KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
DOI: 10.5445/IR/1000071100

Rayleigh-Ritz approximation of the inf-sup constant for the divergence

Gallistl, Dietmar

A numerical scheme for computing approximations to the inf-sup constant of the divergence operator in bounded Lipschitz polytopes in R$^{n}$ is proposed. The method is based on a conforming approximation of the pressure space based on piecewise polynomials of some fixed degree k $ \geq \ $0. The scheme can be viewed as a Rayleigh–Ritz method and it gives monotonically decreasing approximations of the inf-sup constant under mesh refinement. The new approximation replaces the H⁻¹ norm of a gradient by a discrete H⁻¹ norm which behaves monotonically under mesh refinement. By discretizing the pressure space with piecewise polynomials, upper bounds to the inf-sup constant are obtained. Error estimates are presented that prove convergence rates for the approximation of the inf-sup constant provided it is an isolated eigenvalue of the corresponding non-compact eigenvalue problem; otherwise, plain convergence is achieved. Numerical computations on uniform and adaptive meshes are provided.

Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht
Jahr 2017
Sprache Englisch
Identifikator ISSN: 2365-662X
URN: urn:nbn:de:swb:90-711004
KITopen-ID: 1000071100
Verlag KIT, Karlsruhe
Umfang 17 S.
Serie CRC 1173 ; 2017/15
Schlagworte inf-sup constant, LBB constant, Stokes system, non-compact eigenvalue problem, Cosserat spectrum, upper bounds
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page