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The vector form factor of a quark is a crucial building block 
in the perturbative analysis of many processes in quantum chro-
modynamics. It is also the simplest scattering amplitude which 
can be used to study the infrared structure of perturbative QCD. 
The form factors of a massless quark have been evaluated through 
the three-loop approximation [1,2] and even to four loops in the 
leading-color approximation [3]. For a massive quark however only 
the two-loop result is available so far [4,5]. The complete calcu-
lation of the three-loop corrections is quite a challenging prob-
lem for the existing computational techniques. Only recently the 
leading-color contribution of the planar three-loop Feynman di-
agrams has been found analytically in terms of Goncharov poly-
logarithms retaining the full dependence on the quark mass mq

[6]. At the same time the full mass dependence is often exces-
sive for practical applications and proper expansion of the result 
in a given kinematical region could be sufficient (see e.g. [7–11]). 
In particular, in the high-energy limit the corrections to the form 
factor can be expanded in a small ratio ρ = m2

q/Q 2, where Q μ

is the large momentum transfer. The resulting series is asymptotic 
with the coefficients dominated by the double-logarithmic contri-
bution enhanced by the second power of the large logarithm ln ρ
per each power of the strong coupling constant αs . In the leading 
order of the small-mass expansion the origin and structure of the 
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“Sudakov” double logarithms have been established long time ago 
[12,13]. The analysis has been subsequently generalized to sub-
leading logarithms [14–16] and the leading-power result for the 
massive quark form factor is currently known through three loops 
up to the O(α3

s ) nonlogarithmic contribution, which is only avail-
able in the leading-color approximation (see [17] and references 
therein). By contrast, the logarithmic structure of the power sup-
pressed terms is not well understood and currently is under study 
in various contexts [18–20]. In particular, the leading power cor-
rections to the form factor in QED have been recently evaluated in 
the double-logarithmic approximation to all orders in the coupling 
constant [18]. The result determines the abelian part of the correc-
tions to the quark form factor. In the present paper we complete 
the analysis of the three-loop contribution by evaluating its non-
abelian part and derive the O(ρ ln6 ρ α3

s ) correction to the form 
factor in QCD.

The amplitude F of the quark scattering in an external singlet 
vector field can be parametrized in the standard way by the Dirac 
and Pauli form factors

F = q̄(p2)

(
γμF1 + iσμν Q ν

2mq
F2

)
q(p1) . (1)

The Pauli form factor F2 does not contribute in the approxima-
tion discussed in this paper and we focus on the high-energy 
behavior of the Dirac form factor F1. We consider the on-shell 
quark p2

1 = p2
2 = m2

q and the large Euclidean momentum trans-

fer Q 2 = −(p2 − p1)
2 corresponding to positive values of the 
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Fig. 1. The two-loop diagram generating the O(ρ) double-logarithmic contribution. 
The blob stands for the color singlet vector current.

parameter ρ . The asymptotic expansion of the Dirac form factor 
can be written as follows

F1 = Sε

∞∑
n=0

ρn F (n)
1 , (2)

where F (n)
1 are given by the power series in αs with the coeffi-

cients depending on ρ only logarithmically. The factor

Sε = exp

[
− αs

2π

	(1)

ε

]
(3)

accounts for the singular dependence on the parameter of the 
dimensional regularization d = 4 −2ε used to treat the infrared di-
vergences of the amplitude. Here 	(1) is the one-loop cusp anoma-
lous dimension. In the high-energy limit ρ → 0 it reads [21]

	(1) = C F lnρ
(

1 +O(ρ2)
)

, (4)

where C F = N2
c −1

2Nc
, Nc = 3. In the double-logarithmic approxima-

tion the leading term is given by the Sudakov exponent [12,13]

F (0)
1 = e−C F x , (5)

where

x = αs

4π
ln2 ρ (6)

is the double-logarithmic variable. The goal of this paper is to com-
pute the leading power correction coefficient F (1)

1 to O(x3). The 
origin of the O(ρ) double-logarithmic corrections is quite peculiar. 
They are induced by the emission of soft virtual fermions rather 
than gauge bosons responsible for the Sudakov logarithms [18,20]. 
The mass suppression factor in this case comes from the helicity 
flip term in the soft fermion propagator, which effectively becomes 
scalar and is sufficiently singular at small momentum to develop 
the double-logarithmic contribution. In the case of the form factor 
the O(ρ) double-logarithmic contribution is associated with the 
soft scalar quark pair exchange and appears first in the two-loop 
nonplanar vertex diagram, Fig. 1 [18]. The higher-order double-
logarithmic corrections are obtained by dressing this diagram with 
extra soft gluons. The relevant three-loop diagrams are given in 
Fig. 2.

Let us briefly describe how the diagrams are evaluated in the 
double-logarithmic approximation [18–20]. Since two soft quark 
propagators provide the explicit mass suppression factor, the dou-
ble logarithmic asymptotic of the integral over the virtual mo-
menta can be obtained by the technique originally applied to the 
analysis of the leading-power term [12]. To introduce the main 
idea of the method we consider the evaluation of the two-loop di-
agram, Fig. 1. The double-logarithmic contribution originates from 
the momentum configuration when the large external momenta 
flow through the edges of the diagram. In the infrared region all 
the propagators with the external momenta are eikonal and the 
edges of the diagram effectively turn into the light-cone Wilson 
lines. At the same time the momenta li of the exchanged quark 
pair are soft and the corresponding propagators in the infrared 
region become scalar. The effective Feynman rules for this mo-
mentum region, which retain the leading infrared behavior of the 
full theory, are given in [20]. To separate the double-logarithmic 
contribution the Sudakov parametrization li = ui p1 + vi p2 + li⊥ is 
used for each virtual soft quark momentum. The integration over 
the transverse components li⊥ is performed by taking the residues 
of the soft propagators. In general the resulting expression has 
double-logarithmic scaling when ui, vi � 1 and the Sudakov pa-
rameters are ordered along the Wilson lines. For the nonplanar 
diagram under consideration this condition reads v2 � v1 � 1, 
u1 � u2 � 1. An additional constraint ρ � ui vi ensures that the 
soft quark propagators can go on-shell. This condition also sug-
gests that ρ � ui, vi , which sets the infrared cutoff on the integral 
over the Sudakov parameters. Thus the quark mass regulates both 
collinear and soft divergences and the result for the diagram is in-
frared finite. In this way the two-loop contribution can be reduced 
to the following expression [18]1

F (1,2l)
1 = 2 (C A − 2C F ) x2

∫
K (η1, η2, ξ1, ξ2)dη1dη2dξ1dξ2 , (7)

where C A = Nc , ηi = ln vi/ lnρ and ξi = ln ui/ lnρ are the normal-
ized logarithmic integration variables, the integration goes over the 
four-dimensional cube 0 < ηi, ξi < 1, and the kernel

K (η1, η2, ξ1, ξ2)

= θ(1 − η1 − ξ1)θ(1 − η2 − ξ2)θ(η2 − η1)θ(ξ1 − ξ2) (8)

selects the kinematically allowed region of double-logarithmic in-
tegration discussed above. After integrating Eq. (7) one gets

F (1,2l)
1 = C F (C A − 2C F )

6
x2 , (9)

in agreement with [4]. The three-loop correction can be repre-
sented as a sum over the contribution of the diagrams in Fig. 2

F (1,3l)
1 = C F (C A − 2C F )

2

∑
λ

cλdλ x3 , (10)

where the diagrams (d)–(i) with a symmetric counterpart should 
be counted twice. Here cλ stands for a reduced color factor and 
the three-loop integrals are converted into the following form

dλ = 4
∫

wλ(η, ξ)K (η1, η2, ξ1, ξ2)dη1dη2dξ1dξ2 , (11)

where wλ is the weight function resulting from the double-
logarithmic integration over the soft gluon momentum. The results 
for wλ , dλ , and cλ are listed in Table 1. Examples of the calcula-
tion of the functions wλ are given in the Appendix A. Note that 
the diagram Fig. 2(a) has an infrared divergent contribution which 
reproduces the factorized singular structure of Eq. (2) and is not 
included into Eq. (10).

Collecting the contributions of the individual diagrams we get

F (1,3l)
1 = 8C3

F − 2C A C2
F − C2

A C F

30
x3 (12)

1 The detailed derivation can be found in Ref. [20] in the context of two-loop 
analysis of Bhabha scattering. The relevant contribution is proportional to the inte-
gral I1 in the Appendix A.
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Fig. 2. The three-loop diagrams contributing to the O(ρ) double-logarithmic corrections. Symmetric diagrams are not shown. The remaining diagrams either do not have the 
double-logarithmic integration region or have vanishing color factor.
Table 1
The weights wλ , integrals dλ , and color factors cλ of the diagrams in Fig. 2. To 
obtain wa the singular part of the infrared divergent diagram (a) is subtracted as 
discussed in the Appendix A.

λ wλ dλ cλ

a −((η2 + 2)η2 + (ξ1 − 2η2 + 2)ξ1 − 1) − 17
45 −C F

b 2ξ2η1
1

45 −C F

c 2(ξ1 − ξ2)(η2 − η1) 1
15 C A − C F

d −η1(η1 − 2ξ1 + 2) − 1
10 C A − C F

e (η2 − η1)(2 − 2ξ1 + η1 + η2) 8
45 − C A

2

f 2η1(ξ1 − ξ2) 1
30 − C A

2

g 2η2(ξ1 − ξ2) 1
10 − C A

2

h η1(η1 − 2ξ1 + 2) 1
10

C A
2 − C F

i η2(η2 − 2ξ1 + 2) 5
18

C A
2 − C F

and

F (1)
1 = C F (C A − 2C F )

6
x2

[
1 − C A + 4C F

5
x +O(x2)

]
. (13)

Thus, we have evaluated the dominant power corrections to the 
tree-loop massive quark vector form factor at high energy. Only the 
nonplanar diagrams contribute to Eq. (13) and the result has the 
subleading color factor C A − 2C F which scales as 1/Nc in the large 
Nc limit. This agrees with the leading-color analysis of Ref. [6], 
where such term is absent and the O(ρ α3

s ) contribution has at 
most the fifth power of the large logarithm. Our result can be used 
as a cross check for the future exact calculation of the three-loop 
corrections. It can be used also to identify and extend the domain 
where the high energy approximation [17] is applicable. An inter-
esting and important problem is to extend Eq. (13) to all orders 
in x. So far all-order resummation of the non-Sudakov double log-
arithms has been performed only in abelian gauge theories [18,19,
22]. Generalization of the analysis to the nonabelian case can be 
crucial in particular for the analysis of the light quark effects in 
Higgs boson production [19], and our result can be considered as 
the first step towards this goal.
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Appendix A. Evaluation of the soft gluon momentum integrals

Besides the integration over two soft quark momenta, the 
three-loop diagrams include an extra integration over the soft 
gluon momentum. In general, this integration can be performed in 
the double-logarithmic approximation within the Sudakov method 
outlined above. However, the analysis of the diagrams with the 
soft gluon emission from the on-shell external or soft quark lines is 
more subtle due to soft divergences which are not regulated by the 
quark mass as in the two-loop case. We describe how this prob-
lem is treated for the two typical cases of the diagrams (a) and (h) 
in Fig. 2.

Fig. 2(a) is the only diagram with the infrared divergence in 
the final result. The integration over the soft gluon momentum 
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l3 in this diagram is double-logarithmic when one can neglect it 
in the eikonal propagators with the soft quark momenta l1,2. This 
defines the conditions l3 p1 � l2 p1, l3 p2 � l1 p2 corresponding to 
the ordering of the Sudakov parameters v3 � v2, u3 � u1. Thus l3
should be retained only in the propagators without the soft quark 
momenta and the integral over the soft gluon momentum is re-
duced to

2i Q 2

π2

∫
d4l3

l23((p1 + l3)2 − m2
q)((p2 + l3)2 − m2

q)
, (A.1)

with the above restriction on l3 and the prefactor introduced for 
convenience. In the double-logarithmic approximation the propa-
gators in this expression take the following form

1

l23
≈ −iπδ(Q 2u3 v3 + l3

2⊥) ,

1

(p1 + l3)2 − m2
q

≈ 1

Q 2(v3 + 2ρu3)
,

1

(p2 + l3)2 − m2
q

≈ 1

Q 2(u3 + 2ρv3)
. (A.2)

After integrating Eq. (A.1) over l3⊥ with the double-logarithmic ac-
curacy we get

2

v2∫
ρu3

dv3

v3

u1∫
ρv3

du3

u3
. (A.3)

Eq. (A.3) has soft divergence when v3 and u3 simultaneously be-
come small. This divergence can be removed by subtracting the 
factorized expression

2

1∫
ρu3

dv3

v3

1∫
ρv3

du3

u3
. (A.4)

The subtraction term does not depend on the soft quark momenta. 
It is equivalent to the double-logarithmic approximation of the 
one-loop correction to the form factor and gives the following con-
tribution to Eq. (2)

−
(

αs

2π

	(1)

ε
+ C F x

)
ρ F (1,2l)

1 . (A.5)

The first term of Eq. (A.5) reproduces the singular O(ρα3
s ) part of 

Eq. (2) while the second term should be included in Eq. (10). The 
subtracted expression reads

− 2

⎛
⎝ 1∫

v2

dv3

v3

u1∫
ρv3

du3

u3
+

v2∫
ρu3

dv3

v3

1∫
u1

du3

u3
+

1∫
v2

dv3

v3

1∫
u1

du3

u3

⎞
⎠

= − (ln v2 (ln v2 + 2 lnρ) + ln u1 (ln u1 − 2 ln v2 + 2 lnρ)) .

(A.6)

After converting to the logarithmic variables the above equation 
together with the nonsingular term of Eq. (A.5) gives the expres-
sion for wa in Table 1.

A characteristic feature of the diagram Fig. 2(h) is that the 
soft gluon is emitted by a soft quark. In this case the Sudakov 
parametrization of its virtual momentum should be defined with 
respect to the corresponding soft quark momentum l3 = u3l1 +
v3 p2 + l3⊥ . As in the two-loop contribution the integration over 
the transverse component of l2 is performed by taking the residue 
of a soft quark propagator pole and there exist two contributions 
corresponding to the on-shell propagators on either side of the soft 
gluon emission vertex. When in Fig. 2(h) the soft quark propagator 
above the vertex is on the mass shell, the soft gluon momentum 
has to flow through the quark propagator below the vertex and 
the integral over l3 coincides with the one-loop correction to the 
on-shell form factor with the external momenta p1 and l2. Using 
the same normalization as in Eq. (A.1) it can be written as follows

−2i(p2 − l1)2

π2

∫
d4l3

l23((p2 + l3)2 − m2
q)((l1 + l3)2 − m2

q)
(A.7)

and in the standard way reduces to the integral over the Sudakov 
parameters

2

1∫
ρu3/u1

dv3

v3

1∫
ρv3/u1

du3

u3
, (A.8)

where we used the relation (p2 − l1)2 ≈ −Q 2u1. When in Fig. 2(h) 
the soft quark propagator below the vertex is on the mass shell, 
the soft gluon momentum has to flow through the quark propaga-
tor above the vertex and instead of Eq. (A.7) one gets

−2i(p2 − l1)2

π2

∫
d4l3

l23((p2 + l3)2 − m2
q)((l1 − l3)2 − m2

q)
, (A.9)

with an additional condition p1l3 � p1l1 or v3 � v1 on the 
double-logarithmic integration region. This gives

−2

v1∫
ρu3/u1

dv3

v3

1∫
ρv3/u1

du3

u3
. (A.10)

Both Eq. (A.8) and Eq. (A.10) are infrared divergent. However, their 
sum

2

1∫
v1

dv3

v3

1∫
ρv3/u1

du3

u3
= ln v1 (ln v1 − 2 ln u1 + 2 lnρ) (A.11)

is finite and after converting to the logarithmic variables coincides 
with the expression for wh in Table 1.

The evaluation of the rest of the diagrams poses no new tech-
nical problem and can be performed in the same way.
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