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Abstract In a recent publication (Abdesselam et al.
arXiv:1608.02344), the Belle collaboration updated their
analysis of the inclusive weak radiative B-meson decay,
including the full dataset of (772 ± 11) × 106 B B̄ pairs.
Their result for the branching ratio is now below the Standard
Model prediction (Misiak et al. Phys Rev Lett 114:221801,
2015, Czakon et al. JHEP 1504:168, 2015), though it remains
consistent with it. However, bounds on the charged Higgs
boson mass in the Two-Higgs-Doublet Model get affected in
a significant manner. In the so-called Model II, the 95% C.L.
lower bound on MH± is now in the 570–800 GeV range,
depending quite sensitively on the method applied for its
determination. Our present note is devoted to presenting and
discussing the updated bounds, as well as to clarifying sev-
eral ambiguities that one might encounter in evaluating them.
One of such ambiguities stems from the photon energy cut-
off choice, which deserves re-consideration in view of the
improved experimental accuracy.

1 Introduction

In the absence of any new strongly interacting particles dis-
covered at the LHC, one observes growing interest in mod-
els where kinematically accessible exotic particles take part
in the electroweak (EW) interactions only. The simplest of
such models are constructed by extending the Higgs sec-
tor of the Standard Model (SM) via introduction of another
SU (2)weak doublet. There are several versions of the Two-
Higgs-Doublet Model (2HDM) that differ in the Higgs boson
couplings to fermions. They are usually arranged in such
a way that no tree-level Flavour-Changing Neutral Current
interactions arise [1,2]. In the so-called Model I, fermions
receive their masses in the SM-like manner, from Yukawa
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couplings to only one of the two Higgs doublets. In Model
II, the Yukawa couplings are as in the Minimal Supersymmet-
ric Standard Model, i.e. one of the doublets called Hu gives
masses to the up-type quarks, while the other doublet, Hd ,
gives masses to both the down-type quarks and the leptons.1

Within the 2HDM, the physical spin-zero boson spectrum
consists of one charged scalar H±, one neutral pseudoscalar
A0, and a pair of scalars, H0 and h0, the latter of which
is identified with the recently discovered SM-like Higgs
boson. If the beyond-SM (BSM) scalars become very heavy
(MH± , MA0 , MH0 ∼ M � mh0 ), they undergo decoupling,
and the model reduces to the SM at scales much smaller than
M . Thus, any claims [4] concerning exclusion of the 2HDM
in its full parameter space imply claiming exclusion of the
SM, too.

As is well known (see, e.g., Ref. [5]), strong constraints
on MH± follow from measurements of the inclusive weak
radiative B-meson decay branching ratio. The most precise
results come from the Belle collaboration, especially from
their recent analysis based on the full (772 ± 11) × 106 B B̄
pair dataset [6]. Their updated result is now below the Stan-
dard Model prediction [7,8], though it remains consistent
with it. On the other hand, the 2HDM effects in Model II
can only enhance the decay rate. In consequence, the lower
bound on MH± in this model becomes very strong, reach-
ing the range of 570–800 GeV. At the same time, the bound
becomes very sensitive to the method applied for its deter-
mination. Given the relevance of the considered bound for
many popular BSM models with extended Higgs sectors, a
detailed discussion of this issue is necessary. This is the main
purpose of our present paper.

1 Couplings to leptons are irrelevant for our considerations throughout
the paper. Thus, whatever we write about Models I and II is also true
for the models called “X” and “Y”, respectively – see Tabs. 1 and 6 of
Ref. [3].
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Following Eqs. (1.1) and (1.2) of Ref. [8], as well as Eq. (9)
of Ref. [7], we shall use the CP- and isospin-averaged branch-
ing ratios Bsγ and Bdγ of the weak radiative decays, normal-
izing them to the analogously averaged branching ratio Bc�ν

of the semileptonic decay. The main observable for our con-
siderations will be the ratio

Rγ = Bsγ + Bdγ

Bc�ν
≡ B(s+d)γ

Bc�ν
. (1)

We prefer to use Rγ rather than Bsγ for two reasons. First,
the currently most precise experimental results come from the
fully inclusive analyses of Belle [6] and Babar [9] where the
actually measured quantity is B(s+d)γ . Second, a normaliza-
tion to the semileptonic rate removes the main contribution
to the parametric uncertainty of around 1.5% on the theory
side, while it cannot introduce a larger uncertainty on the
experimental side. Our treatment of the experimental results
will be described in Sect. 4.

Constraints on MH± from observables other than Rγ (or
Bsγ ) have been reviewed in several recent articles – see, e.g.,
Refs. [3,10,11]. Their common property in Model II is that
they become relevant either for small or for very large ratio of
the vacuum expectation values vu/vd ≡ tan β. On the other
hand, Rγ provides a bound that cannot be avoided for any
tan β, and turns out to be the strongest one in quite a wide
range of tan β.

Our paper is organized as follows. In the next section,
the basic framework for analyzing the considered decays is
outlined, with extended explanations concerning the photon
energy cutoff issue. Section 3 is devoted to recalling the SM
prediction for Rγ and discussing the size of possible extra
contributions in the 2HDM. In Sect. 4, we collect all the avail-
able experimental results for Bsγ and/or B(s+d)γ , calculate
their weighted averages in several ways, and convert them to
Rγ . The resulting bounds on MH± are derived in Sect. 5. We
conclude in Sect. 6.

2 Photon energy cutoff in Bsγ and Bdγ

The radiative decays we are interested in proceed dominantly
via quark-level transitions b → sγ , b → dγ , and their CP-
conjugates. A suppression by small Cabibbo–Kobayashi–
Maskawa (CKM) angles makes Bdγ about 20 times smaller
thanBsγ . For definiteness, we shall discussBsγ in the follow-
ing, making separate comments on Bdγ only at points where
anything beyond a trivial replacement of the quark flavours
matters.

Theoretical analyses of rare B-meson decays are most
conveniently performed in the framework of an effective the-
ory that arises after decoupling the W -boson, the heavier SM
particles, and all the (relevant) BSM particles. We assume
here that the BSM particles being decoupled are much heav-

ier than the b-quark, but their masses are not much above a
TeV. In such a case, the decoupling can be performed in a sin-
gle step, at a common renormalization scale μ0 ∼ mt . In the
effective theory below μ0, the weak interaction Lagrangian
that matters for b → sγ takes the form

Lweak ∼
∑

i

Ci Qi , (2)

where Qi are dimension-five and -six operators of either four-
quark type, e.g.,

Q1 = (s̄LγμT
acL)(c̄Lγ μT abL),

Q2 = (s̄LγμcL)(c̄Lγ μbL),
(3)

or dipole type,

Q7 = e

16π2 mb(s̄LσμνbR)Fμν,

Q8 = g

16π2 mb(s̄LσμνT abR)Ga
μν.

(4)

A complete list of Qi that matter in the SM or 2HDM at
the Leading Order2 (LO) in αem can be found in Eq. (1.6)
of Ref. [8]. Their Wilson coefficients Ci (μ0) are evaluated
perturbatively in αs by matching several effective-theory
Green’s functions with those of the SM or 2HDM. Such
calculations have now reached the Next-to-Next-to-Leading
Order (NNLO) accuracy in QCD, i.e.Ci (μ0) are known up to
O(α2

s ). In the dipole operator case, performing a three-loop
matching [13,14] was necessary at the NNLO.

In the next step, the Wilson coefficients are evolved
according to their renormalization group equations down to
the scale μb ∼ mb, in order to resum large logarithms of
the form

(
αs ln(μ2

0/μ
2
b)

)n ∼ (
αs ln(m2

t /m
2
b)

)n
. To achieve

this at the NNLO level, anomalous dimension matrices up
to four loops [15] had to be determined. At present, all the
Wilson coefficients Ci (μb) are known with a precision that
is sufficient for evaluating Rγ at the NNLO in QCD.

While the calculations of Ci (μb) are purely perturbative,
one needs to take nonperturbative effects into account when
determining the physical decay rates. For B̄ → Xsγ (with
B̄ denoting either B̄0 or B−), the decay rate is a sum of
the dominant perturbative contribution and a subdominant
nonperturbative one, δ
nonp, i.e.


(B̄ → Xsγ ) = 
(b → X p
s γ ) + δ
nonp, (5)

where a photon energy cutoff Eγ > E0 in the decaying par-
ticle rest frame is imposed on both sides.3 The partonic final
state X p

s is assumed to consist of charmless quarks and glu-
ons, while the hadronic state Xs is assumed to contain no

2 For the Next-to-Leading (NLO) EW corrections, several extra four-
quark operators need to be included – see Eq. (2) of Ref. [12]. In that
paper, such corrections were calculated within the SM. The 2HDM case
is still pending.
3 The rates would be ill-defined without such a cutoff.

123



Eur. Phys. J. C (2017) 77 :201 Page 3 of 9 201

charmed or cc̄ hadrons. The latter requirement is in principle
stronger than demanding that Xs as a whole is charmless.
However, all the measurements to date have been performed
with E0 ≥ 1.7 GeV, in which case the cc̄ hadrons and/or pairs
of charmed hadrons are kinematically forbidden in Xs any-
way. There is no experimental restriction on extra photons or
lepton pairs in Xs , but their contribution corresponds to very
small NLO QED corrections that are only partly included on
the theory side.

The nonperturbative contribution δ
nonp in Eq. (5) is
strongly dependent on E0. For E0 = 1.6 GeV, it shifts the
SM prediction for Bsγ by almost +3% [16],4 while the cor-
responding uncertainty is estimated at the ±5% level [17].
For higher values of E0, theoretical uncertainties grow (see
below), while the experimental ones decrease thanks to lower
background subtraction errors. To resolve this issue, it has
become standard to perform a data-driven extrapolation of
the experimental results down to E0 = 1.6 GeV, and com-
pare with theory at that point.

A few comments about such an extrapolation need to
be made. First, it is instructive to have a look at Fig. 1,
which presents the background-subtracted photon energy
(E∗

γ ) spectrum in the ϒ(4S) frame, as determined by Belle
in their full-dataset measurement [6]. Photon energies Eγ in
the B-meson rest frame differ from E∗

γ by boost factors that
do not exceed 1.07. One can see that energies below 2 GeV
are well in the tail of the spectrum. On the other hand, a large
set of measurements that gives quite a precise weighted aver-
age for B(s+d)γ is available already at E0 = 1.9 GeV (see
Sect. 4). Thus, the extrapolation we need is really a short one,
and only in the tail of the spectrum.

To understand the growth of theoretical uncertainties with
E0, one begins with considering the case whenC7 is assumed
to be the only nonvanishing Wilson coefficient at the scale
μb. In such a case, the fixed-order Heavy Quark Effective
Theory (HQET) formalism can be used to show that [18–20]
[

δ
nonp


(b → X p
s γ )

]

only C7

= −μ2
π + 3μ2

G

2m2
b

+ O
(

αs�
2

(mb − 2E0)2 ,
�3

m3
b

)
,

(6)

provided mb − 2E0 � � with � ∼ �QCD. The quanti-
ties μ2

π and μ2
G are of order �2, and are currently quite well

known from fits to the measured semileptonic decay spec-
tra [21]. With growing E0, at some point one enters into the
region where mb − 2E0 ∼ �, and the fixed-order HQET

4 Such a central value of the shift corresponds actually to the effect of
N (E0) in Eq. (D.4) of Ref. [8] where a normalization to the semileptonic
rate was used, and some of the nonperturbative effects were relegated
to the semileptonic phase-space factor C in Eqs. (D.2)–(D.3) there.
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Fig. 1 Background-subtracted B̄ → Xs+dγ photon energy spectrum
in the ϒ(4S) frame, as shown in Fig. 1 of Ref. [6]. The solid histogram
has been obtained by using a shape-function model with its parameters
fitted to data

calculation is no longer applicable. Instead, the leading non-
perturbative effect is parameterized in terms of a universal
shape function [22,23]. We need to rely on models for this
function, which is the main reason why the theory uncertain-
ties grow with E0.

A number of shape-function models have been invented in
the past, with their parameters constrained by measurements
of the semileptonic and radiative B-meson decay spectra –
see, e.g., Refs. [24,25]. In Fig. 13 of Ref. [25], one can see that
the B̄ → Xsγ photon energy spectrum becomes quite unique
already at Eγ = 1.9 GeV, at least for the considered class
of models. Such a uniqueness is indeed expected below the
point where the shape-function description starts to overlap
with the fixed-order HQET description. Future studies with
precise Belle-II data should shed more light on the actual
location of this point. Our present approach relies on the
assumption that E0 = 1.6 GeV is definitely below this point.

Choosing 1.6 GeV as the default E0 to compare the fixed-
order HQET predictions with the (extrapolated) experimental
results for Bsγ was first suggested in Ref. [26], at the time
when no precise data on the spectrum were available, and one
had to rely on a limited class of shape-function models. At
present, one might wonder whether this default E0 might be
shifted upwards. However, since such a decision would need
to be made on the basis of the experimental data, shifting the
default E0 could hardly improve anything with respect to the
current extrapolation approach. Another question that one
might ask is whether the extrapolation method (say, from 1.9
to 1.6) is indeed superior with respect to direct measurements
at lower values of E0 (but in the range [1, 6, 1.9]). The answer
depends on the balance of uncertainties: the extrapolation
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Table 1 Quantities 
q from
Eq. (7) evaluated using various
approaches

E0 (GeV) 
BF
s (%) 
Belle

s (%) 
fix
s (%) 
fix

s+d (%) 
fix
d (%)

1.7 (1.5 ± 0.4) 1.3 1.5 5.3

1.8 (3.4 ± 0.6) (3.69 ± 1.39) 3.0 3.4 10.5

1.9 (6.8 ± 1.1) 5.5 6.0 15.7

2.0 (11.9 ± 2.0) 10.0 10.5 22.5

ones and the background subtraction ones. We shall come
back to this issue in Sect. 4.

Effects of extrapolations from E0 to 1.6 GeV can be
parameterized by


q ≡ Bqγ (1.6)

Bqγ (E0)
− 1, (7)

with q = s, d or s + d. Numerical values of this quantity
obtained with the help of various methods are presented in
Table 1. Those denoted by 
BF

s were evaluated in Ref. [27]
where the measured semileptonic and radiative B-meson
decay spectra (as available in 2005) were used to deter-
mine the b-quark mass mb and the parameter μ2

π in three
different renormalization schemes. Next, these parameters
were inserted into the Kagan–Neubert shape-function model
(Eq. (24) of Ref. [24]). The shape function was then convo-
luted with the perturbatively calculated photon energy spec-
trum in the b-quark decay, which led to a prediction for the
physical photon energy spectrum in the B-meson decay.

In the next column of Table 1, the quantities 
Belle
s were

obtained in Ref. [6] using essentially the same method but
with the radiative spectrum only, as measured in the very
analysis of Ref. [6]. In that case, only the result for E0 =
1.8 GeV is publicly available at present. The shape-function
model was used in the experimental analysis not only for
the extrapolation in E0, but also for efficiency estimates and
boosting between E∗

γ and Eγ . The best fit for mb and μ2
π in

Ref. [6] leads to a good description of the measured spectrum
(solid histogram in Fig. 1), and at the same time is consistent
with the semileptonic fits [21].

The last three columns of Table 1 have been obtained
using the approach of Refs. [7,8] (perturbative & fixed-order
HQET), in which case the photon energy spectrum is deter-
mined mainly by the perturbative gluon bremsstrahlung. In
these cases, no uncertainties are quoted, as we do not know
at which E0 the fixed-order HQET description breaks down.
The subleading O(αs�

2) nonperturbative corrections [28]
begin to rapidly increase at E0 around 1.8 GeV due to
(mb − 2E0)

2 in their denominators, but their overall sup-
pression factor is small, and they remain under control in the
whole region of interest (up to 2 GeV).

The quantities 
fix
q involve effects of the photon

bremsstrahlung in decays of the b quark to three light
(anti)quarks, as calculated in Refs. [29,30]. Such effects are

small in Bsγ (unless one goes well below E0 = 1.6 GeV)
but become much more relevant in Bdγ where the tree-level
b → duūγ transitions are not CKM-suppressed with respect
to the leading b → dγ one. In effect, 
fix

d are visibly dif-
ferent from 
fix

s . However, 
fix
s+d is not very different from


fix
s due to the dominance of Bsγ over Bdγ . Such photon

bremsstrahlung effects involve collinear singularities in the
limit of vanishing quark masses, which signals the presence
of important nonperturbative effects that need to be described
in terms of fragmentation functions [31], and are poorly
known. Fortunately, their overall suppression factors in Bsγ

andB(s+d)γ are strong enough, and the corresponding uncer-
tainties are far below the dominant nonperturbative ones.

It is interesting to observe in Table 1 that 
BF
s and 
Belle

s
are quite close to 
fix

s and 
fix
s+d . It gives us a hope that

the breakdown of the fixed-order HQET description, even if
present, is not dramatic in the considered region of E0. In
effect, our sensitivity to ambiguities in modelling the shape
functions is likely to be quite limited, at least for the purpose
of the 1.9 → 1.6 extrapolations. However, a devoted analysis
with the most recent data and a wide class of shape-function
models is necessary to estimate the corresponding uncer-
tainty in a reliable manner.5 Since such an analysis is still
awaited, we shall proceed using 
BF

s in the following for the
extrapolation of Bsγ . As far as the extrapolation of B(s+d)γ

is concerned, we are going to rescale 
BF
s according to the

fixed-order results, namely use 
BF
s+d ≡ 
BF

s × 
fix
s+d/


fix
s .

3 The ratio Rγ in the SM and 2HDM

Although the perturbative decay rate 
(b → X p
s γ ) in Eq. (5)

may seem straightforward to evaluate, its determination to
better than±5% accuracy requires including the NNLO QCD
corrections, which is a highly nontrivial task. While the Wil-
son coefficients are already known to sufficient accuracy both
in the SM and 2HDM (as already mentioned in the previ-
ous section), our knowledge of the NNLO corrections is yet
incomplete in the case of matrix elements, namely interfer-
ences among on-shell decay amplitudes generated at the scale

5 As follows from Ref. [17], operators other than Q7 give rise to
relevant nonperturbative effects, which may increase the extrapolation
uncertainties.
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Fig. 2 Rγ at E0 = 1.6 GeV as a function of MH± in Model I with
tan β = 1 (left) and in Model II with tan β = 50 (right). Middle lines
show the central values, while the upper and lower ones are shifted

by ±1σ . Solid and dashed curves correspond to the 2HDM and SM
predictions, respectively. Dotted lines show the experimental average
Rexp

γ = (3.22 ± 0.15) × 10−3 (see Sect. 4)

μb by the operators Qi . The matrix elements are the same in
the SM and in the 2HDM.

At the NNLO level, we can restrict our attention to the
operators listed in Eqs. (3–4), as the remaining ones can be
neglected due to their small Wilson coefficients. The Q7–Q7

and Q7–Q8 interference terms are already known at O(α2
s )

in a complete manner [32–36]. The NNLO interference terms
not involving Q7 can be separated into two-body final state
contributions (trivially derived from the NLO results) or rel-
atively small (n ≥ 3)-body final state contributions that have
been calculated so far [37–39] only in the Brodsky–Lepage–
Mackenzie (BLM) [40] approximation. The main perturba-
tive uncertainty comes from the Q1,2–Q7 interferences at
O(α2

s ). Their BLM parts, as well as the effects of nonvanish-
ing quark masses in loops on the gluon lines, were evaluated
in Refs. [37,41,42] for arbitrary values of the charm quark
mass mc. The remaining parts were found only in the limits
mc � mb/2 [43] or mc = 0 [8], and then an interpolation
between these two limits was performed [8].

With all the NNLO QCD, NLO EW and nonperturbative
corrections evaluated to date, the SM prediction for Rγ at
E0 = 1.6 GeV reads [7]

RSM
γ = (3.31 ± 0.22) × 10−3, (8)

where the overall uncertainty has been obtained by com-
bining in quadrature the nonperturbative one (±5%), the
parametric one (±1.5%), the one stemming from neglected
higher-order effects (±3%), and the one due to the above-
mentioned interpolation in mc (±3%).

In the 2HDM, additional contributions to the Wilson
coefficient matching arise from diagrams with the physical
charged scalar exchanges. The relevant couplings and sam-
ple diagrams can be found, e.g., in Sect. 2.3 of Ref. [14]. We
evaluate Rγ in Model I and Model II with the same accuracy
as in the SM, up to the missing NLO EW corrections to the
charged Higgs contributions. Apart from the SM parameters,

the results depend only on MH± and tan β. They are plotted
in Fig. 2 as functions of MH± in two cases of particular inter-
est: Model I with tan β = 1 and Model II with tan β = 50.
The solid and dashed curves in these plots correspond to the
2HDM and SM cases, respectively. Dotted lines indicate the
experimental average to be discussed in the next section.

In Model I, the charged Higgs contribution to the decay
amplitude is proportional to cot2 β, and it interferes with the
SM one in a destructive manner. In Model II, the interfer-
ence is always constructive, and the charged Higgs ampli-
tude has the form6 A + B cot2 β. The quantities A and B
depend on MH± only, and they have the same sign. In con-
sequence, an absolute bound on MH± can be derived from
Rγ in Model II by setting the cot2 β term to zero. In prac-
tice, Rγ becomes practically independent of tan β already
tan β � 2. The tan β = 50 case in Fig. 2 indicates that the
absolute bound on MH± is going to be in the few-hundred
GeV region. In Model I, sizeable deviations of Rγ from its
SM value occur only for moderate or small values of tan β.
The tan β = 1 case displayed in Fig. 2 shows that our sensi-
tivity to MH± in this case is almost as strong as in Model II.

4 Determining the current experimental average for Rγ

All the available measurements of B(s+d)γ and Bsγ , as well
as our averages of them are collected in Table 2. The results
of Babar have been obtained using three methods: fully inclu-
sive [9], semi-inclusive [44], and the hadronic-tag one [45].
Belle has used the fully inclusive [6] and semi-inclusive [46]
approaches, while their hadronic-tag analysis is still awaited.
In the measurement of CLEO [47], the fully inclusive method
was used.

6 The term proportional to tan2 β is suppressed by the strange quark
mass, and we neglect it here.
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(1
4) The most precise results come from the fully inclusive

analyses where the actually measured quantity is B(s+d)γ .
The same refers to the hadronic-tag result of Babar, which
is actually also fully inclusive. In the semi-inclusive cases, a
single kaon in the final state was required, so the measure-
ments accounted directly for Bsγ . We indicate this in Table 2
by typesetting the corresponding numbers in bold.

Belle and CLEO provided their B(s+d)γ results explic-
itly, while Babar rescaled them to Bsγ , quoting in each
case the necessary CKM factor together with its uncertainty.
In Table 2, we “undo” the rescaling using precisely the
same factors. On the other hand, in the two semi-inclusive
cases, we derive B(s+d)γ from Bsγ using a rescaling factor
(1.047 ± 0.003) that we calculate at E0 = 1.9 GeV as in
Refs [7,8]. Our factor differs only slightly (by 0.2%) from
1 + |Vtd/Vts |2, due to the b → duūγ effects. Rescaling the
semi-inclusive results is a minor issue anyway, as they come
with considerably larger experimental errors.

The reader is referred to the original experimental
papers [6,9,44–47] for the decomposition of errors into
the statistical, systematic and occasionally the spectrum-
modelling ones. Here we have added them in quadrature
for the purpose of determining our naive averages, in which
no correlations have been taken into account. In several
cases, we can compare our averages with the very recent
ones of HFAG [48] where, we believe, the necessary cor-
relations have been included. For instance, the two Belle
results for Bsγ at E0 = 1.9 GeV lead to the naive average
of av[294(18), 351(37)] = 305(16), which perfectly agrees
with Ref. [48]. In the same row of Table 2, the two less pre-
cise results of Babar giveav[329(52), 366(104)] = 336(46),
which again overlaps with Ref. [48]. In this case, the most
precise result of Babar has not been included in the HFAG
average. We have been informed that this point is going to
be corrected soon [49].

As far as the world average for Bsγ extrapolated to E0 =
1.6 GeV is concerned, Ref. [48] gives (3.32 ± 0.15)× 10−4,
which is quite close to our (3.27 ± 0.14) × 10−4 in the
row containing the semi-inclusive measurements. We do not
know which inputs have been used in this average of HFAG.
Concerning the extrapolation, they have indicated using the
method of Ref. [27].

Comparing the uncertainties in the four alternative aver-
ages for Rγ at E0 = 1.6 GeV in the last column of Table 2,
one can see that the first two of them are less accurate. Thus,
at the moment, the balance of the background subtraction and
extrapolation uncertainties points towards using the results
extrapolated from 1.9 or 2.0, at least when one takes the errors
from Ref. [27] for granted. Since there is not much differ-
ence in the uncertainties of these two averages, we suggest
discarding the 2.0 one, as it requires a longer extrapolation.
Thus, we recommend adopting
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Fig. 3 Left Probability density for Rexp
γ = (3.22 ± 0.15) × 10−3,

assuming a Gaussian distribution. The integrated probability over the
dark-shaded region amounts to 5%. In the absence of theoretical uncer-
tainties, the light-shaded region is accessible in Model II only for

MH± > 1276 GeV. Right Confidence belts (95% C.L.) in Model II for
the same experimental error, and including the theoretical uncertainties
(see the text). The experimental central value from Eq. (9) is marked by
the vertical dashed line

Rexp
γ = (3.22 ± 0.15) × 10−3 (9)

as the current experimental average for Rγ at E0 = 1.6 GeV.

5 Bounds on MH±

In this section, we shall use Rγ to derive bounds on MH±
in the 2HDM. We are going to treat all the uncertainties as
stemming from Gaussian probability distributions, which is
obviously an ad hoc assumption, although consistent with
combining various partial uncertainties in quadrature on the
theory side, and in the experimental averages. In any case,
the quoted confidence levels of our bounds should be taken
with a grain of salt.

The left plot in Fig. 3 shows a Gaussian probability distri-
bution for our average in Eq. (9). In Model II, only enhance-
ments of Rγ with respect to the SM prediction (8) are pos-
sible. Thus, if there were no theoretical uncertainties, only
Rγ > 3.31 × 10−3 would be accessible in Model II. This
is marked by the shaded regions (both light and dark) in the
considered plot. The integrated probability over the dark-
shaded region amounts to 5%. The border between the light-
and dark-shaded regions corresponds to the central value for
Rγ obtained for MH± � 1276 GeV in the limit cot β → 0.
Thus, one might expect that the 95% C.L. lower bound for
MH± should amount to 1276 GeV in the absence of theoret-
ical uncertainties. We are not assuming here that Model II is
valid for sure. Instead, we are allowing for a possibility that
it gets excluded (together with the SM) if Rexp

γ is sufficiently
far below the SM prediction.

To include the theory uncertainties, one follows the stan-
dard confidence belt construction (see, e.g., Sect. 39.4.2.1 of
Ref. [50]). For each MH± , one considers a Gaussian proba-
bility distribution around the theoretical central value, with

its variance obtained by combining the experimental and
theoretical uncertainties in quadrature. Next, a confidence
interval corresponding to (say) 95% integrated probability is
determined. It can be placed either centrally (for a deriva-
tion of 2-sided bounds), or maximally shifted in either way
(for 1-sided bounds), or in an intermediate way, like in the
Feldman-Cousins (FC) approach [51]. This is illustrated in
the right plot of Fig. 3, for Model II with cot β → 0. The red,
black, green, and blue intervals correspond to the 2-sided,
upper 1-sided, lower 1-sided and FC cases, respectively. The
experimental central value from Eq. (9) is marked by the ver-
tical dashed line. On the vertical axis, we use 1 TeV/MH±
that is restricted to be positive, which makes our case very
similar to the one in Sect. IV-B of Ref. [51].

It is the freedom of the confidence interval placement that
makes the resulting bounds on MH± somewhat ambiguous.
If we choose the FC (blue) intervals, low values of Rexp

γ can
never lead to exclusion of Model II in its whole parameter
space. If we choose the upper 1-sided (black) intervals, our
method is actually equivalent to using the experimental upper
bound on Rexp

γ rather than the actual measurement. In this
case, the previously discussed example from the left plot of
Fig. 3 is recovered in the limit of no theory uncertainties.
In the literature, bounds on MH± have been derived using
either the 1-sided (e.g., Refs. [7,14,26,52]) or 2-sided (e.g.,
Refs. [6,53]) approaches, and the method choice was not
always explicitly spelled out.

In Table 3, we present the bounds we obtain following
three different methods, and using three out of four7 aver-
ages for Rexp

γ from Table 2. The rows corresponding to our
preferred choice [Eq. (9)] are displayed in bold. For Model
I we set tan β = 1, while the absolute bounds (cot β → 0)

7 We omit the one requiring the longest (2.0 → 1.6) extrapolation in
E0.
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Table 3 Bounds on MH±
obtained using different
methods

Model Rexp
γ × 103 95% C.L. bounds 99% C.L. bounds

1-Sided 2-Sided FC 1-Sided 2-Sided FC

I (tan β = 1) 3.05 ± 0.28 307 268 268 230 208 208

3.12 ± 0.19 401 356 356 313 288 288

3.22 ± 0.15 504 445 445 391 361 361

II (absolute) 3.05 ± 0.28 740 591 569 477 420 411

3.12 ± 0.19 795 645 628 528 468 461

3.22 ± 0.15 692 583 580 490 440 439

Fig. 4 95% C.L. lower bounds on MH± as functions of tan β

are shown for Model II. In the Model I case, the lower rather
than the upper 1-sided intervals are employed.

It is interesting to observe that stronger bounds on MH±
in Model II are found from the two less precise averages,
just because their central values turn out to be lower. These
averages are less sensitive to the E0-extrapolation issues,
which might be helpful in accepting the ones derived from
Eq. (9) as conservative. The situation in Model I is reverse
– the most precise average gives the strongest bounds, as
naively expected.

By coincidence, our 2-sided 95% C.L. bound of 583 GeV
in Model II practically overlaps with the 580 GeV one that
has been obtained in Ref. [6] from their single measurement
alone [giving B(s+d)γ with a lower central value but larger
uncertainty than the one corresponding to our Eq. (9)]. Since
this bound is also the most conservative one, we suggest
choosing it for updated combinations with constraints from
other observables.

In Fig. 4, the 95% C.L. bounds on MH± are shown as
functions of tan β. Above tan β � 2, the Model I bound
becomes weaker than the LEP one (�80 GeV [50]), while
the Model II one gets saturated by its tan β → ∞ limit (�
580 GeV). Our plot terminates on the left side at tan β = 0.4.
For lower values of tan β, the bound from Rb becomes more
important in Model II (see Figs. 13 and 14 of Ref. [53]), while
Rγ alone in Model I becomes insufficient due to possible
changes of the sign in the coefficient C7. In the latter case,

including the b → s�+�− observables becomes necessary –
see Ref. [54] and the references therein.

6 Conclusions

We derived updated constraints on MH± in the 2HDM that
get imposed by measurements of the inclusive weak radia-
tive B-meson decay branching ratio. Although in principle
straightforward, such a derivation faces several ambiguities
stemming mainly from the photon energy cutoff choice. We
presented an extended discussion of this issue, and updated
the experimental averages. In Model I, relevant constraints
are obtained only for tan β � 2. In Model II, the abso-
lute (tan β-independent) 95% C.L. bounds are in the 570–
800 GeV range. We recommend one of the most conservative
choices, namely 580 GeV, to be used for combinations with
constraints from other observables. This value overlaps with
the bound derived from the most recent single measurement
alone [6].
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