
dynamic boundary conditions. Such boundary conditions account for the momentum of the wave
on the boundary and are given by ordinary differential equations or even evolution equations on the
boundary. One of the oldest examples is the acoustic boundary condition. Its formulation in in time
domain was introduced by [Beale and Rosencrans, 1974] and is still a subject of current research, cf.
[Graber, 2012] and [Vedurmudi et al., 2016]. A different class of dynamic boundary conditions for
wave equations are kinetic boundary conditions, which model wave propagation along the boundary,
cf. [Vitillaro, 2013], [Graber and Lasiecka, 2014], and [Lescarret and Zuazua, 2015]. The analysis
of wave equations with dynamic boundary conditions has recently been developed further to include
non-linear problems [Vitillaro, 2015] and control theory [Gal and Tebou, 2017].

However, to our knowledge, the analysis of numerical methods for wave equations with dynamic
boundary conditions has not yet been considered. In addition, the numerical approximation of other,
non-hyperbolic partial differential equations with dynamic boundary conditions has been investigated
over the last years: In [Elliott and Ranner, 2013] an isoparametric finite element method for a cou-
pled bulk-surface partial differential equation of elliptic type is proposed. [Kashiwabara et al., 2015]
consider a finite element discretization of the Poisson equation with generalized Robin boundary con-
ditions. Our CRC-project partners [Kovács and Lubich, 2016] analyze finite element discretizations
of parabolic problems with dynamic boundary conditions.

In the course of analyzing finite element discretizations of wave equations with dynamic boundary
conditions, we found that they can be treated as a special case of a much more general class of
non-conforming space discretizations. This was particularly attractive, as such space discretizations
appear in different contexts. For instance

I finite element methods on smooth domains,

I discontinuous Galerkin methods,

I mass lumping.

Achievements of the unified error analysis

We now give a short overview of the features of our unified error analysis.

Variational framework with access to semigroup theory

Linear Cauchy problems in a Gelfand triple of Hilbert spaces with quasi-monotone operators cover
two important kinds of mathematical models for wave phenomena: second-order evolution equations
as in [Showalter, 1994, Ch. VI.] and symmetric hyperbolic systems as in [Benzoni-Gavage and Serre,
2007]. Both references provide well-posedeness results in the pivot space by using strongly continuous
semigroups and unbounded operators. However, working with the variational formulation in the
Gelfand triple fits much better to space discretizations as the finite element method.

ix



x INTRODUCTION

Treatment in the thesis The general continuous problem is introduced and analyzed in Sections 2.1
and 2.2. Symmetric hyperbolic systems are discussed in Section 3.1. The analysis of second-order
evolution equations is presented in Sections 4.1 and 4.2.

General error bounds for Cauchy problems with quasi-monotone operators

Given some basic stability properties of the space discretization, we prove a priori error bounds for
general finite dimensional approximations of Cauchy problems with quasi-monotone operators. This
part of our error analysis is kept very general by only assuming the existence of suitable operators
which map between the continuous and the discrete space. In the tradition of the Lax-Equivalence
principle, we introduce notions of “stability” and “consistency” for general non-conforming space dis-
cretizations, which are sufficient for the convergence of lifted approximations from finite dimensional
spaces.

Previous state of research The Lax-Equivalence Principle and the Trotter–Kato Theorem are the
classical approximation results for evolution equations, cf. [Ito and Kappel, 2002], [Guidetti et al.,
2004], and [Banks, 2012, Ch. 12]. However, we believe our a priori error bounds are the first ones
that can be used to prove convergence rates for our examples of interest.

Treatment in the thesis General non-conforming space discretizations are introduced in Section 2.3.
We then show a priori error bounds in Section 2.5. Our convergence result is stated in Section 2.6.

Combined error analysis of time integration schemes

As a proof of concept, we consider time integration of the semi-discrete problem with the Crank–
Nicolson method. Using the ideas from [Sturm, 2017], we derive error bounds for the full dis-
cretization. These error bounds yield quadratic convergence in the time step size and preserve
the approximation properties of the space discretization. As these error estimates hold for Cauchy
problems with monotone operators, they apply to symmetric hyperbolic systems as well as second-
order wave equations. We believe that similar results hold for general Runge–Kutta and multistep
methods.

Treatment in the thesis Time integration for Cauchy problems with monotone operators are dis-
cussed in Section 2.8. In Section 5.4, we apply these general results to second-order wave equations.

A priori error bounds for symmetric hyperbolic systems

We exploit the special structure of symmetric hyperbolic systems to show two different a priori error
bounds: The first error bound applies to space discretizations of finite element type. The second
error bound is tailored for discontinuous Galerkin methods. Both error bounds are competitive in the
sense that they reproduce known convergence results which were derived specifically for the method
in question.

Previous state of research We are not aware of similar results in the literature. Related publications
consider stabilized finite element discretizations which lie outside our scope, cf. [Burman et al., 2010],
or only provide results for specific applications, cf. [Cohen and Pernet, 2016].

Treatment in the thesis The error bound for finite element type methods is shown in Section 3.2.1.
We treat discontinuous Galerkin methods in Section 3.2.2. The corresponding examples are discussed
in Section 3.3.



xi

A priori error bounds for second-order wave-type problems

The focus of this thesis is on second-order wave equations and suitable non-conforming space
discretizations. To apply the results for Cauchy problems with monotone operators, we consider
first-order in time formulations. Using the additional structure of the operator matrices, we then
derive an a priori error bound in terms of data errors, interpolation errors and discretization errors.

Previous state of research To our knowledge, these results are new. Previous works in this direction
considered conforming discretizations [Fujita et al., 2001, Sect. 2.8] or specific applications as, e.g.,
[Baker and Dougalis, 1976] or [Lubich and Mansour, 2015].

Treatment in the thesis We present and investigate non-conforming space discretizations of abstract
second-order wave equations in Chapter 5.

Numerical analysis of wave equations with dynamic boundary conditions

Our considerations for abstract second-order wave-type problems have proven to be particularly
fruitful to achieve our original objective: the analysis of finite element discretizations of wave equa-
tions with dynamic boundary conditions. First, we can prove well-posedness for wave equations
with kinetic and with acoustic boundary conditions using the abstract results. Concerning the space
discretization of such problems, we consider a isoparametric finite element method which was pro-
posed in [Elliott and Ranner, 2013]. From our abstract a priori error bounds and the approximation
properties of the method, we readily obtain convergence rates for these examples.

Treatment in the thesis The well-posedness analysis for wave equations with dynamic boundary
conditions is presented in Chapter 6. In Chapter 7, we derive convergence rates for an isoparametric
finite element discretization and time integration with the Crank–Nicolson method for two particular
examples.

Previous state of research The convergence results for finite element discretizations of wave equa-
tions with dynamic boundary conditions are new. While the well-posedness results we discuss are
known, our approach via degenerate coefficients allows us to analyse wave equations with Neumann,
Robin, and kinetic boundary conditions (partially) in a unified way.

Conclusion

In summary, our unified error analysis has the following benefits:

Unification It supplies a common ground for the error analysis of symmetric hyperbolic systems
and second-order wave equations.

A priori error bounds It provides a priori error bounds in terms of interpolation and discretization
errors for both kinds of problems.

Accessibility Its results are formulated in a way that allows to easily infer convergence results from
the abstract error bounds and information of the space discretization.

Further merits of our unified error analysis are the combined treatment of full discretizations for
symmetric hyperbolic systems and second-order wave equations, and the categorization of conver-
gence proofs. We refer to Section 2.7 for an overview of the examples which we discuss in this
thesis.
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Notation

In this chapter, we introduce some basic notation and conventions.

Hilbert spaces Let X, Y be two real Hilbert spaces with corresponding norms ‖·‖X , ‖·‖Y , respec-
tively, and let L(X,Y ) be the space of bounded linear operators from X to Y . We endow L(X,Y )
with the operator norm

‖ϕ‖Y←X := sup
x∈X
x 6=0

‖ϕ(x)‖Y
‖x‖X

= sup
x∈X
‖x‖X=1

‖ϕ(x)‖Y , ϕ ∈ L(X,Y ).

We define X = (X, p) to be the Hilbert space X equipped with the inner product p. If |||·||| is
an equivalent norm on X, we write ‖·‖X ∼ |||·|||. Moreover, X ' Y denotes that X and Y are
isomorphic spaces.

Dual spaces If Y = R, then X∗ := L(X,R) is the dual space of X and ‖·‖X∗ := ‖·‖R←X .
Moreover,

〈ϕ, y〉X := ϕ(x), ϕ ∈ X∗, x ∈ X,
denotes the duality pairing between X∗ and X. Let b : Y ×X → R be a continuous bilinear form.
Fixing the first argument yields an operator in X∗. We denote the norm of this functional by

‖b(y)‖X∗ := ‖b(y, ·)‖X∗ = sup
‖x‖X=1

|b(y, x)|, y ∈ Y. (1)

Linear operators Let A : D(A)→ X a linear operator defined on the linear subspace D(A) of X.
Then we denote by [D(A)] the space D(A) equipped with the graph norm of A (which is a Banach
space if A is closed).

Cartesian product of Hilbert spaces Let u, v ∈ X. Then we write

~u =
[
u, v
]ᵀ

:=

[
u
v

]
∈ X2 := X ×X.

For operators A1 : X → Y1 and A2 : X → Y2, we define (A1, A2) : X2 → Y1 × Y2 by

(A1, A2)

[
u
v

]
:=

[
A1u
A2v

]
, u, v ∈ X.

Conventions for partial differential equations We consider evolution equations on the compact
time interval [0, T ] for some T > 0. Our examples are partial differential equations on an open and
bounded domain Ω ⊂ Rd, d ∈ N. We assume that it has a Lipschitz boundary Γ = ∂Ω and denote
its outer unit normal by n : Γ → Rd. For the normal derivative of a function f : Ω → R, we write
∂nf := n · ∇f . Surface integrals as ∫

Γ
f ds

are defined w.r.t. to the surface measure ds.

xiii



xiv NOTATION

Operations on vectors We write x·y for the scalar product of x ∈ Rd with y ∈ Rd and |x| :=
√

x · x
denotes the Euclidean norm. For matrices A ∈ Rd×d, we use |A| for the operator norm induced by
the Euclidean norms in Rd.

Mesh based discretizations We use Pk for the space of polynomials of maximal order k. If not
specified differently, we consider space discretizations based on an admissible mesh sequence TH =
{Th | h ∈ H} of a polygonal domain Ω where h in Th denotes the maximal diameter of all the
elements K ∈ Th and Ω = ∪K∈ThK. An admissible mesh sequence is shape-regular, contact-regular
and satisfies an optimal polynomial approximation property, cf. [Di Pietro and Ern, 2012, Def. 1.57].
We assume that Th consists of triangles or tetrahedra for d = 2 or d = 3, respectively.

Lebesgue spaces We denote by Lp(U), p ∈ [1,∞] the space of measurable real-valued functions
defined on the measurable open set U ⊂ Rd with

‖f‖Lp(U) :=
(∫

U
|f |p dx

)1/p
<∞, p ∈ [1,∞)

and ‖f‖L∞(U) := ess supx∈U |f(x)|. For vector-valued functions ~v : U → Rd, d ∈ N we define

‖~v‖Lp(U) :=
∥∥|~v|∥∥

Lp(U)
, p ∈ [1,∞].

Analogously, we write ‖A‖Lp(U) := ‖|A|‖Lp(U) for matrix-valued functions A : U → Rd×d. By
Lp((0, T );X) we denote the space of X-valued functions f : (0, T )→ X with

‖f‖Lp(0,T ;X) :=
∥∥‖f(t)‖X

∥∥
Lp(0,T )

<∞, p ∈ [1,∞].

Since almost all Hilbert space-valued functions in this thesis are defined on the time interval [0, T ],
we abbreviate L∞(X) := L∞((0, T );X) and use the short notation

‖f‖L∞(X) := ‖f‖L∞((0,T );X)

for the corresponding norm.

Space of bounded functions Let U ⊂ Rd be a non-empty set. We define the space of bounded
functions by

B
(
U ;X

)
:=
{
f : U → X | ‖f‖∞,U→X := sup

x∈U
‖f(x)‖X

}
.

Again, we use the short notation B
(
X
)

:= B
(
[0, T ];X

)
with ‖f‖∞,X := ‖f‖∞,[0,T ]→X .

Sobolev spaces Let α = (α1, . . . , αd) ∈ Nd0 be a multindex and define ∂αf := ∂α1
1 . . . ∂αd

d f . For
k ∈ N0, the Sobolev space of order k is given by

Hk(U) :=
{
f : U → R | ∂αf ∈ L2(U), |α| ≤ k

}
, |α| :=

d∑
i=1

αi,

where the derivatives are understood in a weak sense. Note that Hk(U) is a Hilbert space w.r.t. to
the inner product (

f |g
)
Hk(U)

:=
∑
|α|≤k

∫
U
∂αf∂αg dx.

Hence the canonical norm on Hk(U) is ‖f‖2Hk(U) :=
(
f |f
)
Hk(U)

. Moreover, we introduce the

seminorm

|f |2Hk(U) :=
∑
|α|=k

‖∂αf‖2L2(U).
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Divergence and curl operators Let Ω ⊂ Rd, d = 2, 3 be an open domain. We use standard weak
definitions for the curl and div operators and the corresponding Sobolev spaces

H(div,Ω) :=
{
v ∈ L2(Ω)d | div v ∈ L2(Ω)

}
,

H(curl,Ω) :=
{
v ∈ L2(Ω)d | curl v ∈ L2(Ω)d

}
.

For more details about these spaces we refer to [Monk, 2003] and [Cohen and Pernet, 2016].

Analytical tools for boundary conditions

Space of continuous functions on closed sets Let U ⊂ RN , N ≥ 1, be an open domain. Then we
define

Ck(U) :=
{
v|U | v ∈ Ckc (RN )

}
, k ∈ N ∪ {∞}.

Sobolev spaces on boundaries Let k ≥ 0 be an integer and K be the cylinder

K =
{
ξ =

[
ξ′, ξd

]ᵀ ∈ Rd | ξ′ ∈ Rd−1, |ξ′| < 1, ξd ∈ R
}
.

If Γ is a Ck (resp. a Lipschitz) boundary, then at each x ∈ Γ there exists a neighborhood U and a
map φ : U → K s.t. φ is a Ck (resp. Lipschitz continuous) diffeomorphism and

φ(Ω ∩ U) = K ∩
{
ξd > 0

}
,

φ(Γ ∩ U) = K ∩
{
ξd = 0

}
.

Since Ω is bounded, the boundary Γ can be covered by finitely many of these neighborhoods Ur,
r = 1, . . . , r0 with corresponding maps φr : Ur → K. For 0 ≤ s ≤ k (resp. 0 ≤ s ≤ 1), we define
the Sobolev space

Hs(Γ) :=
{
f ∈ L2(Γ) | f ◦ φ−1

r ∈ Hs
(
K ∩ {ξd = 0}

)
, r = 1, . . . , r0

}
and denote its dual by

H−s(Γ) :=
(
Hs(Γ)

)∗
.

For more details we refer to [Grisvard, 2011].

Dirichlet trace We denote the Dirichlet trace operator by γ : H1(Ω) → H1/2(Γ) and note that
γ(u) = u

∣∣
Γ

for u ∈ C(Ω), cf. [Han and Atkinson, 2009, Thm. 7.3.11]. Moreover, we define

H1
0 (Ω) :=

{
f ∈ H1(Ω) | γ(f) = 0

}
.

Neumann trace We define the Neumann trace operator by γ∂n(u) := n·∇u
∣∣
Γ

= ∂nu for u ∈ C1(Ω)
and remark that one can extend γ∂n continuously to all u ∈ H1(Ω) with ∆u ∈ L2(Ω), cf. [Tucsnak
and Weiss, 2009, p. 107].

Dirichlet-type trace To cope with varying wave speeds, we introduce γn(v) := n · v|Γ for vector-
valued functions v ∈ C1(Ω)d. A weak definition of the Dirichlet-type trace operator leads to
γn ∈ L(H(div,Ω), H−1/2(Γ)) which satisfies∫

Ω
v · ∇ϕ+ div(v)ϕdx = 〈γn(v), γ(ϕ)〉H1/2(Γ) (2)

for all v ∈ H(div) and ϕ ∈ H1(Ω), cf. [Schnaubelt and Weiss, 2010, Sect. 5]. For H1(Ω)d-functions
v, it satisfies γn(v) = n · γ(v) and belongs to γn ∈ L(H1(Ω)d, H1/2(Γ)).
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Surface differential operators The surface gradient of u ∈ C1(Ω) is defined by

∇Γu := (∂i,Γu)di=1 := (I− nnᵀ)∇u

and the surface divergence of v = (vi)
d
i=1 ∈ C1(Ω)d by

divΓ v :=

d∑
i=1

∂i,Γvi.

Both operators admit a definition in terms of surface functions, i.e., ∇Γu = ∇Γu|Γ and divΓ v =
divΓ v|Γ. For details we refer to [Gilbarg and Trudinger, 2001]. Definitions in terms of local
coordinates can be found in [Disser et al., 2015] and [Kashiwabara et al., 2015].

Integration by parts on surfaces Gauss’ Theorem on the smooth surface Γ ∈ C2 yields for suffi-
ciently smooth functions v : Γ→ Rd and ϕ : Γ→ R

−
∫

Γ
divΓ(v)ϕds =

∫
Γ
v · ∇Γϕ− divΓ(n)(v · n)ϕds, (3)

cf. [Kashiwabara et al., 2015, (3.1)]. Inserting v = ∇Γu and using n · ∇Γu = 0, it follows that

−
∫

Γ
divΓ(∇Γv)ϕds =

∫
Γ
∇Γv · ∇Γϕds. (4)

Bulk-surface Sobolev spaces For the analysis of wave equations with dynamic boundary conditions,
we introduce the spaces

H0 := L2(Ω)× L2(Γ)

Hk := Hk(Ω)×Hk(Γ), k ∈ N
H−1 :=

(
H1(Ω)

)∗ ×H−1(Γ),

Hk(Ω; Γ) :=
{
v ∈ Hk(Ω) | γ(v) ∈ Hk(Γ)

}
, k ≥ 1.

where we equip Hk, k ≥ −1 with its canonical inner product and Hk(Ω; Γ) with the inner product
associated to

‖v‖2Hk(Ω;Γ) := ‖v‖2Hk(Ω) + ‖ γ(v)‖2Hk(Γ).

[Kashiwabara et al., 2015, Lem. 2.5] shows that Hk(Ω; Γ) is a Hilbert space w.r.t. this norm.

Conventions In the following, all derivatives are understood in the sense of distributions. Further-
more, evaluation of functions on Γ and normal derivatives are defined via trace operators, even if
they do no appear explicitly.



Chapter 1

Non-trivial boundary conditions for
wave equations

Outline In this chapter, we show how boundary conditions emerge as an intrinsic part of models for
different types of wave phenomena in bounded domains. First, we show how to use the principle of
stationary action for the derivation of wave equations in Section 1.1. Classical options for boundary
conditions for wave equations are then presented in Section 1.1.3. After that, in Section 1.2, we
characterize the term “dynamic boundary condition”. Last, we introduce the two main examples
which motivated this work in Sections 1.2.1 and 1.2.2.

For better readability, we keep the following exposition on an informal level and assume that
domains and functions are such that all derivatives and integrals exist.

1.1 Derivation of wave equations

In this thesis, we consider physical systems of wave phenomena in open and bounded domains
Ω ⊂ Rd with boundary Γ := ∂Ω. The scalar wave equation with homogeneous Neumann boundary
conditions is a prototype for the equations of motion of such a wave phenomenon. It concerns a
function u : [0, T ]× Ω→ R s.t.

utt(t, x)− cΩ∆u(t, x) = 0, (t, x) ∈ (0, T )× Ω, (1.1a)

∂nu(t, x) = 0, (t, x) ∈ (0, T )× Γ, (1.1b)

u(0, x) = u0(x), ut(0, x) = v0(x), x ∈ Ω, (1.1c)

where T > 0, cΩ > 0 is the wave speed, and ∂nu denotes the normal derivative of u on Γ. The
three components of the mathematical problem (1.1) are referred to as

I the partial differential equation (1.1a), which describes the wave propagation in Ω

I the boundary condition (1.1b), which characterizes the behavior of u on the boundary Γ, and

I the initial values (1.1c), which specify the initial state and velocity at time t = 0.

Equations of motion describe the dynamics of physical systems in terms of mathematical functions,
as (1.1a) and (1.1b). One particular approach to derive equations of motion for a wide range of
applications is the principle of stationary action (sometimes also called principle of minimal action
or Hamilton’s principle).

1
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Figure 1.1: An example for a solution of the wave equation with homogeneous Neumann boundary
conditions with cΩ = 1. The snapshots show the solution u at times t = 0.2 · k, k = 0, . . . , 15.

1.1.1 The principle of stationary action

The principle of stationary action states that:

The transition of a physical system from an initial state at t = 0
to a final state at t = T is the one for which the associated action
is stationary to first order.

A mathematical description Assume that x(t) describes the state of a physical system at time t.
Then the trajectory t 7→ x(t) (or just x) describes the transition of the system from t = 0 to t = T .
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Further assume that the action of the transition x of the physical system is given by the real valued
function

S (x) .

Now let y be a perturbation of x such that for all sufficiently small ε > 0

t 7→ x(t) + εy(t)

is still an admissible trajectory of the physical system from x(0) to x(T ). In particular, this implies
y(0) = y(T ) = 0. According to the principle of stationary action, the physical trajectory from x(0)
to x(T ) satisfies

S (x+ εy)− S (x)
!

= o(ε) (1.2)

for ε > 0 and all admissible perturbations y. Thus all terms in O(ε) vanish.
We now apply the principle of stationary action to the wave phenomenon “vibrating membrane”

and show how (1.2) leads to the corresponding equations of motion.

1.1.2 The vibrating membrane

We are interested in the transverse motion of a vibrating membrane represented by Ω ⊂ R2 with C1-
boundary Γ. Our approach on this problem is inspired by the calculations and results of [Goldstein,
2006].

The model Let u(t, x) be the vertical displacement of the membrane at point x and time t. Then
the action of the physical system “membrane” can be modeled by

S (u) :=

∫ T

0
K (ut(t))−V (u(t)) dt, (1.3)

where the kinetic energy K and the potential energy V are given by

K (w) :=
1

2

∫
Ω
w2 dx +

1

2

∫
Γ
µw2 ds, (1.4a)

V (w) :=
1

2

∫
Ω
cΩ|∇w|2 dx +

1

2

∫
Γ
aΓw

2 ds (1.4b)

with constants µ, aΓ ≥ 0 and cΩ > 0.

Interpretation Physically, K describes the mass distribution of the membrane in Ω and on Γ,
respectively. The first term in V reflects the amount of work needed to deform the membrane and
the wave speed cΩ depends on the material properties of the membrane. The second term in V
characterizes the work needed to displace the membrane on the boundary from equilibrium position
u = 0 on Γ. Such an action functional models a situation where the membrane is attached to
infinitesimally small springs on Γ which oscillate vertically with spring constant aΓ.

Equations of motion To derive the equations of motion from the principle of stationary action, we
use the calculus of variations as in [Goldstein, 2006]. Let w : [0, T ]×Ω→ R with w(0) = w(T ) = 0
be sufficiently smooth and consider

S (u+ εw)− S (u)

= ε

(∫ T

0

∫
Ω
utwt − cΩ∇u · ∇w dx dt+

∫ T

0

∫
Γ
µutwt − aΓuw ds dt

)
+ O(ε2).
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Using integration by parts in space, i.e. Gauss’ Theorem, we obtain

S (u+ εw)− S (u)

= ε

(∫ T

0

∫
Ω
utwt + cΩ∆uw dx dt−

∫ T

0

∫
Γ
cΩ∂nuw ds dt

+

∫ T

0

∫
Γ
µutwt − aΓuw ds dt

)
+ O(ε2).

Now we exchange the order of integration by Fubini’s theorem and integrate by parts in time:

S (u+ εw)− S (u)

= ε

(∫
Ω

∫ T

0

(
− utt + cΩ∆u

)
w dtdx +

∫
Ω

[
utw

]T
t=0

dx

+

∫
Γ

∫ T

0

(
− µutt − aΓu− cΩ∂nu

)
w dtds+

∫
Γ

[
utw

]T
t=0

ds

)
+ O(ε2).

Since w(0) = w(T ) = 0 by assumption, the second and fourth summands vanish, which yields

S (u+ εw)− S (u)

= ε

(∫ T

0

∫
Ω

(
− utt + cΩ∆u

)
w dx +

∫
Γ

(
− µutt − aΓu− cΩ∂nu

)
w ds

)
dt+ O(ε2).

According to (1.2), all terms in O(ε) have to vanish for all admissible perturbations w. This implies
that the equations of motion for the vibrating membrane are given by

utt(t, x)− cΩ∆u(t, x) = 0, (t, x) ∈ (0, T )× Ω, (1.5a)

µutt(t, x) + aΓu(t, x) + cΩ∂nu(t, x) = 0, (t, x) ∈ (0, T )× Γ. (1.5b)

We emphasize that boundary conditions arise as an intrinsic part of the equations of motion which
are determined by the physical system, respectively, its action.

1.1.3 Dirichlet boundary conditions and source terms

Now we assume that the membrane is partially clamped to the boundary. Therefore, we impose
Dirichlet boundary conditions u(t) = fD on ΓD, where fD : ΓD → R and ΓD is a connected subset
of Γ. We denote the other part of the boundary by ΓN := Γ \ ΓD and consider a time dependent
version of the action functional (1.3) that incorporates external forces via fΩ : [0, T ]× Ω→ R and
fΓ : [0, T ]× ΓN → R, and consists of

K (w) :=

∫
Ω
w2 dx +

∫
ΓN

µw2 ds,

V (w, t) :=

∫
Ω
cΩ|∇w|2 dx +

∫
ΓN

aΓw
2 ds−

∫
Ω
wfΩ(t) dx−

∫
ΓN

wfΓ(t) ds.

Then the principle of stationary action leads to inhomogeneous equations of motion

utt(t, x)− cΩ∆u(t, x) = fΩ(t, x), (t, x) ∈ (0, T )× Ω, (1.6a)

µutt(t, x) + aΓu(t, x) + cΩ∂nu(t, x) = fΓ(t, x), (t, x) ∈ (0, T )× ΓN, (1.6b)

u(t, x) = fD(x), (t, x) ∈ (0, T )× ΓD, (1.6c)

as can be seen from [Goldstein, 2006, eq. (5.12)]. Note again that the boundary conditions are an
integral part of the equations of motion.
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Naming the different boundary conditions Clearly, (1.6c) is a Dirichlet boundary condition, but
(1.6b) has different names depending on the choice of the parameters.

I If µ = aΓ = 0, then (1.6b) is called Neumann boundary condition:

cΩ∂nu(t, x) = fΓ(t, x), (t, x) ∈ (0, T )× ΓN.

I If µ = 0 and aΓ > 0, then (1.6b) is called Robin boundary condition:

aΓu(t, x) + cΩ∂nu(t, x) = fΓ(t, x), (t, x) ∈ (0, T )× ΓN.

I If µ, aΓ > 0, then (1.6b) is called kinetic boundary condition:

µutt(t, x) + aΓu(t, x) + cΩ∂nu(t, x) = fΓ(t, x), (t, x) ∈ (0, T )× ΓN.

I If ΓD 6= ∅ and ΓN 6= ∅ , then (1.6b) and (1.6c) are called mixed boundary conditions.

Note that kinetic boundary conditions are equivalent to so-called Wentzell boundary conditions for
sufficiently smooth data, cf. [Mugnolo and Romanelli, 2006].

1.2 Dynamic boundary conditions

Neumann, Robin, or Dirichlet boundary conditions neglect the momentum of the wave on the
boundary. Dynamic boundary conditions are means to account for this momentum.

Definition. We call a boundary condition for a wave equation dynamic if it arises from an action
functional with a kinetic energy K(w) that depends on the values of w on Γ.

For µ > 0, the kinetic boundary condition (1.5b) is an example of a dynamic boundary condition,
since the kinetic energy (1.4a) depends on the values of w on Γ. In all examples we know of, dynamic
boundary conditions are differential equations on the boundary. Or, in the terminology of [Elliott
and Ranner, 2013], incorporating kinetic effects on the boundary leads to an evolution equation in
the “bulk” Ω which is coupled to a differential equation on the “surface” Γ.

We now present the two main examples of dynamic boundary conditions which we consider in
this thesis.

1.2.1 The wave equation with acoustic boundary conditions

A famous dynamic boundary condition for the wave equation is the acoustic boundary condition. It
was introduced in the first edition of [Morse and Ingard, 1987] from 1968. The transient formulation
was given in [Beale and Rosencrans, 1974] and the first well-posedness and spectral analysis of the
wave equation with acoustic boundary conditions in dimension d = 3 was provided in the original
paper [Beale, 1976]. It was recently reconsidered and generalized in different directions by [Gal
et al., 2003], [Mugnolo, 2006a], [Frota et al., 2011], [Graber, 2012], [Vedurmudi et al., 2016] and
others.

Original problem Let Ω ⊂ R3 be an open and bounded domain. The wave equation with acoustic
boundary conditions describes the dynamics of the functions u : [0, T ]×Ω→ R and δ : [0, T ]×Γ→ R
by

utt − cΩ∆u = 0 in Ω, (1.7a)

mΓδtt + αΓδt + kΓδ + cΩut = 0 on Γ, (1.7b)

δt = ∂nu on Γ, (1.7c)

where mΓ, kΓ, cΩ > 0 and αΓ ≥ 0 are constants.
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Figure 1.2: An example for a solution of the wave equation with acoustic boundary conditions with
cΩ = mΓ = 1, kΓ = 32π and αΓ = 0. The snapshots show the solution u at times t = 0.2 · k,
k = 0, . . . , 11. The black arrows on the boundary visualize the function δ.

Physical system The evolution equation (1.7a) models the propagation of sound waves in a fluid at
rest filling Ω ⊂ R3. Equally important, (1.7b) describes small oscillations of the walls on Γ around
the fluid in normal direction. In such a situation, the bulk function u corresponds to the acoustic
potential and the surface function δ accounts for the infinitesmally small displacement of the wall.

Further, u is coupled to δ via (1.7c). Thus c
1/2
Ω is the speed of sound and each point of the wall

Γ has mass mΓ > 0 and is attached to a resistive harmonic oscillator with stiffness kΓ > 0. The
oscillators react to the excess pressure of the sound wave independently of each other and αΓ ≥ 0
describes the damping of the oscillations.

Derivation via the principle of stationary action We now show that, for mΓ = cΩ = 1 and αΓ = 0,
the action functional associated to the physical system is

S (u, δ) :=

∫ T

0
K (ut(t), δt(t))−V (u(t), δ(t), ut(t)) dt, (1.8)
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where

K (w, η) :=
1

2

∫
Ω
w2 dx +

1

2

∫
Γ
η2 ds,

V (w, v, η) :=
1

2

∫
Ω
|∇w|2 dx +

1

2

∫
Γ
kΓη

2 ds+

∫
Γ
vη ds.

As the kinetic energy K (ut(t), δt(t)) depends on δt on the boundary, acoustic boundary conditions
are dynamic boundary conditions by definition. We now employ the principle of stationary action
and the calculus of variations to find equations of motion for u and δ: Let w : [0, T ]× Ω→ R and
η : [0, T ] × Γ → R with w(0) = w(T ) = 0 and η(0) = η(T ) = 0 be variations of u and δ. We
expand the quadratic terms in

S (u+ εw, δ + εη) =
1

2

∫ T

0

∫
Ω

(u+ εw)2
t − |∇(u+ εw)|2 dx dt

+
1

2

∫ T

0

∫
Γ
(δ + εη)2

t − kΓ(δ + εη)2 − 2(u+ εw)t(δ + εη) ds dt,

and compute

S (u+ εw, δ + εη)− S (u, δ) = ε

(∫ T

0

∫
Ω
utwt −∇u · ∇w dx dt

+

∫ T

0

∫
Γ
δtηt − kΓδη − utη − δwt dsdt

)
+ O(ε2).

Integrating by parts in space, exchanging the order of integration and then integrating by parts in
time yields

S (u+ εw, δ + εη)− S (u, δ)

= ε

(∫ T

0

(∫
Ω
utwt + ∆uw dx−

∫
Γ
∂nuw ds

)
dt

+

∫ T

0

∫
Γ
δtηt − kΓδη − utη − δwt ds dt

)
+ O(ε2)

= ε

(∫
Ω

(∫ T

0

(
− utt + ∆u

)
w dt

)
+
[
utw

]T
t=0

dx−
∫ T

0

∫
Γ
∂nuw ds dt

+

∫
Γ

(∫ T

0

(
− δtt − kΓδ − ut

)
η dt

)
+
[
δtη
]T
t=0

ds

+

∫
Γ

(∫ T

0
δtw dt

)
−
[
δw
]T
t=0

ds

)
+ O(ε2)

= ε

(∫ T

0

∫
Ω

(
− utt + ∆u

)
w dx dt+

∫ T

0

∫
Γ

(
δt − ∂nu

)
w ds dt

+

∫ T

0

∫
Γ

(
− δtt − kΓδ − ut

)
η ds dt

)
+ O(ε2).

The principle of stationary action implies that all terms in O(ε) vanish for arbitrary perturbations w
and η. Therefore (1.8) leads to the equations of motion (1.7) with our choice of parameters.
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Comment on related models The physical situation behind this model is referred to as an “acoustic-
elastic coupling” or “fluid-structure interaction”. For a full model, one would consider the walls as
elastic bodies which are coupled to the fluid in the bulk. Acoustic boundary conditions, however,
account for the elasticity of the walls by effective properties of the surface Γ. This fits to the rule
of thumb that boundary conditions model

“...the physics outside of Ω which we do not want to model.” (Dan Givoli)

For further references on the effective models behind boundary conditions, cf. [Zhang et al., 2004],
[Nobile and Vergara, 2008] and [Nicaise, 2017].

1.2.2 Non-locally reacting kinetic boundary conditions

Up to now, we only encountered boundary conditions where u (or δ) on the different parts of Γ do
not influence each other directly, without the bulk function. Such boundary conditions are called
locally reacting, cf. [Beale, 1976].

The model Consider the action (1.3) with kinetic energy (1.4a) and potential energy

V (u) =
1

2

∫
Ω
cΩ|∇u|2 dx +

1

2

∫
Γ
aΓu

2 + cΓ|∇Γu|2 ds

where cΩ, aΓ, cΓ > 0 are constants and ∇Γu denotes the tangential gradient of u along Γ. Actions
which contain tangential derivatives on Γ and their associated boundary conditions are called “non-
locally reacting”, since they model the propagation of waves on and along the surface.

Equations of motion In contrast to the locally reacting case, the action (1.3) contains an additional
difference of surface integrals. Using integration by parts on the closed surface Γ, this difference is

−
∫ T

0

∫
Γ
cΓ∇Γ(u+ εw) · ∇Γ(u+ εw)− cΓ∇Γu · ∇Γuds dt

= −ε
∫ T

0

∫
Γ
cΓ∇Γu · ∇Γw ds dt+ O(ε2)

= ε

∫ T

0

∫
Γ

divΓ(cΓ∇Γu)w ds dt+ O(ε2).

Considering the complete action functional reveals, that the equations of motion for u obtained by
the principle of stationary action are (1.6a) supplemented by

µutt + aΓu− cΓ∆Γu+ cΩ∂nu = 0 on Γ, (1.9)

where ∆Γu := divΓ(∇Γu) denotes the Laplace-Beltrami operator. Altogether, u satisfies the wave
equation (1.6a) in the bulk and the wave equation (1.9) on the surface. The coupling between those
two is on the one hand implemented by u itself and on the other hand by the normal derivative
−cΩ∂nu, which acts as a source on the surface.

Interpretation Thinking of u as the displacement of the vibrating membrane, the surface gradient
in V reflects the amount of work necessary to deform u on the surface. Thus this action functional
models Γ as a second wave medium which propagates waves along the surface. Such boundary
conditions, mixed with Dirichlet boundary conditions, are used to model vibrations of the membrane
of a bass drum, cf. [Vitillaro, 2015].
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Figure 1.3: An example for a solution of the wave equation with non-locally reacting kinetic boundary
conditions with cΩ = µ = cΓ = 1 and aΓ = 0. The snapshots show the solution u at times t = 0.2·k,
k = 0, . . . , 15.

1.3 Further topics and literature

Derivation of boundary conditions Our exposition of boundary conditions and their derivation by
the principle of stationary action is mainly inspired by [Goldstein, 2006]. Another approach has been
suggested by [Figotin and Reyes, 2015]. They study boundary conditions as a surface-system which
is coupled to a bulk-system via an interaction Lagrangian.
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Necessity of boundary conditions The question “How many boundary conditions are necessary for
a hyperbolic problem to be well-posed?” is still a topic of research. We refer to [Guaily and Epstein,
2013] and references therein.

Theories for wave equations with dynamic boundary conditions Various theories have been devel-
oped for the analysis of problems with dynamic boundary conditions. [Trostorff, 2014] and [Picard
et al., 2014] consider boundary conditions in an abstract non-linear setting. They also provide
examples with dynamic and frictional boundary conditions. [Nickel, 2004] and [Mugnolo, 2006a]
approach dynamic boundary conditions with the theory of operator matrices. We further mention
[Mugnolo, 2011] (for damped wave equations), [Xiao and Liang, 2004], and [Vitillaro, 2016] which
directly consider evolution equations of second-order in time.

Artificial boundary conditions Boundary conditions play an important role in the design of numerical
methods: To decrease the computational effort in the simulation of waves in large or infinite domains,
the computational domain is often truncated. Artificial boundary conditions are then imposed on the
articifial boundary to complete the statement of the problem. Ideally, they do not alter the solution
of the original problem and produce no spurious wave reflections. The following literature covers
some approaches. [Hagstrom and Lau, 2007], [Hagstrom et al., 2008], [Antoine et al., 2008], [Grote
and Sim, 2011], [Barucq, Helene et al., 2012], [Joly, 2012] treat absorbing boundary conditions
and [Banjai et al., 2015] use an FEM-BEM ansatz to implement transparent boundary conditions.
Domain decomposition methods face similar challenges, because the solutions in the subdomains
need to be ”connected” with boundary conditions which are as ”permeable” as possible. We refer
to [Gander, 2015] and references therein.



Chapter 2

Error analysis for linear Cauchy
problems with monotone operators

In this chapter, we present an abstract framework for wave equations and the unified error analysis
of non-conforming space discretizations thereof. The main results in this chapter are the a priori
error bound for such space discretizations and the a priori error bound for their time integration with
the Crank–Nicolson method.

Outline In Section 2.1 and 2.2, we introduce and analyze the abstract Cauchy problem with a
linear monotone operator. We define general non-conforming space discretizations and the tools for
the error analysis in Sections 2.3 and 2.4. Then we proceed to show an a priori bound in Section 2.5.
Using this error bound, we establish notions of “stability” and “consistency” in Section 2.6, which are
sufficient for the “convergence” of the space discretization. A short overview of different applications
for our theory is given in Section 2.7. Finally, in Section 2.8, we analyze a full discretization obtained
by a method of lines approach and the Crank–Nicolson method.

Related literature The abstract Cauchy problem is motivated by [Showalter, 1994] and [Showalter,
2013]. Our formulation of the general non-conforming space discretization is similar to what is
considered in [Zeidler, 1990b, Ch. 34], [Sanz-Serna and Palencia, 1985] for stationary problems and
in [Pazy, 1992, Sect. 3.6] for evolution equations. Moreover, the variational nature of our error
bounds is inspired by the so-called Strang Lemmas which apply to elliptic problems, cf. [Ciarlet,
2002].

2.1 Description of the continuous problem

For a given linear operator S ∈ L(Y, Y ∗) and a given function g : [0, T ] → Y ∗, we seek a solution
x : [0, T ]→ Y of

x′(t) + Sx(t) = g(t) for t ∈ [0, T ], (2.1a)

x(0) = x0. (2.1b)

This problem is not well-posed without further assumptions on S, x0 and g.
In this thesis, we consider (2.1) in the following setting of a Gelfand triple of Hilbert spaces

Y
d
↪→ X ' X∗ d

↪→ Y ∗ (2.2)

with dense and continuous embeddings. By p : X × X → R, we denote the inner product on X

which induces the norm ‖·‖X . Since Y
d
↪→ X, there exists a constant CX,Y > 0 such that

‖x‖X ≤ CX,Y ‖x‖Y ∀x ∈ Y. (2.3)

11
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As an immediate consequence of the identification X ' X∗, we have

p
(
ϕ, y

)
= ϕ(y) = 〈ϕ, y〉Y ∀ϕ ∈ X, y ∈ Y,

where 〈·, ·〉Y denotes the duality pairing between Y ∗ and Y . The bilinear form associated to the
linear operator S is denoted by

s
(
x, y
)

:= 〈Sx, y〉Y , ∀x, y ∈ Y. (2.4)

Definition 2.1 (Maximal and linear quasi-monotone operators). Let X and Y form a Gelfand triple
of Hilbert spaces as in (2.2) and W = Y ∗ or W = X.

(i) An operator S ∈ L(Y,W ) is called quasi-monotone iff there is a constant cqm ≥ 0 s.t.

〈Sy, y〉Y + cqm‖y‖2X = s
(
y, y
)

+ cqmp
(
y, y
)
≥ 0, ∀y ∈ Y. (2.5)

(ii) A quasi-monotone operator S ∈ L(Y,W ) is called maximal w.r.t. W , iff there exists a λ > cqm
s.t. range(λ+ S) = W .

Remark 2.2. In the literature, monotone operators are mostly used in non-linear functional anal-
ysis. However, we feel that the term “quasi-monotone” is suitable in our (linear) context, cf. also
[Showalter, 2013] and [Zeidler, 1990a]. A related notion can be found in [ter Elst et al., 2015].
Note also, that linear monotone operators (cqm = 0) on finite dimensional spaces are usually called
positive semi-definite.

Remark 2.3. A skew-symmetric operator S ∈ L(Y,W ) is maximal, if range(I ± S) = W .

Next, we restrict the operator S to the Hilbert space X. The part of S ∈ L(Y, Y ∗) in X is
denoted by S = S|X , cf. [Engel et al., 1999]. More precisely, this means

S : D(S) ⊂ Y → X, y 7→ Sy = Sy on D(S) =
{
y ∈ Y

∣∣ Sy ∈ X}. (2.6)

The following result can be found in [Zeidler, 1990b, Sect. 31.4].

Lemma 2.4. Let S ∈ L(Y, Y ∗) and S be defined in (2.6).

(i) If S is skew-symmetric, then S is skew-symmetric.

(ii) If S is quasi-monotone, then S + cqm is accretive (i.e. −(S + cqm) is dissipative).

(iii) If S is quasi-monotone and maximal w.r.t. Y ∗, then range(λ + S) = X for all λ > cqm and
D(S) is dense in X.

Proof. We only prove (iii), since (i) and (ii) are obvious.

Let f ∈ X be arbitrary. Since X
d
↪→ Y ∗ the maximality of S ensures the existence of some

λ0 > cqm and y ∈ Y s.t. (λ0 + S)y = f . Hence we have Sy = f −λ0y ∈ X, so that y ∈ D(S) with
(λ0 + S)y = f .

The surjectivity of λ+ S for all λ > cqm and the density of D(S) follow from [Showalter, 2013,
Prop. I.4.2].

From now on we consider the abstract Cauchy problem

x′(t) + Sx(t) = g(t) for t ∈ [0, T ], (2.7a)

x(0) = x0 ∈ D(S), (2.7b)

with

g ∈ C
(
[0, T ]; [D(S)]

)
+ C1([0, T ];X). (2.7c)
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2.2 Well-posedness of the continuous problem

With Lemma 2.4, the well-posedness of (2.7) can be easily shown via semigroup theory.

Theorem 2.5. Let W = Y ∗ or W = X. Moreover, assume that S ∈ L(Y,W ) is quasi-monotone
and maximal w.r.t. W . Then −S defined in (2.6) generates a C0-semigroup

(
e−tS

)
t≥0

and (2.7)

has a unique solution x ∈ C1([0, T ];X) ∩ C([0, T ]; [D(S)]) given by Duhamel’s formula

x(t) = e−tSx0 +

∫ t

0
e−(t−s)Sg(s) ds.

Let 1 ≤ p, q ≤ ∞ with 1/p+ 1/q = 1. Then x satisfies the stability bound

‖x(t)‖X ≤ e
cqmt
(
‖x0‖X + t1/p‖g‖Lq(0,t;X)

)
, t ∈ [0, T ]. (2.8)

Proof. −(S + cqmI) generates a contraction semigroup due to the Lumer-Philipps theorem [Pazy,
1992, Sect. 1.3]. This implies ∥∥e−tS∥∥

X←X ≤ e
cqmt.

For Duhamel’s formula and the assumptions on f we refer to [Pazy, 1992, Sect. 4.2]. The stability
estimate then follows from

‖x(t)‖ ≤ ecqmt‖x0‖X +

∫ t

0
ecqm(t−s)‖g(s)‖X ds ≤ ecqmt

(
‖x0‖X +

∫ t

0
1 · ‖g(s)‖X ds

)
and the Hölder inequality applied to the integral.

2.3 Space discretization

This section is dedicated to general non-conforming space discretizations of (2.7) in the sense of
[Ciarlet, 2002, Chap. 4]. Space discretizations seek to approximate the solution x ∈ X in a finite
dimensional Hilbert space Xh with inner product ph

(
·, ·
)

and induced norm ‖·‖Xh
. The parameter

h > 0 corresponds to a discretization parameter (e.g. the maximal diameter of the elements of a
mesh). Since we are interested in non-conforming discretizations, we do not assume that Xh is a
subspace of X.

Next, let Sh ∈ L(Xh, Xh) be a given discretization of S, e.g. resulting from a finite element or
dG method. Since Sh corresponds to a discretized differential operator, it is not uniformly bounded
in h. Similar to (2.4) for the continuous case, let the associated bilinear form sh be defined by

sh
(
xh, yh

)
= ph

(
Shxh, yh

)
, ∀xh, yh ∈ Xh.

Moreover, let gh : [0, T ] → Xh be an approximation of g. Then we consider the semi-discrete
problem: seek a solution xh : [0, T ]→ Xh of

x′h(t) + Shxh(t) = gh(t) for t ∈ [0, T ], (2.9a)

xh(0) = x0
h ∈ Xh. (2.9b)

Similar to [Ciarlet, 2002, Chap. 4], we define conforming discretization methods as follows.

Definition 2.6. The discretization (2.9) of the abstract Cauchy problem (2.7) is conforming, if the
following three conditions are satisfied

(i) Xh ⊂ Y ,

(ii) p
(
xh, yh

)
= ph

(
xh, yh

)
for all xh, yh ∈ Xh,
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(iii) s
(
xh, yh

)
= sh

(
xh, yh

)
for all xh, yh ∈ Xh.

Discretizations which violate at least one of these conditions are called non-conforming.

Note that these conditions are not completely independent of each other: Xh ⊂ Y implies that
Xh ⊂ X which is necessary for the second and third conditions.

Example 2.7. To illustrate our exposition we consider the advection equation as a model problem,
see e.g. [Di Pietro and Ern, 2012, Chap. 2]. Let Ω be a bounded, polygonal, convex domain Ω ⊂ Rd
and consider

ut + β · ∇u+ µu = f (0, T )× Ω, (2.10a)

u = 0 (0, T )× Γ−, (2.10b)

u(0) = u0 in Ω. (2.10c)

Here, β = (β1, . . . , βd)
T ∈ Rd, ∇u = (∂x1u, ∂x2u, . . . , ∂xd

u)T denotes the gradient of u : Ω → R,
and

Γ− = {x ∈ Γ | β · n(x) < 0} (2.11)

denotes the inflow part of the boundary Γ.

For this problem, we choose X = L2(Ω), p as the L2(Ω) inner product, and Y as the graph
space

Y =
{
v ∈ L2(Ω) | β · ∇v ∈ L2(Ω), v|Γ− = 0

}
(2.12)

equipped with the graph norm

‖v‖2Y = p
(
v, v
)

+ p
(
β · ∇v, β · ∇v

)
. (2.13)

Obviously, this leads to a Gelfand triple (2.2). On the graph space Y we define the bilinear form

s
(
u, v
)

=

∫
Ω
µuv + (β · ∇u)v dx, u, v ∈ Y. (2.14)

The associated operator S ∈ L(Y,X) is monotone (i.e. cqm = 0) and maximal w.r.t. X, see, e.g.,
[Di Pietro and Ern, 2012, Theorem 2.9]. Thus, the problem is well-posed due to Theorem 2.5 for
suitable initial values and source terms.

For the discrete space Xh we choose the space of piecewise linear functions defined on a tri-
angulation Th of Ω and equip it with the inner product ph := p. Since we also set sh := s , this
example corresponds to a conforming method, cf. Definition 2.6. �

2.4 Notation for spaces and operators

In a non-conformal setting (where Xh need not be a subspace of X), the semi-discrete solution
xh ∈ Xh cannot be compared directly to the solution x ∈ X. Consider for example finite element
methods for smooth domains Ω where the computational domain Ωh ≈ Ω is only an approximation
of Ω. In such a situation, the finite element functions in Xh are defined in Ωh and not in Ω. To
deal with this issue, we use the linear and injective lifting operator Qh which lifts the approximation
in Xh to the continuous space

Qh : Xh → X, X`
h := Qh(Xh) ⊂ X, (2.15)

see, e.g., [Elliott and Ranner, 2013], [Ciarlet, 2002, Chap. 4] and [Cockburn et al., 2014]. For
conforming methods, the lift operator can be chosen as Qh = I which implies X`

h = Xh.
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Figure 2.1: Overview of spaces and operators

Next we introduce a variety of different mappings between the spaces X, Xh, and X`
h, which

we illustrate in Figure 2.1. The diagram also contains a dense subspace Z
d
↪→ X, which is typically

a higher order (broken) Sobolev space. This ensures that an interpolation operator

Ih : Z → Xh (2.16)

is well-defined with interpolation errors being of optimal order.
Let Jh ∈ L(Z,Xh) be a continuous linear operator. We call Jh the reference operators, since

our error bounds are based on the following splitting of the error the following parts:

‖Qhxh − x‖X ≤ ‖Qh(xh − Jhx)‖X + ‖(QhJh − I)x‖X .

To obtain optimal convergence rates, the choice of Jh has to fit to the applications. For conforming
methods, we choose the standard orthogonal projection onto Xh (w.r.t. p). However, for non-
conforming methods, we will see below that an interpolation operator has to be used to prove
optimal rates.

The X-orthogonal projection onto the lifted discrete space X`
h is denoted by

Πh : X → X`
h, p

(
(I−Πh)x,Qhyh

)
= 0 ∀x ∈ X, yh ∈ Xh. (2.17a)

By definition, Qh : Xh → X`
h is bijective, which allows us to define the operator

Dh := Q−1
h ◦Πh : X → Xh. (2.17b)

Alternatively, we can introduce the adjoint lift Q∗h to map between these spaces

Q∗h : X → Xh, ph
(
Q∗hx, yh

)
= p
(
x,Qhyh

)
∀x ∈ X, yh ∈ Xh, (2.17c)

and further set

Ph := QhQ
∗
h : X → X`

h. (2.17d)

In a conforming method, where Qh = I and X`
h = Xh, we can omit many of these operators,

since Ph = Πh = Dh = Q∗h is just the p-orthogonal projection of X onto Xh.
Our error bounds will be given in terms of a remainder operator

Rh := Q∗hS − ShJh : D(S) ∩ Z → Xh (2.18a)

and in terms of errors in the discretized bilinear forms

∆p
(
xh, yh

)
:= p

(
Qhxh, Qhyh

)
− ph

(
xh, yh

)
, xh, yh ∈ Xh (2.18b)

∆s
(
xh, yh

)
:= s

(
Qhxh, Qhyh

)
− sh

(
xh, yh

)
, xh, yh ∈ Xh, (2.18c)

where for the latter definition we assume X`
h ⊂ Y .



16 CHAPTER 2. MONOTONE CAUCHY PROBLEM

2.5 A priori error bounds

In the subsequent analysis, we always assume the semi-discretization to be stable in the following
sense.

Assumption 2.8 (Stability)

(i) The discrete operator Sh ∈ L(Xh, Xh) is quasi-monotone in Xh with

ph
(
Shxh, xh

)
+ ĉqm‖xh‖2Xh

≥ 0, ∀xh ∈ Xh.

(ii) There are constants CX > cX > 0 independent of h s.t.

cX‖Qhxh‖X ≤ ‖xh‖Xh
≤ CX‖Qhxh‖X , ∀xh ∈ Xh.

Under this assumption, Theorem 2.5 (with X replaced by Xh) shows that there exists a unique
solution xh with

‖xh(t)‖Xh
≤ eĉqmt

(
‖x0

h‖Xh
+ t‖gh‖L∞(0,t;Xh)

)
. (2.19)

For the error analysis, we will only use (2.19) and not Assumption 2.8 (i). We now state our abstract
error bound in the most general case.

Theorem 2.9. Let the assumptions of Theorem 2.5 and Assumption 2.8 be fulfilled, and let x be
the unique solution of (2.7) with x ∈ C1([0, T ];Z). Furthermore, let xh be the solution of (2.9).
Then the lifted semi-discrete solution Qhxh suffices the following error bound

‖Qhxh(t)− x(t)‖X ≤ Ce
ĉqmt
(
‖x0

h − Jhx0‖Xh
+ t‖gh −Q∗hg‖L∞(0,t;Xh) (2.20a)

+ t‖(Q∗h − Jh)x′‖L∞(0,t;Xh) + t‖Rhx‖L∞(0,t;Xh)

)
(2.20b)

+ ‖(I−QhJh)x(t)‖X (2.20c)

for t ∈ [0, T ] and C independent of h and t.

Proof. Let eh := xh − Jhx denote the discrete error. By Assumption 2.8 (ii), we find that

‖Qhxh − x‖X ≤ ‖Qheh‖X + ‖(QhJh − I)x‖X ≤
1

cX
‖eh‖Xh

+ ‖(QhJh − I)x‖X , (2.21)

and so only the discrete error needs to be bounded.
Since X`

h ⊂ X, the solution x of (2.7) satisfies

p
(
x′, Qhyh

)
+ s
(
x,Qhyh

)
= p
(
g,Qhyh

)
∀yh ∈ Xh

or, equivalently

ph
(
Q∗hx

′, yh
)

+ ph
(
Q∗hSx, yh

)
= ph

(
Q∗hg, yh

)
∀yh ∈ Xh.

Thus the reference solution Jhx fulfills

ph
(
Jhx

′, yh
)

+ sh
(
Jhx, yh

)
= ph

(
Q∗hg, yh

)
+ ph

(
(Jh −Q∗h)x′, yh

)
+ ph

(
(ShJh −Q∗hS)x, yh

)
∀yh ∈ Xh.

Subtracting this from the semi-discrete problem (2.9a), we find that the discrete error satisfies

ph
(
e′h, yh

)
+ sh

(
eh, yh

)
= ph

(
gh −Q∗hg, yh

)
− ph

(
(Jh −Q∗h)x′, yh

)
− ph

(
(ShJh −Q∗hS)x, yh

)
∀yh ∈ Xh.
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Here we used that Jh ∈ L(Z,Xh) and x ∈ C1([0, T ];Z), which implies eh ∈ C1([0, T ];Xh) and, in
particular, e′h = x′h − Jhx′. The discrete stability estimate (2.19) therefore yields an upper bound
for the discrete error

‖eh(t)‖Xh
≤ eĉqmt

(
‖eh(0)‖Xh

+ t
(
‖gh −Q∗hg‖L∞(0,t;Xh)

+ ‖(Q∗h − Jh)x′‖L∞(0,t;Xh) + ‖Rhx‖L∞(0,t;Xh)

))
.

Using this estimate in (2.21) completes the proof.

Remark to conforming methods. For conforming methods, the stability assumptions follow
directly from the monotonicity of S with ĉqm = cqm. Moreover, since the inner products of X and
Xh coincide and Qh = I, we have cX = CX = 1. Then, for Jh = Πh = Ph = Q∗h being the
p-orthogonal projector onto Xh, x0

h = Πhx
0, and gh = Πhg, the error bound (2.20) simplifies to

‖xh(t)− x(t)‖X ≤ e
cqmtt‖Rhx‖L∞(0,t;Xh) + ‖(I−Πh)x(t)‖X , t ∈ [0, T ], (2.22)

with Rh = ΠhS − ShΠh. ◦

2.6 Convergence

A convergence result based on the error bound in Theorem 2.9 can be obtained if the following
consistency assumptions are fulfilled.

Assumption 2.10 (Consistency)

(i) For all xh ∈ Xh, we have ‖∆p(xh)‖X∗h → 0, h→ 0.

(ii) For all x ∈ D(S) ∩ Z, the operator Rh satisfies ‖Rhx‖Xh
→ 0, h→ 0.

(iii) For all x ∈ Z, we have ‖(I−QhJh)x‖X → 0, h→ 0.

For conforming methods, the first condition is trivially fulfilled with ∆p ≡ 0.

Example 2.7 (continued). In the advection example, we have X = L2(Ω) and ∆p = 0. If we
choose Jh = Πh with Z = H2(Ω), then Assumption 2.10 (iii) follows from to the approximation
property of the nodal interpolation operator Ih : Z → Xh by

‖x−Πhx‖X ≤ ‖x− Ihx‖L2(Ω) ≤ Ch
2|x|H2(Ω), x ∈ H2(Ω), (2.23)

for suitable triangulations, cf. [Brenner and Scott, 2008, Sect. 4.4]. So only Assumption 2.10 (ii)
still needs to be checked. �

The following lemma shows that the operator Ph is quasi-optimal. Related results can be found
in [Elliott and Ranner, 2013] and [Kovács and Lubich, 2016].

Lemma 2.11 (Quasi-optimality of Ph). Let Assumption 2.8 (ii) be satisfied. Then we have

‖(Ph −Πh)x‖X ≤ CX‖∆p(Q
∗
hx)‖X∗h ∀x ∈ X. (2.24)

Proof. We use (2.17a) to show that

‖(Ph −Πh)x‖2X = p
(
(Ph −Πh)x,Qh(Q∗h −Dh)x

)
= p
(
(Ph − I)x,Qh(Q∗h −Dh)x

)
+ p
(
(I−Πh)x,Qh(Q∗h −Dh)x

)
= p
(
Phx,Qh(Q∗h −Dh)x

)
− p
(
x,Qh(Q∗h −Dh)x

)
= p
(
QhQ

∗
hx,Qh(Q∗h −Dh)x

)
− ph

(
Q∗hx, (Q

∗
h −Dh)x

)
= ∆p

(
Q∗hx, (Q

∗
h −Dh)x

)
.
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On the other hand, we have by Assumption 2.8 (ii) that

‖(Ph −Πh)x‖X = ‖Qh(Q∗h −Dh)x‖X ≥
1

CX
‖(Q∗h −Dh)x‖Xh

.

Altogether we find

‖(Q∗h −Dh)x‖Xh

CX
‖(Ph −Πh)x‖X ≤ ‖(Ph −Πh)x‖2X = ∆p(Q∗hx, (Q

∗
h −Dh)x).

Division by ‖(Q∗h −Dh)x‖Xh
gives

‖(Ph −Πh)x‖X ≤ CX
∆p
(
Q∗hx, (Q

∗
h −Dh)x)

)
‖(Q∗h −Dh)x‖Xh

≤ CX max
‖yh‖Xh

=1
|∆p

(
Q∗hx, yh

)
|

= CX‖∆p(Q∗hx)‖X∗h .

This proves the claim.

Remark 2.12. Note that (2.24) implies

‖(I− Ph)x‖X ≤ ‖(I−Πh)x‖X + ‖(Πh − Ph)x‖X
≤ ‖(I−Πh)x‖X + CX‖∆p(Q∗hx)‖X∗h . (2.25)

Therefore, the error (I − Ph)x corresponds to the best approximation error of x in X`
h up to the

error in the inner product. As a consequence of the best approximation property of Πh, it follows

‖(I− Ph)z‖X ≤ ‖(I−QhJh)z‖X + CX‖∆p(Q∗hz)‖X∗h , z ∈ Z (2.26a)

‖(I− Ph)z‖X ≤ ‖(I−QhIh)z‖X + CX‖∆p(Q∗hz)‖X∗h , z ∈ Z. (2.26b)

Therefore, Assumptions 2.10 (i) and 2.10 (iii) imply that we have ‖(I − Ph)z‖X → 0 and
‖(I−Πh)z‖X → 0 as h→ 0 for z ∈ Z. ◦

Corollary 2.13. Let the assumptions of Theorem 2.5 be satisfied and further let g(t) ∈ Z,
t ∈ [0, T ]. If the space discretization is stable and consistent in the sense of Assumptions 2.8
and 2.10, and if

‖x0
h − Jhx0‖Xh

→ 0 and ‖gh − Jhg‖L∞(0,T ;Xh) → 0 as h→ 0

then the lifted semi-discrete solution converges, i.e.,

‖Qhxh(t)− x(t)‖X → 0,

for t ∈ [0, T ] as h→ 0.

Proof. We see directly from Assumption 2.10, that we only have to investigate ‖(Q∗h−Jh)x′‖L∞(0,t;Xh)

and ‖gh −Q∗hg‖L∞(0,t;Xh)

For the first term we find with (2.26a) and Assumption 2.10 (iii) for z ∈ Z and h→ 0

‖(Q∗h − Jh)z‖Xh
≤ CX

(
‖(Ph − I)z‖X + ‖(I−QhJh)z‖X

)
≤ CX

(
2‖(I−QhJh)z‖X + CX‖∆p(Q∗hz)‖X∗h

)
→ 0 (2.27)

This implies ‖(Q∗h − Jh)x′‖Xh
→ 0 as h→ 0, since x′(t) ∈ Z by assumption.

The second term also converges since

‖gh(t)−Q∗hg(t)‖Xh
≤ ‖gh(t)− Jhg(t)‖Xh

+ ‖(Jh −Q∗h)g(t)‖Xh
→ 0, t ∈ [0, T ],

as h→ 0 where we used that g(t) ∈ Z.
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Table 2.1: Overview and classification of the examples

Xh ⊂ Y p = ph s = sh Discussed
on Xh ×Xh on Xh ×Xh in Section

Maxwell’s eq. with Nédélec
elements

3 3 3 3.3.1

Maxwell’s eq. with discontinuous
Galerkin

7 3 7 3.3.2

Wave eq. with Lagrange elements
(exact integration)

3 3 3 5.3

Wave eq. with Lagrange elements
and quadrature

3 7 3 5.3

Wave eq. with kinetic bc. in
smooth domains

7 7 7 7.2

Wave eq. with acoustic bc. in
smooth domains

7 7 7 7.3

HMM for the wave equation 3 3 7 -

Example 2.7 (continued). Let uh(0) = Πhu
0 and gh = Πhg. Then (2.22) yields the error bound

‖uh(t)− u(t)‖L2(Ω) ≤ Ct‖Rhu‖L∞(0,t;L2(Ω)) + Ch2|u(t)|H2(Ω)

where we already used (2.23). We will show (3.2) which bounds the remainder term by

‖Rhu‖Xh
≤ ‖S‖X←Y ‖(I−Πh)u‖Y .

Since for u ∈ H1(Ω) we have ‖u‖Y ≤ C‖u‖H1(Ω) it follows with H1 error estimates for the

L2-orthogonal projection that

‖(I−Πh)u‖Y ≤ Ch|u|H2(Ω), u ∈ H2(Ω). (2.28)

Altogether we obtain the known estimate

‖uh(t)− u(t)‖L2(Ω) ≤ C(1 + t)h‖u‖L∞(0,t;H2(Ω))

for unstabilized and unfiltered Galerkin solutions of the advection equation, cf. [Layton, 1983] and
[Dunca, 2017]. �

2.7 Overview of examples

For specific applications, the general error result of Theorem 2.9 has to be complemented with
a bound on the remainder term ‖Rhx‖Xh

. In Chapters 3 and 4, we will show such bounds for
symmetric hyperbolic systems and for second-order wave-type problems. Actually, the analysis of
different settings and discretizations of these two classes of problems inspired our work. An overview
and classification of examples which fit into our general theory is given in Table 2.1. The table shows
in which sense the conformity is violated.

An important application which is not discussed in this thesis are heterogeneous multiscale meth-
ods. Results as in [Abdulle and Grote, 2011] or [Hochbruck and Stohrer, 2016] can be reproduced
using our results from Chapter 4.
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2.8 Time integration with the Crank–Nicolson method

In this section we will derive error bounds for the Crank–Nicolson method. We first discuss the error
of the time stepping of the continuous problem (2.7) and then of the semi-discrete problem (2.9).
These results shall serve as a proof of concept that full discretization error bounds can be shown in
our unified framework. We are confident that these proofs can be generalized to apply to suitable
Runge–Kutta methods of higher order, cf. [Hochbruck and Pažur, 2015].

The scheme The Crank–Nicolson method or implicit trapezoidal rule [Hairer et al., 2010, Section
II.1.1], [Hairer and Wanner, 2010, Section IV.3] applied to (2.7) yields

xn+1 = xn − τ

2
S
(
xn+1 + xn

)
+
τ

2

(
gn+1 + gn

)
, n ≥ 0. (2.29)

as an approximation to x(tn+1). Here τ > 0 denotes the time step size and gn = g(tn) for tn = nτ .
Note that we start with the exact initial value x(0) = x0 ∈ D(S).

Stability The stability of the Crank–Nicolson method is guaranteed by the following Lemma. Our
proof relies on [Sturm, 2017] where evolution equations with dissipative operators are considered.

Lemma 2.14. Let τcqm < 2 and let the assumptions of Theorem 2.5 be fulfilled. Then the approx-
imation xn given by (2.29) satisfies xn ∈ D(S) and

‖xn‖X ≤ e
tncqm

(
‖x0‖X + tn

n
max
m=0
‖gm‖X

)
, n ≥ 0. (2.30)

Proof. Using R+ := I + τ
2S and R− := I− τ

2S, we can write the scheme (2.29) equivalently as

R+x
n+1 = R−x

n +
τ

2

(
gn+1 + gn

)
, n ≥ 0.

We now show that R+ is invertible for τcqm < 2. First note that Sm = τ
2 (S + cqmI) is accretive,

since τ > 0. Then by [Showalter, 2013, Lem. I.4.1] we have for all λ > 0 that

‖(λ+ Sm)−1x‖X ≤ ‖x‖X , x ∈ X. (2.31)

Since I + τ
2S = µ+ Sm for µ = 1− τ

2 cqm and by assumption µ > 0, this implies that

‖R−1
+ ‖X←X ≤ 1. (2.32)

Thus the iteration matrix R := R−1
+ R− is well-defined and by construction we have Rx ∈ D(S) for

x ∈ D(S). Hence the recursion is solved by

xn+1 = Rn+1x0 +
τ

2

n∑
m=0

Rn−mR−1
+

(
gm+1 + gm

)
, n ≥ 0, (2.33)

and we further find xn+1 ∈ D(S) for n ≥ 0.
Moreover, from

‖(λ+ Sm)x‖2X = λ2‖x‖2X + ‖Smx‖2X + 2p
(
Smx, x

)
≥ λ2‖x‖2X + ‖Smx‖2X − 2p

(
Smx, x

)
= ‖(λ− Sm)x‖2X

we conclude that

‖(λ+ Sm)−1(λ− Sm)x‖X ≤ ‖x‖X , x ∈ D(S). (2.34)



2.8. TIME INTEGRATION WITH THE CRANK–NICOLSON METHOD 21

Since µ > 0 and

R =
(
I + τ

2S
)−1 (

I− τ
2S
)

=
(
µ+ Sm

)−1(
µ+ τcqm − Sm

)
=
(
µ+ Sm

)−1(
µ− Sm

)
+ τcqm

(
µ+ Sm

)−1
,

the estimates (2.31) and (2.34) yield

‖Rx‖X ≤ (1 + τcqm)‖x‖X , x ∈ D(S).

By induction we thus have

‖Rnx‖X ≤ (1 + τcqm)n‖x‖X ≤ e
nτcqm‖x‖X , n ≥ 0, x ∈ D(S). (2.35)

Taking the X norm in (2.33) and using (2.35), (2.32), we find

‖xn+1‖X ≤ e
(n+1)τcqm‖x0‖X +

τ

2

n∑
m=0

e(n−m)τcqm‖gm+1 + gm‖X , n ≥ 0. (2.36)

The claim then follows from

τ

2

n∑
m=0

e(n−m)τcqm‖gm+1 + gm‖X ≤
τ

2
(n+ 1)enτcqm

n
max
m=0
‖gm+1 + gm‖X

≤ tn+1e
tn+1cqm n+1

max
m=0
‖gm‖X ,

where we used the triangle inequality and tn+1 = (n+ 1)τ in the last step.

Consistency To study the consistency of the Crank–Nicolson method, we insert the exact solution
x̃n = x(tn) into the scheme (2.29). This determines the defect δn+1 via

x̃n+1 = x̃n − τ

2
S
(
x̃n+1 + x̃n

)
+
τ

2

(
gn+1 + gn

)
+ δn+1, n ≥ 0. (2.37)

In the following, we will write

x(k)(t) :=
dk

dtk
x(t)

for the k-th temporal derivative of x.

Lemma 2.15. Let x ∈ C3([0, T ];X) be the solution of (2.7). Then∥∥δn+1
∥∥
X
≤ Cτ3‖x(3)‖L∞(tn,tn+1;X), n ≥ 0.

Proof. With (2.37) and (2.7) we find

δn+1 = x̃n+1 − x̃n − τ

2

(
x′(tn+1) + x′(tn)

)
=

∫ tn+1

tn

x′(t) dt− τ

2

(
x′(tn+1) + x′(tn)

)
.

Hence δn+1 is the quadrature error of the trapezoidal rule applied to x′. It can be given in terms of
the Peano kernel κ(s) := (1− s)s/2 as

δn+1 =

∫ tn+1

tn

(t− tn)(tn+1 − t)
2

x(3)(t) dt = τ3

∫ 1

0
κ(s)x(3)(tn + τs) ds. (2.38)

This proves the claim.
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Convergence The two previous lemmas are the basic ingredients for the convergence of the scheme.

Theorem 2.16. Let the assumptions of Theorem 2.5 be fulfilled and let x ∈ C3([0, T ];X) be
the solution of (2.7). Then the approximation xn obtained by the Crank–Nicolson scheme (2.29)
satisfies

‖xn − x(tn)‖X ≤ Ce
cqmtntnτ

2‖x(3)‖2L∞(0,tn;X), n ≥ 0.

Proof. Subtracting (2.37) from (2.29), we find the error en = xn − x̃n satisfies

en+1 = en − τ

2
S
(
en+1 + en

)
− δn+1, n ≥ 0.

Applying the stability estimate (2.36) to the error recursion, we find with e0 = 0 that

‖en‖X ≤ τ
n∑

m=0

e(n−m)τcqm‖δm+1‖X ≤ e
cqmtntn

n
max
m=0

∥∥τ−1δm+1
∥∥
X
.

Finally, we use Lemma 2.15 to obtain the desired estimate.

The fully discrete scheme We now apply the Crank–Nicolson method to the space discretization
(2.9), this leads to xn+1

h with Qhx
n+1
h ≈ x(tn+1) given by

xn+1
h = xnh −

τ

2
Sh
(
xn+1
h + xnh

)
+
τ

2

(
gn+1
h + gnh

)
, n ≥ 0, (2.39)

with the initial value given in (2.9b) and gnh = gh(tn).

Stability of the full discretization If the spatial discretization (2.9) is stable, then the Crank–
Nicolson scheme (2.39) is stable.

Corollary 2.17. Let τ ĉqm < 2 and the Assumption 2.8 be fulfilled. Then xnh given by (2.29)
satisfies

‖xnh‖Xh
≤ etnĉqm

(
‖x0

h‖Xh
+ tn

n
max
m=0
‖gmh ‖Xh

)
, n ≥ 0. (2.40)

Proof. The estimate can be shown as in Lemma 2.14.

Convergence of the full discretization Finally, we provide an error estimate for the time discretiza-
tion of the general spatial discretization (2.9) with the Crank–Nicolson method.

Theorem 2.18. Let the assumptions of Theorem 2.5 be fulfilled and let x be the unique solution of
(2.7) which satisfies x ∈ C1([0, T ];Z) and x ∈ C3([0, T ];X). Furthermore, let the space discretiza-
tion satisfy Assumption 2.8 and let xnh, n ≥ 0 be given by (2.39). Then the lifted approximation
Qhx

n
h satisfies

‖Qhxnh − x(tn)‖X ≤ ‖(QhJh − I)x(tn)‖X + Cetnĉqmtnτ
2‖x(3)‖L∞(0,tn;X)

+ etnĉqm

(
‖x0

h − Jhx0‖Xh
+ tn‖(Jh −Q∗h)x′‖L∞(0,tn;Xh)

+ tn
n

max
m=0

(
‖Rhx(tm)‖Xh

+ ‖gh(tm)−Q∗hg(tm)‖Xh

))

for τ ĉqm < 2 and tn ∈ [0, T ].
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Proof. The proof is done analogously to the proof of Theorem 2.9. We split the error into

en = Qhx
n
h − x̃n = Qhe

n
h + (QhJh − I)x̃n, enh := xnh − Jhx̃n.

Thus we have by Assumption 2.8 (ii) that

‖en‖X ≤
1

cX
‖enh‖Xh

+ ‖(QhJh − I)x̃n‖X . (2.41)

So it remains to bound ‖enh‖Xh
. To use the stability estimate, we formulate the recursion for enh as

a perturbed Crank–Nicolson scheme: Apply Jh to (2.37) and subtract it from (2.39). This yields

en+1
h − enh =

τ

2
JhS

(
x̃n+1 + x̃n

)
− τ

2
Sh
(
xn+1
h + xnh

)
+
τ

2

(
gn+1
h − Jhgn+1 + gnh − Jhgn

)
− Jhδn+1

= − τ

2
Sh
(
en+1
h + enh

)
+
τ

2
(JhS − ShJh)

(
x̃n+1 + x̃n

)
+
τ

2

(
gn+1
h − Jhgn+1 + gnh − Jhgn

)
− Jhδn+1.

We saw in the previous sections that the error in the differential operator is best studied in terms
of the remainder term Rh = Q∗hS − ShJh. Therefore we insert Q∗hS −Q∗hS and use (2.37) to write
the above as

en+1
h − enh +

τ

2
Sh
(
en+1
h + enh

)
=
τ

2
(Jh −Q∗h)S

(
x̃n+1 + x̃n

)
+
τ

2
Rh
(
x̃n+1 + x̃n

)
+
τ

2

(
gn+1
h − Jhgn+1 + gnh − Jhgn

)
− Jhδn+1

= − (Jh −Q∗h)
(
x̃n+1 − x̃n

)
+
τ

2
Rh
(
x̃n+1 + x̃n

)
+
τ

2

(
gn+1
h −Q∗hgn+1 + gnh −Q∗hgn

)
−Q∗hδn+1

=: dn+1
h,τ .

Applying the stability estimate (2.40) yields

‖en+1
h ‖Xh

≤ etn+1ĉqm
(
‖e0
h‖Xh

+ tn+1
n

max
m=0

∥∥τ−1dmh,τ
∥∥
Xh

)
.

We now use ∥∥(Jh −Q∗h)
(
x̃n+1 − x̃n

)∥∥
Xh

= ‖(Jh −Q∗h)

∫ tn+1

tn

x′(t) dt‖Xh

≤
∫ tn+1

tn

∥∥(Jh −Q∗h)x′(t)
∥∥
Xh

dt

≤ τ‖(Jh −Q∗h)x′‖L∞(tn,tn+1;Xh),

‖Q∗hx‖Xh
≤ c−1

X ‖x‖X and Lemma 2.15 to bound the fully discrete defect by

‖τ−1dn+1
h,τ ‖Xh

≤ ‖(Jh −Q∗h)x′‖L∞(tn,tn+1;Xh) +
1

2
‖Rh

(
x̃n+1 + x̃n

)
‖Xh

+
1

2
‖
(
gn+1
h −Q∗hgn+1 + gnh −Q∗hgn

)
‖Xh

+ ‖τ−1Q∗hδ
n‖Xh

≤ ‖(Jh −Q∗h)x′‖L∞(0,tn+1;Xh) + (τcX)−1‖δn‖X

+
n+1
max
m=n

(
‖Rhx̃m‖Xh

+ ‖gmh −Q∗hgm‖Xh

)
≤ ‖(Jh −Q∗h)x′‖L∞(0,tn+1;Xh) + Cτ2‖x(3)‖L∞(0,tn+1;X)

+
n+1
max
m=0

(
‖Rhx̃m‖Xh

+ ‖gmh −Q∗hgm‖Xh

)
.

The final estimate then follows from (2.41).
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Chapter 3

Error analysis for symmetric hyperbolic
systems

In this chapter, we derive a priori error bounds for general non-conforming space discretizations of
symmetric hyperbolic systems. For this purpose, we use the error bound from Theorem 2.9 and
exploit the structural properties of the problem and its space discretization.

Outline We define symmetric hyperbolic systems in Section 3.1. Then we prove two error bounds:
For the error bound in Section 3.2.1, we assume X`

h ⊂ X. The second error bound in Section 3.2.2
applies to the discontinuous Galerkin discretizations. In Section 3.3, we present two space dis-
cretizations of Maxwell’s equation, which apply to these results: Nédélec finite elements and the
discontinuous Galerkin method.

3.1 Description of the continuous problem

Following [Benzoni-Gavage and Serre, 2007] or [Burazin and Erceg, 2016], we use the following
definition of symmetric hyperbolic systems.

Definition 3.1. We call S ∈ L(Y, Y ∗) symmetric hyperbolic if it is quasi-monotone, D(S) = Y ,
and maximal w.r.t. X.

If S is a symmetric hyperbolic operator, then we call (2.7) a symmetric hyperbolic system. Since
by definition S ∈ L(Y,X), we have here S = S and we can extend the associated bilinear form s
defined in (2.4) to Y ×X. Then, s is bounded by

|s
(
y, x
)
| ≤ ‖S‖X←Y ‖y‖Y ‖x‖X , y ∈ Y, x ∈ X.

By Theorem 2.5, a symmetric hyperbolic system has a unique solution x ∈ C1([0, T ];X)∩C([0, T ];Y ).

3.2 A priori error bounds

Consider space discretizations of symmetric hyperbolic systems (2.9) which are stable in the sense of
Assumption 2.8. To obtain practicable error bounds from Theorem 2.9, we further need to estimate
(2.20) in terms of interpolation errors, ∆p, and ∆s. As announced, there are two types of space
discretizations which we analyze separately. In any of these two non-conforming space discretizations
of symmetric hyperbolic systems, Jh = Ih leads to optimal convergence rates.

25
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3.2.1 The case X`
h ⊂ Y

First we discuss problems, where X`
h is not only contained in X but also in the smaller subspace Y .

Theorem 3.2. Let X`
h ⊂ Y and assume that the unique solution x of the symmetric hyperbolic

system (2.7) satisfies x ∈ C1([0, T ];Z). Furthermore, let xh be the solution of the semi-discrete
problem (2.9) with x0

h = Ihx
0 and gh = Q∗hg. Then the lifted semi-discrete solution satisfies

‖Qhxh(t)− x(t)‖X ≤Ce
ĉqmtt

(
‖(I−QhIh)x′‖L∞(X) + ‖∆p(Q∗hx′)‖L∞(X∗h)

+ ‖(I−QhIh)x‖L∞(Y ) + ‖∆s(Ihx)‖L∞(X∗h)

)
+ ‖(QhIh − I)x(t)‖X

for t ∈ [0, T ] where C > 0 independent of h and t.

Proof. Since Theorem 2.9 applies, the claim follows from (2.20). We first show an estimate of the
remainder term. Note that

‖Rhy‖Xh
= max
‖yh‖Xh

=1
ph
(
Rhy, yh

)
and Rh = Q∗hS − ShJh.

Now let y ∈ Y and yh ∈ Xh with ‖yh‖Xh
= 1. Then we obtain from X`

h ⊂ Y and S ∈ L(Y,X)

ph
(
Rhy, yh

)
= ph

(
(Q∗hS − ShJh)y, yh

)
= p
(
Sy,Qhyh

)
− ph

(
ShJhy, yh

)
= s
(
(I−QhJh)y,Qhyh

)
+ s
(
Qh(Jhy), Qhyh

)
− sh

(
Jhy, yh

)
≤ ‖S‖X←Y ‖(I−QhJh)y‖Y ‖Qhyh‖X + ∆s(Jhy, yh)

≤ ‖S‖X←Y ‖(I−QhJh)y‖Y c
−1
X + ∆s(Jhy, yh),

which implies

‖Rhx‖Xh
≤ C

(
‖(I−QhJh)x‖Y + ‖∆s(Jhx)‖X∗h

)
. (3.1)

For the final estimate, we choose Jh = Ih in (2.20). The errors in the data (2.20a) vanish by
assumption. The first term in (2.20b) can be bounded as in (2.27) and (3.1) yields a bound for the
remainder term. At last, (2.20c) is another interpolation error.

Remark to conforming methods. For conforming methods, it is possible to eliminate all
terms in the error bound of the previous theorem which contain the derivative x′. More precisely,
by choosing Jh = Πh we obtain from (3.1) and ∆s ≡ 0 that

‖Rhy‖Xh
≤ C‖(I−Πh)y‖Y , y ∈ Y. (3.2)

Since Xh ⊂ Y and since every two norms on the finite dimensional space Xh are equivalent, there
exist δh > 0 s.t. a so-called inverse estimate δh‖xh‖Y ≤ ‖xh‖X , xh ∈ Xh holds. In general, we thus
have δh → 0 as h→ 0. We obtain

‖(I−Πh)x‖Y ≤ ‖(I− Ih)x‖Y + ‖(Ih −Πh)x‖Y
≤ ‖(I− Ih)x‖Y + δ−1

h ‖(Ih −Πh)x‖X
≤ ‖(I− Ih)x‖Y + δ−1

h

(
‖(Ih − I)x‖X + ‖(I−Πh)x‖X

)
,

≤ ‖(I− Ih)x‖Y + 2δ−1
h ‖(I− Ih)x‖X , (3.3)

where the last inequality follows from Πh being the orthogonal projector onto Xh. For x0
h = Πhx

0

and gh = Πhg, (2.22) shows

‖xh(t)− x(t)‖X ≤ C(1 + eĉqmtt)
(
δ−1
h ‖(I− Ih)x‖∞,X + ‖(I− Ih)x‖L∞(Y )

)
(3.4)

for t ∈ [0, T ] and C independent of h and t. ◦
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3.2.2 Error analysis for discontinuous Galerkin methods

Discontinuous Galerkin (dG) methods approximate the solution by an elementwise defined function
on a given mesh Th of Ω. This leads to space discretizations where

Xh ⊂ X, but Xh 6⊂ Y.

A typical example for X = L2(Ω) and Y = H1(Ω) is the broken polynomial space Xh = Pk(Th)
consisting of piecewise polynomials of degree at most k. Since Xh ⊂ X, we can choose the trivial
lift operator Qh = I.

Our error analysis of the dG method requires the evaluation of sh not only on Xh ×Xh but in
the first argument also on the solution x or on approximation errors. Since the evaluation of the
bilinear form involves traces of x on the faces of the elements, we assume that there is a space
Y (Th) of piecewise smooth functions, e.g., the broken Sobolev space H1(Th), with

Xh ⊂ Y (Th)
d
↪→ X (3.5)

such that sh can be extended to Y (Th)×Xh. We adapt the notation of [Di Pietro and Ern, 2012]
and write

Y?,h = Y? +Xh, Y? := Y ∩ Y (Th),

then we can extend sh to Y?,h×Xh and ∆s to Y?×Xh. Note that in standard applications, where
integrals are evaluated exactly, ∆s ≡ 0 on Y? ×Xh due to the consistency of the method.

With these structural assumptions we can show the following error bound.

Theorem 3.3. Let Xh ⊂ Y (Th)
d
↪→ X, Qh = I and assume that the unique solution of the

symmetric hyperbolic system (2.7) satisfies x ∈ C1([0, T ];Z) and x(t) ∈ Z ∩ Y (Th), t ∈ [0, T ].
Furthermore, let xh be the solution of (2.9) and x0

h = Ihx
0 and gh = Q∗hg. Then there exists a

constant C independent of h and t such that the semi-discrete dG solution xh satisfies

‖xh(t)− x(t)‖X ≤ Ceĉqmtt
(
‖(I− Ih)x′‖L∞(X) + ‖∆p(Q∗hx′)‖L∞(X∗h)

+ ‖sh
(
(I− Ih)x

)
‖L∞(X∗h) + ‖∆s(x)‖L∞(X∗h)

)
+ ‖(I− Ih)x(t)‖X

for t ∈ [0, T ].

Proof. The proof starts from the bound (2.20). Let y ∈ Y? and yh ∈ Xh with ‖yh‖Xh
= 1. By

definition (2.18a) of Rh we find

ph
(
Rhy, yh

)
= p
(
Sy, yh

)
− ph

(
ShJhy, yh

)
= s
(
y, yh

)
− sh

(
Jhy, yh

)
= ∆s

(
y, yh

)
+ sh

(
(I− Jh)y, yh

)
.

Taking the maximum over all yh gives the bound

‖Rhy‖Xh
≤ ‖sh

(
(I− Jh)y

)
‖X∗h + ‖∆s(y)‖X∗h , y ∈ Y?.

Moreover, setting Jh = Ih and using (2.27) implies

‖(Q∗h − Ih)x′‖X ≤ C
(
‖(I− Ih)x′‖X + ‖∆p(Q∗hx′)‖X∗h

)
.

The claim now follows from (2.20).

Remark 3.4. If ∆p ≡ 0 on Xh×Xh and ∆s ≡ 0 on Y?×Xh, and if the assumptions of Theorem 3.3
are satisfied, then similar arguments with Jh = Πh show

‖xh(t)− x(t)‖X ≤ Ceĉqmtt‖sh
(
(I−Πh)x′

)
‖L∞(X∗h) + ‖(I− Ih)x(t)‖X . (3.6)
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3.3 Examples: Maxwell’s equations

As the prototype of a symmetric hyperbolic system we consider Maxwell’s equations for linear
isotropic materials with perfectly conducting boundary conditions, cf. [Kirsch and Hettlich, 2014].

Let E : [0, T ] × Ω → R3 be the electric field and H : [0, T ] × Ω → R3 be the magnetic field
and assume that the permittivity ε and the permeability µ are piecewise constant and uniformly
positive. The suitable functional analytic setting for x = [H,E]T is given by the Hilbert space

X := L2(Ω)6 endowed with a weighted inner product and Y = H(curl,Ω) × H0(curl,Ω)
d
↪→ X.

Maxwell’s equations are a symmetric hyperbolic system since the Maxwell operator S ∈ L(Y,X) is
maximal skew-symmetric, cf., e.g., [Hochbruck et al., 2014, Sect. 3.2]. Hence Maxwell’s equations
are well-posed in the sense of Theorem 2.5.

3.3.1 Edge element discretizations

For this example, we assume that Th is quasi-uniform. We choose the discrete space as Xh =
Vh(curl)× Vh,0(curl) where

Vh(curl) =
{
Uh ∈ H(curl,Ω) | Uh

∣∣
K
∈ (P1)3 for K ∈ Th

}
,

Vh,0(curl) = {Uh ∈ Vh(curl) | ν × Uh = 0 on Γ},

are first order curl-conforming elements of Nédélec’s second family, cf. [Nédélec, 1986]. Since
Xh ⊂ Y , we are in the situation of Section 3.2.1 and we can choose ph := p and sh := s. Moreover,
there exists an interpolation operator Ih : Z → Xh, Z = H2(Ω)6 s.t.

‖x− Ihx‖X + h‖x− Ihx‖Y ≤ Ch
2‖x‖H2(Ω)6 , x ∈ H2(Ω)6,

cf. [Nédélec, 1986, Prop. 3].
Hence if the solution x =

[
H,E

]ᵀ
of Maxwell’s equations belongs to C

(
[0, T ];H2(Ω)6

)
, it

follows from (3.4) that the semi-discrete solution xh =
[
Hh, Eh

]ᵀ
satisfies

‖xh(t)− x(t)‖L2(Ω)6 ≤ C(t)h.

Here we used that δ−1
h ≤ Ch

−1 if 0 < h ≤ 1 due to the inverse estimate between L2(Ω) and H1(Ω).
A similar convergence result for edge elements of Nédélec’s first family can be found in [Zhao, 2004,
Thm. 4.1].

If we use quadrature formulas to approximate the integrals in the definition of p and s, we have
∆p 6= 0 and ∆s 6= 0. However, if x and x′ are sufficiently smooth, one can show that

‖∆p(Q∗hx′)‖L∞(X∗h) + ‖∆s(Ihx)‖L∞(X∗h) ≤ Ch

if the quadrature formulas have sufficiently high order, cf. [Ciarlet, 2002] and Section 5.3. For such
cases Theorem 3.2 shows, that the convergence order of ‖x(t)− xh(t)‖X is preserved.

3.3.2 Discontinuous Galerkin discretizations

We seek approximations in the set of piecewise polynomials on a given mesh, i.e., Xh = Pk(Th)6,
k ≥ 0, and consider a central (also centered) fluxes dG discretization of the Maxwell operator given
by sh. For details we refer to [Di Pietro and Ern, 2012]. By construction sh is consistent in the
sense that ∆s ≡ 0 on Y? ×Xh where Y? = Y ∩H1(Th)6.

By [Hochbruck and Sturm, 2016, (5.3) and (5.5)] we have

‖(I− Ih)x‖X + h‖sh((I− Ph)x)‖X∗h ≤ C

∑
K∈Th

h2k+2
K |x|2Hk+1(K)6

1/2

,
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where Ih : Hk+1(Th)6 → Xh is the piecewise interpolation operator and |x|Hk+1(K)6 denotes the

Hk+1(K) semi-norm of x. The convergence result then follows from (3.6). If the solution x of
Maxwell’s equations is in C

(
[0, T ];Hk+1(Th)6

)
, then the dG approximation xh =

[
Eh, Hh

]ᵀ
satisfies

‖xh(t)− x(t)‖L2(Ω)6 ≤ C(t)hk.

Such results are for example shown in [Pazur, 2013].
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Chapter 4

Second-order wave-type problems

In this chapter, we investigate the well-posedness of wave equations formulated as abstract second-
order evolution equations. In addition to the main well-posedness result, we also show the unique
existence of solutions under weaker conditions and derive the corresponding stability estimates.

Outline Sections 4.1 and 4.2 are devoted to second-order wave-type problems and their well-
posedness in the framework of monotone operators. After that, in Section 4.3, we discuss a situation
where a different stability estimate with favourable properties can be proven. We then move on to
study weak well-posedness of second-order wave-type problems in Section 4.4, where we focus on
stability estimates in weaker norms.

Related literature The well-posedness analysis of abstract second-order wave equations from Sec-
tion 4.2 can be found in [Showalter, 1994, Ch. VI].

4.1 Description of the continuous problem

Let H and V be two Hilbert spaces with V
d
↪→ H, i.e., there is a constant CH,V > 0 s.t.

‖ϕ‖m ≤ CH,V ‖ϕ‖V , ϕ ∈ V,

where ‖·‖m denotes the norm on H which is induced by the inner product m : H × H → R.
Moreover, we identify H ' H∗ and form the Gelfand triple

V
d
↪→ H ' H∗ d

↪→ V ∗. (4.1)

The second-order wave-type problem then reads: Find u : [0, T ]→ V s.t.

〈u′′(t), ϕ〉V + b
(
u′(t), ϕ

)
+ a
(
u(t), ϕ

)
= 〈f(t), ϕ〉V ∀ϕ ∈ V, (4.2a)

u(0) = u0, u′(0) = v0, (4.2b)

where f : [0, T ] → V ∗ is a given function and the bilinear forms a and b satisfy the following
assumption.

Assumption 4.1

(i) The bilinear form a : V × V → R is continuous, symmetric, and satisfies the Garding
inequality

a
(
u, u

)
+ cG‖u‖2m ≥ α‖u‖

2
V , u ∈ V (4.3)

for constants cG ≥ 0 and α > 0.

31
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(ii) The bilinear form b : V ×V → R is continuous and b+βqmm is monotone for some βqm ≥ 0,
i.e.,

b
(
v, v
)

+ βqm‖v‖2m ≥ 0, v ∈ V.

Due to the continuity of the bilinear forms, a and b induce operators A,B ∈ L(V, V ∗), respec-
tively. We can thus write (4.2) equivalently as the evolution equation

u′′ + Bu′ + Au = f in V ∗ (4.4)

supplemented by the initial conditions u(0) = u0 and u′(0) = v0.
Furthermore, we introduce the bilinear form

ã
(
u, v
)

:= a
(
u, v
)

+ cGm
(
u, v
)
, u, v ∈ V, (4.5)

which is coercive on V × V due to (4.3), and define Ṽ = (V, ã) to be the Hilbert space equipped
with ã. Note that the Garding inequality implies

‖ϕ‖m ≤ CH,V ‖ϕ‖V ≤ CH,V α
−1/2‖ϕ‖ã, ϕ ∈ Ṽ . (4.6)

The well-posedness result for the evolution equation (4.4) is a variant of [Showalter, 1994,
Thm. VI.2.1]. Nevertheless, we give the complete proof as we need the connection to the framework
of monotone operators from Chapter 2 for our error analysis.

4.2 Well-posedness of the continuous problem

To write (4.4) as the first-order in time problem (2.1), we introduce the velocity v = u′ and use

x(t) =

[
u(t)
v(t)

]
, S =

[
0 −I
A B

]
, g(t) =

[
0
f(t)

]
, x0 =

[
u0

v0

]
. (4.7)

For the Gelfand triple (2.2), we choose

Y = Ṽ × V and X = Ṽ ×H,

equipped with their canonical inner products. In the following, we will refer to this problem as
the first-order in time formulation, or just the first-order in time formulation, of the second-order
wave-type problem (4.4).

Variants of the following results can be found in the proof of [Showalter, 1994, Thm. VI.2.1].

Lemma 4.2. Let Assumption 4.1 be satisfied. Then S ∈ L(Y, Y ∗) is quasi-monotone with

cqm = 1
2cGCH,V α

−1/2 + βqm (4.8)

and maximal w.r.t. Y ∗.

Proof. Note that the first component of the identification X ' X∗ yields Ṽ ' Ṽ ∗. Thus we have
Y ∗ ' Ṽ ∗ × V ∗ ' Ṽ × V ∗. This gives the first assertion, since S belongs to L(Y, Ṽ × V ∗) which is
a consquence of A,B ∈ L(V, V ∗).

For x =
[
u, v
]ᵀ ∈ Y we have

〈Sx, x〉Y = −ã
(
v, u
)

+ 〈Au+ Bv, v〉V = −a
(
v, u
)
− cGm

(
v, u
)

+ a
(
u, v
)

+ b
(
v, v
)

≥ −cG‖v‖mCH,V α
−1/2‖u‖ã − βqm‖v‖

2
m

≥ −cqm
(
‖u‖2ã + ‖v‖2m

)
,
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where we first used the Cauchy–Schwarz inequality for m together with (4.6), and then applied
Young’s inequality for the last estimate. Hence S is quasi-monotone with constant cqm.

Finally, S is maximal w.r.t. Y ∗, if range(λ+ S) = Y ∗ for some λ > cqm. Thus we have to show
that for each f =

[
f1, f2

]ᵀ ∈ Y ∗ there is an x =
[
u, v
]ᵀ ∈ Y s.t.

(λ+ S)x = f ⇐⇒
[

λu− v
λv + Au+ Bv

]
=

[
f1

f2

]
.

From the system of equations we see that it is sufficient to find one u ∈ Ṽ s.t.

λ2u+ λBu+ Au = f2 + λf1 + Bf1 in V ∗,

since then (λ+ S)x = f for x =
[
u, λu− f1

]ᵀ ∈ Y . The above problem is equivalent to

Λ
(
u, ψ

)
:= λ2〈u, ψ〉V + λb

(
u, ψ

)
+ a
(
u, ψ

)
= 〈f2, ψ〉V + λ〈f1, ψ〉V + b

(
f1, ψ

)
=: `(ψ) ∀ψ ∈ V.

and has a unique solution u ∈ V for sufficiently large λ > 0 by the Lax-Milgram theorem: First, `
is in V ∗ since f1 ∈ Ṽ , f2 ∈ V ∗ and Bf1 ∈ V ∗. Second, Λ is continuous on V × V for every λ ∈ R.

Third, Λ is coercive on V × V for λ ≥ βqm/2 +
(
β2
qm/4 + cG

)1/2
, since

Λ
(
u, u

)
= λ2‖u‖2m + λb

(
u, u

)
+ a
(
u, u

)
≥ (λ2 − λβqm − cG)‖u‖2m + α‖u‖2V , u ∈ V.

Thus we can apply the Lax-Milgram theorem which implies that, for sufficiently large λ, there exists
a unique u ∈ V s.t. Λ

(
u, ψ

)
= `(ψ) for all ψ ∈ V . This finishes the proof.

Expressing Theorem 2.5 in terms of (4.7) gives the following result.

Theorem 4.3. Let Assumption 4.1 be satisfied and assume that u0, v0 ∈ V satisfy Au0+Bv0 ∈ H,
and that f ∈ C1([0, T ];H) or

[
f,Bf

]ᵀ ∈ C([0, T ];V × H). Then (4.4) has a unique solution
u ∈ C2([0, T ];H) ∩ C1([0, T ];V ) which satisfies Au+ Bu′ ∈ C([0, T ];H) and

(
‖u(t)‖2ã + ‖u′(t)‖2m

)1/2
≤ ecqmt

((
‖u0‖2ã + ‖v0‖2m

)1/2
+ t‖f‖L∞(0,t;H)

)
, t ∈ [0, T ],

for cqm from (4.8).

If further B ∈ L(V,H), then we have u ∈ C2([0, T ];H) ∩ C1([0, T ];V ) ∩ C([0, T ]; [D(A)])
where D(A) = {v ∈ V | Av ∈ H} and A = A|H .

Proof. The assumptions guarantee for the first-order in time formulation that S is quasi-monotone
due to Lemma 4.2, that x0 =

[
u0, v0

]ᵀ ∈ D(S), and, that g ∈ C1([0, T ];X) or Sg ∈ C([0, T ];X).
Using v = u′, we infer from Theorem 2.5 that (4.2) has the unique solution[

u, u′
]ᵀ

= x ∈ C([0, T ]; [D(S)]) ∩ C1([0, T ]; Ṽ ×H),

where

D(S) =
{
x ∈ Y | Sx ∈ X

}
=
{[
u, v
]ᵀ ∈ Ṽ × V | Au+ Bv ∈ H

}
.

Therefore the first claim follows from u′′ = v′ ∈ C([0, T ];H) and the stability estimate from (2.8).
Moreover, since Sx ∈ C([0, T ];X), we obtain t 7→ Au(t) + Bu′(t) ∈ C([0, T ];H).

If B ∈ L(V,H), then D(S) = D(A) × V and therefore u ∈ C([0, T ]; [D(A)]), which gives the
second claim.
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4.3 Energy spaces

The (physical) energy corresponding to the second-order wave-type problem (4.2) at time t is given
by

E
(
u(t), u′(t)

)
:=

1

2

(
a
(
u(t), u(t)

)
+m

(
u′(t), u′(t)

))
. (4.9)

We follow [Gal et al., 2003], [Mugnolo, 2006b] and [Graber and Lasiecka, 2014] and introduce the
notion of an energy space.

Definition. We call ‖·‖X the energy norm and X the energy space of the problem if ‖
[
w, v

]ᵀ‖2X is
proportional to the energy E (w, v).

If cG = 0, then ‖·‖X is an energy norm since

E
(
u, u′

)
=

1

2

∥∥[u, u′]ᵀ∥∥2

X
.

Thus Theorem 4.3 implies that solutions of homogeneous second-order wave-type problems with
cG = 0 have non-increasing energy if βqm = 0. For cG > 0 the X-norm is not an energy norm.

Motivation Some dissipative wave phenomena lead to second-order wave-type problems with cG > 0.
Then Theorem 4.3 yields stability estimates that grow exponentially fast in time. This is undesirable
for a dissipative wave phenomenon and we provide a non-increasing stability estimate the energy
norm, to get rid of this growth.

Presentation of the problem We consider the following situation.

Assumption 4.4

(i) Let a and b satisfy Assumption 4.1 with cG > 0 and βqm = 0.

(ii) M is a closed subspace of V s.t. a is continuous and coercive on M with

a
(
u, u

)
≥ α‖u‖2V ∀u ∈M.

(iii) There is a continuous projection

PM : V →M with PMv = v, v ∈M

which is invariant under a in the sense that

a
(
u, ϕ

)
= a

(
PMu, ϕ

)
, u, ϕ ∈ V.

Example 4.5. The variational formulation of the wave equation with homogeneous Neumann bound-
ary conditions (1.1) fulfills the assumption:

Assumption 4.4 (i) holds since H = L2(Ω) is the pivot space and the bilinear form

a
(
u, ϕ

)
:= cΩ

∫
Ω
∇u · ∇ϕdx

is defined on V = H1(Ω). Thus a is not coercive, but satisfies (4.3) with cG = α = cΩ.
This lack of coercivity is already an issue for the variational solution of the Poisson equation

with Neumann boundary conditions. A workaround there is to solve the Poisson equation in the
space of H1(Ω) functions with zero mean

H1
mv(Ω) :=

{
v ∈ H1(Ω) | mv (v) = 0

}
, mv (v) = 1

|Ω|m
(
v, 1l
)
,
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where 1l(x) = 1 for x ∈ Ω, cf. [Han and Atkinson, 2009, Sect. 8.4.3]. Note that H1
mv(Ω) is a closed

subspace of V , since mv ∈ L(V,R) and we further find by [Han and Atkinson, 2009, Thm. 7.3.12]
that on H1

mv(Ω)

|·|H1(Ω) ∼ ‖·‖H1(Ω).

This implies that a is coercive on M = H1
mv(Ω) and hence Assumption 4.4 (ii) holds.

For the projection of V to M , we choose

PM : V →M, PMv := v −mv (v) 1l.

Obviously, PMv = v for v ∈M and an easy calculation shows that

a
(
PMu, ϕ

)
=

∫
Ω
∇
(
u−mv (u) 1l

)
· ∇ϕdx =

∫
Ω
∇u · ∇ϕdx = a

(
u, ϕ

)
,

since ∇1l = 0. Therefore Assumption 4.4 (iii) is also fulfilled.

Outline of proof Let u be the solution of (4.4) and Assumption 4.4 be fulfilled. To show that
x =

[
u, u′

]ᵀ
satisfies a stability estimate in an energy norm, we first study the well-posedness of a

first-order in time formulation of (4.4) in the energy space

XE := Ma ×H, Ma :=
(
M,a

(
·, ·
))
.

In a second step, we then prove that
[
PMu, u

′]ᵀ coincides with the solution of the problem in XE.

Alternative first-order in time formulation For an alternative first-order in time formulation of (4.4),
we consider ũ(t) = PMu(t) and v(t) = u′(t). From Assumption 4.4 (iii), it follows that APM = A

and therefore

ũ′(t) = PMv(t), (4.10a)

v′(t) + Bv(t) + Aũ(t) = f(t). (4.10b)

The corresponding first-order in time formulation is

x′E(t) + SExE(t) = g(t), xE(0) = x0
E , (4.11)

where

xE =

[
ũ(t)
v(t)

]
, SE =

[
0 −PM
A B

]
, g(t) =

[
0
f(t)

]
, x0

E =

[
PMu

0

v0

]
.

We consider (4.11) in the Gelfand triple YE

d
↪→ XE ' X∗E

d
↪→ Y ∗E where

YE = Ma × V and Y ∗E = Ma × V ∗,

and further define the projection

PE :=

[
PM 0
0 I

]
: Y ∗ → Y ∗E .

Then SE and S are related via the following result.

Lemma 4.6. Let Assumption 4.4 be fulfilled. Then SE ∈ L(YE, Y
∗
E ) is monotone, maximal, and

satisfies

SEPE = PES. (4.12)
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Proof. The continuity of SE ∈ L(YE, Y
∗
E ) follows from the continuity of its components A,B, PM .

To see that is SE monotone, observe that by Assumptions 4.4 (i) and 4.4 (iii) for x ∈ YE

〈SEx, x〉YE =
〈[ −PMv

Aũ+ Bv

]
,

[
ũ
v

]〉
YE

= −a
(
PMv, ũ

)
+ 〈Aũ, v〉V + 〈Bv, v〉V

≥ −a
(
v, ũ
)

+ a
(
ũ, v
)

= 0.

Relation (4.12) is fulfilled, since we have for x =
[
u, v
]ᵀ ∈ Y and y =

[
ϕ̃, ψ

]ᵀ ∈ YE

〈SEPEx, y〉YE =
〈[ −PMv

APMu+ Bv

]
,

[
ϕ̃
ψ

]〉
YE

=
〈[ −PMv

Au+ Bv

]
,

[
ϕ̃
ψ

]〉
YE

= 〈PESx, y〉YE .

Finally, we show that SE is maximal w.r.t. Y ∗E . Let λ > 0 and g ∈ Y ∗E ⊂ Y ∗. Since S is maximal
w.r.t. Y ∗ by Lemma 4.2, we infer that for each sufficiently large λ there is a y ∈ Y s.t.

(λ+ S)y = g.

Now set ỹ = PEy ∈ YE. Then we find with (4.12) that

(λ+ SE)ỹ = (λ+ SE)PEy = PE(λ+ S)y = PEg = g,

where we used PEx = x for x ∈ Y ∗E in the last step. Hence SE is maximal w.r.t. YE.

The previous Lemma and Theorem 2.5 show that the part of SE in XE generates a contraction
semigroup on XE. Together with (4.12), this implies that the solution

[
u, u′

]ᵀ
of the original problem

(4.2) has non-increasing XE-norm.

Corollary 4.7. Let Assumption 4.4 and the assumptions of Theorem 4.3 be fulfilled. Then the
solution u of (4.2) satisfies(

|u(t)|2a + ‖u′(t)‖2m
)1/2

≤
(
|u0|2a + ‖v0‖2m

)1/2
+ t‖f‖L∞(0,t;H)

for |·|2a := a
(
·, ·
)

and t ∈ [0, T ].

Proof. Now let SE : D(SE) → XE be the part of SE in XE with D(SE) =
{
x ∈ YE | SEx ∈ XE

}
.

Since SEPEx = PESx ∈ XE for x ∈ D(S) by (4.12), it follows that PED(S) ⊂ D(SE) and

PESx = PESx = SE(PEx) = SEPEx, x ∈ D(S). (4.13)

In particular, we find that x0
E = PEx

0 ∈ D(SE) and g ∈ C1([0, T ];XE) or g ∈ C([0, T ]; [D(SE)]).
Theorem 2.5 then states that (4.11) has a unique solution xE =

[
ũ, v
]ᵀ

which satisfies(
|ũ(t)|2a + ‖v(t)‖2m

)1/2
≤
(
|PMu0|2a + ‖v0‖2m

)1/2
+ t‖f‖L∞(0,t;H). (4.14)

Now let x =
[
u, v
]ᵀ

be the solution of the first-order in time formulation (2.7). To see that PEx
also solves (4.11), we use that PE ∈ L(X,XE) and apply (4.13)

(PEx)′(t) + SE(PEx)(t) = PE

(
x′(t) + Sx(t)

)
= PEg(t) = g(t),

where PEg(t) = g(t) since g =
[
0, f
]ᵀ

. We conclude that PEx = xE is the unique solution of (4.11)
and note that this is equivalent to ũ = PMu and v = u′. Finally, we obtain from Assumption 4.4
(iii)

|ũ|2a = |PMu|2a = a
(
PMu, PMu

)
= a

(
PMu, u

)
= a

(
u, u

)
= |u|2a. (4.15)

To derive the desired stability estimate, we then insert v = u′ and (4.15) into (4.14).
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Example 4.8. Let u be the solution of the wave equation with homogeneous Neumann boundary
conditions (1.1). Then the stability estimate from Theorem 4.3 grows exponentially fast in time

with cqm = c
1/2
Ω /2, while Corollary 4.7 implies that

cΩ‖∇u(t)‖2L2(Ω) + ‖u′(t)‖2L2(Ω) ≤ cΩ‖∇u0‖2L2(Ω) + ‖v0‖2L2(Ω), t ≥ 0

for sufficiently smooth initial values.

4.4 Weak solutions

Motivation We expect that the error of a spatial semi-discretization converges with a higher rate
if it is measured in a weaker norm. Consider for example a smooth solution u of the scalar acoustic
wave equation with homogeneous Dirichlet boundary conditions. It is known that the finite element
solution uh with piecewise polynomials of degree p ≥ 1 approximates u with

‖u− uh‖H1(Ω) = O(hp) and ‖u− uh‖L2(Ω) = O(hp+1),

uniformly in t ∈ [0, T ], cf. [Fujita et al., 2001, Sect. 2.8] for both estimates and [Dupont, 1973],
[Baker and Bramble, 1979] for L2-estimates. While the first estimate typically follows from an error
bound in the X-norm, the L2-estimate requires different stability estimate.

Goal In this section, we derive stability estimates for second-order wave-type problems in weaker
norms by using Sobolev towers. These stability estimates are necessary to derive error bounds in the
L2-norm. The corresponding error analysis is the content of ongoing work.

Intermezzo: Sobolev towers

A Sobolev tower is a sequence of densely embedded spaces (Xn)n∈Z, Xn
d
↪→ Xn−1. It is constructed

via an invertible operator S : D(S) ⊂ X → X such that a restriction (or extension) of S to Xn

generates a C0-semigroup on Xn, if S generates a C0-semigroup in X0 := X.
We define the “next weaker” space X−1 to X, cf. [Engel et al., 1999, Def. II.5.4].

Definition 4.9. Let S : D(S)→ X be a densely defined, invertible linear operator and

‖x‖−1 := ‖S−1x‖X , x ∈ X.

The space X−1 is defined by

X−1 :=
(
X, ‖·‖−1

)̃
,

where the superscript (·)̃ denotes the completion of the space.

Remark 4.10. Note that the completion of X is only unique up to an isometric isomorphism, cf.
[Amann, 1995, V.1.3] (where Sobolev towers are called Banach scales).

Since ‖Sx‖−1 = ‖x‖X for x ∈ D(S) and D(S) is dense in X, there exists a unique continuous
extension S−1 ∈ L(X,X−1) of S. We use the same notation for the unbounded operator on X−1

S−1 : D(S−1) ⊂ X−1 → X−1, D(S−1) := X.

The next result follows from [Engel et al., 1999, Thm. II.5.5] and it is the reason why we use Sobolev
towers.

Theorem 4.11. Let S : D(S) → X be invertible and the infinitesimal generator of a contraction
semigroup on X. Then the operator S−1 : D(S−1)→ X−1, D(S−1) = X is the infinitesimal generator
of a contraction semigroup on X−1.
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Weak solutions of second-order wave-type problems

We now apply the theory of Sobolev towers to the second-order wave-type problem (4.2). To benefit
from Theorem 4.11, we first relate X−1 to the Hilbert space

W := (H × Ṽ ∗, ‖·‖W ), ‖x‖2W := ‖u‖2m + ‖v‖2
Ṽ ∗
. (4.16)

Lemma 4.12. Let Assumption 4.1 be satisfied with cG = 0. Then S = S|X is invertible and there

exists a continuous isometry T̃ ∈ L(X−1,W ) s.t.

‖x‖2−1 = ‖T̃ x‖2W = ‖u‖2m + ‖Bu+ v‖2
Ṽ ∗
, x =

[
u, v
]ᵀ ∈ X. (4.17)

Before we turn to the proof note that a is coercive and that Ṽ is equipped with ã = a, since
cG = 0. Hence we have 〈Au, v〉V = a

(
u, v
)

= ã
(
u, v
)

for u, v ∈ V which implies that A : Ṽ → Ṽ ∗

is the Riesz isomorphism with

‖v‖
Ṽ ∗ =

∥∥A−1v
∥∥
ã
, v ∈ Ṽ ∗.

Proof. To prove that S is invertible, we use that A is invertible with A−1 ∈ L(V ∗, V ). Hence the
inverse of S ∈ L(Y, Y ∗) is given by

S−1 =

[
0 −I
A B

]−1

=

[
A−1B A−1

−I 0

]
= L(Y ∗, Y ). (4.18)

Therefore S−1 = S−1
∣∣
X

, since

for x ∈ X ⊂ Y ∗ x = SS−1x = SS−1x

and for x ∈ D(S) ⊂ X x = S−1Sx = S−1Sx.

To verify (4.17), we use Definition 4.9 and find that for x =
[
u, v
]ᵀ ∈ X

‖x‖2−1 = ‖S−1x‖2X = ‖S−1x‖2X = ‖A−1(Bu+ v)‖2ã + ‖u‖2m = ‖Bu+ v‖2
Ṽ ∗

+ ‖u‖2m

where we used that A : Ṽ → Ṽ ∗ is the Riesz isomorphism. The operator

T :=

[
I 0
B I

]
: X →W

allows us to write this equivalently as ‖x‖2−1 = ‖Tx‖2W for x ∈ X. This yields (4.17). Finally there

exists a unique isometric extension T̃ ∈ L(X−1,W ) of T , since X is dense in X−1.

The general results for second-order wave-type problems Having this Lemma at our disposal, we
are now able to characterize second-order wave-type problems in X−1.

Theorem 4.13. Let Assumption 4.1 be satisfied with cG = βqm = 0. For initial values u0 ∈ V ,
v0 ∈ H and source term f ∈ C1([0, T ];V ∗) + C([0, T ];H)(

u′(t) + Bu(t)
)′

+ Au(t) = f(t) for t ∈ [0, T ], (4.19a)

u(0) = u0, u′(0) = v0 (4.19b)

has a unique solution u ∈ C1([0, T ];H)∩C([0, T ];V ) which satisfies u′+Bu ∈ C1([0, T ];V ∗) and(
‖u(t)‖2m + ‖u′(t) + Bu(t)‖2

Ṽ ∗

)1/2
≤
(
‖u0‖2m + ‖v0 + Bu0‖2

Ṽ ∗

)1/2
+ t‖f‖

L∞(0,t;Ṽ ∗) (4.20)

for t ∈ [0, T ].
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Proof. There exists a unique weak solution w ∈ C1([0, T ];X−1) ∩ C([0, T ];X) of

w′(t) + S−1w(t) = g(t), w(0) = x0, (4.21)

since standard results, cf. [Pazy, 1992, Sect. 4.2], from semigroup theory apply: First, S−1 is the
generator of a contraction semigroup on X−1 by Theorem 4.11, since S is monotone by Lemma 4.2
and therefore generates a contraction semigroup on X. Second, x0 ∈ X = D(S−1) by assumption.
Third, g =

[
0, f
]ᵀ

satisfies

f ∈ C1([0, T ]; Ṽ ∗) ⇐⇒ g ∈ C1([0, T ];W )

⇐⇒ g = T̃ g ∈ C1([0, T ];X−1)

or

f ∈ C([0, T ];H) ⇐⇒ g ∈ C([0, T ];X).

Next, we characterize the evolution equation behind (4.21). Applying T̃ to (4.21), we obtain
from T̃w′(t) = (Tw)′(t) that

(Tw)′(t) + T̃ S−1w(t) = g(t). (4.22)

To see that (4.22) corresponds to (4.19a), we study the terms on the left hand side. First, a short
computation yields that for y =

[
ϕ,ψ

]ᵀ ∈ D(S)

T̃ S−1y = TSy =

[
I 0
B I

] [
0 −I
A B

] [
ϕ
ψ

]
=

[
0 −I
A 0

] [
ϕ
ψ

]
=

[
−ψ
Aϕ

]
. (4.23)

Thus we find that T̃ S−1w =
[
− v,Au

]ᵀ
for
[
u, v
]ᵀ

= w ∈ X by continuity. Second, we have that
Tw =

[
u,Bu + v

]ᵀ
. Thus the first equation of (4.22) gives v = u′ and the second equation of

(4.22) gives (4.19a). Finally, u solves (4.19), since u ∈ C([0, T ];V ), u′ = v ∈ C([0, T ];H) follows
from w ∈ C([0, T ];X) and u′ + Bu ∈ C1([0, T ]; Ṽ ∗) follows from T̃w ∈ C1([0, T ];W ).

For the proof of the stability estimate (4.20), observe that w satisfies (2.8) with ‖·‖−1 instead
of ‖·‖X and cqm = 0. Using w(t) ∈ X and (4.17), we can write this as

‖Tw(t)‖W ≤ ‖Tx
0‖W + t‖g‖L∞(0,t;W ).

To obtain (4.20), we then insert w =
[
u, u′

]ᵀ
, Tw =

[
u, u′ + Bu

]ᵀ
and g =

[
0, f
]ᵀ

.
Finally, to prove uniqueness of the solution u of (4.19), it suffices to argue that the solution

corresponding to u0 = v0 = 0, f = 0 is identically zero. To that end, we show that x(t) :=[
u(t), u′(t)

]ᵀ
solves (4.21):

First, note that then Tx ∈ C1([0, T ];W ) and x ∈ C([0, T ];X) by assumption and that T̃ (X−1)
is a closed subspace of W due to T being isometric. Hence

W0 :=
(
T̃ (X−1), ‖·‖W

)
is a Hilbert space and T is invertible on W0 with T̃−1 ∈ L(W0, X−1). Since Tx ∈ C([0, T ];W0) by
definition and Tx ∈ C1([0, T ];W ) by assumption, it follows that Tx ∈ C1([0, T ];W0). Applying
T̃−1, we see that x belongs to C1([0, T ];X−1).

Second, note that
(
Tx
)′

=
(
T̃ x
)′

= T̃ x′, since x ∈ C1([0, T ];X−1) ∩ C([0, T ];X) and T̃ ∈
L(X−1,W0). Thus it follows from (4.19a), (4.23), and x(t) ∈ X, that Tx satisfies

T̃ x′(t) =
(
Tx
)′

(t) =

[
u′(t)(

u′(t) + Bu(t)
)′] =

[
u′(t)
−Au(t)

]
= −T̃ S−1x(t). (4.24)

Applying T̃−1 to (4.24), reveals that x solves (4.21) with g = 0 and x0 = 0 which implies that
x(t) = 0 thus also u(t) = 0. This was the claim.
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A direct estimate in the W -norm A direct stability estimate for ‖x‖W does, presumably, not exist
for general second-order wave-type problems. However, if we assume that B ∈ L(H,V ∗), i.e.,

b
(
u, ϕ

)
≤ ‖B‖V ∗←H‖u‖m‖ϕ‖V , u ∈ H, ϕ ∈ V,

then the following result yields a stability estimate which directly bounds ‖x‖W .

Corollary 4.14. Let Assumption 4.1 be satisfied with cG = βqm = 0 and B ∈ L(H,V ∗). For
initial values u0 ∈ V , v0 ∈ H and source term f ∈ C1([0, T ];V ∗) + C([0, T ];H), the second-order
wave-type problem (4.2) has a unique solution u ∈ C2([0, T ]; Ṽ ∗) ∩ C1([0, T ];H) ∩ C([0, T ];V )
which satisfies(

‖u(t)‖2m + ‖u′(t)‖2
Ṽ ∗

)1/2
≤ C

((
‖u0‖2m + ‖v0‖2

Ṽ ∗

)1/2
+ t‖f‖

L∞(0,t;Ṽ ∗)

)
(4.25)

for t ∈ [0, T ].

Proof. Theorem 4.13 shows that there exists a unique solution u ∈ C1([0, T ];H) ∩ C([0, T ];V ) of
(4.19). Furthermore, we have by u′ + Bu ∈ C1([0, T ];V ∗) that

u′ =
(
u′ + Bu

)
−Bu ∈ C1([0, T ];V ∗)

and thus u belongs to C2([0, T ]; Ṽ ∗). Furthermore, u satisfies (4.19a) and therefore also (4.2),
since

u′′(t) + Au(t) + Bu′(t) =
(
u′(t) + Bu(t)

)′
+ Au(t) = f(t), t ∈ [0, T ].

Finally, if X−1 'W , then (4.25) follows from the stability estimate in X−1.

Therefore it remains to show X−1 'W . Let x =
[
u, v
]ᵀ ∈ X. Then we have by (4.17) that

‖x‖2−1 = ‖Bu+ v‖2
Ṽ ∗

+ ‖u‖2m ≤
(
‖B‖2

Ṽ ∗←H + 1
) (
‖u‖2m + ‖v‖2

Ṽ ∗

)
≤ C‖x‖2W .

On the other hand, S ∈ L(W,X), since

‖Sx‖2W = ‖v‖2m + ‖Au+ Bv‖2
Ṽ ∗
≤ ‖v‖2m + 2‖Au‖2

Ṽ ∗
+ 2‖Bv‖2

Ṽ ∗

≤ ‖v‖2m + 2‖u‖2ã + 2‖B‖2
Ṽ ∗←H‖v‖

2
m

≤ C‖x‖2X ,

where we used that A : Ṽ → Ṽ ∗ is the Riesz isomorphism and B ∈ L(H,V ∗). Together with
S−1x = S−1x, this yields

‖x‖W = ‖SS−1x‖W ≤ C‖S
−1x‖X = C‖x‖−1.

Hence we showed that there exist constants cW,X−1 , CW,X−1 > 0 s.t. for each x ∈ X

cW,X−1‖x‖W ≤ ‖x‖−1 ≤ CW,X−1‖x‖W .

Therefore X−1 'W , since X is densely and continuously embedded in both, X−1 and W .

Remark 4.15. In situations where B ∈ L(V,H), the bilinear form b often admits a strong and

a weak formulation. Then B̃ ∈ L(V,H) is a continuous extension of B which associated to the
weak formulation of b. In this sense, the weak-wellposedness from Corollary 4.14 corresponds to the
sub-case in Theorem 4.3.



4.5. FURTHER TOPICS AND LITERATURE 41

4.5 Further topics and literature

Theory of linear second-order evolution equations Our well-posedness result Theorem 4.3 is based
on semigroup theory. Alternatively, one can show the existence of unique solutions with a Faedo-
Galerkin approach, cf. [Lions and Magenes, 1972, Thm. 3.8.1] for b = 0 and [Zeidler, 1990b,
Thm. 33.A] for non-linear and non-autonomous problems. Note that for autonomous problems with
smooth coefficients, mild solutions (from semigroup theory) coincide with Faedo-Galerkin solutions,
cf. [Banks, 2012, Thm. 7.5]. Pure second-order problems can also be treated with so-called cosine
operator functions. The seminal work in this direction is [Fattorini, 1985] which was already published
in 1985. For a more recent contribution, cf. [Arendt et al., 2011, Sect. 3.14].

Theory of non-linear second-order evolution equations We hope that this work will be the basis for
a more general theory that considers also non-linear second-order evolution equations. The issue of
well-posedness of such problems is tackled in [Zeidler, 1990b], [Emmrich and Thalhammer, 2010]
and [Roub́ıček, 2013]. A theory for non-linear acoustic boundary conditions is provided by [Graber,
2012].

Weak solutions with semigroups [Kato, 1985, Sect. II.10.2] consider weak solution of second-order
evolution equation in a setting similar to the one we used. An approach to negative norm estimates
for space-time FEM can be found in [Bales and Lasiecka, 1995].

Identification of boundary conditions [Showalter, 1994, Thm. VI.2.4] and [Graber, 2012, Ap-
pendix] use trace operators, defined via an abstract Green’s theorem, to extract the bulk-pde and
the boundary condition from the abstract problem. This is the abstract version of what we do in
Chapter 6 to prove that a variational solution solves the corresponding partial differential equation.



42 CHAPTER 4. SECOND-ORDER WAVE-TYPE PROBLEMS



Chapter 5

Error analysis for second-order
wave-type problems

In this chapter, we analyze general non-conforming space discretizations of second-order wave-type
problems. To apply Theorem 2.9, we formulate them as a space discretization of the first-order
Cauchy problem corresponding to the second-order wave-type problem. We then use the structure
of the operator matrix to derive a priori errror bounds in terms of data and approximation errors.

Outline We describe the semi-discrete problem in Section 5.1 and prove a prior error bounds in
Section 5.2. As shown in Section 5.3, these results readily lead to convergence rates for Lagrange
finite elements with mass lumping. Last, we investigate the convergence of the full discretization
with the Crank–Nicolson method in Section 5.4.

5.1 Space discretization

This chapter is dedicated to general non-conforming space discretizations of (4.2) that yield an
approximation uh : [0, T ]→ Vh in the finite dimensional vector space Vh determined by

mh

(
u′′h(t), ϕh

)
+ bh

(
u′h(t), ϕh

)
+ ah

(
uh(t), ϕh

)
= mh

(
fh(t), ϕh

)
∀ϕh ∈ Vh, (5.1a)

uh(0) = u0
h, u′h(0) = v0

h. (5.1b)

Here u0
h, v

0
h ∈ Vh, fh : [0, T ] → Vh, and mh, ah, bh : Vh × Vh → R are the discrete counterparts

of u0
h, v0

h, f , and m, a, b, respectively. This ansatz covers a wide range of non-conforming space
discretizations, since we do not assume that Vh is a subspace of V . Analogously to Section 2.4, we
assume that there exists a lift operator

QVh : Vh → V,

which yields an approximation u ≈ QVh uh ∈ V of the exact solution u of (4.2).

Formulation as differential equation Let mh : Vh × Vh → R be the inner product of the Hilbert
space Hh := (Vh,mh) and denote its norm by ‖·‖mh

. Using the operators

Ah : Hh → Hh, mh

(
Ahuh, ϕh

)
= ah

(
uh, ϕh

)
, uh, ϕh ∈ Vh,

and Bh : Hh → Hh, mh

(
Bhuh, ϕh

)
= bh

(
uh, ϕh

)
, uh, ϕh ∈ Vh,

we can express the variational problem (5.1) as the second-order differential equation

u′′h(t) +Bhu
′
h(t) +Ahuh(t) = fh(t), uh(0) = u0

h, u′h(0) = v0
h.

43
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Stability For the error analysis of the semi-discretization (5.1), we additionally assume it is stable
in the following sense.

Assumption 5.1 (Stability) The following conditions hold for uh, ϕh ∈ Vh.

(i) The bilinear form ah is monotone and we write ‖ϕh‖ah := ah
(
ϕh, ϕh

)1/2
for the induced

semi-norm.

(ii) There is a constant c̃G ≥ 0 s.t.

ãh
(
uh, ϕh

)
:= ah

(
uh, ϕh

)
+ c̃Gmh

(
uh, ϕh

)
(5.2a)

defines an inner product on Vh and we write Ṽh :=
(
Vh, ãh

)
.

(iii) There is a constant Cmh,ãh > 0 independent of h s.t. ‖ϕh‖mh
≤ Cmh,ãh‖ϕh‖ãh .

(iv) There is a constant β̃qm ≥ 0 s.t. the bilinear form bh + β̃qmmh is monotone.

(v) There are constants CH ≥ cH > 0 independent of h s.t.

cH‖QVh ϕh‖m ≤ ‖ϕh‖mh
≤ CH‖QVh ϕh‖m. (5.2b)

(vi) There are constants CV ≥ cV > 0 independent of h s.t.

cV ‖QVh ϕh‖ã ≤ ‖ϕh‖ãh ≤ CV ‖Q
V
h ϕh‖ã. (5.2c)

Remark 5.2. Assumption 5.1 (ii) with c̃G = 1 and Assumption 5.1 (iii) with Cmh,ãh = 1 already
follow from Assumption 5.1 (i).

Formulation in the framework of monotone operators Analogous to the continuous case, we write
(5.1) as the first-order differential equation (2.9) with

xh =

[
uh
u′h

]
, Sh =

[
0 −IVh
Ah Bh

]
, gh =

[
0

fh(t)

]
. (5.3)

in the Hilbert space Xh = Ṽh ×Hh endowed with the inner product

ph
([
wh, vh

]ᵀ
,
[
ϕh, ψh

]ᵀ)
:= ãh

(
wh, ϕh

)
+mh

(
vh, ψh

)
. (5.4a)

and norm

‖
[
wh, vh

]ᵀ‖2Xh
:= ãh

(
wh, wh

)
+mh

(
vh, vh

)
. (5.4b)

To compare the approximation with the exact solution, we define the lift operator Qh : Xh → X as

Qh

[
wh
vh

]
:=

[
QVh wh
QVh vh

]
.

Note that one can also choose two different lifts for the components wh and vh. For the ease of
presentation, we refrain from investigating this here.



5.2. A PRIORI ERROR BOUNDS 45

Notation Before we turn to the error analysis, we introduce the necessary notation, cf. Section 2.4.
Let the reference operator be given by Jh =

(
JVh , J

H
h

)
and Ih : ZV → Vh a continuous interpolation

operator defined on the dense subspace ZV of V . The adjoint lifts are characterized by

QH∗h : H → Hh, mh

(
QH∗h u, ϕh

)
= m

(
u,QVh ϕh

)
, u ∈ H, ϕh ∈ Vh,

and QV ∗h : V → Ṽh, ãh
(
QV ∗h u, ϕh

)
= ã

(
u,QVh ϕh

)
, u ∈ V, ϕh ∈ Vh,

and we set PHh := QVhQ
H∗
h , P Vh := QVhQ

V ∗
h . For the orthogonal projections, we use the notation

m
(
(I−ΠH

h )u,QVh ϕh
)

= 0, u ∈ H, ϕh ∈ Vh,
and ã

(
(I−ΠV

h )u,QVh ϕh
)

= 0, u ∈ V, ϕh ∈ Vh.

From (2.25) with X = Ṽ and X = H, respectively, these operators satisfy the following error
bounds

‖(I− P Vh )w‖ã ≤ ‖(I−ΠV
h )w‖ã + CV ‖∆ã(QV ∗h w)‖

Ṽ ∗h
, (5.5a)

and ‖(I− PHh )w‖m ≤ ‖(I−ΠH
h )w‖m + CH‖∆m(QH∗h w)‖H∗h (5.5b)

for all w ∈ ZV , where

∆m
(
uh, ϕh

)
:= m

(
QVh uh, Q

V
h ϕh

)
−mh

(
uh, ϕh

)
and ∆ã

(
uh, ϕh

)
:= ã

(
QVh uh, Q

V
h ϕh

)
− ãh

(
uh, ϕh

)
.

Finally, since norms on finite vector dimensional spaces are equivalent, there is an εh > 0 s.t.

εh‖ϕh‖ãh ≤ ‖ϕh‖mh
, ϕh ∈ Vh. (5.6)

Remark 5.3. Let Xh be a function space which is based on a mesh Th of Ω and consider a
conforming finite element disretization with ‖·‖mh

∼ ‖·‖L2(Ω) and ‖·‖ãh ∼ ‖·‖H1(Ω). The we have
εh ≤ Ch due to the inverse estimate from [Brenner and Scott, 2008, Lem. 4.5.3].

5.2 A priori error bounds

A bound of the remainder operator As a first step towards an a priori error estimate, we prove a
bound for the remainder term Rh = Q∗hS − ShJh.

Lemma 5.4. Let Assumption 5.1 be satisfied and x =
[
u, v
]ᵀ ∈ Z ∩ V × V s.t. Au + Bv ∈ H.

Then

‖Rhx‖Xh
≤ C

(
‖∆ã(QV ∗h v)‖

Ṽ ∗h
+ ‖∆ã(QV ∗h u)‖

Ṽ ∗h
+ ‖∆m(QH∗h u)‖H∗h

+ ‖(I−ΠV
h )v‖ã + ‖(I−ΠV

h )u‖ã + ‖(I−ΠH
h )u‖m

+ ‖(I−QVh JHh )v‖ã + ε−1
h ‖(Q

V ∗
h − JVh )u‖ãh

+ max
‖ψh‖mh

=1
|b
(
v,QVh ψh

)
− bh

(
JHh v, ψh

)
|
)
.

Proof. Recall that p and ph denote the inner products on X and Xh respectively, and observe that
we have

Rh

[
u
v

]
=

[
−(QV ∗h − JHh )v

QH∗h (Au+ Bv)− (AhJ
V
h u+BhJ

H
h v)

]
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by definition of S, Sh and Rh = Q∗hS − ShJh. To prove an estimate for

‖Rhx‖Xh
= max
‖yh‖Xh

=1
ph
(
Rhx, yh

)
,

let yh =
[
ϕh, ψh

]ᵀ ∈ Xh with ‖yh‖2Xh
= ‖ϕh‖2ãh + ‖ψh‖2mh

= 1 and study

ph
(
Rhx, yh

)
= −ãh

(
(QV ∗h − JHh )v, ϕh

)
+mh

(
QH∗h (Au+ Bv)− (AhJ

V
h u+BhJ

H
h v), ψh

)
= −ãh

(
(QV ∗h − JHh )v, ϕh

)
+ a
(
u,QVh ψh

)
− ah

(
JVh u, ψh

)
+ b
(
v,QVh ψh

)
− bh

(
JHh v, ψh

)
.

For the first term, we obtain with ‖ϕh‖ãh ≤ 1 and P Vh = QVhQ
V ∗
h

ãh
(
(QV ∗h − JHh )v, ϕh

)
≤ ‖(QV ∗h − JHh )v‖ãh‖ϕh‖ãh
≤ CV

(
‖(P Vh − I)v‖ã + ‖(I−QVh JHh )v‖ã

)
≤ C

(
‖(I−ΠV

h )v‖ã + ‖∆ã(QV ∗h v)‖
Ṽ ∗h

+ ‖(I−QVh JHh )v‖ã
)
,

where we used the Cauchy–Schwarz inequality in ãh, (5.2c), and (5.5a).
For the second term, we estimate with ‖ψh‖mh

≤ 1

a
(
u,QVh ψh

)
− ah

(
JVh u, ψh

)
≤ |a

(
u,QVh ψh

)
− ah

(
QV ∗h u, ψh

)
|+ |ah

(
(QV ∗h − JVh )u, ψh

)
|

≤ |ã
(
u,QVh ψh

)
− ãh

(
QV ∗h u, ψh

)
−
(
cGm

(
u,QVh ψh

)
− c̃Gmh

(
QV ∗h u, ψh

))
|

+ ‖(QV ∗h − JVh )u‖ah‖ψh‖ah
≤ max{cG, c̃G}|mh

(
(QV ∗h −QH∗h )u, ψh

)
|+ ‖(QV ∗h − JVh )u‖ãh‖ψh‖ãh

≤ max{cG, c̃G}‖(QV ∗h −QH∗h )u‖mh
+ ε−1

h ‖(Q
V ∗
h − JVh )u‖ãh .

where we used the definitions (4.5) and (5.2a) for ã and ãh, respectively, applied the Cauchy–Schwarz
inequality for ah together with ‖u‖ah ≤ ‖u‖ãh , and employed (5.6). We further estimate

‖(QV ∗h −QH∗h )u‖mh
≤ CH‖(P Vh − PHh )u‖m
≤ CH

(
CH,V α

−1/2‖(P Vh − I)u‖ã + ‖(I− PHh )u‖m
)

≤ CHCH,V α−1/2
(
‖(I−ΠV

h )u‖ã + CV ‖∆ã(QV ∗h u)‖
Ṽ ∗h

)
+ CH

(
‖(I−ΠH

h )u‖m + CH‖∆m(QH∗h u)‖H∗h
)

with (5.2b) in the first, (4.6) in the second, and (5.5a) and (5.5b) in the third estimate.
Collecting these estimates yields the desired bound.

We now state our a priori error bound for general non-conforming space discretizations of second-
order wave-type problems. To prove it, we will express the results from Theorem 2.9 in terms of
second-order wave-type problems and use the previous lemma.

Theorem 5.5. Let the assumptions of Theorem 4.3 be fulfilled and let u be the unique solution
of (4.2) with u ∈ C2

(
[0, T ];ZV

)
. Furthermore, let Assumption 5.1 be satisfied and let xh be the

solution of the semi-discrete problem (5.1). Then the lifted semi-discrete solution QVh u satisfies

‖QVh uh(t)− u(t)‖ã + ‖QVh u′h(t)− u′(t)‖m ≤ Ce
ĉqmt
(
1 + t

) 4∑
i=1

Ei
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for t ∈ [0, T ], where C is independent of h and t, ĉqm = c̃GCmh,ãh/2 + β̃qm, and

E1 := ‖u0
h −QV ∗h u0‖ãh + ‖v0

h − Ihv0‖mh
+ ‖fh −QH∗h f‖L∞(Hh), (5.7a)

E2 := ‖(I−QVh Ih)u‖∞,Ṽ + ‖(I−QVh Ih)u′‖∞,Ṽ + ‖(I−QVh Ih)u′′‖L∞(H), (5.7b)

E3 := ‖∆ã(QV ∗h u)‖∞,Ṽ ∗h + ‖∆m(QH∗h u)‖L∞(H∗h) + ‖∆ã(QV ∗h u′)‖
L∞(Ṽ ∗h ) (5.7c)

+ ‖∆m(QH∗h u′′)‖L∞(H∗h),

E4 :=
∥∥∥ max
‖ψh‖mh

=1
|b
(
u′, QVh ψh

)
− bh

(
Ihu
′, ψh

)
|
∥∥∥
L∞(0,T )

. (5.7d)

Proof. Theorem 2.9 applies since (2.9) with (5.3) is stable on Xh = Ṽh × Hh in the sense of
Assumption 2.8: By Assumption 5.1 mh, bh, and ah have the same properties as their continuous
counterparts, and it follows as in the proof of Lemma 4.2 that Sh is maximal and quasi-monotone
with ĉqm = c̃GCmh,ãh/2 + β̃qm. Moreover, Assumptions 5.1 (v) and 5.1 (vi) imply that the lift is
stable in the sense of 2.8 (ii).

Thus the general first order error bound from Theorem 2.9 holds for x =
[
u, u′

]ᵀ
and xh =[

uh, u
′
h

]ᵀ
where u is the solution of (4.2) and uh is the solution of (5.1). Since

‖QVh uh − u‖ã + ‖QVh u′h − u′‖m ≤
√

2‖Qhxh − x‖X ,

it remains to bound the single terms in (2.20).
Starting from (2.20), we choose the reference operator Jh =

(
QV ∗h , Ih

)
∈ L

(
V ×ZV , Vh×Vh

)
.

Then the errors in the initial values and in the source term (2.20a) are bounded by
√

2E1.
Due to JVh = QV ∗h , the first term in (2.20b) is bounded from above by

‖(Q∗h − Jh)x′‖Xh
= ‖(QH∗h − Ih)u′′‖mh

≤ CH
(
‖(PHh − I)u′′‖m + ‖(I−QVh Ih)u′′‖m

)
≤ CH

(
‖(I−ΠH

h )u′′‖m + CH‖∆m(QH∗h u′′)‖H∗h + ‖(I−QVh Ih)u′′‖m
)
,

where we used (5.2b), PHh = QVhQ
H∗
h , and (5.5b). To bound ‖Rhx‖Xh

, we use the estimate from
Lemma 5.4 which simplifies to

‖Rhx‖Xh
≤ C

(
‖∆ã(QV ∗h u′)‖

Ṽ ∗h
+ ‖∆ã(QV ∗h u)‖

Ṽ ∗h
+ ‖∆m(QH∗h u)‖H∗h

+ ‖(I−ΠV
h )u′‖ã + ‖(I−ΠV

h )u‖ã + ‖(I−ΠH
h )u‖m + ‖(I−QVh Ih)u′‖ã

+ max
‖ψh‖mh

=1
|b
(
u′, QVh ψh

)
− bh

(
Ihu
′, ψh

)
|
)
.

Finally, (5.5a) and P Vh = QVhQ
V ∗
h yield that the reference error (2.20c) satisfies

‖(I−QhJh)x‖X ≤ ‖(I− P Vh )u‖ã + ‖(I−QVh Ih)u′‖mBig)

≤ ‖(I−ΠV
h )u‖ã + CV ‖∆ã(QV ∗h u)‖

Ṽ ∗h
+ ‖(I−QVh Ih)u′‖m.

The final estimate then follows from bounding the orthogonal projections errors by interpolation
errors of QVh Ih and collecting terms.

Remark 5.6. Some terms in the error bound can be further estimated.

(i) Each term in data error E1 can be estimated against an interpolation error. For the first term,
we find with (5.2c)

‖u0
h −QV ∗h u0‖ãh ≤ ‖u

0
h − Ihu0‖ãh + CV ‖QVh (Ih −QV ∗h )u0‖ã

≤ ‖u0
h − Ihu0‖ãh + CV ‖(QVh Ih − I)u0‖ã + CV ‖(I− P Vh )u0‖ã.
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Using (5.5a) and the best approximation property of ΠV
h , we further estimate

‖(I− P Vh )u0‖ã ≤ ‖(I−ΠV
h )u0‖ã + CV ‖∆ã(QV ∗h u0)‖

Ṽ ∗h

≤ ‖(I−QVh Ih)u0‖ã + CV ‖∆ã(QV ∗h u0)‖
Ṽ ∗h
.

Altogether, we obtain

‖u0
h −QV ∗h u0‖ãh ≤ ‖u

0
h − Ihu0‖ãh + 2CV ‖(I−QVh Ih)u0‖ã + C2

V ‖∆ã(QV ∗h u0)‖
Ṽ ∗h
,

and, analogously,

‖fh −QH∗h f‖mh
≤ ‖fh − Ihf‖mh

+ 2CH‖(I−QVh Ih)f‖m + C2
H‖∆m(QH∗h f)‖H∗h ,

if f ∈ ZV .

(ii) If B ∈ L(Ṽ ,H), then (5.2b) yields for v ∈ Ṽ and ψh ∈ Vh with ‖ψh‖mh
= 1

|b
(
v,QVh ψh

)
− bh

(
Ihv, ψh

)
| ≤ |b

(
(I−QVh Ih)v,QVh ψh

)
|+ |b

(
Ihv,Q

V
h ψh

)
− bh

(
Ihv, ψh

)
|

≤ |〈B(I−QVh Ih)v,QVh ψh〉V |+ |∆b
(
Ihv, ψh

)
|

≤ ‖B‖
H←Ṽ ‖(I−QVh Ih)v‖ã‖Q

V
h ψh‖m + |∆b

(
Ihv, ψh

)
|

≤ ‖B‖
H←Ṽ ‖(I−QVh Ih)v‖ãc

−1
H + |∆b

(
Ihv, ψh

)
|.

Therefore, E4 is bounded by

E4 ≤ C
(
‖(I−QVh Ih)u′‖

L∞(Ṽ ) + ‖∆b(Ihu′)‖L∞(H∗h)

)
.

We call the discretization (5.1) conforming, if

Vh ⊂ V, QVh = I, ∆m = 0, ∆a = 0.

For conforming discretizations we state an error bound which is independent of u′′.

Corollary 5.7. Let (5.1) be a conforming discretization and consider the situation from Theo-
rem 5.5. Then the semi-discrete solution uh satisfies

‖uh(t)− u(t)‖ã + ‖u′h(t)− u′(t)‖m
≤ Cecqmt

(
1 + t

)(
‖u0

h −ΠV
h u

0‖ãh + ‖v0
h −ΠH

h v
0‖mh

+ ‖fh −ΠH
h f‖L∞(Hh)

+ ‖(I− Ih)u‖∞,Ṽ + ‖(I− Ih)u′‖∞,Ṽ + ε−1
h ‖(I− Ih)u′‖L∞(H)

+
∥∥∥ max
‖ψh‖mh

=1
|b
(
u′, ψh

)
− bh

(
ΠH
h u
′, ψh

)
|
∥∥∥
L∞(0,t)

)
.

for t ∈ [0, T ], where C is independent of h and t, and cqm = c̃GCmh,ãh/2 + β̃qm.

Proof. In comparison to the previous proof, there are only three changes:
First, ĉqm is equal to cqm from Lemma 4.2, since the discrete bilinear forms obey the same

constants as their continuous counterparts. Second, we choose Jh = Πh = Ph. Therefore the
first term in (2.20b) completely vanishes. Third, since QH∗h = ΠH

h and QV ∗h = ΠV
h for conforming

methods, the estimate from Lemma 5.4 reads

‖Rhx‖Xh
≤ C

(
‖(I−ΠV

h )u′‖ã + ‖(I−ΠV
h )u‖ã + ‖(I−ΠH

h )u‖m + ‖(I−ΠH
h )u′‖ã

+ max
‖ψh‖mh

=1
|b
(
u′, ψh

)
− bh

(
ΠH
h u
′, ψh

)
|
)
.
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To bound the H-orthogonal projection error in the Ṽ -norm, we then use (3.3) with X = H and
Y = Ṽ which gives

‖(I−ΠH
h )u′‖ã ≤ ‖(I− Ih)u′‖ã + 2ε−1

h ‖(I− Ih)u′‖m.

For the final bound, we collect terms and estimate orthogonal projections errors by interpolation
errors.

5.3 Example: Finite elements for the acoustic wave equation

In this section, we show how the results from the previous section can be used to show convergence
rates for a specific example: the acoustic wave equation and its space discretization with linear
Lagrange finite elements.

We seek the solution u : [0, T ]× Ω→ R of

utt − div(cΩ∇u) = f in Ω, (5.8a)

u(t) = 0 on Γ, (5.8b)

u(0) = u0, ut(0) = v0 in Ω. (5.8c)

Here, f is a given source term and cΩ ∈ L∞(Ω)d×d models the wave speed. We assume that cΩ(x),
x ∈ Ω is be symmetric, and that there are c+

Ω ≥ c
−
Ω > 0 s.t.

c−Ω‖ξ‖
2 ≤ cΩ(x)ξ · ξ ≤ c+

Ω‖ξ‖
2 for a.e. x ∈ Ω and all ξ ∈ Rd.

We can write the variational formulation of (5.8) in the form of (4.2) making the following
identifications. For the functional spaces we set V = H1

0 (Ω) and H = L2(Ω). As usual, the bilinear
form a is given by

a
(
u, ϕ

)
:=

∫
Ω
cΩ∇u · ∇ϕ dx u, ϕ ∈ V

and b vanishes. Thus, Assumption 4.1 holds with cG = 0 and we have ã = a. Hence we can apply
Theorem 4.3 and get for suitable u0, v0 and f that there exists a unique solution of (5.8) with

u ∈ C2([0, T ];L2(Ω)) ∩ C1([0, T ];H1
0 (Ω))) ∩ C([0, T ]; [D(A)]),

where

D(A) =
{
u ∈ H1

0 (Ω) | div(cΩ∇u) ∈ L2(Ω)
}
.

The associated operator of the first-order in time formulation is skew-symmetric and the energy
(4.9) is conserved, cf. [Engel et al., 1999, Thm. II.3.24].

For the spatial discretization we restrict us to linear finite elements for this exposition. Note,
however, that higher order elements, could be handled as well. Assume that the mesh Th is a
triangulation of Ω. Let Vh be the space of linear finite elements on Th. Since Vh is a subspace of
V , the lift operator QVh = I is trivial.

First, we study finite elements with exact intetration. This means that we choose mh = m as
the standard L2(Ω) inner product and ah = a. For this choice Assumption 5.1 holds trivially since
∆m = ∆ã = 0.

We can use the error bound from Corollary 5.7 to find

‖uh(t)− u(t)‖ã + ‖u′h(t)− u′(t)‖m
≤ C(1 + t) sup

τ∈[0,t]

(
‖(I− Ih)u(τ)‖ã + ‖(I− Ih)u′(τ)‖ã + ε−1

h ‖(I− Ih)u′(τ)‖m
)
.
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For the standard nodal interpolation operator Ih it is known that

‖(I− Ih)ϕ‖m + h‖(I− Ih)ϕ‖ã ≤ Ch
2|ϕ|H2(Ω), ϕ ∈ H2(Ω)

cf. [Brenner and Scott, 2008, Sect. 4.4]. Overall, we find that the difference in the energy norm
between the exact solution u of (5.8) and its corresponding FEM approximation uh scales like h.

We next study the effect of numerical integration. The main difference to exact integration is,
that now mh and ah differ from m and a, respectively. Applying Theorem 5.5 in this case, we have

‖uh(t)− u(t)‖ã + ‖u′h(t)− u′(t)‖m
≤ C(1 + t) sup

τ∈[0,t]

(
‖u(τ)− Ihu(τ)‖ã + ‖u′(τ)− Ihu′(τ)‖ã + ‖u′′(τ)− Ihu′′(τ)‖m+

‖∆ã(QV ∗h u(τ))‖
Ṽ ∗h

+ ‖∆m(QH∗h u(τ))‖H∗h + ‖∆ã(QV ∗h u′(τ))‖
Ṽ ∗h

+

‖∆m(QH∗h u′(τ))‖H∗h + ‖∆m(QH∗h u′′(τ))‖H∗h
)
.

Hence we need to quantify the differences in the bilinear form. For example in the above setting
one can use the d-dimensional trapezoidal rule to approximate the integrals. More precisely, let
{xK,j}d+1

j=1 be vertices of the element K ∈ Th. Then mh and ah are given by the quadrature
formulas

mh

(
v, w

)
=
∑
K∈Th

d+1∑
j=1

|K|
d+ 1

v(xK,j)w(xK,j)

and respectively

ãh
(
v, w

)
=
∑
K∈Th

d+1∑
j=1

|K|
d+ 1

cΩ(xK,j)∇v(xK,j) · ∇w(xK,j).

Under appropriate regularity assumption on c it is well-know that ‖∆ã(vh)‖
Ṽ ∗h
∈ O(h) and

‖∆m(vh)‖H∗h ∈ O(h) for all vh ∈ Vh, see e.g. [Ciarlet, 2002, Section 4.1]. Inserting this into

the a priori bound above shows that there is no order reduction due to use of numerical quadrature.

Remark 5.8. These results correspond to those of [Dupont, 1973], [Baker, 1976], and [Baker and
Dougalis, 1976]. Numerical quadrature was only taken into acount in the latter references. The
choice of the trapezoidal rule for linear finite elements leads to diagonal mass matrix. This is known
as mass lumping. For further reference, see [Cohen, 2002, Chapters 11–13].

5.4 Full discretization with the Crank–Nicolson method

In this section, we consider the time integration of general non-conforming space discretizations with
the Crank–Nicolson method. To obtain the fully discrete scheme, we apply (2.39) to the first-order
in time formulation of (5.1). With xnh :=

[
unh, v

n
h

]ᵀ
and Sh, gh defined in (5.3), this leads to[

un+1
h

vn+1
h

]
=

[
unh
vnh

]
− τ

2

[
0 −IVh
Ah Bh

] [
un+1
h + unh
vn+1
h + vnh

]
+
τ

2

[
0

fn+1
h + fnh

]
, n ≥ 0. (5.9)

The convergence result for QVh u
n
h ≈ u(tn), tn = nτ is a direct consequence of Theorem 2.18 and

our considerations in Theorem 5.5.

Corollary 5.9. Let the assumptions of Theorem 5.5 be fulfilled and τ ĉqm < 2. If the solution u

suffices u ∈ C4([0, T ];H)∩C3([0, T ]; Ṽ ), then the lifted approximations QVh u
n
h and QVh v

n
h given by

(5.9) satisfy(
‖QVh unh − u(tn)‖2ã + ‖QVh vnh − u′(tn)‖2m

)1/2
≤ Cetnĉqmtnτ

2E5 + C(1 + tne
ĉqmtn

) 4∑
i=1

Ei
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for tn ∈ [0, T ], where C is independent of h and t, ĉqm and Ei, i = 1, 2, 3, 4 are defined in (5.7),
and

E5 := ‖u(3)‖
L∞(Ṽ ) + ‖u(4)‖L∞(H).

Proof. Let x :=
[
u, u′

]ᵀ
. Then x solves (2.7) in X = Ṽ ×H with S and g from (4.7). Furthermore,

u ∈ C4([0, T ];H) ∩ C3([0, T ]; Ṽ ) implies x ∈ C3([0, T ];X). By definition, xnh satisfies (2.39) with
Sh and gh defined in (5.3). Therefore Theorem 2.18 yields an error bound for xnh =

[
unh, v

n
h

]ᵀ
. We

derive the desired upper bound from

‖x(3)‖L∞(0,tn;X) ≤
√

2
(
‖u(3)‖

L∞(0,tn;Ṽ ) + ‖u(4)‖L∞(0,tn;H)

)
and the estimates in the proof of Theorem 5.5 by choosing Jh =

(
QV ∗h , Ih

)
. There we showed that

each term in the bound for ‖Qhxnh − x(tn)‖X is smaller than E1 + E2 + E3 + E4.
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Chapter 6

Analysis of wave equations with
dynamic boundary conditions

In this chapter, we demonstrate how the theory for second-order wave-type problems provides well-
posedness results for specific wave equations. We are particularly interested in the results for our
two main examples: the wave equations with kinetic and acoustic boundary conditions.

A road-map Let us shortly sketch how we prove the well-posedness of a given wave equation. To
formulate the partial differential equation as a second-order wave-type problem,

I we derive a variational formulation,

I we define the spaces H,V , the bilinear forms m, a, b, the source term f , and

I we show that Assumption 4.1 is satisfied.

This classifies the variational formulation as a second-order wave-type problem which is well-posed
by Theorem 4.3 provided that

u0, v0 ∈ V s.t. Au0 + Bv0 ∈ H (6.1a)

and f ∈ C1
(
[0, T ];H

)
or

[
f,Bf

]ᵀ ∈ C([0, T ];V ×H
)
. (6.1b)

In the second part of the proof,

I we verify if and in which sense the solution satisfies the original partial differential equation,

I we characterize the assumptions on the data (6.1) in terms of Sobolev spaces, and,

I we derive weak stability estimates by using the considerations from Section 4.4.

Outline In Section 6.1, we consider the wave equation with degenerate non-locally reacting kinetic
boundary conditions and show that its variational formulation is a second-order wave-type problem.
We use these preparatory results to show specific well-posedness results for the wave equation with
Robin boundary conditions and the wave equation with kinetic boundary conditions in Section 6.2.
We conclude this chapter in Section 6.3 with an analysis of the wave equation with acoustic boundary
conditions.

6.1 Degenerate non-locally reacting kinetic boundary conditions

In this section, we consider a problem which covers a wide range of linear wave equations with
various boundary conditions. By analyzing this problem, we can give substantial parts of the well-
posedness proofs for these examples in a unified way. In comparison to the non-locally reacting

53
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kinetic boundary conditions from Section 1.2.2, the considered model also accounts for damping
and advection effects. In addition, all coefficients but cΩ may be degenerate, i.e., not uniformly
positive.

The partial differential equation We seek a function u : [0, T ]× Ω→ R such that

utt +
(
αΩ + βΩ · ∇

)
ut − div(γΩ∇ut) + aΩu− div(cΩ∇u) = fΩ in Ω, (6.2a)

µutt +
(
αΓ + βΓ · ∇Γ

)
ut − divΓ(γΓ∇Γut) + aΓu− divΓ(cΓ∇Γu)

= −n · cΩ∇u− γΩ∂nut + fΓ on Γ, (6.2b)

where we assume the following.

Assumption 6.1

(i) The wave speed cΩ ∈ L∞(Ω)d×d is symmetric and uniformly elliptic, i.e., there exist
c+

Ω , c
−
Ω > 0 s.t.

c−Ω |ξ|
2 ≤ cΩ(x)ξ · ξ ≤ c+

Ω |ξ|
2 for a.e. x ∈ Ω and all ξ ∈ Rd (6.3)

(ii) αΩ, γΩ, aΩ ∈ L∞(Ω) are non-negative.

(iii) µ, αΓ, γΓ, cΓ, aΓ ∈ L∞(Γ) are non-negative,

(iv) βΩ ∈ L∞(Ω)d is a vector field in Ω with div βΩ ∈ L∞(Ω).

(v) βΓ ∈ L∞(Γ)d is a vector field on Γ with divΓ βΓ ∈ L∞(Γ).

(vi) The source terms fΩ : [0, T ]× Ω→ R, fΓ : [0, T ]× Γ→ R are functions.

Interpretation The coefficients αΩ and αΓ describe viscous damping and the coefficients γΩ and
γΓ describe strong damping in the bulk and on the surface, respectively. Strong damping effects
are important for applications as they can be used to approximate the behavior of non-Hookean
materials under high strains. Moreover, advective (also convective) flows in the volume and the
surface are modeled by the vector fields βΩ and βΓ, respectively, cf. [Campos, 2007, (W4)].

Degenerate coefficients Since all coefficients but cΩ are only required to be non-negative, effects as
wave propagation on the surface or damping may be absent. In particular, coefficients can vanish on
parts of their domain. This allows us for example to impose Robin and kinetic boundary conditions
on different parts of Γ.

Simplifying assumptions We make the following simplifying assumptions for this section to keep
this discussion at a reasonable length.

Assumption 6.2 Let

(i) γΓ, cΓ ∈W 1,∞(Γ), γΩ ∈W 1,∞(Ω), βΩ ∈W 1,∞(Ω)d and cΩ ∈W 1,∞(Ω)d×d,

(ii) Γ be a closed surface with Γ ∈ C2,

(iii) βΓ(x) · n(x) = 0 for x ∈ Γ, and,

(iv)
(

suppβΓ ∪ supp γΓ

)
⊂ supp cΓ.

In Remark 6.4, we discuss under which conditions these assumptions can be weakened.

Related literature Our approach on dynamic boundary conditions with degenerate coefficients is
inspired by [Disser et al., 2015]. Kinetic boundary conditions with strong damping are for example
considered in [Graber and Lasiecka, 2014] and [Graber and Shomberg, 2016].

Following our user’s guide, we start with the derivation of a variational formulation of (6.2).
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The variational formulation

Let u be a sufficiently smooth solution of (6.2). We multiply (6.2a) with a function ϕ ∈ C∞
(
Ω
)

and integrate over Ω. Applying Gauss’ Theorem twice, we end up with∫
Ω
uttϕdx +

∫
Ω
αΩutϕ+

(
βΩ · ∇ut

)
ϕ+ γΩ∇ut · ∇ϕdx +

∫
Ω
aΩuϕ+ cΩ∇u · ∇ϕdx

=

∫
Ω
fΩϕdx +

∫
Γ

(
n · cΩ∇u+ γΩ∂nut

)
ϕds.

The last term can be rewritten using the boundary condition (6.2b)∫
Γ

(
n · cΩ∇u+ γΩ∂nut

)
ϕds

= −
∫

Γ

(
µutt +

(
αΓ + βΓ · ∇Γ)ut − divΓ(γΓ∇Γut) + aΓu− divΓ(cΓ∇Γu)− fΓ

)
ϕds.

Finally, it follows from (4) that

−
∫

Γ
divΓ(γΓ∇Γut)ϕ+ divΓ(cΓ∇Γu)ϕds =

∫
Γ
γΓ∇Γut · ∇Γϕ+ cΓ∇Γu · ∇Γϕds.

Putting all pieces together, we find∫
Ω
uttϕdx +

∫
Γ
µuttϕds

+

∫
Ω

(
αΩut + βΩ · ∇ut

)
ϕ+ γΩ∇ut · ∇ϕdx +

∫
Γ

(
αΓut + βΓ · ∇Γut

)
ϕ+ γΓ∇Γut · ∇Γϕds

+

∫
Ω
aΩuϕ+ cΩ∇u · ∇ϕdx +

∫
Γ
aΓuϕ+ cΓ∇Γu · ∇Γϕds

=

∫
Ω
fΩϕdx +

∫
Γ
fΓϕds ∀ϕ ∈ C∞(Ω).

Hence each classical solution u ∈ C2
(
Ω× [0, T ]

)
of (6.2) satisfies the variational formulation

m
(
utt(t, ·), ϕ

)
+ b
(
ut(t, ·), ϕ

)
+ a
(
u(t, ·), ϕ

)
= 〈f(t), ϕ〉 ∀ϕ ∈ C∞(Ω) (6.4)

where

m
(
w,ϕ

)
:=

∫
Ω
wϕdx +

∫
Γ
µwϕds, (6.5a)

b
(
w,ϕ

)
:=

∫
Ω

(
αΩw + βΩ · ∇w

)
ϕ+ γΩ∇w · ∇ϕdx (6.5b)

+

∫
Γ

(
αΓw + βΓ · ∇Γw

)
ϕ+ γΓ∇Γw · ∇Γϕds, (6.5c)

a
(
w,ϕ

)
:=

∫
Ω
aΩwϕ+ cΩ∇w · ∇ϕdx +

∫
Γ
aΓwϕ+ cΓ∇Γw · ∇Γϕds, (6.5d)

〈f(t), ϕ〉 :=

∫
Ω
fΩ(t)ϕdx +

∫
Γ
fΓ(t)ϕds, t ∈ [0, T ]. (6.5e)

According to (4.9), the physical energy corresponding to (6.2) is given by

E (u, ut) =
1

2

(∫
Ω
u2
t dx +

∫
Γ
µu2

t ds+

∫
Ω
aΩu

2 + cΩ∇u · ∇udx +

∫
Γ
aΓu

2 + cΓ|∇Γu|2 ds

)
.
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The second-order wave-type problem

To formulate (6.4) as an abstract second-order wave-type problem, we require the appropriate
functional analytic framework.

Hilbert spaces We choose the Hilbert spaces H and V as

H := completion of C∞
(
Ω
)

w.r.t. ‖·‖m, ‖u‖2m := m
(
u, u

)
,

V := completion of C∞
(
Ω
)

w.r.t. ‖·‖V , ‖u‖2V := m
(
u, u

)
+ a
(
u, u

)
.

Note that by construction ‖v‖m ≤ ‖v‖V for v ∈ C∞
(
Ω
)
. We extend this embedding continuously

from C∞
(
Ω
)
→ C∞

(
Ω
)

to V
d
↪→ H which allows us to form the Gelfand triple (4.1).

Bilinear forms Let u, ϕ ∈ C∞
(
Ω
)
. By the Cauchy–Schwarz inequality it follows that

m
(
u, ϕ

)
≤ ‖u‖m‖ϕ‖m and a

(
u, ϕ

)
≤ ‖u‖V ‖ϕ‖V ,

so that both bilinear forms extend continuously from C∞
(
Ω
)
× C∞

(
Ω
)

to H × H and V × V ,
respectively. Moreover Assumption 6.2 (iv) ensures that there exists a constant Cb > 0 s.t.

|b
(
u, ϕ

)
| ≤ Cb‖u‖V ‖ϕ‖V .

Hence b also extends continuously to V × V .

Source term Finally, it follows from

|〈f(t), ϕ〉| ≤ ‖fΩ(t)‖L2(Ω)‖ϕ‖L2(Ω) + ‖fΓ(t)‖L2(Γ)‖ γ(ϕ)‖L2(Γ)

≤
(
‖fΩ(t)‖L2(Ω) + ‖γ‖L2(Γ)←H1(Ω)‖fΓ(t)‖L2(Γ)

)
‖ϕ‖H1(Ω)

≤ C(fΩ(t), fΓ(t), γ, aΩ, cΩ)‖ϕ‖V ,

that f(t) : C∞
(
Ω
)
→ R has a continuous extension f(t) ∈ V ∗ for all t ∈ [0, T ] if fΩ(t) ∈ L2(Ω)

and fΓ(t) ∈ L2(Γ).

Assumptions on the bilinear forms We now study which coefficient constellations are sufficient for
Assumption 4.1. Note that a satisfies a Garding inequality with cG = α = 1 by construction. So it
only remains to check for which coefficient constellations a is coercive and b is monotone.

Lemma 6.3.

(i) If
∫

Ω aΩ dx +
∫

Γ aΓ ds > 0, then a is coercive on V × V .

(ii) If αΩ(x)− 1
2 div βΩ(x) ≥ 0 for x ∈ Ω and αΓ(x)+ 1

2

(
βΩ(x) ·n(x)−divΓ βΓ(x)

)
≥ 0 for x ∈ Γ,

then b is monotone on V × V .

Proof. Note that it is sufficient to show the respective estimates on C∞
(
Ω
)
× C∞

(
Ω
)
.

(i) Note that we have by assumption
∫

Γ aΓ ds > 0 or
∫

Ω aΩ dx > 0 (or both). First assume that∫
Γ aΓ ds > 0. Then w(u) := (

∫
Γ aΓu

2 ds)1/2 defines a semi-norm on H1(Ω) which satisfies
0 ≤ w(u) ≤ ‖u‖H1(Ω) and is positive for constant functions p ∈ P0, i.e.,

w(p) =

∫
Γ
aΓp

2 ds = p2

∫
Γ
aΓ ds

!
= 0 ⇐⇒ p = 0.
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Thus [Han and Atkinson, 2009, Thm. 7.3.12] implies that there exists some caΓ > 0 s.t.∫
Γ
aΓu

2 ds+

∫
Ω
cΩ∇u · ∇udx ≥

∫
Γ
aΓu

2 ds+

∫
Ω
c−Ω |∇u|

2 dx ≥ caΓ‖u‖
2
H1(Ω),

where we used the uniform positivity of cΩ for the first estimate. Together with

‖u‖2m = ‖u‖2L2(Ω) +

∫
Γ
µu2 ds ≤ ‖u‖2L2(Ω) + ‖µ‖L∞(Γ)‖ γ(u)‖2L2(Γ)

≤
(
1 + ‖µ‖L∞(Γ)‖γ‖

2
L2(Γ)←H1(Ω)

)
‖u‖2H1(Ω),

this shows that there is a constant αH > 0 s.t. a
(
u, u

)
≥ αHm

(
u, u

)
. The claim now follows

with α = 1
2 min{1, αH} from

a
(
u, u

)
=

1

2
a
(
u, u

)
+

1

2
a
(
u, u

)
≥ 1

2

(
a
(
u, u

)
+ αHm

(
u, u

))
≥ α‖u‖2V .

The claim for
∫

Ω aΩ dx > 0 can be shown analogously by considering w(u) := (
∫

Ω aΩu
2 dx)1/2.

(ii) Let u, ϕ ∈ C∞
(
Ω
)

and consider

b
(
u, u

)
=

∫
Ω
αΩu

2 +
(
βΩ · ∇u

)
u+ γΩ|∇u|2 dx (6.6)

+

∫
Γ
αΓu

2 +
(
βΓ · ∇Γu

)
u+ γΓ|∇Γu|2 ds.

Therefore it only remains to study the advection terms as all other terms are non-negative.

We use Gauss’ Theorem to rewrite the bulk advection term as∫
Ω
∇u · (ϕβΩ) dx = −

∫
Ω
udiv(ϕβΩ) dx +

∫
Γ
(βΩ · n)uϕds

= −
∫

Ω
u
(

div(βΩ)ϕ+ βΩ · ∇ϕ
)

dx +

∫
Γ
(βΩ · n)uϕds.

Next, we set ϕ = u to obtain∫
Ω
∇u · (uβΩ) dx = −1

2

∫
Ω

div(βΩ)u2 dx +
1

2

∫
Γ
(βΩ · n)u2 ds. (6.7)

Applying (3) to the surface advection term, we find∫
Γ
∇Γu · (ϕβΓ) ds =

∫
Γ
−udivΓ(ϕβΓ) + divΓ(n)(βΓ · n)uϕds

= −
∫

Γ
u
(

divΓ(βΓ)ϕ+ βΓ · ∇Γϕ
)

ds,

where we used Assumption 6.2 (iii) and [Kashiwabara et al., 2015, Lem. 2.3 (iii)] for the
second equality. Setting ϕ = u here yields∫

Γ
∇Γu · (uβΓ) ds = −1

2

∫
Γ

divΓ(βΓ)u2 ds. (6.8)

Finally, to see that b is monotone, we insert (6.7) and (6.8) into (6.6).
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The Hilbert space Ṽ Recall that we defined Ṽ to be the Hilbert space V equipped with the inner
product ã = a+ cGm. If a is coercive, then we set cG = 0 and ã = a is the inner product of Ṽ .

Sufficient conditions for flow fields If

div βΩ ≤ 0 and βΩ · n ≥ divΓ βΓ,

then b is monotone by the previous Lemma. These two conditions are physically justified: The first
one rules out sources in βΩ and the second one requires that any out- or inflow of βΩ over the
boundary Γ is compensated by sinks or sources of βΓ, respectively.

Well-posedness of the abstract second-order wave-type problem

Let the conditions in Lemma 6.3 (ii) be fulfilled, then Assumption 4.1 holds true. If the source terms
and initial values u(0) = u0, u′(0) = v0 satisfy (6.1), then Theorem 4.3 states that the second-order
wave-type problem associated with (6.4) has a unique solution u ∈ C2([0, T ];H) ∩ C1([0, T ];V )
with Au+ Bu′ ∈ C([0, T ];H) and which satisfies(∫

Ω
(cG + aΩ)u(t)2 + cΩ∇u(t) · ∇u(t) + u′(t)2 dx

+

∫
Γ
(cGµ+ aΓ)u(t)2 + cΓ|∇Γu(t)|2 + µu′(t)2 ds

)1/2

≤ e
cG
2 t

((∥∥u0
∥∥2

ã
+
∥∥v0
∥∥2

m

)1/2
+ t sup

τ∈(0,t)

(∫
Ω
fΩ(τ)2 dx +

∫
Γ
µfΓ(τ)2 ds

)1/2
)

(6.9)

for t ∈ [0, T ]. If a is coercive, then (6.9) is a stability estimate in the energy norm.

Remark 6.4. We remark that the above considerations can be generalized in several directions:

(i) As in Section 1.1.3, we can consider (6.2a) with mixed boundary conditions: Let Γ be disjointly
decomposed into a closed Dirichlet part ΓD and a Neumann part ΓN := Γ\ΓD. On the Dirichlet
part we impose

u = fD on ΓD ⊂ Γ

while we demand that the solution satisfies (6.2b) on ΓN. The spaces H and V for such
problems are then completions of

C∞D
(
Ω
)

=
{
ϕ|Ω | C∞c (Rd), supp(ϕ) ∩ ΓD = ∅

}
.

If (6.2b) is non-locally reacting, i.e., γΓ 6= 0 or βΓ 6= 0 or cΓ 6= 0, then additional boundary
conditions on ∂ΓN need to be assigned, cf. [Disser et al., 2015]. Note that the variational for-
mulation (6.4) with ΓN and C∞D

(
Ω
)

instead of Γ and C∞
(
Ω
)

enforces homogeneous Neumann
on ∂ΓN.

(ii) Assumption 6.2 (i) can be weakened to allow coefficient functions which are only smooth
on parts of their domain: For example consider a partition of Ω = Ω1 ∪ Ω2 into two open
sub-domains Ω1 and Ω2 which are divided by the Lipschitz interface Σ := Ω1 ∩ Ω2. Further
let, cΩ1

:= cΩ|Ω1 ∈ W 1,∞(Ω1;Rd×d) and cΩ2
:= cΩ|Ω2 ∈ W 1,∞(Ω2;Rd×d). Although the

variational problem (6.4) still determines a unique solution u in this case, u does not solve the
original problem (6.2). Rather u1 := u|Ω1 and u2 := u|Ω2 solve the partial differential equation
(6.2a) in Ω1 and Ω2 respectively, suffice the boundary conditions (6.2b) on Γ1 := ∂Ω1 \Σ and
Γ2 := ∂Ω2 \ Σ respectively, and, additionally satisfy the transmission conditions

nΣ · cΩ1∇u1 = nΣ · cΩ2∇u2 on Σ.

Here nΣ : Σ→ Rd denotes the unit normal vector on Σ, cf. [Cohen and Pernet, 2016, Thm. 2].
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(iii) Assumption 6.2 (ii) is not fulfilled for domains Ω with piecewise C2-boundary Γ. Then (4)
does not hold globally on Γ, since the boundary terms between the C2-parts of Γ do not cancel
out, cf. [Kashiwabara et al., 2015, Rmk. 3.1]. Thus (6.2) with piecewise smooth boundary
Γ needs to be supplemented by additional conditions on the boundary between the boundary
parts.

(iv) The expression βΓ · ∇Γϕ is independent of the normal part of βΓ, since n · ∇Γϕ = 0 for every
sufficiently smooth function ϕ. Therefore Assumption 6.2 (iii) holds without loss of generality.

(v) Assumption 6.2 (iv) is not satisfied if there is advection βΓ > 0 or strong damping γΓ > 0 on
a part of the surface where there is no wave propagation cΓ = 0. Then B : D(B) → V ∗ is
only defined on the domain D(B) ⊂ V so Theorem 4.3 does not apply. The well-posedness
results in [Showalter, 1994, Sect. VI.2], however, cover this case.

6.2 Analysis of specific examples

In this section, we derive concrete well-posedness results for two examples of (6.2). If (6.1) is
satisfied, then our previous considerations show that there is a u ∈ C2([0, T ];H) which solves
the second-order wave-type problem corresponding to (6.2). Recall that we defined H and V as
completions of C∞

(
Ω
)

w.r.t. norms that depend on the coefficients. Hence it still remains to identify
the type of functions contained in H and V for both examples. After that we may continue with
the second part of our user’s guide, i.e., we

I verify if and in which sense the solution u satisfies the original partial differential equation,

I characterize (6.1) in terms of Sobolev spaces, and,

I derive weak stability estimates by using the considerations from Section 4.4.

In the following, we assume that the coefficient functions are as described for (6.2) and that the
sought solution originates from initial values u(0) = u0 and ut(0) = v0.

6.2.1 Robin type boundary conditions

We seek the solution u : [0, T ]× Ω→ R of

utt − div(cΩ∇u) = fΩ in Ω, (6.10a)

αΓut + aΓu = −n · cΩ∇u on Γ, (6.10b)

where αΓ, aΓ ∈ L∞(Γ),
∫

Γ aΓ ds > 0 and cΩ ∈W 1,∞(Ω)d×d is uniformly elliptic.

Corollary 6.5. Let the coefficients be as described above.

(i) If u0, v0 ∈ H1(Ω) satisfy div(cΩ∇u0) ∈ L2(Ω) and αΓv
0 + aΓu

0 + n · cΩ∇u0 = 0 on Γ, and
fΩ ∈ C1

(
[0, T ];L2(Ω)

)
or fΩ ∈ C

(
[0, T ];H1(Ω)

)
with γ(fΩ) = 0, then (6.10) has a unique

solution

u ∈ C2
(
[0, T ];L2(Ω)

)
∩ C1

(
[0, T ];H1(Ω)

)
, div(cΩ∇u) ∈ C

(
[0, T ];L2(Ω)

)
,

which satisfies the stability estimate (6.9) with cqm = 0.

(ii) If u0 ∈ H1(Ω), v0 ∈ L2(Ω), and fΩ ∈ C1
(
[0, T ];H1(Ω)∗

)
+ C

(
[0, T ];L2(Ω)

)
, then there

exists a unique weak solution u ∈ C1
(
[0, T ];L2(Ω)

)
∩ C

(
[0, T ];H1(Ω)

)
of (6.10) which

satisfies

‖u(t)‖L2(Ω) ≤
(∥∥u0

∥∥2

L2(Ω)
+
∥∥v0
∥∥2

H1(Ω)∗
+ C

∥∥u0
∥∥2

L2(Γ)

)1/2
+ t‖fΩ‖L∞(0,t;H1(Ω)∗)

for t ∈ [0, T ].
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Proof. Before we prove the well-posedness results, we identify H and V in part (A), and characterize
(6.1a) in part (B). For the convenience of the reader, we give the definitions (6.5) for the coefficient
constellation of (6.10)

m
(
w,ϕ

)
:=

∫
Ω
wϕdx,

b
(
w,ϕ

)
:=

∫
Γ
αΓwϕds,

a
(
w,ϕ

)
:=

∫
Ω
cΩ∇w · ∇ϕdx +

∫
Γ
aΓwϕds,

〈f(t), ϕ〉 :=

∫
Ω
fΩ(t)ϕdx, t ∈ [0, T ].

(A) First note that C∞
(
Ω
)

is a dense subspace of Hk(Ω), k ≥ 0 by [Han and Atkinson, 2009,
Thm. 7.3.2]. Thus H ' L2(Ω), since C∞

(
Ω
)

is dense in H and L2(Ω), and m coincides with the
L2(Ω)-inner product. Furthermore, V ' H1(Ω). Again, this follows from the density of C∞

(
Ω
)

in
V and H1(Ω), and ‖·‖H1(Ω) ∼ ‖·‖V . To see the latter part, let ϕ ∈ C∞

(
Ω
)
. Then we obtain from

(6.3) and the continuity of the trace opterator

‖ϕ‖2H1(Ω) ≤ max{1, 1/c−Ω}
(∫

Ω
ϕ2 + cΩ∇ϕ · ∇ϕdx +

∫
Γ
aΓϕ

2 ds

)
= C(c−Ω)‖ϕ‖2V ,

and

‖ϕ‖2V =

∫
Ω
ϕ2 + cΩ∇ϕ · ∇ϕdx +

∫
Γ
aΓϕ

2 ds ≤ C(γ, c+
Ω)‖ϕ‖2H1(Ω).

(B) We claim that for w, v ∈ V = H1(Ω)

Aw + Bv ∈ H ⇐⇒ div(cΩ∇w) ∈ L2(Ω) and αΓ γ(v) + aΓ γ(w) + γn(cΩ∇w) = 0. (6.11)

First assume that Aw + Bv ∈ H. Then we have for ϕ ∈ H1(Ω)

〈Aw + Bv, ϕ〉V =

∫
Ω
cΩ∇w · ∇ϕdx +

∫
Γ

(
aΓ γ(w) + αΓ γ(v)

)
γ(ϕ) ds ≤ C(w, v)‖ϕ‖L2(Ω).

To show that div(cΩ∇w) ∈ L2(Ω), we insert ϕ ∈ C∞c (Ω) and deduce cΩ∇w ∈ H(div,Ω), since
the surface integral vanishes. For the trace identity, form the Gelfand triple

H1/2(Γ)
d
↪→ L2(Γ) ' L2(Γ)∗

d
↪→ H−1/2(Γ).

Thus we may replace the surface integral in 〈Aw + Bv, ϕ〉V with the duality pairing in H1/2(Γ).
We further insert (2) in the form of∫

Ω
cΩ∇w · ∇ϕds = −

∫
Ω

div(cΩ∇w)ϕdx + 〈γn(cΩ∇w), γ(ϕ)〉H1/2(Γ). (6.12)

and obtain

〈Aw + Bv, ϕ〉V = −
∫

Ω
div(cΩ∇w)ϕdx + 〈γn(cΩ∇w) + aΓ γ(w) + αΓ γ(v), γ(ϕ)〉H1/2(Γ) (6.13)

for all ϕ ∈ H1(Ω). Now let ϕΓ ∈ H1/2(Γ). Then there exists a sequence (ϕk)k≥0 ⊂ H1(Ω) s.t.
γ(ϕk) = ϕΓ, k ≥ 0 and ‖ϕk‖L2(Ω) → 0, k → ∞ as shown in [Schnaubelt and Weiss, 2010, (4) in
proof of Thm. 5.1]. We insert this sequence into (6.13) which yields

|〈γn(cΩ∇w) + aΓ γ(w) + αΓ γ(v), ϕΓ〉H1/2(Γ)| ≤ |〈Aw + Bv, ϕk〉V |+ |
∫

Ω
div(cΩ∇w)ϕk dx|

≤ C‖ϕk‖L2(Ω) → 0, k →∞.
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Thus γn(cΩ∇w) + aΓ γ(w) + αΓ γ(v) is identically zero, which finishes the proof of the first impli-
cation in (6.11). For the second implication assume that w, v ∈ H1(Ω) satisfy div(cΩ∇w) ∈ L2(Ω)
and γn(cΩ∇w) + aΓ γ(w) + αΓ γ(v) = 0. Then Aw + Bv ∈ H follows from (6.13).

After these preparations, we now show the well-posedness result.
(i) Note that a is coercive and b is monotone due to Lemma 6.3 (ii). So it remains to check

(6.1), before we apply Theorem 4.3. It follows from (6.11) that the initial values u0 and v0 suffice
(6.1a). To verify (6.1b), note that f = fΩ. Thus we have by assumption f ∈ C1

(
[0, T ];H

)
or

f ∈ C
(
[0, T ];V

)
with γ(fΩ) = 0. Hence it remains to check if Bf ∈ C

(
[0, T ];H

)
in the latter

case. In fact Bf(t) = 0, since

〈Bf(t), ϕ〉V =

∫
Γ
αΓ γ(fΩ(t)) γ(ϕ) ds = 0, ϕ ∈ H1(Ω).

Thus, by Theorem 4.3, there exists a unique solution u ∈ C2([0, T ];L2(Ω)) ∩ C1([0, T ];H1(Ω)) of
the second-order wave-type problem (4.2), which satisfies Au+ Bu′ ∈ C([0, T ];L2(Ω)).

To see that u solves (6.10a), we apply ϕ ∈ C∞c (Ω) to the second-order wave-type problem (4.2).
Then we find with (6.13)∫

Ω
u′′(t)ϕ− div(cΩ∇u)ϕdx = 〈u′′(t) + Bu′(t) + Au(t), ϕ〉V

= 〈f(t), ϕ〉V

=

∫
Ω
fΩ(t)ϕdx,

which shows that u solves (6.10a). Using (6.11), we infer from u ∈ C1([0, T ];H1(Ω)) and Au(t) +
Bu′(t) ∈ L2(Ω) that u also satisfies the boundary condition (6.10b) .

Finally, suppose ũ is a solution of (6.10) with the stated properties. By the same computation,
which we used to derive the variational formulation (6.4), it follows that ũ also solves the cor-
responding second-order wave-type problem. Since second-order wave-type problems are uniquely
solvable, we find ũ = u. Therefore (6.10) has a unique solution.

(ii) Our considerations from Section 4.4 apply with Ṽ ∗ ' H1(Ω)∗: We have cG = βqm = 0 by
Lemma 6.3 (ii), and the data meets the assumptions of Theorem 4.13. Therefore (4.20) gives an
upper bound for ‖u(t)‖L2(Ω). To obtain the desired stability estimate, we apply

‖v0 + Bu0‖
Ṽ ∗ ≤ ‖v

0‖
Ṽ ∗ + ‖Bu0‖

Ṽ ∗ ≤ ‖v
0‖
Ṽ ∗ + sup

‖ϕ‖ã=1

∫
Ω
αΓ γ(u0) γ(ϕ) ds

≤ ‖v0‖H1(Ω)∗ + C(αΓ, γ)‖ γ(u0)‖L2(Γ).

Here, we used the continuity of the trace operator γ : H1(Ω)→ H1/2(Γ) and V ' H1(Ω).

Remark 6.6. The wave equation with homogeneous Neumann boundary conditions is contained in
(6.10) with aΓ = αΓ = 0. However the stability estimate (6.9) grows exponentially fast in time. In
this situation Corollary 4.7 provides a different stability estimate in an energy norm. The estimate
for the homogeneous problem with fΩ = 0 was given in Example 4.8.

6.2.2 Kinetic boundary conditions

We seek the solution u : [0, T ]× Ω→ R of

utt +
(
αΩ + βΩ · ∇

)
ut + aΩu− div(cΩ∇u) = fΩ in Ω, (6.14a)

µutt +
(
αΓ + βΓ · ∇Γ

)
ut + aΓu− cΓ∆Γu = −n · cΩ∇u+ fΓ on Γ, (6.14b)

where we assume that
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(i) the wave speed cΩ ∈W 1,∞(Ω) is scalar (and hence isotropic) and uniformly positive,

(ii) aΓ ≥ 0 and cΓ > 0 are constants,

(iii) µ ∈ L∞(Γ) is uniformly positive, and

(iv) αΩ, aΩ ∈ L∞(Ω), βΩ ∈W 1,∞(Ω)d,αΓ ∈ L∞(Γ), βΓ ∈W 1,∞(Γ)d,

(v) the conditions of Lemma 6.3 (ii) are satisfied.

Recall that we defined

H0 := L2(Ω)× L2(Γ)

Hk := Hk(Ω)×Hk(Γ), k ∈ N
H−1 :=

(
H1(Ω)

)∗ ×H−1(Γ),

Hk(Ω; Γ) :=
{
v ∈ Hk(Ω) | γ(v) ∈ Hk(Γ)

}
, k ≥ 1.

Corollary 6.7. Let Γ be a C2-boundary and let the coefficients be as described above.

(i) If u0, v0 ∈ H1(Ω; Γ) satisfy
[

div(cΩ∇u0),∆Γu
0
]ᵀ ∈ H0, and

[
fΩ, fΓ

]ᵀ ∈ C1([0, T ];H0) or
fΩ ∈ C

(
[0, T ];H1(Ω; Γ)

)
with fΓ = µγ(fΩ), then (6.14) has a unique solution

u ∈ C2
(
[0, T ];H0

)
∩ C1

(
[0, T ];H1(Ω; Γ)

)
,
[

div(cΩ∇u),∆Γu
]ᵀ ∈ C([0, T ];H0

)
,

which satisfies the stability estimate (6.9).

(ii) Further, assume that
∫

Ω aΩ dx +
∫

Γ aΓ ds > 0 and βΩ ∈ W 1,∞(Ω)d. For initial values
u0 ∈ H1(Ω; Γ), v0 ∈ H0 and source terms

[
fΩ, fΓ

]ᵀ ∈ C1
(
[0, T ];H−1

)
+ C

(
[0, T ];H0

)
,

there exists a unique weak solution u ∈ C1
(
[0, T ];H0

)
∩C

(
[0, T ];H1(Ω; Γ)

)
of (6.14) which

satisfies

‖u(t)‖H0 ≤ C
(∥∥u0

∥∥2

H0 +
∥∥v0
∥∥
H−1 + t‖

[
fΩ, fΓ

]ᵀ‖L∞(0,t;H−1)

)
for t ∈ [0, T ].

Proof. Again, we begin by identifying H and V in part (A) of this proof. In part (B), we characterize
(6.1a) proceeding analogously to [Vitillaro, 2013, Lem. 2]. For (6.14), the definitions from (6.5)
read

m
(
w,ϕ

)
:=

∫
Ω
wϕdx +

∫
Γ
µwϕds,

b
(
w,ϕ

)
:=

∫
Ω

(
αΩw + βΩ · ∇w

)
ϕdx +

∫
Γ

(
αΓw + βΓ · ∇Γw

)
ϕds,

a
(
w,ϕ

)
:=

∫
Ω
aΩwϕ+ cΩ∇w · ∇ϕdx +

∫
Γ
aΓwϕ+ cΓ∇Γw · ∇Γϕds,

〈f(t), ϕ〉 :=

∫
Ω
fΩ(t)ϕdx +

∫
Γ
fΓ(t)ϕds, t ∈ [0, T ].

(A) To identify the pivot space H, note that its norm is equivalent ot the H0-norm for functions

from C∞
(
Ω
)
. Therefore we have H ' H0 since [ter Elst et al., 2012, Lem. 2.10] implies C∞

(
Ω
) d
↪→

H0 via ϕ 7→
[
ϕ,ϕ|Γ

]ᵀ
and C∞

(
Ω
) d
↪→ H by definition. Moreover, we have V ' H1(Ω; Γ) by

the same arguments. The norm equivalence ‖·‖H1(Ω;Γ) ∼ ‖·‖ã is a consequence of easy uniform

postivity and boundedness of µ, cΩ and cΓ. The assertion the follows from C∞
(
Ω
)

being dense in

Ṽ and H1(Ω; Γ), which is shown in [Ben Belgacem et al., 1997].
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(B) We claim that for w ∈ V = H1(Ω; Γ)

Aw ∈ H ⇐⇒
[

div(cΩ∇w),∆Γw
]ᵀ ∈ H0. (6.15)

First assume that g := Aw ∈ H. Then we have for g =
[
gΩ, gΓ

]ᵀ
and ϕ ∈ C∞c (Ω)∫

Ω
cΩ∇w · ∇ϕdx = 〈Aw,ϕ〉V −

∫
Ω
aΩwϕdx =

∫
Ω

(
gΩ − aΩw

)
ϕdx

which proves cΩ∇w ∈ H(div,Ω) with div(cΩ∇w) = gΩ − aΩw ∈ L2(Ω). So it remains to show
∆Γw ∈ L2(Γ). First, we introduce g̃ =

[
g̃Ω, g̃Γ

]ᵀ
:= c−1

Γ Aw +
[
0, µ−1(1− aΓ/cΓ) γ(w)

]ᵀ ∈ H s.t.
for ϕ ∈ H1(Ω; Γ)

〈g̃, ϕ〉V =
1

cΓ

∫
Ω
aΩwϕ+ cΩ∇w · ∇ϕdx +

∫
Γ

aΓ

cΩ
wϕ+∇Γw · ∇Γϕds

+

∫
Γ
µµ−1

(
1− aΓ

cΩ

)
γ(w)ϕds

=
1

cΓ

∫
Ω
aΩwϕ+ cΩ∇w · ∇ϕdx +

∫
Γ
wϕ+∇Γw · ∇Γϕds.

Obviously, g̃Ω = c−1
Γ gΩ holds by construction and thus cΓg̃Ω − aΩw = div(cΩ∇w). Hence, we find

for ϕ ∈ H1(Ω; Γ)∫
Γ
∇Γw · ∇Γϕ+ wϕds = 〈g̃, ϕ〉V −

1

cΓ

∫
Ω
aΩwϕ+ cΩ∇w · ∇ϕdx

=

∫
Γ
µg̃Γϕds− 1

cΓ

∫
Ω

(
cΓg̃Ω − aΩw

)
ϕ+ cΩ∇w · ∇ϕdx

=

∫
Γ
µg̃Γϕds− 1

cΓ

∫
Ω

div(cΩ∇w)ϕ+ cΩ∇w · ∇ϕdx

=

∫
Γ
µg̃Γϕds− 1

cΓ
〈γn(cΩ∇w), ϕ〉H1/2(Γ),

where we used (6.12) in the last equality. Then (∆Γ + 1)w ∈ H−1/2(Γ), since the right hand side
is bounded by ‖ϕ‖H1/2(Γ). We define fD := γ(w) ∈ H1/2(Γ) and rewrite the above identity as

(∆Γ + 1)fD = g̃Γ −
1

cΓ
γn(cΩ∇w) ∈ H1/2(Γ).

Since Γ is C2, the operator ∆Γ + 1 has a continuous inverse (∆Γ + 1)−1 : H−1/2(Γ) → H3/2(Γ),
cf. [Vitillaro, 2013, p. 299]. Therefore,

fD = (∆Γ + 1)−1
(
g̃Γ −

1

cΓ
γn(cΩ∇w)

)
∈ H3/2(Γ).

Hence, w solves the elliptic problem div(cΩ∇w) +aΩw = gΩ ∈ L2(Ω) in Ω with Dirichlet boundary
condition γ(w) = fD ∈ H3/2(Γ) on the C2-boundary Γ. Then elliptic theory implies that w
actually belongs to H2(Ω), cf. [Grisvard, 2011, Theorem 2.4.2.5]. Thus, γn(cΩ∇w) ∈ L2(Γ) exists
in the trace sense and we have shown ∆Γw = g̃Γ − c−1

Γ γn(cΩ∇w) − w ∈ L2(Γ). This finishes
the proof of the first direction in (6.15). For the second implication, insert w ∈ H1(Ω; Γ) with[

div(cΩ∇w),∆Γw
]ᵀ ∈ H0 into 〈Aw,ϕ〉V , ϕ ∈ H1(Ω; Γ). Applying Gauss’ Theorem in the bulk

and (4) on the surface, leads to

〈Aw,ϕ〉V =

∫
Ω

(
aΩw − div(cΩ∇w)

)
ϕdx + 〈γn(cΩ∇w), ϕ〉H1/2(Γ) +

∫
Γ

(
aΓw −∆Γw

)
ϕds.

(6.16)



64 CHAPTER 6. ANALYSIS OF DYNAMIC BOUNDARY CONDITIONS

Therefore, it remains to show that γn(cΩ∇w) ∈ L2(Γ). In a first step, we obtain w ∈ H2(Γ) from
[Vitillaro, 2013, p. 299], since (∆Γ + 1)w ∈ L2(Γ) and Γ is C2 by assumption. Furthermore, w
solves the Dirichlet problem div(cΩ∇w) ∈ L2(Ω) with smooth boundary values γ(w) ∈ H2(Γ).
Again, [Grisvard, 2011, Theorem 2.4.2.5] yields w ∈ H2(Ω) and hence also γn(cΩ∇w) ∈ H1/2(Γ).
This shows the claim.

After these preparations, we now show the well-posedness result.
(i) Note that cG = 1 and b is monotone due to Lemma 6.3 (ii). So it remains to check (6.1). The

condition (6.1a) is satisfied due to standing assumptions on the initial values. Now note that f =[
fΩ, µ

−1fΓ

]ᵀ
if f ∈ H0. Therefore f satisfies the first option in (6.1b), if

[
fΩ, fΓ

]ᵀ ∈ C1([0, T ];H0).
If fΩ ∈ C

(
[0, T ];H1(Ω; Γ)

)
with fΓ = µγ(fΩ), then f ∈ C

(
[0, T ];V

)
. Therefore the second option

in (6.1b) is satisfied, since clearly B ∈ L(V,H) in this example. Thus, by Theorem 4.3, there
exists a unique solution u ∈ C2([0, T ];H0) ∩ C1([0, T ];H1(Ω; Γ)) of the second-order wave-type
problem (4.2), which satisfies u ∈ C([0, T ]; [D(A)]). Therefore, (6.15) gives

[
div(cΩ∇u),∆Γu

]ᵀ ∈
C
(
[0, T ];H0

)
, since u ∈ C1([0, T ];V ) and Au ∈ C([0, T ];H). As a consequence, we find for all

ϕ ∈ H1(Ω; Γ)

0 = 〈u′′ + Bu′ + Au− f, ϕ〉V

=

∫
Ω

(
utt +

(
αΩ + βΩ · ∇

)
ut + aΩu− div(cΩ∇u)− fΩ

)
ϕdx

+

∫
Γ

(
µutt +

(
αΓ + βΓ · ∇Γ

)
ut + aΓu− cΓ∆Γu+ n · cΩ∇u− fΓ

)
γ(ϕ) ds,

where we used (6.16) and γn(cΩ∇u) ∈ L2(Γ) by elliptic regularity. Since the right hand side can

be bounded by ‖ϕ‖H0 and H1(Ω; Γ)
d
↪→ H0, the equation continues to hold for ϕΩ ∈ L2(Ω) and

ϕΓ ∈ L2(Γ) in place of ϕ and γ(ϕ), respectively. Hence, choosing ϕΓ = 0 and ϕΩ = 0, yields that
u solves (6.14a) and (6.14b), respectively. Finally, u is the unique solution of (6.14), since each
solution of (6.14) solves the corresponding second-order wave-type problem, cf. part (i) in the proof
of Corollary 6.5.

(ii) We check the assumptions of Corollary 4.14: B belongs to L(H,V ∗), since for w,ϕ ∈
H1(Ω; Γ)

b
(
w,ϕ

)
=

∫
Ω

(
αΩw + βΩ · ∇w

)
ϕdx +

∫
Γ

(
αΓw + βΓ · ∇Γw

)
ϕds

=

∫
Ω
w
(
(αΩ − div βΩ)ϕ− βΩ · ∇ϕ

)
dx

+

∫
Γ
w
(
(n · βΩ + αΓ − divΓ βΓ)ϕ− βΓ · ∇Γϕ

)
ds

≤ C(αΩ, βΩ, αΓ, βΓ)‖w‖H0‖ϕ‖H1(Ω;Γ),

where we applied Gauss’ Theorem in the bulk and (3). Furthermore, a is coercive by Lemma 6.3 (i)
and the initial values satisfy the conditions of Corollary 4.14. To investigate the source terms, define
the embedding

J : H−1 → (H1(Ω; Γ))∗, 〈J
[
gΩ, gΓ

]ᵀ
, ϕ〉H1(Ω;Γ) := 〈gΩ, ϕ〉H1(Ω) + 〈gΓ, γ(ϕ)〉H1(Γ)

and note that f = J
[
fΩ, fΓ

]ᵀ
by definition of f . Thus f belongs to C1 ([0, T ];V ∗) or C ([0, T ];H)

by assumption. Hence Corollary 4.14 yields the unique weak solution including stability esti-
mate (4.25). To obtain the asserted estimate, we further use Jw = w, w ∈ H0 and J ∈
L(H−1, (H1(Ω; Γ))∗) to estimate

‖f(t)‖(H1(Ω;Γ))∗ = ‖Jf(t)‖(H1(Ω;Γ))∗ ≤ C‖f(t)‖H−1 .
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Remark 6.8. Corollary 4.7 yields stability estimate in the energy norm of (6.14) even in the case
where

∫
Ω aΩ dx +

∫
Γ aΓ ds = 0 and thus cG = 1.

The analysis of wave equations with dynamic boundary conditions Comparing both results, we
notice that the difference between the analytic frameworks for dynamic and non-dynamic boundary
conditions is the pivot space H. It is H ' H0 in the framework for kinetic boundary conditions,
while we have H ' L2(Ω) in the non-dynamic case. Hence the framework for kinetic boundary
conditions admits a rate of change

[
u′′Ω, u

′′
Γ

]ᵀ
:= u′′ ∈ H0 = L2(Ω)× L2(Γ), where γ(u′′Ω) 6= u′′Γ in

general. Therefore u|Γ evolves differently than u, or, in other words, u|Γ has its own dynamic.

6.3 Non-locally reacting acoustic boundary conditions

In this section, we prove a well-posedness result for the wave equation with non-locally reacting
acoustic boundary conditions. We restrict our discussion to the case of constant coefficients to
improve the readability.

Figure 6.1: An example for a solution of the wave equation with non-locally reacting acoustic
boundary conditions with cΩ = mΓ = 1, cΓ = 4 and aΩ = fΩ = αΓ = kΓ = fΓ = 0. The snapshots
show the solution u at times t = 0.2 · k, k = 0, . . . , 11. The black arrows on the boundary visualize
the function δ.
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The partial differential equation We seek u : [0, T ]× Ω→ R and δ : [0, T ]× Γ→ R such that

utt + aΩu− cΩ∆u = fΩ in Ω, (6.17a)

mΓδtt + kΓδ − cΓ∆Γδ + cΩut = fΓ on Γ, (6.17b)

δt = ∂nu on Γ, (6.17c)

where we assume that cΓ, cΩ,mΓ > 0 and aΩ, kΓ ≥ 0 are constants, that Γ is a C2-boundary, and
that u and δ take initial values u(0) = u0, ut(0) = v0, δ(0) = δ0, δt(0) = ϑ0.

The variational formulation Following our user’s guide, we first derive a variational formulation:
Let u and δ be sufficiently smooth solutions of (6.17). Multiplying (6.17a) with ϕ ∈ C∞

(
Ω
)
,

integrating over Ω, applying Gauss’ Theorem and inserting the boundary condition (6.17c) gives us∫
Ω
uttϕ+ aΩuϕ+ cΩ∇u · ∇ϕdx−

∫
Γ
cΩδtϕds =

∫
Ω
fΩϕdx. (6.18a)

Analogously, we multiply (6.17b) with ψ ∈ C2(Γ), integrate over Γ, and use (3) to find∫
Γ
mΓδttψ + kΓδψ + cΓ∇Γδ · ∇Γψ + cΩutψ ds =

∫
Γ
fΓψ ds. (6.18b)

To obtain the complete variational problem for ~u(t) :=
[
u(t), δ(t)

]ᵀ
, we add (6.18b) to (6.18a).

Hence classical solutions ~u ∈ C2(Ω× [0, T ])× C2(Γ× [0, T ]) of (6.17) satisfy

m
(
~u′′(t), ~ϕ

)
+ b
(
~u′(t), ~ϕ

)
+ a
(
~u(t), ~ϕ

)
= 〈f(t), ~ϕ〉 (6.19)

for all ~ϕ =
[
ϕ,ψ

]ᵀ ∈ C∞(Ω)× C2(Γ), where for ~w =
[
w,ω

]ᵀ
and ~ϕ =

[
ϕ,ψ

]ᵀ
m
(
~w, ~ϕ

)
:=

∫
Ω
wϕdx +

∫
Γ
mΓωψ ds (6.20a)

b
(
~w, ~ϕ

)
:= cΩ

∫
Γ
wψ − ωϕds, (6.20b)

a
(
~w, ~ϕ

)
:=

∫
Ω
aΩwϕ+ cΩ∇w · ∇ϕdx +

∫
Γ
kΓωψ + cΓ∇Γω · ∇Γψ ds, (6.20c)

〈f(t), ~ϕ〉 :=

∫
Ω
fΩ(t)ϕdx +

∫
Γ
fΓ(t)ψ ds, t ∈ [0, T ]. (6.20d)

Well-posedness For the well-posedness result, we need to address the issues in the second part of
our user’s guide.

Corollary 6.9. Let Γ be a C2-boundary and the coefficients as described above.

(i) If the initial values
[
u0, δ0

]ᵀ
,
[
v0, ϑ0

]ᵀ ∈ H1 satisfy
[
∆u0,∆Γδ

0
]ᵀ ∈ H0 and ϑ0 = ∂nu

0, and[
fΩ, fΓ

]ᵀ ∈ C1([0, T ];H0) or fΩ ∈ C([0, T ];H1(Ω)) with fΓ = 0, then (6.17) has a unique
solution [

u, δ
]ᵀ ∈ C2

(
[0, T ];H0

)
∩ C1

(
[0, T ];H1

)
,
[
∆u,∆Γδ

]ᵀ ∈ C([0, T ];H0
)
,

which satisfies(∫
Ω

(aΩ + cG)u(t)2 + cΩ|∇u(t)|2 + u′(t)2 ds

+

∫
Γ
(kΓ +mΓcG)δ(t)2 + cΓ|∇Γδ(t)|2 +mΓδ

′(t)2 ds

)1/2

≤ ecqmt
((∥∥[u0, δ0

]ᵀ∥∥2

ã
+
∥∥[v0, ϑ0

]ᵀ∥∥2

m

)1/2
+ t
∥∥[fΩ, fΓ

]ᵀ∥∥
L∞(0,t;H)

)
for t ∈ [0, T ] and cqm = (min{cΩ, cΓ})1/2/2.
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(ii) Assume that aΩ > 0 and kΓ > 0. If
[
u0, δ0

]ᵀ ∈ H1,
[
v0, ϑ0

]ᵀ ∈ H0, and[
fΩ, fΓ

]ᵀ ∈ C1([0, T ];H−1) + C([0, T ];H0), then there exists a unique weak solution
u ∈ C1([0, T ];H0) ∩ C([0, T ];H1) of (6.17) which satisfies(∫

Ω
u(t)2 dx +

∫
Γ
mΓδ(t)

2 ds

)1/2

≤ C

(∥∥[u0, δ0
]ᵀ∥∥

H0 +
∥∥u0
∥∥
L2(Γ)

+
∥∥[v0, ϑ0

]ᵀ∥∥
H−1 + t‖

[
fΩ, fΓ

]ᵀ‖L∞(0,t;H−1)

)

for t ∈ [0, T ].

Proof. We choose H = H0 and V = H1 for the abstract second-order wave-type problem (4.2)
associated with (6.20). For that purpose, we extend m to H ×H and b, a to V × V continuously.
Assumption 4.1 (i) is then satisfied with cG = α = min{cΩ, cΓ} > 0. Moreover, since b is skew-
symmetric, Assumption 4.1 (ii) holds with βqm = 0. If aΩ, kΓ > 0 as assumed in claim (ii), then a
is coercive with cG = 0 and α = min{cΩ, aΓ, cΓ, kΓ} > 0. Provided (6.1) is fulfilled, Theorem 4.3
states that the second-order wave-type problem (4.2) associated to (6.17) has a unique solution ~u.
But before we continue with the proof of (i), we characterize (6.1a) in part (A).

(A) We claim that for ~w =
[
w,ω

]ᵀ
, ~v =

[
v, ϑ
]ᵀ ∈ V = H1

A~w + B~v ∈ H ⇐⇒
[
∆w,∆Γω

]ᵀ ∈ H0 and γn(∇w) = ϑ. (6.21)

First assume that Aw + Bv ∈ H. Applying
[
ϕ, 0

]ᵀ
, ϕ ∈ H1(Ω) to A~w + B~v, gives

〈A~w + B~v,
[
ϕ, 0

]ᵀ〉V =

∫
Ω
aΩwϕ+ cΩ∇w · ∇ϕdx−

∫
Γ
cΩϑ γ(ϕ) ds.

If also ϕ ∈ C∞c (Ω), then the surface integral vanishes and we obtain ∇w ∈ H(div,Ω). Now let
ϕΓ ∈ H1/2(Γ) and let (ϕk) ⊂ H1(Ω) be the corresponding sequence from the proof of Corollary 6.5.
Then we have for ~ϕk :=

[
ϕk, 0

]ᵀ
|〈cΩ

(
γn(∇w)− ϑ

)
, ϕΓ〉H1/2(Γ)| ≤ |〈A~w + B~v, ~ϕk〉V |+ |

∫
Ω

(
aΩw − cΩ∆w

)
ϕk dx|

≤ C(~w,~v)‖~ϕk‖H0

= C(~w,~v)‖ϕk‖L2(Ω) → 0, k →∞.

Hence γn(∇w) = ϑ holds. Finally, since the right hand side of∫
Γ
cΓ∇Γω · ∇Γψ ds = 〈A~w + B~v,

[
0, ψ

]ᵀ〉V − ∫
Γ
kΓωψ + cΩ γ(w)ψ ds, ψ ∈ H1(Γ),

is bounded by ‖ψ‖L2(Γ), it follows that ∆Γω = divΓ(∇Γω) ∈ L2(Γ). In summary, we showed

“⇒” in (6.21). For the other direction, assume that ~w =
[
w,ω

]ᵀ
, ~v =

[
v, ϑ
]ᵀ ∈ V = H1 satisfy[

∆w,∆Γω
]ᵀ ∈ H0 and γn(∇w) = ϑ. Applying Gauss’ Theorem and (3), then yields

〈A~w + B~v, ~ϕ〉V =

∫
Ω

(
aΩw − cΩ∆w

)
ϕdx−

∫
Γ
cΩγn(∇w)ϕds

+

∫
Γ

(
kΓω + cΓ∆Γω

)
ψ ds− cΩ

∫
Γ
vψ − ϑϕ ds

=

∫
Ω

(
aΩw − cΩ∆w

)
ϕdx +

∫
Γ

(
kΓω − cΓ∆Γω + cΩv

)
ψ ds

where we used γn(∇w) = ϑ in the second equality. Since the expression on the right hand side is
bounded by C(~w,~v)‖~ϕ‖H0 , this already finishes the proof of (6.21).
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Having this auxiliary result at hand, we now show the two assertions from the statement.
(i) Let us now show that (6.1) is true under standing assumptions: To see that (6.1a) holds,

we use (6.21). For (6.1b), first observe that f =
[
fΩ,m

−1
Γ fΓ

]ᵀ
if f ∈ H. Therefore, f satisfies

f ∈ C1([0, T ];H), or f ∈ C([0, T ];V ) with Bf ∈ C([0, T ];H), since fΓ = 0 and thus

b
(
f, ~ϕ

)
=

∫
Γ
cΩfΩψ ds ≤ cΩ‖fΩ‖L2(Γ)‖ψ‖L2(Γ) ≤ C(cΩ)‖~ϕ‖H0 .

Thus, by Theorem 4.3, there exists a unique solution ~u ∈ C2([0, T ];H0) ∩ C1([0, T ];H1) of the
second-order wave-type problem, which satisfies A~u + B~u′ ∈ C([0, T ];H0). Analogously to Corol-
lary 6.7, we can show that solution ~u solves (6.17): Observe that with (6.21)

0 = 〈u′′ + Bu′ + Au− f, ~ϕ〉V

=

∫
Ω

(
utt + aΩu− cΩ∆u− fΩ

)
ϕdx +

∫
Γ

(
mΓδtt + kΓδ − cΓ∆Γδ + cΩut − fΓ

)
ψ ds

for all ~ϕ =
[
ϕ,ψ

]ᵀ ∈ H1. Inserting ~ϕ =
[
ϕ, 0

]ᵀ
yields (6.17a), and inserting ~ϕ =

[
0, ψ

]ᵀ
yields

(6.17b). The coupling condition (6.17b) follows directly from (6.21). Finally, ~u with the stated
regularity is the unique solution of (6.17), since any such solution satisfies (6.19) and therefore also
the associated second-order wave-type problem.

(ii) First note that (H1)∗ ' H−1, since

J : H−1 → (H1)∗, 〈J
[
gΩ, gΓ

]ᵀ
, ~ϕ〉H1 := 〈gΩ, ϕ〉H1(Ω) + 〈gΓ, ψ〉H1(Γ)

is continuous and continuously invertible with inverse

J̃ : (H1)∗ → H−1, J̃g :=
[
ϕ 7→ 〈g,

[
ϕ, 0

]ᵀ〉H1 , ψ 7→ 〈g,
[
0, ψ

]ᵀ〉H1

]ᵀ
,

where ~ϕ =
[
ϕ,ψ

]ᵀ ∈ H1,
[
gΩ, gΓ

]ᵀ ∈ H0, g ∈ (H1)∗. Thus we can write the source term as
f = J

[
fΩ, fΓ

]ᵀ
. As arleady pointed out in the beginning of this proof, the second-order wave-type

problem associated to (6.19) satisfies Assumption 4.1 with cG = βqm = 0. It is easy to see that the
initial values and the source term f = J

[
fΩ, fΓ

]ᵀ
suffice the conditions of Theorem 4.13. Hence

there is a unique weak solution with the claimed regularity. Finally, we obtain the weak stability
estimate from (4.25) by using ‖f‖(H1)∗ ≤ C‖

[
fΩ, fΓ

]ᵀ‖H−1 and

‖B~u‖
Ṽ ∗ = sup

‖~ϕ‖ã=1

∫
Γ
cΩ

(
uψ − δϕ

)
ds

≤ cΩ sup
‖~ϕ‖ã=1

‖u‖L2(Γ)‖ψ‖L2(Γ) + ‖δ‖L2(Γ)‖ γ(ϕ)‖L2(Γ)

≤ C(cΩ, γ, α)
(
‖u‖L2(Γ) + ‖δ‖L2(Γ)

)
.

Remark 6.10.

(i) It is possible to extend to above considerations to problems with mixed boundary conditions
and coefficient functions instead of constants.

(ii) The coupling condition (6.17c) can also be replaced by the elastic coupling

βδt − αut = ∂nu on Γ, α, β > 0,

which is inspired by [Elliott and Ranner, 2013], or porous couplings as discussed in [Graber,
2012].

(iii) If cΓ = 0, then V = H1(Ω) × L2(Γ) is the proper space for the second-order wave-type
problem. In this case, Corollary 6.9 reproduces the original well-posedness result from [Beale,
1976]. Related results can be found in [Frota et al., 2011], [Mugnolo, 2006a] and [Gal et al.,
2003].



Chapter 7

Numerics for wave equations with
dynamic boundary conditions

In this chapter, we discuss the numerical solution of wave equations with dynamic boundary con-
ditions. More precisely, we prove error bounds for isoparametric finite element discretizations of
the wave equation with kinetic boundary conditions (6.2) and acoustic boundary conditions (6.17).
These results are accompanied by error bounds for full discretizations with the Crank–Nicolson
method.

Outline We start by introducing the bulk-surface finite element method for the spatial discretization
of partial differential equations in smooth domains, while the remaining part of Section 7.1 is a
collection of approximation properties. Using these approximation results in the error bounds of
Theorem 5.5 and Theorem 2.18, we then show convergence results for kinetic boundary conditions
in Section 7.2 and for acoustic boundary conditions in Section 7.3. We end this chapter with the
discussion of some numerical experiments in Section 7.4.

Related works While an error analysis for finite element discretization of wave equations with
dynamic boundary conditions seems not be covered by the literature, we mention two important
articles which inspired our approach: [Kovács and Lubich, 2016] provide an error analysis of parabolic
equations with dynamic boundary conditions. The bulk-surface finite element method was introduced
in [Elliott and Ranner, 2013] to discretize stationary coupled bulk-surface partial differential equations
of elliptic type.

General assumption In this chapter, we only consider problems in Ω ⊂ Rd where d = 2 or d = 3
and we assume that Γ ∈ Ck+1 for some k ∈ N.

7.1 The bulk-surface finite element method

In this section, we introduce the bulk-surface finite element method from [Elliott and Ranner, 2013].
To keep the following exposition short, we only give the essential constructions and recapitulate the
approximation results. For details and proofs, we refer to the mentioned article.

Computational domain Assume that Ω] ⊂ Rd is a polygonal approximation of the smooth domain

Ω and let T
]
h be a triangulation of Ω] which consists of simplices, either triangles for d = 2 or

tetrahedra for d = 3. In addition, we assume the following:

(i) The vertices of Γ] := ∂Ω] lie on Γ, so that Γ] is an interpolation of Γ.

69
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Ω

Ω]

Ω

Ωh

Figure 7.1: This sketch shows an example of an isoparametric triangulation of the disc Ω with p = 2.
On the left we see the (very coarse) polygonal approximation Ω] of Ω with the triangulation T

]
h and

on the right the computational domain Ωh with Th.

(ii) The maximal diameter of T]h

h := max
{

diam(K]) | K] ∈ T
]
h

}
is sufficiently small to guarantee that for every x ∈ Γ] there is a unique normal projection
p(x) ∈ Γ s.t. x−p(x) is orthogonal to the tangent plane of Γ at p(x), cf. [Elliott and Ranner,
2013, Section 2.1].

(iii) The triangulation T
]
h is quasi-uniform, i.e., there exists some constant ρ > 0 s.t.

min
{

diam(BK]) | K] ∈ T
]
h

}
≥ ρh,

where BK] is the largest ball contained in K].

(iv) Each K] ∈ T
]
h has at most one face on Γ].

Now let Te
h be the exact triangulation of Ω from [Elliott and Ranner, 2013, Sect. 4.1.1]. By

construction, Te
h contains the internal elements of T]h (all elements with at most one vertex on Γ])

and curved simplices at the boundary which exactly match Ω s.t.⋃
Ke∈Te

h

Ke = Ω.

All elements Ke ∈ Te
h can be expressed via smooth transformations F e

Ke of the unit simplex K̂

Ke = F e
Ke(K̂), F e

Ke : K̂ → Rd.

We proceed as in [Elliott and Ranner, 2013, Sect. 4.1.2]: Let φ1, . . . , φnp be the Lagrangian basis

on K̂ of degree p ≥ 1 corresponding to the nodal points x̂1, . . . , x̂np . For each Ke ∈ Te
h we consider

the polynomial interpolation of F e
Ke of degree p given by

F ip
Ke(x̂) :=

np∑
j=1

F e
Ke(x̂j)φj(x̂), x̂ ∈ K̂,
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and define the corresponding polynomial simplex as K := F ip
Ke(K̂) ≈ Ke. Then we call

Th := T
(p)
h =

{
K = F ip

Ke(K̂) | Ke ∈ Te
h

}
the mesh of isoparametric elements of degree p and

Ωh :=
⋃
K∈Th

K ≈ Ω

the computational domain, cf. Figure 7.1. Consequently, we refer to Γh := ∂Ωh as the computational
surface and define the surface triangulation with isoparametric surface elements of degree p by

Th
∣∣
Γh

:=
{
F = K ∩ Γh | K ∈ Th has one face on Γh

}
.

This construction admits quasi-uniform triangulations Th and Th
∣∣
Γh

of Ωh and Γh, respectively.

Notation We overload our notation and use n : Γh → Rd for the unit outer normal on Γh and
γ : H1(Ωh)→ L2(Γh) for the trace operator on H1(Ωh). Moreover, we introduce the Hilbert space

Hm
h := Hm(Ωh)×Hm(Γh), m = 0, 1

and endow them with their canonical norm.

Finite element spaces Let Pp(K̂) denote the space of polynomials of degree p on K̂, and let FK
be the transformation from K̂ to K ∈ Th. For the discretization of bulk-surface function spaces,
we introduce finite element functions in the bulk Ωh and on the surface Γh of degree p ≥ 1

V Ω
h,p :=

{
vh ∈ C(Ωh) | vh|K = v̂h ◦ (FK)−1 with v̂h ∈ Pp(K̂) for all K ∈ Th

}
,

V Γ
h,p :=

{
ϑh ∈ C(Γh) | ϑh = vh|Γh

, vh ∈ V Ω
h,p

}
,

which is equivalent to the definition given in [Elliott and Ranner, 2013, Sect. 5.1]. An important
part of this construction is the relation

γ(V Ω
h,p) = V Γ

h,p. (7.1a)

Lift operator Since in general Ωh 6= Ω, the finite element solutions in Ωh and on Γh need to be
lifted to Ω and Γ, respectively. As proposed in [Elliott and Ranner, 2013, Sect. 4.2], we implement
this lifting by means of the elementwise smooth diffeomorphism

Gh : Ωh → Ω, Gh|K := F e
Ke ◦ F−1

K ∈ Cp+1(K) for p ≤ k and K ∈ Th.

For functions vh ∈ V Ω
h,p and ϑh ∈ V Γ

h,p, we define their lifts as

v`h(x) := vh
(
G−1
h (x)

)
, x ∈ Ω,

ϑ`h(x) := ϑh
(
G−1
h (x)

)
, x ∈ Γ.

Note that this lift operation complies with the discrete spaces in the sense that

γ(v`h) = γ(vh)`, vh ∈ V Ω
h,p. (7.1b)
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Stability of the lifts A crucial property of this lifting process is the norm equivalence stated in the
following Lemma. It collects the results from [Elliott and Ranner, 2013, Prop. 4.9 and 4.13].

Lemma 7.1.

(i) There exist constants CΩ,Ωh
> cΩ,Ωh

> 0 s.t. for all vh ∈ V Ω
h,p

cΩ,Ωh
‖v`h‖L2(Ω) ≤ ‖vh‖L2(Ωh) ≤ CΩ,Ωh

‖v`h‖L2(Ω) (7.2a)

cΩ,Ωh
‖∇v`h‖L2(Ω) ≤ ‖∇vh‖L2(Ωh) ≤ CΩ,Ωh

‖∇v`h‖L2(Ω). (7.2b)

(ii) There exist constants CΓ,Γh
> cΓ,Γh

> 0 s.t. for all ϑh ∈ V Γ
h,p

cΓ,Γh
‖ϑ`h‖L2(Γ) ≤ ‖ϑh‖L2(Γh) ≤ CΓ,Γh

‖ϑ`h‖L2(Γ) (7.2c)

cΓ,Γh
‖∇Γϑ

`
h‖L2(Γ) ≤ ‖∇Γh

ϑh‖L2(Γh) ≤ CΓ,Γh
‖∇Γϑ

`
h‖L2(Γ). (7.2d)

Interpolation error bounds For the error analysis, we will use the approximation properties of the
interpolation operators from the following Lemma.

Lemma 7.2.

(i) There exists an interpolation operator IΩ
h : H2(Ω)→ V Ω

h,p s.t. for 1 ≤ r ≤ p

‖v −
(
IΩ
h v
)`‖L2(Ω) + h‖v −

(
IΩ
h v
)`‖H1(Ω) ≤ Ch

r+1‖v‖Hr+1(Ω), v ∈ Hr+1(Ω).

(ii) There exists an interpolation operator IΓ
h : H2(Γ)→ V Γ

h,p s.t. for 1 ≤ r ≤ min{p, k}

‖ϑ−
(
IΓ
hϑ
)`‖L2(Γ) + h‖ϑ−

(
IΓ
hϑ
)`‖H1(Γ) ≤ Ch

r+1‖ϑ‖Hr+1(Γ), ϑ ∈ Hr+1(Γ),

and IΓ
h γ(v) = γ(IΩ

h v) for v ∈ H2(Ω; Γ).

Proof. The error bounds are shown in [Elliott and Ranner, 2013, Prop. 5.4] for nodal interpolation
operators. Hence we obtain IΓ

h γ(v) = γ(IΩ
h v) as a consequence of the compliant nodes of Th and

Th
∣∣
Γh

and (7.1a).

Domain error bounds To bound the errors of the discrete forms, it will be necessary to estimate
the difference between integrals over the exact domain Ω and the computational domain Ωh. The
following Lemma is a collection of such geometric error estimates for different types of integrals. It
is a straightforward generalization of [Elliott and Ranner, 2013, Lem. 6.2].

Lemma 7.3. Let vh, ϕh ∈ V Ω
h,p and ϑh, ψh ∈ V Γ

h,p.

(i) Suppose ωΩ ∈ L∞(Ω) and ωΩh
∈ L∞(Ωh), and define ω∆

Ω := ωΩ − ω`Ωh
. Then we have

|
∫

Ω
ωΩv

`
h ϕ

`
h dx−

∫
Ωh

ωΩh
vh ϕh dx| ≤

(
Chp + ‖ω∆

Ω ‖L∞(Ω)

)
‖uh‖L2(Ωh)‖ϕh‖L2(Ωh) (7.3a)

and

|
∫

Ω
ωΩ∇v`h · ∇ϕ`h dx−

∫
Ωh

ωΩh
∇vh · ∇ϕh dx|

≤
(
Chp + ‖ω∆

Ω ‖L∞(Ω)

)
‖∇vh‖L2(Ωh)‖∇ϕh‖L2(Ωh). (7.3b)
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(ii) Suppose ωΓ ∈ L∞(Γ) and ωΓh
∈ L∞(Γh), and define ω∆

Γ := ωΓ − ω`Γh
. Then we have

|
∫

Γ
ωΓϑ

`
h ψ

`
h dx−

∫
Γh

ωΓh
ϑh ψh dx|

≤
(
Chmin{p,k}+1 + ‖ω∆

Γ ‖L∞(Γ)

)
‖ϑh‖L2(Γh)‖ψh‖L2(Γh) (7.3c)

and

|
∫

Γ
ωΓ∇Γϑ

`
h · ∇Γψ

`
h dx−

∫
Γh

ωΓh
∇Γh

ϑh · ∇Γh
ψh dx|

≤
(
Chmin{p,k}+1 + ‖ω∆

Γ ‖L∞(Ω)

)
‖∇Γh

ϑh‖L2(Γh)‖∇Γh
ψh‖L2(Ωh). (7.3d)

(iii) Suppose ~ωΩ ∈ L∞(Ω)d and ~ωΩh
∈ L∞(Ω)d, and define ~ω∆

Ω := ~ωΩ − ~ω`Ωh
. Then we have

|
∫

Ω
(~ωΩ · ∇v`h)ϕ`h dx−

∫
Ωh

(~ωΩh
· ∇vh)ϕh dx|

≤
(
Chp + ‖~ω∆

Ω ‖L∞(Ω)

)
‖∇vh‖L2(Ωh)‖ϕh‖L2(Ωh), (7.3e)

where we define the lift of ~ωΩh
= (wi)

d
i=1 componentwise by ~ω`Ωh

:=
(
w`i
)d
i=1

.

Proof. The estimates in (i) and (ii) can be shown as in [Elliott and Ranner, 2013, Lem. 6.2]. To
handle the additional error term due to weight functions ωΩ 6= ω`Ωh

, proceed as in the proof of (iii).
(iii) Let DGh denote the (elementwise defined) Jacobian of Gh. In a first step, we use integration

by substitution to rewrite the integral over Ωh as an integral over Ω. Then we split the error into
three parts, each of whom is estimated separately∫

Ω
(~ωΩ · ∇v`h)ϕ`h dx−

∫
Ωh

(~ωΩh
· ∇vh)ϕh dx

=

∫
Ω

(~ωΩ · ∇v`h)ϕ`h −
(
~ω`Ωh
·
(
∇vh

)`)
ϕ`h|detDG−1

h |dx

≤ |
∫

Ω

(
(~ωΩ − ~ω`Ωh

) · ∇v`h
)
ϕ`h dx|+ |

∫
B

(
~ω`Ωh
·
(
∇v`h −

(
∇vh

)`))
ϕ`h dx|

+ |
∫

Ω

(
~ω`Ωh
·
(
∇vh

)`)
ϕ`h
(
1− |detDG−1

h |
)

dx|

≤

(∥∥~ω∆
Ω

∥∥
L∞(Ω)

+
∥∥∥~ω`Ωh

∥∥∥
L∞(Ω)

‖
(
DGᵀ

h

)` − I‖L∞(Ω)

+
∥∥∥|~ω`Ωh

|
∥∥∥
L∞(Ω)

∥∥1− |detDG−1
h |
∥∥
L∞(Ω)

)
‖∇v`h‖L2(Ω)‖ϕ

`
h‖L2(Ω)

≤ C(~ωΩh
)
(
‖~ω∆

Ω ‖L∞(Ω) + ‖
(
DGᵀ

h

)` − I‖L∞(Ω) +
∥∥1− |detDG−1

h |
∥∥
L∞(Ω)

)
· c−2

Ω,Ωh
‖∇vh‖L2(Ωh)‖ϕh‖L2(Ωh).

Here we used ~ω∆
Ω = ~ωΩ − ~ω`Ωh

,
(
DGᵀ

h

)`∇ϕ`h =
(
∇ϕh

)`
(which follows by the chain rule) and

Lemma 7.1. To obtain the desired estimate, it remains to analyze

‖
(
DGᵀ

h

)` − I‖L∞(Ω) and
∥∥1− |detDG−1

h |
∥∥
L∞(Ω)

.

Let Bh be the union of all elements K ∈ Th with more than one vertex on the boundary and define
B`
h := Gh(Bh). By construction of Gh, we have DGh = I in Ωh \Bh and therefore(

DGᵀ
h

)`
= I and |detDG−1

h | = 1 in Ω \B`
h.
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Hence it follows from the approximation estimates in [Elliott and Ranner, 2013, Prop. 4.7]

‖
(
DGᵀ

h

)` − I‖L∞(Ω) = ‖
(
DGᵀ

h

)` − I‖L∞(B`
h) ≤ ‖DG

ᵀ
h − I‖L∞(Bh) ≤ Ch

p,∥∥1− |detDG−1
h |
∥∥
L∞(Ω)

=
∥∥1− |detDG−1

h |
∥∥
L∞(B`

h) ≤ C
‖|detDGh| − 1‖L∞(Bh)

‖
(
|detDGh|

)`‖L∞(B`
h)

≤ Chp,

where we used |detDG−1
h | = 1/

(
|detDGh|

)`
. This finishes the proof.

7.2 A priori error bounds for the wave equation with kinetic bound-
ary conditions

In this section, we discuss the numerical approximation of solutions of (6.14) with βΓ = 0 using
isoparametric elements of degree p in space and the Crank–Nicolson method in time.

The finite element approximation The approximate problem is to find a function uh : [0, T ]→ V Ω
h,p

which satisfies (5.1) where fh : [0, T ] → V Ω
h,p is a given function and the bilinear forms are defined

by

mh

(
vh, ϕh

)
:=

∫
Ωh

vhϕh dx +

∫
Γh

µhvhϕh ds, (7.4a)

bh
(
vh, ϕh

)
:=

∫
Ωh

(
αΩh

vh + βΩh
· ∇vh

)
ϕh dx +

∫
Γh

αΓh
vhϕh ds, (7.4b)

ah
(
vh, ϕh

)
:=

∫
Ωh

aΩh
vhϕh + cΩh

∇vh · ∇ϕh dx

+

∫
Γh

aΓh
vhϕh + cΓh

∇Γh
vh · ∇Γh

ϕh ds. (7.4c)

We assume that the coefficients share the properties of their continuous counterparts:

(i) µh ∈ L∞(Γh) and cΩh
∈ L∞(Ωh) are uniformly positive.

(ii) cΓh
= cΓ and aΓh

= aΓ are constants.

(iii) αΓh
∈ L∞(Γh), aΩh

, αΩh
∈ L∞(Ωh) are non-negative.

(iv) βΩh
∈ L∞(Ωh)d with div βΩh

∈ L∞(Ωh) satisfies div βΩh
≤ 0 in Ωh and n · βΩh

≥ 0 on Γh.

Convergence result of the finite element approximation We are now in the position to give a com-
pletely new convergence result for finite element discretizations of the wave equations with kinetic
boundary conditions (6.14). Having the error bound for general non-conforming space discretizations
of second-order wave-type problems from Theorem 5.5, it only remains to check its applicability and
prove estimates for the errors in the data, the errors of the bilinear forms and the errors due to
interpolation.

Theorem 7.4. Let Γ ∈ Ck+1 and let u be the solution of (6.14) with βΓ = 0 from Corollary 6.7 (i).
Assume that u ∈ C1

(
[0, T ];Hp+1(Ω; Γ)

)
∩C2

(
[0, T ];Hp(Ω; Γ)

)
for 1 ≤ p ≤ k and that there exist

constants Cd, Cc > 0 s.t.

‖u0
h − IΩ

h u
0‖H1(Ωh;Γh) + ‖v0

h − IΩ
h v

0‖H0
h

+ ‖fh −QH∗h
[
fΩ, µ

−1fΓ

]ᵀ‖L∞(H0
h) ≤ Cdh

p,
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and

‖gΓ − g`Γh
‖L∞(Γ) ≤ Cch

p,
[
gΓ, gΓh

]ᵀ ∈ {[µ, µh]ᵀ, [αΓ, αΓh

]ᵀ}
,

‖gΩ − g`Ωh
‖L∞(Ω) ≤ Cch

p,
[
gΩ, gΩh

]ᵀ ∈ {[αΩ, αΩh

]ᵀ
,
[
βΩ, βΩh

]ᵀ
,
[
aΩ, aΩh

]ᵀ
,
[
cΩ, cΩh

]ᵀ}
.

Moreover, let uh be the finite element solution in V Ω
h,p with 0 < h ≤ 1 as given above.

(i) Then the lifted semi-discrete solution u`h satisfies

‖u`h(t)− u(t)‖H1(Ω;Γ) + ‖
(
u′h
)`

(t)− u′(t)‖H0 ≤ C
(
1 + tet/2

)
hp

for t ∈ [0, T ] and C independent of h and t.

(ii) Furthermore, assume that u ∈ C4([0, T ];H0) ∩ C4([0, T ];H1(Ω; Γ)) and let unh and vnh be
given by the Crank–Nicolson scheme (5.9) with τ ≤ 4. Then QVh u

n
h and QVh v

n
h satisfy

‖
(
unh
)` − u(tn)‖H1(Ω;Γ) + ‖

(
vnh
)` − u′(tn)‖H0 ≤ C

(
1 + tne

tn/2
)(
τ2 + hp

)
for tn ∈ [0, T ], where C is independent of h and tn.

Proof. Recall that, by Corollary 6.7, the second-order wave-type problem corresponding to (6.14) is
well-posed in V = H1(Ω; Γ) and H = H0, where V is embedded into H via v 7→

[
v, γ(v)

]ᵀ
.

(i) To apply Theorem 5.5, we formulate the approximate problem as a non-conforming space
discretization of a second-order wave-type problem in Vh := V Ω

h,p. The bilinear forms were already
defined in (7.4) and we choose

QVh ϕh := ϕ`h

for the lift operator QVh . To verify QVh (Vh) ⊂ V , let vh ∈ V Ω
h,p. Then we have v`h ∈ H1(Ω) by

Lemma 7.1 (i) and (7.1a) further yields γ(vh) ∈ V Γ
h,p. Therefore we find γ(v`h) = γ(vh)` ∈ H1(Γ)

with (7.1b) and Lemma 7.1 (ii). Thus QVh (V Ω
h,p) ⊂ H1(Ω; Γ) as required. Now we show that

Assumptions 5.1 is fulfilled under the stated assumptions: The assumptions on the discrete bilinear
forms mh, bh, and ah follow analogously to the considerations in Section 6.1 with c̃G = 1 and
β̃qm = 0. To see that the lift is stable in the sense of Assumption 5.1 (v), set µ− := minΓ µ,
µ−h := minΓh

µh, µ+ := maxΓ µ, µ+
h := maxΓh

µh. Then we find for ϑh ∈ V Γ
h,p by (7.2c)

‖√µϑ`h‖L2(Γ) ≤
µ+

cΓ,Γh

‖ϑh‖L2(Γh) ≤
µ+

cΓ,Γh
µ−h
‖√µhϑh‖L2(Γh),

‖√µhϑh‖L2(Γh) ≤ µ
+
hCΓ,Γh

‖ϑ`h‖L2(Γ) ≤
µ+
hCΓ,Γh

µ−
‖√µϑ`h‖L2(Γ).

Together with (7.2a), it is then easy to see that Assumption 5.1 (v) holds. Since Assumption 5.1
(vi) can be shown analogously, Assumptions 5.1 holds. Therefore Theorem 5.5 yields the general
error bound with ĉqm = 1/2. It remains to show Ei ≤ Chp, i = 1, 2, 3, 4. For that purpose, we
choose the interpolation operator Ih := IΩ

h and ZV = H2(Ω; Γ).
(E2) The upper bound for E2 follows from the approximation results for the interpolation oper-

ator IΩ
h : Let 1 ≤ r ≤ min{p, k}, then

‖(I−QVh Ih)v‖m + h‖(I−QVh Ih)v‖ã ≤ Ch
r+1‖v‖Hr+1(Ω;Γ), v ∈ Hr+1(Ω; Γ), (7.5)

since by (7.1b) and Lemma 7.2

‖(I−QVh Ih)v‖ã ≤ C(aΩ, cΩ, aΓ, cΓ)‖v −
(
IΩ
h v
)`‖H1(Ω;Γ)

≤ C
(
‖v −

(
IΩ
h v
)`‖H1(Ω) + ‖ γ(v −

(
IΩ
h v
)`

)‖H1(Γ)

)
≤ Chr‖v‖Hr+1(Ω) + C‖ γ(v)−

(
IΓ
h γ(v)

)`‖H1(Γ)

≤ Chr‖v‖Hr+1(Ω;Γ),
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and, in a similar way,

‖(I−QVh Ih)v‖m ≤ C(µ)
(
‖v −

(
IΩ
h v
)`‖L2(Ω) + ‖ γ(v −

(
IΩ
h v
)`

)‖L2(Γ)

)
≤ Chr+1‖v‖Hr+1(Ω;Γ).

(E3) To show the upper bound for E3, we derive estimates for ∆ã and ∆m. Let vh ∈ Ṽh. Then
we obtain from (7.3a)–(7.3d) with the assumptions on the coefficients

|∆ã
(
vh, ϕh

)
| ≤ C

(
hp + ‖aΩ − a`Ωh

‖L∞(Ω) + ‖cΩ − c`Ωh
‖L∞(Ω)

)
‖vh‖H1(Ωh)‖ϕh‖H1(Ωh)

+ C
(
hmin{p,k}+1 + ‖aΓ − a`Γh

‖L∞(Γ) + ‖cΓ − c`Γh
‖L∞(Γ)

)
‖vh‖H1(Γh)‖ϕh‖H1(Γh)

≤ C
(
hp + hmin{p,k}+1

)
‖vh‖ãh‖ϕh‖ãh ,

where we used ‖·‖ã ∼ ‖·‖H1(Ωh;Γh) in the last inequality. Now set vh = QV ∗h v for some v ∈ V . By

definition of the adjoint lift QV ∗h and the Cauchy–Schwarz inequality, we find

‖QV ∗h v‖2ãh = ãh
(
QV ∗h v,QV ∗h v

)
= ã

(
v,QVhQ

V ∗
h v
)
≤ ‖v‖ã‖Q

V
hQ

V ∗
h v‖ã.

Using (5.2c) and then dividing by ‖QV ∗h v‖ãh , we infer ‖QV ∗h v‖ãh ≤ c
−1
V ‖v‖ã. This yields

‖∆ã(QV ∗h v)‖
Ṽ ∗h

= max
‖ϕh‖ã=1

|∆a
(
QV ∗h v, ϕh

)
| ≤ Chp‖v‖ã. (7.6)

The bound ‖∆m(QH∗h v)‖H∗h ≤ Ch
p‖v‖m, v ∈ H follows analogously.

(E1) By Remark 5.6 (i), it holds

‖u0
h −QV ∗h u0‖ãh ≤ ‖u

0
h − Ihu0‖ãh + 2CV ‖(I−QVh Ih)u0‖ã + C2

V ‖∆ã(QV ∗h u0)‖
Ṽ ∗h

≤ Chp
(

1 + ‖u0‖Hp+1(Ω;Γ)

)
,

where we used the assumptions on the data, (7.5), and (7.6) for the second estimate. The remaining
terms in E1 are sufficiently small by assumption (f =

[
fΩ, µ

−1fΓ

]ᵀ
for (6.14)) so that altogether

E1 ≤ Chp.
(E4) It is easy to see that B ∈ L(V,H) for (6.14). Therefore, we obtain from Remark 5.6 (ii)

and (7.5)

E4 ≤ C
(
hp‖u′‖Hp+1(Ω;Γ) + ‖∆b(Ihu′)‖L∞(0,T ;H∗h)

)
.

For an upper bound of the last term, let ψh ∈ V Ω
h,p with ‖ψh‖mh

= 1. By (7.3a), (7.3c), (7.3e),
and the assumptions on the coefficients, we get

‖∆b(Ihu′)‖H∗h = max
‖ψh‖mh

=1
|∆b
(
Ihu
′, ψh

)
|

≤ max
‖ψh‖mh

=1
Chp

(
‖Ihu′‖L2(Ωh) + ‖∇Ihu′‖L2(Ωh) + ‖Ihu′‖L2(Γh)

)
‖ψh‖mh

≤ Chp‖Ihu′‖H1(Ωh).

This gives the final estimate, since (5.2b) and (7.5) imply

‖Ihu′‖H1(Ωh) ≤ CH
(
‖u′‖H1(Ω) + ‖(I−QVh Ih)u′‖H1(Ωh)

)
≤ CH‖u′‖H1(Ω) + Chp‖u′‖Hp+1(Ω;Γ).

(ii) By assumption it is u ∈ C4([0, T ];H)∩C3([0, T ]; Ṽ ) and τ ĉqm < 2, since ĉqm = 1/2. Thus
Corollary 5.9 applies and the desired estimate is a consequence of Ei ≤ Chp, i = 1, 2, 3, 4.
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7.3 A priori error bounds for the wave equation with acoustic bound-
ary conditions

In this section, we discuss the numerical approximation of solutions of (6.17) using isoparametric
bulk and surface elements of degree p in space and the Crank–Nicolson method in time.

The finite element approximation The approximate problem is to find functions uh : [0, T ]→ V Ω
h,p

and δh : [0, T ] → V Γ
h,p s.t. ~uh :=

[
uh, δh

]ᵀ
satisfies (5.1). Here fh :=

[
fΩh

, fΓh

]ᵀ
is given by the

functions fΩh
: [0, T ]→ V Ω

h,p and fΓh
: [0, T ]→ V Γ

h,p, and the bilinear forms are defined as

mh

(
~vh, ~ϕh

)
:=

∫
Ωh

vhϕh dx+

∫
Γh

mΓϑhψh ds, (7.7a)

bh
(
~vh, ~ϕh

)
:= cΩ

∫
Γh

vh ψh − ϑh ϕh ds, (7.7b)

ah
(
~vh, ~ϕh

)
:=

∫
Ωh

aΩvhϕh + cΩ∇vh · ∇ϕh dx +

∫
Γh

kΓϑh ψh + cΓ∇Γh
ϑh · ∇Γh

ψh ds (7.7c)

for ~vh =
[
vh, ϑh

]ᵀ
, ~ϕh =

[
ϕh, ψh

]ᵀ ∈ V Ω
h,p × V Γ

h,p. Furthermore, assume that uh and δh have initial

values uh(0) = u0
h, u′h(0) = v0

h, δh(0) = δ0
h, δ′h(0) = ϑ0

h. Note that the coefficients are exact, and
recall that cΓ, cΩ,mΓ > 0 and aΩ, kΓ ≥ 0.

Convergence result of the finite element approximation For the numerical analysis of this space
discretization, we proceed as in Theorem 7.4.

Theorem 7.5. Let Γ ∈ Ck+1 and let u and δ be the solutions of (6.17) from Corollary 6.9 (i).
Assume that

[
u, δ
]ᵀ ∈ C1

(
[0, T ];Hp+1

)
∩ C2

(
[0, T ];Hp

)
for 1 ≤ p ≤ k and let there exist some

constant Cd > 0 s.t.

‖u0
h − IΩ

h u
0‖H1(Ωh) + ‖δ0

h − IΓ
h δ

0‖H1(Γh) + ‖v0
h − IΩ

h v
0‖L2(Ωh) + ‖ϑ0

h − IΓ
hϑ

0‖L2(Γh) ≤ Cdh
p

and

‖
[
fΩh

, fΓh

]ᵀ −QH∗h [
fΩ,m

−1
Γ fΓ

]ᵀ‖L∞(H0) ≤ Cdh
p.

Moreover, let uh and δh be the finite element solutions in V Ω
h,p and V Γ

h,p, respectively, with 0 < h ≤ 1.

(i) Then the lifted semi-discrete solutions u`h and δ`h satisfy

‖u`h(t)− u(t)‖H1(Ω) + ‖
(
u′h
)`

(t)− u′(t)‖L2(Ω)

+ ‖δ`h(t)− δ(t)‖H1(Γ) + ‖
(
δ′h
)`

(t)− δ′(t)‖L2(Γ) ≤ Ce
ĉqmt
(
1 + t

)
hp

for t ∈ [0, T ] and ĉqm = (min{cΩ, cΓ})1/2/2, where C is independent of h and t.

(ii) Furthermore, assume that ~u ∈ C4([0, T ];H0) ∩ C4([0, T ];H1) and let ~unh =
[
unh, δ

n
h

]ᵀ
, ~vnh =[

vnh , ϑ
n
h

]ᵀ
be given by the Crank–Nicolson scheme (5.9). For τ ĉqm ≤ 2 with

ĉqm = (min{cΩ, cΓ})1/2/2, the approximations satisfy

‖
(
unh
)` − u(tn)‖H1(Ω) + ‖

(
vnh
)` − u′(tn)‖L2(Ω)

+ ‖
(
δnh
)` − δ(tn)‖H1(Γ) + ‖

(
ϑnh
)`

(t)− δ′(tn)‖L2(Γ) ≤ Ce
ĉqmtn

(
1 + tn

)(
τ2 + hp

)
for t ∈ [0, T ] and C is independent of h and t.
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Proof. Recall that, by Corollary 6.9, the second-order wave-type problem corresponding to (6.17) is
well-posed in V = H1 and H = H0. In this proof, let ~v =

[
v, ϑ
]ᵀ

, ~ϕ =
[
ϕ,ψ

]ᵀ
, ~vh =

[
vh, ϑh

]ᵀ
,

~ϕh =
[
ϕh, ψh

]ᵀ
.

(i) To apply Theorem 5.5, we formulate the approximate problem as a non-conforming space
discretization of a second-order wave-type problem in Vh := V Ω

h,p × V Γ
h,p. The bilinear forms were

already defined in (7.7) and we choose the lift operator

QVh ~ϕh :=
[
ϕ`h, ψ

`
h

]ᵀ
. (7.8)

Since the coefficients in ‖·‖m and ‖·‖ã are constant, Lemma 7.1 directly implies that QVh : Vh → V
is stable in the sense of Assumptions 5.1 (v) and 5.1 (vi). Moreover, the discrete bilinear forms
mh, bh, and ah satisfy Assumptions 5.1 with c̃G = α̃ = min{cΩ, cΓ} and β̃qm = 0. This can be
shown exactly as in the continuous case. Therefore Theorem 5.5 yields the general error bound with

ĉqm = 1/2c̃
1/2
G and it remains to show Ei ≤ Chp, i = 1, 2, 3, 4. For that purpose, we choose the

interpolation operator Ih :=
(
IΩ
h , I

Γ
h

)
: ZV → Vh, ZV = H2.

(E2) The upper bound for E2 follows from the approximation results from Lemma 7.2:
Let 1 ≤ r ≤ min{p, k}, then we have for ~v ∈ Hr+1

‖(I−QVh Ih)~v‖m + h‖(I−QVh Ih)~v‖ã ≤ ‖v −
(
IΩ
h v
)`‖L2(Ω) +mΓ‖ϑ−

(
IΓ
hϑ
)`‖L2(Γ)

+ max
{√

aΩ + c̃G,
√
cΩ

}
h‖v −

(
IΩ
h v
)`‖H1(Ω)

+ max
{√

kΓ +mΓc̃G,
√
cΓ

}
h‖ϑ−

(
IΓ
hϑ
)`‖H1(Γ)

≤ Chr+1‖~v‖Hr+1 . (7.9)

(E3) We proceed as in the proof of Theorem 7.4 to show

‖∆m(QH∗h ~v)‖H∗h ≤ Ch
p‖v‖L2(Ω) + Chp+1‖ϑ‖L2(Γ), ~v ∈ H0 (7.10a)

‖∆ã(QV ∗h ~v)‖
Ṽ ∗h
≤ Chp‖v‖H1(Ω) + Chp+1‖ϑ‖H1(Γ), ~v ∈ H1. (7.10b)

Using the assumed regularity of the exact solution, this yields E3 ≤ Chp.

(E1) As in the proof of Theorem 7.4 (with
[
u0, δ0

]ᵀ
instead of u0), it can be show that the

approximation properties of the initial values are sufficient for

‖
[
u0
h, δ

0
h

]ᵀ −QV ∗h [u0, δ0
]ᵀ‖ãh ≤ Chp(1 + ‖u0‖Hp+1(Ω;Γ)

)
.

Since f =
[
fΩ,m

−1
Γ fΓ

]ᵀ
for (6.17), the assumptions on the data also guarantee that the remaining

terms in E1 are bounded by a constant times hp.

(E4) It remains to study E4 = max‖~ϕh‖mh
=1|b

(
~u′, QVh ~ϕh

)
− bh

(
Ih~u
′, ~ϕh

)
|. First, we rewrite b

as

b
(
~v, ~ϕ

)
=

cΩ

mΓ

(
m
([

0, γ(v)
]ᵀ
,
[
0, ψ

]ᵀ)−m([0, ϑ]ᵀ, [0, γ(ϕ)
]ᵀ))

. (7.11)

Using (7.1b) and (7.8), we transform that the first term in E4 to

mΓ

cΩ
b
(
~v,QVh ~ϕh

)
= m

([
0, γ(v)

]ᵀ
,
[
0, ψ`h

]ᵀ)−m([0, ϑ]ᵀ, [0, γ(ϕ`h)
]ᵀ)

= m
([

0, γ(v)
]ᵀ
,
[
0, ψ`h

]ᵀ)−m([0, ϑ]ᵀ, [0, γ(ϕh)`
]ᵀ)

= m
([

0, γ(v)
]ᵀ
, QVh

[
0, ψh

]ᵀ)−m([0, ϑ]ᵀ, QVh [0, γ(ϕh)
]ᵀ)

= mh

(
QH∗h

[
0, γ(v)

]ᵀ
,
[
0, ψh

]ᵀ)−mh

(
QH∗h

[
0, ϑ
]ᵀ
,
[
0, γ(ϕh)

]ᵀ)
.
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Since bh also admits a representation like (7.11), we have for ~ϕh with ‖~ϕh‖mh
= 1

|b
(
~v,QVh ~ϕh

)
− bh

(
QH∗h ~v, ~ϕh

)
|

= | cΩ

mΓ

(
mh

(
(QH∗h − Ih)

[
0, γ(v)

]ᵀ
,
[
0, ψh

]ᵀ)−mh

(
(QH∗h − Ih)

[
0, ϑ
]ᵀ
,
[
0, γ(ϕh)

]ᵀ))|
≤ cΩ

mΓ

(
|mh

(
(QH∗h − Ih)

[
0, γ(v)

]ᵀ
,
[
0, ψh

]ᵀ)|+ |mh

(
(QH∗h − Ih)

[
0, ϑ
]ᵀ
,
[
0, γ(ϕh)

]ᵀ)|)
≤ cΩ

mΓ

(
‖(QH∗h − Ih)

[
0, γ(v)

]ᵀ‖mh
+ ‖(QH∗h − Ih)

[
0, ϑ
]ᵀ‖mh

√
mΓ‖ γ(ϕh)‖L2(Γh)

)
,

where we applied the Cauchy–Schwarz inequality for mh in the last step. Using the continuity of
the trace operator and the inverse inequality from [Brenner and Scott, 2008, Lem. 4.5.3], we find

‖ γ(ϕh)‖L2(Γh) ≤ ‖γ‖L2(Γh)←H1(Ωh)‖ϕh‖H1(Ωh) ≤ Ch
−1‖ϕh‖L2(Ωh) ≤ Ch

−1

and therefore

E4 ≤ C
(
‖(QH∗h − Ih)

[
0, γ(u′)

]ᵀ‖mh
+ h−1‖(QH∗h − Ih)

[
0, δ′

]ᵀ‖mh

)
. (7.12)

A bound for such terms follows from (5.2b), PHh = QH∗h QVh , and (5.5b), which yield

‖(QH∗h − Ih)~v‖mh
≤ CH

(
‖(PHh − I)~v‖m + ‖(I−QVh Ih)~v‖m

)
≤ 2CH‖(I−QVh Ih)~v‖m + C2

H‖∆m(QH∗h ~v)‖H∗h , ~v ∈ H.

Hence the first term in (7.12) is bounded by

‖(QH∗h − Ih)
[
0, γ(u′)

]ᵀ‖mh
≤ Chp‖ γ(u′)‖Hp(Γ) + Chp+1‖ γ(u′)‖L2(Γ) ≤ Ch

p‖u′‖Hp+1(Ω),

where we used (7.9), (7.10a) and the continuity of the trace operator γ : Hk+1(Ω) → Hk(Γ),
1 ≤ k ≤ p, cf. [Han and Atkinson, 2009, Thm. 7.3.11]. For the second term in (7.12), we find with
(7.9) and (7.10a)

‖(QH∗h − Ih)
[
0, δ′

]ᵀ‖mh
≤ Chp+1‖δ′‖Hp+1(Γ) + Chp+1‖δ′‖L2(Γ) ≤ Ch

p+1‖δ′‖Hp+1(Γ).

Summing both estimates, we arrive at

E4 ≤ Chp
(
‖u′‖Hp+1(Ω) + ‖δ′‖Hp+1(Γ)

)
,

which finishes this proof.

(ii) Note that by assumption u ∈ C4([0, T ];H)∩C3([0, T ];V ) and τ ĉqm < 2. Thus Corollary 5.9
applies and the desired estimate is a consequence of Ei ≤ Chp, i = 1, 2, 3, 4.

7.4 Numerical experiments

In this section, we present the results of our numerical experiments.

Implementation We implemented the linear and quadratic isoparametric finite element method for
the wave equation in dimension d = 2 in Matlab. Our assembly and visualization routines are based
on the P2Q2Iso2D code provided in [Bartels et al., 2006]. For the triangulation of the domain we
use the distmesh package from [Persson and Strang, 2004] and the corresponding quadratic nodes
stem from a code written for [Kovács, 2016].
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(a) h ≈ 0.6, p = 1 (b) h ≈ 0.6, p = 2 (c) h ≈ 0.45, p = 1 (d) h ≈ 0.45, p = 2

Figure 7.2: Triangulations of the unit disc Ω (in blue) with isoparametric elements of degree p. Note
that we remesh the domain to obtain finer triangulations. The black dots indicate the nodes of the
finite element basis.

Computational domain We numerically solve two examples of the scalar wave equation in the unit
disc

Ω =
{

x =
[
x1, x2

]ᵀ ∈ R2 | |x| < 1
}
.

To guarantee a consistent mesh quality over all numerical tests, we remesh the domain to obtain
finer triangulations, cf. Figure 7.2.

Example with kinetic boundary conditions The first example is the wave equation with kinetic
boundary conditions

utt(t, x)−∆u(t, x) = fΩ(t, x), x ∈ Ω, t ≥ 0, (7.13a)

utt(t, x)−∆Γu(t, x) = fΓ(t, x)− ∂nu(t, x), x ∈ Γ, t ≥ 0. (7.13b)

Let fΩ(t, x) = −4π2 sin(2πt)x1x2 and fΓ(t, x) = (6− 4π2) sin(2πt)x1x2. Then

u(t, x) = sin(2πt)x1x2, x ∈ Ω, t ≥ 0, (7.14)

is a solution of (7.13), since −∆Γx1x2 = 4x1x2 for the unit sphere Γ. The finite element discretiza-
tion of (7.13) is given in Section 7.2. We consider the case p = 1, 2 with exact coefficients and
fΩh

= IΩ
h fΩ, fΓh

= IΓ
h fΓ. For the initial values at t = 0 of the finite element approximations, we

use u0
h = IΩ

h u(0, ·) and v0
h = IΩ

h ut(0, ·).

Example with acoustic boundary conditions As a second example, we approximate the solution of
a wave equation with acoustic boundary conditions

utt(t, x)−∆u(t, x) = fΩ(t, x), x ∈ Ω, t ≥ 0, (7.15a)

δtt(t, x)−∆Γδ(t, x) + ut(t, x) = fΓ(t, x), x ∈ Γ, t ≥ 0, (7.15b)

δt(t, x) = ∂nu(t, x), x ∈ Γ, t ≥ 0. (7.15c)

Choosing fΩ(t, x) = −4π3 cos(2πt)x1x2 and fΓ(t, x) = (4 − 6π2) sin(2πt)x1x2, this problem has
the solution

u(t, x) = π cos(2πt)x1x2, x ∈ Ω, t ≥ 0, (7.16a)

δ(t, x) = sin(2πt)x1x2, x ∈ Γ, t ≥ 0. (7.16b)

We described the finite element method for (7.15) in Section 7.3. As in the first example, we choose
the initial values and source terms as interpolations of the exact data.
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(a) Space discretization errors of (7.13).
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(b) Space discretization errors of (7.15).
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Figure 7.3: Error of the isoparametric finite element approximations of order p = 1 (blue line) and
p = 2 (green line). The dashed lines indicate slopes 1 and 2.

Details of the experiments Let Ωh,2 be the approximation of Ω with quadratic isoparametric finite
elements and let IΩ

h,2 : H2(Ω) → V Ω
h,2, IΓ

h,2 : H2(Γ) → V Γ
h,2 be the corresponding interpolation

operators. We investigate the convergence of uh(t) ∈ V Ω
h,p, p = 1, 2 to (7.14) by considering the

error

eh(t) := uh(t)− IΩ
h,2u(t)

in the energy norm

E(t) :=
(
‖eh(t)‖2H1(Ωh,2;Γh,2) + ‖e′h(t)‖2L2(Ωh,2)×L2(Γh,2)

)1/2
,

where Γh,2 := ∂Ωh,2. To compare the linear finite element approximations in V Ω
h,1 and V Γ

h,1 with the
quadratic interpolations of the exact solutions, we lift them from Ωh,1 and Γh,1 to Ωh,2 and Γh,2,
respectively. For the approximation of (7.16), we consider the error

~eh(t) :=

[
uh(t)− IΩ

h,2u(t)

δh(t)− IΓ
h,2δ(t)

]
in the energy norm

Ẽ(t) :=
(
‖~eh(t)‖2H1(Ωh,2)×H1(Γh,2) + ‖ ~eh′(t)‖2L2(Ωh,2)×L2(Γh,2)

)1/2
.

We will also write E(tn) and Ẽ(tn) for the energy norms of the full discrete errors enh := unh−IΩ
h,2u(tn)

and ~enh := ~unh −
(
IΩ
h,2, I

Γ
h,2

)
~u(tn), respectively.

Convergence of the space discretization The error plots in Figure 7.3 confirm that the space
discretizations converge with O(hp), which confirms the error bounds from Theorems 7.4 and 7.5.
For the time integration of these examples, we used a Gauss Runge–Kutta method with s = 3 stages
and time step size τ ≈ h.
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Convergence of the full discretization We show the full discretization errors for time integration
with different schemes in Figure 7.4. In both experiments, we see that the Crank–Nicolson method
and the Gauss Runge–Kutta method with s = 1 converge quadratically until the space discretization
error dominates. These results confirm the convergence rates from Theorems 7.4 and 7.5. The Gauss
Runge–Kutta method with s = 2 stages converges with O(τ4), although we expect O(τ s+1), cf.
[Pazur, 2013]. This full convergence rate with O(τ2s) can be explained with [Brenner et al., 1982,
Thm. 1], since the exact solutions of our examples are sufficiently smooth.

(a) Full discretization errors of (7.13).
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(b) Full discretization errors of (7.15).
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Figure 7.4: Error at time t = 2.3 of the full discretizations of (7.13) with isoparametric finite elements
approximations of order p = 2 and mesh width h = 0.1508. The yellow line shows the error of the
Crank–Nicolson method w.r.t. to the time step size τ . The violet and red lines correspond to Gauss
Runge–Kutta methods with s = 1 and s = 2 stages, respectively. The dashed line indicates slope 2
and 4. For the Gauss methods with s = 2 we additionally plot the error on mesh sizes h = 0.0666
(square) and h = 0.0535 (triangle).
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semigroups. Birkhäuser Verlag, Basel.

[Vedurmudi et al., 2016] Vedurmudi, A. P., Goulet, J., Christensen-Dalsgaard, J., Young, B. A.,
Williams, R., and van Hemmen, J. L. (2016). How Internally Coupled Ears Generate Temporal
and Amplitude Cues for Sound Localization. Physical Review Letters, 116(2):028101.

[Vitillaro, 2013] Vitillaro, E. (2013). Strong solutions for the wave equation with a kinetic boundary
condition. 594:295–307.

[Vitillaro, 2015] Vitillaro, E. (2015). On the the wave equation with hyperbolic dynamical bound-
ary conditions, interior and boundary damping and source. arXiv:1506.00910 [math]. arXiv:
1506.00910.

[Vitillaro, 2016] Vitillaro, E. (2016). On the wave equation with hyperbolic dynamical boundary
conditions, interior and boundary damping and supercritical sources. arXiv:1601.07075 [math].

[Xiao and Liang, 2004] Xiao, T.-J. and Liang, J. (2004). Complete second order differential equa-
tions in Banach spaces with dynamic boundary conditions. Journal of Differential Equations,
200(1):105–136.

[Zeidler, 1990a] Zeidler, E. (1990a). Nonlinear functional analysis and its applications. II/A.
Springer-Verlag, New York.



BIBLIOGRAPHY 89

[Zeidler, 1990b] Zeidler, E. (1990b). Nonlinear functional analysis and its applications. II/B.
Springer-Verlag, New York.

[Zhang et al., 2004] Zhang, B., Boström, A., and Niklasson, A. J. (2004). Antiplane shear waves
from a piezoelectric strip actuator: exact versus effective boundary condition solutions. Smart
Materials and Structures, 13(1):161.

[Zhao, 2004] Zhao, J. (2004). Analysis of finite element approximation for time-dependent Maxwell
problems. Mathematics of Computation, 73(247):1089–1105.


	Abstract
	Acknowledgements
	Introduction
	Notation
	Non-trivial boundary conditions for wave equations
	Derivation of wave equations
	The principle of stationary action
	The vibrating membrane
	Dirichlet boundary conditions and source terms

	Dynamic boundary conditions
	The wave equation with acoustic boundary conditions
	Non-locally reacting kinetic boundary conditions

	Further topics and literature

	Error analysis for linear Cauchy problems with monotone operators
	Description of the continuous problem
	Well-posedness of the continuous problem
	Space discretization
	Notation for spaces and operators
	A priori error bounds
	Convergence
	Overview of examples
	Time integration with the Crank–Nicolson method

	Error analysis for symmetric hyperbolic systems
	Description of the continuous problem
	A priori error bounds
	The case XhY
	Error analysis for discontinuous Galerkin methods

	Examples: Maxwell's equations
	Edge element discretizations
	Discontinuous Galerkin discretizations


	Second-order wave-type problems
	Description of the continuous problem
	Well-posedness of the continuous problem
	Energy spaces
	Weak solutions
	Further topics and literature

	Error analysis for second-order wave-type problems
	Space discretization
	A priori error bounds
	Example: Finite elements for the acoustic wave equation
	Full discretization with the Crank–Nicolson method

	Analysis of wave equations with dynamic boundary conditions
	Degenerate non-locally reacting kinetic boundary conditions
	Analysis of specific examples
	Robin type boundary conditions
	Kinetic boundary conditions

	Non-locally reacting acoustic boundary conditions

	Numerics for wave equations with dynamic boundary conditions
	The bulk-surface finite element method
	A priori error bounds for the wave equation with kinetic boundary conditions
	A priori error bounds for the wave equation with acoustic boundary conditions
	Numerical experiments


