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Introduction

In this thesis, we investigate the quasilinear curl-curl wave equation
VX VXE+dqx)E + f(x,|EPHE) =0 (1)
and its semilinear variant
VXVXE+q(x)E + q:(0)3E + f(x,|E)E = 0, 2)

where E: R* = C,¢4,¢1,¢92: R* = Rand f: R® x [0,00) — R. We seek time-periodic solutions
of (1) and (2). For a physical motivation of (1) and (2) and in particular a connection to the three-
dimensional system of Maxwell equations without currents and charges

VXE+0,B=0, divD =0,
VXH-90,D=0, divB=0,

together with a linear connection between B and H as well as a nonlinear relation between D and E,
see Section 1.3 in [5].

Concerning the time-periodicity of solutions we pursue two different variants: a mono- and a poly-
chromatic ansatz, which naturally result in the two parts of this thesis.

In the first part we make a monochromatic approach for E, i.e., E(x,t) = U(x)e™ for U: R®* — R3.
When inserted in (1) or (2) it leads to an equation of the type

VXxVxU+V(xU = f(x,JlUAHU in R>. 3)

We assume V € L*(R?) positive and f: R® x [0,00) — [0, c0) being a non-negative superlinear
Carathéodory function which grows at infinity in the second variable with a power at most pT_l for
p € (1,5). Notice that for the quasilinear system (1) only the case V < 0 in (3) is physically relevant.
In general, an ansatz of the form E(x, ) = U(x)e' is complex-valued and therefore not relevant from
a physical point of view. If we slightly modify the nonlinearity f(x, |E|*) in (1) and (2) then we can

- . P
generate real-valued solutions. Precisely, we have to replace f(x, |[E|?) by f(x, < j(;“ |E|*dt) and make
an ansatz of the form E(x, 1) = U(x) cos(wt), see for instance (1.8) in [67], (2.2) in [68] or Chapter 6

2n A ~
in [69]. Then due to ¢ fo”’ | cos(wt)[>dt = 1 we conlcude that (1) and (2) with f instead of f again
reduce to (3).

In general, weak solutions of (3) arise as critical points of the functional

JW) = f (IVx UP + V)IUP = F(x, |UP)) dx
R3



for F(x,s) = [ f(x,7)dr and

U e H = HVx,R) N L R).

Here, H(Vx,R?) is the space of functions W € L*(R*) such that V x W is defined in the sense of
distributions and V x W € L*(R*). Minimizing J on the whole of H is in general not possible since
g is unbounded from below. Moreover, we have V x i = 0 for all smooth ¢ = Vo with ¢: R* - R
which shows that the Vx-operator has an infinite-dimensional kernel. Our strategy is to look for
critical points of J on suitable subspaces of H. These subspaces can consist of functions with some
prescribed symmetry. For instance, in the subspace of radial functions, i.e.,

U(x) = A”'U(Ax) for all A € O(3), 4)

the authors in [5] treat (3) with f(x,|U*)U = I'(x)|U|P"'U,p > 1 and characterize all radial dis-

tributional solutions if V,T radial and 0 < V! € Ll’j (R?), see Theorem 1 in [5]. The symmetry
assumption (4) is too restrictive since it was shown in Lemma 4 (a) in [5] that if U € LI‘OC(R3) satisfies
(4) then V X U = 0 in distributional sense so that one ends up with an algebraic equation. This is also
the fundamental problem of Theorem 2 in [9] since in case of V = 0 no non-trivial radial solution
can satisfy (3). Therefore, apart from the radial symmetry many researchers considered cylindrical
symmetries which will play a major role in the first part of this thesis. The search for cylindrically
symmetric solutions in semilinear equations of the type

VxVxU-=W((UPU )

was initiated in the last decade by Azzollini, Benci, D’ Aprile and Fortunato in [3]. Their ansatz is

Ulx) = u(r,z)[ Xi ] for x = (x1, x2,x3) € R, r = VX +5,2= 0 (6)
0

and u: [0,00) X R — R. Notice that U in (6) has vanishing divergence so that the V x VX operator
reduces to —A.

Theorem 3 in [5] treats (3) with f(x, |U>)U = T(x)|U|P"'U, p € (1,5) and periodic and cylindrically
symmetric coefficients V and I'. By Palais’ principle of symmetric criticality [54] it can be shown
that every critical point of J restricted to the subspace of functions having the form (6) is indeed a
solution of (3). Zeng [74] also studies (3) in the cylindrical framework (6) together with a critical
nonlinearity, i.e., f(x, |[U”)U = |UPP'U + |U*U, p € (1, 5).

Mederski [53] and Bartsch, Mederski [6] made progress with (3) for constant coefficients in a bounded
domain and perfectly conducting boundary conditions v X U = 0. For the bounded domain case see
also the overview article [7] and the references therein for further results and open problems.

Although the cylindrical symmetry in (6) together with div U = 0 plays a major role in many contri-
butions to (3) there are results apart from that. For instance, in [22] D’Aprile and Siciliano study a
different kind of cylindrical symmetry, namely an ansatz of the form

T
Ux) = u(r,2) (% % 0) +ii(r, 2) (0,0, 1) for u,it: [0,00) xR — R 7



for (5), see Therorem 1.1 therein. Notice that functions of the form (7) are no longer divergence-free.

Moreover, Mederski [52] gave an existence result for (3) without prescribing any additional symmetry
for U under the assumption V < 0, smallness of V in L%(R3) and f(x,|U*)U replaced by some
powertype nonlinearity which behaves supercritical near zero and subcritical away from zero.

As mentioned above we also make use of the cylindrically symmetric ansatz (6). Plugging (6) into
(3) we obtain the scalar equation

10 (;0u\ &u _ 2 2y
_ﬁE(F E) ~ 5z +V(r,2u = f(r,z,r"'u”)uin [0, c0) X R. ®)

Here and throughout this thesis we often identify a point x = (x1, X, x3) € R? with its cylindrical
coordinates x = (r,z) € Q = [0, 00) X R.

The first part of this thesis is subdivided in four chapters. In Chapter 1 we fix our notations and intro-
duce the cylindrical Sobolev spaces in which we mainly work. In Chapter 2 we prove the following
result.

Theorem 1. Let f in (8) satisfy

(i) f:Qx][0,00) = R is a Carathéodory function with 0 < f(r,z,s) < c(1 + spT_l)for some ¢ > 0
and p € (1,5),

(ii) f(r,z,s) =o0(1)as s — 0 uniformly in (r,z) € Q,
(iii) f(r,z,s) strictly increasing in s € [0, o) for all (r,z) € Q,
(iv) @ — 00 as s — oo uniformly in (r,z) € Q,

(v) forallr € [0,00), s > 0and o > 0O the function

01,2, 8) = f(r,2,(s + 0))(s + o) = f(r,2,57)s”
is symmetrically nonincreasing in z.

Moreover, let V € L*(Q) be reversed Steiner-symmetric such that the map

2
I+ HY (P drdz) — Ryu e ( f (1Vscl® + Vi, 2u?) P, z))
Q

is an equivalent norm to |||y (Bdrdz) Then (8) has a ground state u € H Clyl(r3drdz) which is symmetric
cy’ .
about {z = O}.

Theorem 1 gives existence of ground states for nonlinearities which have not appeared in the literature
before. For instance f(r, z, s) = I'(r, z)sp%1 where I' € L*(Q) is Steiner-symmetric, ess info I' > 0 and
p € (1,5) is a valid choice. Other examples (which have not occurred before) are given in Section 2.2.
The existence of a ground state is established as a suitably constrained minimizer of a corresponding
energy functional. Unfortunately, due to compactness issues we can not work in the whole Hilbert
space. Symmetrization then allows us to work in a suitable cone of cylindrical functions which are
Steiner symmetric with respect to z. Among other advantages this cone has the remarkable feature



that compactness properties are available. The result of Chapter 2 is already accepted for puplication
in Zeitschrift fiir Analysis und ihre Anwendungen in a joint paper with W. Reichel, see [40].

In Chapter 3 and 4 we specify the nonlinearity f and consider the vector-valued equation
VXxVXxU+VxU=TXU'U 1<p<5 )

where V,I" € W'°(R?), infgs V > 0,infgs ' > 0. Moreover, we assume that V and I are cylindrically
symmetric and only depend on r € [0, ), i.e., the corresponding scalar equation reads

2
Lo ( 36“) O V(= T\ i . (10)

“For\" o) a2

The existence result obtained in Chapter 2 then also applies for (10) but due to the special power-
type nonlinearity we are able to deduce further properties of the corresponding ground states, or
more general, arbitrary positive solutions of (10). For instance, we obtain regularity, symmetry and
monotonicity of positive solutions of (10) in Chapter 3. Chapter 4 establishes a-priori bounds for
positive solutions of (10) in

Hgymm = {v € Hclyl(r3drdz) : v is symmetric about {z = O}}
for p € (1,2). The result reads as follows.

Theorem 2. Let [py, p*] C (1,2). Then there is a constant C = C(p,., p*) > 0 such that

[l7ull o 0,00xm) < C

for every positive solution u € Hyymy of (10) and every p € [py, p*l. Moreover, there is a constant
C = C(p4, p*) > 0 such that ||”||Hc‘yl(r3drdz) < C for all ground states u € Hgymm of (10).

A-priori bounds are often a consequence of a Liouville theorem and indeed, one major ingredient in
our proof is to provide a Liouville theorem for our cylindrical framework in the following sense:

Theorem 3. Let p € (1,2) and ¢ > 0. Then there is no non-trivial, positive solution u € Hll0 C(r3drdz)
of
o 3 2 p-1 p -
-0 u— ;(%u —0;u=cr’u’ in (0,00) X R.

Notice that due to u € Hll0 C(r3dm’z) our test functions in Theorem 3 are not allowed to have support
on {0} X R. Compared to Liouville theorems in the literature (see for instance Chapter 1.8 in [59]) our
range of exponents p € (1,2) seems not optimal. For system —AU = |U|’"'U in R? we would expect
a Liouville theorem for p € (1,5) but in our case, do to the cylindrical ansatz (6), we can not make
use of any positivity argument for the system so that the arguments by Gidas and Spruck ([37], [38])
are not directly applicable and we end up with a smaller range of admissible p. The techniques in our
proof do not allow for a larger range of exponents so that it is an open question whether Theorem 3
holds true for p > 2. Apart from Theorem 3 the proof of Theorem 2 is based on scaling arguments
which exploit (9), symmetries of (10) and arguments similar to the classical papers by Gidas and
Spruck ([37], [38]), the starting point for the rich literature on Liouville theorems (see for instance

10



[62] for higher order differential operators or [24], [26], [58] for systems of elliptic equations to name
only a few contributions).

Chapter 4 contains a further main result, this time for an equation on the bounded domain €; =
{(r,z) € Q: r* + 22 < k?}, k > 0. We consider

—Ascqu + V(ru = C(r)r" ' in Q,
1= 0ondQ \ ({0} x [k, k]),
ou

PV 0 on {0} X [k, k],

(1)

with V,T" € W'°(Qy), inf V,inf I’ > 0 and not depending on z, i.e., V(r,z) = V(r),I'(r,z) = I'(r). The
a-priori bounds are also valid in the bounded domain case which then leads to a uniqueness result as
summarized in the following theorem.

Theorem 4. Let [p,, p*] € (1,2) and k > 0. Then there is a constant C = C(p, p*, k) > 0 such that
lrull oy < C
for every positive weak solution of (11) and every p € [py, p*1. Moreover, there is py = po(k) > 1
such that (11) has only one positive solution for p € (1, py).
The second part of this thesis is devoted to a study of
VXxVxU+V(xd?U=T|UP"UinR’ (12)

for p € (1, 2), constant I" > 0 and a periodically distributed potential V > 0, see Chapter 5. In contrast
to the elliptic equation (8) in the first part, in (12) we work in the hyperbolic regime. The goal is
to find real-valued spatially localized time-periodic solutions (so called breathers) of (12). Here, we
consider a polarized field of the form

0

U(x, 1) = {u(xl,t)], x = (X1, X2, x3)"
0

so that (12) reduces to the 1 + 1 dimensional nonlinear wave equation
~tte + V(U = Tuf’'uin R X R. (13)

In general, the phenomena of breathers in a 1 + 1-dimensional nonlinear wave equation is quiet rare.
For the Sine-Gordon equation

Uy — Uy +sinu =0in R X R (14)
an explicit family of breathers is given by

in(wt
Upo(X, 1) = 4 arctan m_sin(er) ,m,w > 0,m* + w* = 1.
’ w cosh(mx)

11



In most cases these breathers do not persist if the sin # nonlinearity in (14) is perturbed to f(u) with
f(0) =0, f(0) > 0, see [12] and [28].

The first existence results of breathers for a nonlinear wave equation apart from the Sine-Gordon
equation was given by Blank, Chirilus-Bruckner, Lescarret, Schneider [13] with the help of bifurca-
tion theory and center manifold theory. Precisely, they considered an equation of the type

SOy = g — q(x)u + 1’

with periodic s,¢: R — R and guaranteed the existence of breathers for a very specific choice of s
and ¢g. Recently, Plum and Reichel [57] gave an existence result for breathers in the 3 + 1-dimensional
semilinear curl-curl wave equation

S(X)O*U + VX VXU +qx)U = V)UP'U=0, p>1,

for V,q,s: R* — (0, c0) radially symmetric, positive and satisfying further properties which we do
not list here.

Our ansatz for (13) is a so-called polychromatic ansatz, i.e., we consider

u(x,t) = Z ()™ i (x) = i (x), w > 0. (15)

ke2Z+1

Polychromatic here refers to the fact that we do not consider only one frequency as done in the
monochromatic approach but infinitely many frequencies. The reason why we only consider odd
integers in (15) is that the nonlinearity as well as the differential operator in (13) respect the structure
in (15). Moreover, the case k = 0 has to be excluded since otherwise zero is in the spectrum of the
differential operator in (13). The advantage of the Fourier decomposition (15) is that u is real-valued
and 2f—periodic in time. In difference to the techniques in [13] we use variational tools to find a weak
solution of (13). Our result reads as follows:

Theorem 5. Let p € (1,2) and let V: R — R be given by
V(x) = a + Boper(x),

where 0y denotes a 2r- periodic o-potential located in (0,2n), « > 0 and B = 16a. Then (13)
possesses a non-trivial 8 \Ja-periodic weak solution in the sense explained in Section 5.8.

The search for polychromatic waves in nonlinear equations goes at least back to a paper of Tasgal,
Malomed and Band, see [71]. Therein, the authors considered first and third harmonics of a so-called
extended nonlinear coupled mode equation which approximates (13) for p = 3. The results were
obtained by numerical means but they did not have a precise proof. Seven years later, Pelinovsky,
Simpson and Weinstein [56] again considered the extended nonlinear coupled mode equation but this
time with all discrete frequencies. We briefly sketch the idea how they proceeded in order to highlight
the differences to our approach. They used a combination of numerical and analytical methods. In
a first step they approximated the nonlinear coupled mode equation by an infinite system of coupled
nonlinear Schrodinger equations. This system is embedded in a family of systems which contain a
parameter € and they are interested in solutions for € = 1. Near £ = 0 which resembles a decoupled
system they can rigorously proof the existence of solutions with the help of bifurcation theory. In order
to achieve a result for € = 1 they use numerical continuation methods. Indeed they give convincing

12



numerical evidence (page 482 in [56]) that some branches continue to € = 1 if they truncate their
system to finitely many equations. This refers to truncating the series in (15) to a finite sum. But in
considering the full problem of infinitely many equations, i.e., infinitely many discrete frequencies in
(15) they are left with many open challenges. In particular, a purely variational approach seems out
of reach in their setting. Even for the truncated version of their system there is no rigorous proof of
existence and the authors in [56] take into account the non-existence of such solutions.

In contrast to these results Theorem 5 is obtained by purely analytical tools and the proof is rigorous.
We use the Fourier-Floquet-Bloch transformation to diagonalize the wave operator and to obtain a
suitable indefinite variational setting for (13). A key observation is that the family of operators acting
on the Fourier coefficients i in (15) possesses a uniform spectral gap which contains zero and grows
linearly in k. This will allow us to handle the nonlinearity and to prove the existence of a minimizer
of the functional on the generalized Nehari manifold. Besides other difficulties one major problem is
to ensure that the power-nonlinearity in (13) can be controlled in our functional analytic framework.

13






Part I.

Monochromatic waves
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1. Preliminaries and notation

In this first chapter we want to fix our notations. In particular, we introduce several spaces which are
used in part one of this thesis.

First we introduce cylindrical Lebesgue and Sobolev spaces on € := [0, c0) XR in a canonical manner.

Here we consider (r, z) as cylindrical coordinates r = [x? +--- + x?, Z= X1 in R

Definition 1.1. For p € [1, ), j € Ny and k € N we set

LP (Fdrdz) =3v: Q> R: | W(r2lPrd(r,z) <oco},
cyl o

Wor(rdrdz) = LY (r'drdz),
k
kp, . k=1.p, j . i .
chf(rfdrdz) = {v €W, P(rldrdz) : e € Lfyl(rfdrdz)for alli€{0,..., k}} :

In case of p = 2 we abbreviate nyl(rjdrdz) = Wfﬁ(rfdrdz). Moreover, we introduce
Lg‘;l(rjdrdz) = {v: Q — R :ess sup, eq V(1 2)| < oo}

and in an analogous fashion Wf;lx’(rjdrdz) fork e N. Foru € Lf yl(rjdm’z) let

1/p
eell 2 (ridrazy = lu(r, 2)I” r'd(r, )
eyl Q

and for u € Wg’l’ (r/drdz) we set

I/p
P
(ZOslalsk ”aauHL”l(r.idrdz)) Jor p €1, ),
cy. "

”u”Wg’l’(r/drdz) =
maXo<jo< [10“ullr~ Jor p = oo,

.. . . ||
where we use the multi index notation, i.e., @ = (@), @) € N(z), la| = a1 + ap and 0% = W?W'

. k’ . . . .
Then L” (rdrdz), ch‘l’ (r’drdz) endowed with || '”Lfyl(rjdrdz) respectively ||- ”Wﬁff (idraz € Banach spaces;
for p = 2 even Hilbert spaces with scalar product

{u, V)Lgyl(,jdrdz) = Lu(r, 2v(r, 2)r'd(r, 7) for u,v € Lzyl(rjdrdz),

. k (i
(u,v) HE (ridrds) = Z (0%u, 0"v) 12, (ridrds) for u,v € H.,(r'drdz).

0<le|<k

In the upcoming chapters, the cases j = 1 and j = 3 in Definition 1.1 will play a major role.
Next, we introduce the notion of cylindrical C;’-functions.

17



1. Preliminaries and notation

Definition 1.2. A function u = u(r, z) belongs to C([0, 00) X R) if and only if u € C*([0, ) X R),
supp u is compact in [0, 0) X R and %(O, z) = 0 for all odd integers j € 2N — 1.

Definition 1.2 implies equivalence between u € C°([0,0) X R) and &t € CZ(R") where ii(x) =
u(|(x1,. .., X,-1)l, X,). Thus, we conclude that C([0, o) X R) is dense in Hclyl(r”‘zdrdz).

We now transfer these concepts to cylindrical functions on arbitrary subsets of 2 and point out several
connections. For this purpose, let Q C Q be relatively open in Q and fix n € N,,. We denote a point
in Q by (r, x,) € Q. Define

Qn = {x: (-xl,'-',-xl’l) eR": (|(X1,...,xn_])|,xn) € Q}7

which is nothing else than the n-dimensional counterpart of the two-dimensional set Q. Consider a
function ¢: @ — R. Then we can define its n-dimensional cylindrically symmetric counterpart on

Q,, 1.e., the function
@nt Qp = Ry @1, X0, X) = @0, - DI x).
The relation between ¢ and ¢, is stated in the next lemma.

Lemma 1.3. Let k € N and ¢, ¢, as above. Additionally, let A = {xn eR:(0,x,e€ Q} Then the
following assertions are equivalent.

(a) gn € CH(Q).
(b) ¢ € CXQ) and L% = 0 on A for all | € Ny such that 21 + 1 < k.

Proof. We only give a proof for the case k = 1. A repetition of the arguments below with appropriate
calculations shows the claim also for k > 1.

(a)=(b): For x; > 0 we have by definition of ¢, the relation
‘;On(xlv 0’ e O, xn) = (,0()(:1, xn)-

Thus the regularity of ¢, on Q, transfers to the regularity of ¢ on Q. Moreover, let x, € A. By using
¢, € CY(Q,) and ¢,(2,0,...,0,x,) = ¢,(-t,0,...,0, x,) we calculate

Qon(t’0’~ .. ,Oa xn) - ()On(oa ce. 50’xn)

(9 [, n) — 07 n .
% 0,x,) = tim 2L =0 2)
or =0+ t t—0* t
. (pn(t70’---’0axn) —gon(O,...,O,xn) . ‘pl’l(_taov---,O’Xn)_‘pn(o""’oaxl’l)
= lim = lim —
t—0~ t =0~ —t
— . Son(tv 0’ R Oa xl’l) - Son(oa R} 07 xi’l) _ . So(t’ xn) B 50(0’ 'x”) _ 850
= - llm = - llm - __(Oa -xn),
1—0+ t t—0* t or

i.e., 2(0,x,) = 0.

(b)=(a): For x’ € R"! define r(x’) :== (/x7 +---+x2_,. Since r € C'(R""\ {0}) we deduce that
On(X1, ..., X,) = @(r(x’), x,) satisfies ¢, € C'(Q, \ A). For x, € A we now investigate differentiability
of ¢, at the point (0, ..., 0, x,). Therefore, let i’ = (hy,...,h,_;) € R""'. We deduce

hm ()On(hh ey hn—l’ xn) - QO,Z(O, ey 0, xn) — hm QD(V(h )7 xn) - (,0(0, xn) —

0
4= |7'| In'|=0 14 ’
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since ¢ is differentiable at (0, x,,) with 89" =(0, x,) = 0. Hence,

( (r(x"), Xn) 57550 - ar(r(x) x,,)f(”x‘), e (r(x'), xn)) , for x’ # 0,

Veu(x) =
{(0, 0, 22(0,%,))" for ' =0,

Fori=1,...,n— 1 this leads to

— 0 for (x', %,) = (0, x,),

V(' 5l = ‘—(r(xx n>—‘ ‘—(r(x)x,o

which finally shows ¢, € C'(Q,). O

Lemma 1.3 clarifies the meaning of C* functions and in analogy to Definition 1.2 we can now con-
tinue with the introduction of cylindrically symmetric functions with compact support.

Definition 1.4. Let Q be relatively open in Q and ¢: Q — R. Then we write ¢ € C*(Q) if and only if

@ € C®(Q), supp ¢ = {(r, x,) € Q:o(r, x,) # 0} is a compact subset of Q and ?;Tf = 0 on A,y for all
k € 2N — 1, where A, = {x, € R : (0, x,,) € supp ¢}.
With the definition above Lemma 1.3 implies ¢ € C(Q) if and only if ¢, € C*(Q,).

We now need some additonal notation concerning cylindrical Sobolev spaces on arbitrary subsets of
Q. With the notation of Definition 1.4 we give the following definition.

Definition 1.5. Ler Q C Q be relatively open in Q. Then

&y gl ———— Il g
Hé,cyl(g, rldrdz) = C*(Q) Hl« ard)
Whenever there is no ambiguity we abbreviate H&(fl, rl) = Hé,cyl(fl, r’drdz). This space so to say

possesses Neumann boundary conditions on A = {z € R : (0,z7) € Q} and Dirichlet boundary
conditions on all other parts of Q2. Notice that H(‘),Cyl(Q, r/drdz) agrees with the ’classical’ definition

of Hg—spaces in case of A = 0. Moreover, we abbreviate L*(Q, r/) = Lf yl(Q, ridrdz) and H'(Q, r/) =
Hgyll(ﬁ, rldrdz).

Remark 1.6. In particular, we have u € Hé’cyl(f), r"2drdz) if and only if u, € Hé Q).
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2. Existence of symmetric ground states
for a general non-linearity

In this chapter we prove the existence of ground states to a class of partial differential equations with
non-constant coefficients. The result of this chapter is published in [40].

As mentioned in the introduction, an ansatz of the type (6) for (3) leads to
19 (,0u) &u

“For (r 5) =~ 5z TV du= oz rwuin Q, @D

where we list the precise conditions on f in section 2.2.

Weak solutions of (2.1) arise as critical points of the functional

1 1
Jw) = = f (lV,Zulz+V(r,z)u2)r3d(r,z)— f —F(r,z, Pu*)rd(r,z), ue H. (" drdz), (2.2)
2 o) ’ O 27‘2 y

where F(r,z,t) == fot f(r,z,s)ds. A function u € Hclyl(r3drdz) which realises the least energy level of
J among all non-trivial weak solutions of (2.1) is called ground state of (2.1). In other words,

J(u) = inf J(v),

where M denotes the Nehari-manifold

M = {v € Hl,(r’drdz) \ {0} : f

Q

(1Y, + V(i 20?) Pd(r.2) = f f(r,z,r2v2)v2r3d(r,z)}. (2.3)
Q

The outline of this chapter is as follows: In the next section we recall some inequalities from P.-L.
Lions [48]. We then deduce some compactness properties in a cone of symmetric functions, see
[47] and [48]. In Section 2.2 we formulate the precise conditions on f and state our result. The
proof thereof uses an extension of the Nehari-manifold method due to Szulkin and Weth [70], the
compactness results mentioned above and rearrangement inequalities for general nonlinearities, see
[15].

2.1. Decay properties of symmetric functions

At first, we start with a well-known fact concerning radially symmetric functions and afterwards
extend the result to cylindrically symmetric functions.

Forl < a,fB < oo let

rad

X = {u e L*(R"),Vu € L'B(R")} and X*# = {u € X : yis radially symmetric} .
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2. Existence of symmetric ground states for a general non-linearity

Lemma 2.1. (see [48]) Letn > 2,1 < ,8 < co. Then for every u € Xraa’f it holds that
lu(x)| < C ||Vu||U, ||u||L(Y | x| (1o for almost all x e R",

where 6 = £ B =

B +a’

B 77 and C is independent of u.

Proof. We will only prove this Lemma for 1 < @, < oo, since we will not need the cases where «
and/or 8 is equal to 1 and/or oo, Since Coua(RY) is dense in X“’ﬁ it is sufficient to prove the estimate

forue C7, (R"). Lety =5 = ﬁ 2 Then denoting by r the radial variable of u € C77_ (R") we get
d 0 0
- (7 ) = (= Pl + Py ”a_brt > —ylul™! a” .

Integrating from r to co and expanding the domain of integration to all of R" yields

L(y g

P Hu(r) < Cf ™" |Vl dx < C [Vl s 1l

where we used Holder’s inequality in the last estimate. Finally, dividing by #*~!, taking the y-th root
and using % = @ gives the desired estimate

lu(rl < CNIVullgy a2 r= . 0

Now we give an extension of Lemma 2.1 for cylindrically symmetric functions which are Steiner-
symmetric in the non-radial component. We will make use of the following notation: Let r € N,
and s € N such that n = r + s. We write points in R" as (x,y) with x € R"and y = (y,...,ys) € R".
Furthermore, let

K% =

t,s

o u(-,y) is aradially symmetric function for every y € R® and
ue X st . . . i .24
u(x,-) is Steiner-symmetric w.r.t. y;,i = 1,...,s, for every x € R’

In particular, if u € K} ;B then necessarily u > 0. In this setting we have the following decay estimate.
Lemma 2.2. (see [48]) Lett € Nss, s e Nyn=t+ sand 1 < a, < oo. Then for every u € K,af we
have

—(t=1)8 |—0

10Ce, Y < C IV ctll g g Nl ey P [y - 37,

where 0 = ﬂ, —, B’ = 57 and C is independent of u.

Proof. Again, we only give the proof in the case 1 < @, < . Letu € Kf;ﬁ. W.lo.g. lety; > O for

alli=1,...,s. We define
V1 Vs
v(x) ::f f u(x,z)dz for x e R'.
0 0

By Jensen’s inequality we obtain
1 V1 Vs
(f s [ e ye)Mudx, Z)adz) dx
Ys \Jo 0

V1 s a
”V”za(RI) = L[ (L . fo u(x, Z)dZ) dx <
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2.1. Decay properties of symmetric functions

¥— a L
SOy lf |u(x, 2" d(x,2), 80 [Vllpagrsy < (V1 -+ yo)* |lullpacen - (2.5)
R

n

In the same manner we receive

V1 s B V1 s lB
VoIt ., v, u(x,z)dz| dx < IV u(x,2)ldz| dx
ven = 0 0 r \Jo 0
V1 Vs
S(yl---ys)ﬁ’lff f Iqu(x,z)lﬂdzde(yl---ys)ﬁ‘lf IV u(x, 2)F d(x, 2),
r Jo 0 R

1
SO |[VVllpmey < 1Y) P IV xttll sy - (2.6)

Using (2.5) and (2.6) we can apply Lemma 2.1 to the function v which is radially symmetric in R’ and
deduce

—(t-1)6
|V(X)| < C ”Vv”lﬁ(Rt) ”v”L‘Y(R‘) |X| b

<C(y-- ys)ﬂ’ IV M”[ﬁ(Rn) 01y IIMIILa(Rn I (2.7)
Moreover, since
6 1-6 1 - ﬁﬁ? 1 a a
— + = + = + = .
ox o’ B +a o’ B+a dB+a) [ +a

the exponent of the (y; - - - y;)-term on the right hand side simplifies to ﬁﬁ%a. Due to the monotonicity-
property in y-direction we also have v(x) > y; - - - y;u(x, y). Plugging both into (2.7) gives

|—(t—l)9 |—(t—1)9

/Q —0
04t VI < C IVl g Wil 17 1y )75 = C It gy Ml I (o3
O

We now improve the estimates from above in case of having functions which are also nonincreasing
in r-direction.

Lemma 2.3. Let p € [1,00) and v € L! (R") be radially nonincreasing. Then
v(r) < C |Wllpp@n 7 for all ¥ > 0. (2.8)

Proof. Let r > 0. From the monotonicity-assumption we receive

Sn—l | vp(r)rn f
n

from which we conclude (2.8). O

s v ()" dp < VI, g

Lemma 24. Let p € [1,00) and n > 2. For a cylindrically symmetric function v = v(r,z) €
Lé’ yl(r”‘zdrdz) which is nonincreasing in r as well as in z-direction, we have

_n=l 1
V(2 < ClMllg sy 77 2177 for all r > 0,2 #0. 2.9)
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2. Existence of symmetric ground states for a general non-linearity

Proof. A function v which satisfies the assumptions is always non-negative. Without loss of generality
let z > 0. We define w(r) := foz v(r, s)ds. Then w is radially symmetric in n — 1 dimensions. Holder’s
inequality yields

00 z p o .
”W”ip 2y = f (f V(I", S)ds) rﬂ—zdr < f ZP—] (f V(r, s)pds) rn—Zdr
raa A7) 0 0 0 0

p-1 p,n-2 —_ -1 14
S e Lv(r’ Z) r d(r, Z) =z ”V”Lfyl(r"‘zdrdz) *

Lemma 2.3 and the monotonicity-property in z-direction gives
_n-l pl s
2v(r.2) W) < ClWleg ozan 77 < C27 IMleg ozaras 7
which finally proves (2.9). O
We prove an additional lemma which is used in the next section.
Lemma 2.5. The set K, ; .= Kz ’SZ is a weakly closed cone in H'(R").

Proof. Take a sequence (i) C K,z’;.2 such that u; — u € H'(R") as k — oco. By the Sobolev
embedding on bounded domains we deduce that a subsequence of u; converges pointwise almost
everywhere on R” to u. Since every u; enjoys the radial symmetry in the first component and the
nonincreasing property in the second variable, the pointwise convergence implies that also u enjoys
these properties, i.e., u € Kff. O

2.2. Statement and proof of existence

We find ground states of (2.1) under additional assumptions on V and f. To state these assumptions
we need the notion of Steiner-symmetrization, cf. Chapter 3 in [46]. The Steiner-symmetrization
(also called symmetric-deacreasing rearrangement) of a cylindrical function g = g(r, z) with respect
to z is denoted by g*. We say that g is Steiner-symmetric if g coincides with its Steiner-symmetrization
with respect to z, keeping the r-variable fixed. A function h € L*(Q) is reversed Steiner-symmetric if
(ess suph — h)* = ess sup h—h holds true. In other words / is even and symmetrically nondecreasing.
Our assumptions on f are

(1) f:Qx[0,00) — R is a Carathéodory function with 0 < f(r,z,5) < c(1 + sp%) for some ¢ > 0
and p € (1,9),

(i) f(r,z,s) = o(1) as s — 0 uniformly in (7, z) € Q,
(iii) f(r,z, s) strictly increasing in s € [0, co) for all (7, z) € Q,
@iv) @ — o0 as § — oo uniformly in (7, z) € Q,
(v) forall r € [0, ), s > 0 and o > 0 the function
¢o(r.2,8) = f(r,z,(s + 0))(s + 0)’ = f(r,2,8°)s’

is symmetrically nonincreasing in z.
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2.2. Statement and proof of existence

Condition (i) refers to a subcritical growth of f. Conditions (i1)-(iv) are the ones by Szulkin and
Weth (compare [70]) translated to our cylindrically symmetric setting. The last condition is needed
later to prove that a Steiner symmetrized minimizing sequence is still a minimizing sequence of the
functional J over M. This condition is due to Brock (see Theorem 5.1 in [15]).

The conditions on f are satisfied if for instance f(r,z,s) = I'(r, z)spT_] where I' € L*(Q) is Steiner-
symmetric, ess info I' > 0 and p € (1,5). This choice of f corresponds to the equation VXV X U +
V(r,2)U = T'(r,z)|U”"' U in R3. Another possible choice is f(r, z, s) = I['(r,z) log(1 + s) where again
I' € L>(Q) 1s Steiner-symmetric and ess infq I' > 0. This nonlinearity appeared for instance in [49]
and it does not satisfy the classical Ambrosetti-Rabinowitz condition. Another example is

fes) s, se[0,11,(r2) € Q,
r’Z7S = pP2)—
" s> 1,(n0eQ,

where p € (1,5), p is Steiner symmetric and 1 < inf p < supp < 5.

We aim to prove the following result.

Theorem 2.6. Let V € L*(Q) be reversed Steiner-symmetric such that the map

%
I = Hy(rdrdz) — Ru — ( f (IVscl® + Vr, 2?) P, z)) (2.10)
Q
is an equivalent norm to ||-||; (Pdrdz)- Additionally, let f satsify the assumptions (i)-(v). Then (2.1)
cy
has a ground state u € Hclyl(r3drdz) which is symmetric about {z = 0}.

Remark 2.7. (1) The assumption of norm-equivalence is for instance satisfied if V > 0 and infg. V >
0 for some R > 0, where B, = {(r,z) € Q : r* + 22 > R*). Suppose not. Then there is a sequence

(u)rext such that lugllz2(34razy = 1 and fQ (|Vmuk|2 + V(r, z)u,f) r*d(r,z) — 0 as k — oo. In particular,
f IV, > rd(r,z) — 0 and f u;rd(r,z) - 0 as k — oo. (2.11)
Q By

Let y denote a smooth cut-off function such that x(r,z) = 1 for 0 < Vr? + z2 < Rand x(r,z) = 0 for
Vr2+ 72> R+ 1. Then vy := yu; € Hé’cy](BRH, r3drdz) and
|Vr,zvk|2 = /‘(Zlvr,zukl2 + |Vr,z)(|2ui + zuk)(vr,zuk . Vr,z)('

Hence, by (2.11)
f IV, v rd(r,z) <2 f IV rd(r,z) + 2 f up |V, xIPrd(r, 2) (2.12)
Q Q Q

<2 f IV, > rd(r, z) + 2|V, xlI% f uir'd(r,z) — 0 as k — oo,
Q B

R+1\BR

In particular, fBR 1 |Vrvzvk|2r3d(r, z2) = 0as k — oo. By Poincaré’s inequality, |lu|l;2¢34ra;) = 1 and
(2.11) we see

Cp f IV, vil2rd(r, z) > f vir'd(r,z) > f wrid(r,z) = 1 - o(1),

Bg+1 Bp+1 Br
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2. Existence of symmetric ground states for a general non-linearity

contradicting (2.12). O

(2) Since Poincaré’s inequality is applicable for domains bounded in one direction we can weaken
infB% V > 0toinfgc V > O for strips S = [0,00) X [0,p] with p > 0 or S = [ry, 1] X [0, 00) with
0<ry<r <oo.

We now prove several statements which will finally lead to the proof of Theorem 2.6.

Lemma 2.8. Forue H Clyl(r3drdz) Hardy’s inequality holds

2 2
fQ %r3d(r,z)$CH fg [(%) +(ZZ)) rd(r, 7). (2.13)

Moreover, if u € Hc]yl(r3drdz) then ru € Hclyl(rdrdz) and there is a constant C > 0 such that for
2<g<6
Wl e 17t vy < C Nttt (2.14)

Proof. Hardy’s inequality (2.13) is given in Lemma 9 (i) in [5]. Foru € H, ! 1(r3dra’z) we have ru,
& (rw), r§t € LY (rdrdz) and by (2.13) also u € LY (rdrdz). Since £ (ru) = r§* + u we conclude alto-

gether ru e HC‘y (rdrdz). By the Sobolev embedding in three d1mens1ons th1s 1mp11es ru € Li(rdrdz)
for g € [2,6] and (2.13) yields

2 2.2
||ru||H1 Cinde L (1V,Grw) + ru?) rd(r, 2)

Ou Ou 2, 2
< ZL((ra—Z) (rg) +u+ru )rd(r 7)< C ||u||Hl (dnd”

Next we show that the functional J from (2.2) as well as the functional in the defintion of the Nehari-
manifold are well-defined.

(2.15)

O

Lemma 2.9. There is a constant C > 0 such that
fg flr.z. P ylrd(r, 2), f —F(r,z,ru?)rd(r,z) < C (||u||?,;y,(,zdrdz) + llu”igj(,sdrdz)) (2.16)

forallu € Hclyl(r3drdz).
Proof. Clearly assumption (i) and (ii) show that for every € > 0 there is C. > 0 such that

p=l
2

0< f(r,z,s) <€+ Ces

Hence
0 < f(r,z, Pudu’r’ < (er2u2 + Celrulp”)) r, (2.17)
0< %F(r, 7, rPuP)r < (erzu2 + C’elrulp”) r. (2.18)
Due to (2.14) this implies the claim. O
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2.2. Statement and proof of existence

The following compactness result again due to Lions ([47] and [48]) is an important tool in the next
lemma as well as the following chapters. We give a proof here since a proof is not included in the
work by Lions (compare Théoreme II1.2 in [48], in particular the comment that the proof is exactly
like the one of Théoreme III.1 is not the case). Recall the notation K ; := K,zf from Lemma 2.5.

Theorem 2.10. Let (vi)ew be a sequence in Ky such that vy — v € H Clyl(r3drdz) as k — oo. Then
rve = rvin P (rdrdz) as k — oo for p € (1,5). (2.19)

Remark: In the proof we use twice the following principle: if § € R™ is a set of finite measure and
wr © § — R a sequence of measurable functions such that ||w|;rs) < C and wy — w pointwise a.e.
as k — oo then ||wy — W||es) — 0 as k — oo for 1 < g < r. The proof is as follows: Egorov’s theorem
allows to choose £ C § such that wy — w uniformly on X and |S \ 2| < € arbitrary small. By Holder’s
inequality the remaining integral is estimated by fs\z Wi —w|?dx < el‘%llwk - wll’z,(s).

Proof. Let (vi)ren be a sequence in Ky such that vy — v € H Clyl(r3drdz) as k — co. Wlo.g. we

choose a subsequence such that v, — v pointwise almost everywhere as k — co. By Lemma 2.5 one
gets v € K41 and using Lemma 2.2 there exists a constant C > 0 such that

0 <v(r,2),v(r,z) < Cr_%|z|_% for all £ € N and almost all (r, z) € Q. (2.20)

We prove (2.19) by splitting our domain € into four parts €, . .., €4 and show (2.19) on each of these
parts separately. The definitions of Q, ..., Q4 are as follows: For R > 0 let

Q ={(r,00eQ :r<Rzl <R}, Q ={r,20eQ :r>R |z >R},
Qs ={(rn2)eQ:r<R,|zl>R}, Q4:={(r,2)€Q:r>R,|z] <R}

Convergence on ,: Follows from rv; — rvin LY(K; r drdz) for every compact subset K C [0, c0) X R
and every g € [1, 6). This step works independently of the choice of R > 0.

Convergence on Q,: Let € > 0. With the help of (2.20) we calculate

lrvi = P rd(r, 7) < 274! f P! (lvkl"’+1 + |v|”+1) rd(r, )
Q

Q
2 2 —(p-1 —(p-1
< C (I, ey * Iy g R < CoROD

cyl g cyl g

which is less or equal € if we choose R > 0 large enough.

Convergence on Q3: Due to symmetry in z-direction it is enough to focus on Q3 == {(r,2) € Q : r <
R,z > R}. Let @ > 0 be arbitrary. Again by (2.20) we obtain

{(r,2) € Qs : vi(r,z) > a} C{(r,2) € Qs : rz% <Cul=S8.,

where C, = (C/a)*? and C is the constant from (2.20). The set S, has finite measure since

13
c* re 3
Pdrd; = =2 f 7 3dz = —C?,R_% < 00,
4 ), 4

0o Cer_ N
sas [
R 0
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2. Existence of symmetric ground states for a general non-linearity

By the convergence principle from the remark above and since by (2.14) ||rvellzsgaray < Vil (Pdrdr)
cy
is bounded we obtain fs P v =P d(r,z) — 0 as k — oo for 1 < p < 5. It remains to prove the

convergence on Q5 \ S,. For allmost all (r,z) € Q3 \ S, we have that v(r,z) = lim_,e vi(r,2) < a.
Hence,

f P e =P Pd(r, 2) < RP'Qa)P ! f vi = v[*r3d(r,z) < Ca’™!.
\S, Q

In summary, since @ > 0 is arbitrary this shows (2.19) on Q.

Convergence on 4: Again it is enough to focus on Qi ={rnz)eQ:r>RO0<z<R). Fix
z € (0, R). Let us first show that

f P or(r, 2) = v(r, )P Pdr — 0 as k — co. (2.21)
{r=R}

Since vi(r, -) is nonincreasing in its last component we deduce

fw rivl(r,2)rdr < lfz f"o rivi(r,Ordrd{ < lfr"vZ(r, Ord(r,0) < ¢ (2.22)
0 < Jo Jo 7 Ja Z

forall g € [2,6] by (2.14) . Thus for g € [2, 6] the sequence || - Vi(+, 2)||4((0.00).rar) 1S Uniformly bounded
in k € N. Moreover, (2.20) implies vi(r,z) < C (z)r‘% uniformly in k € N. Hence for R > R

f PP, 2) = v P Pdr < (2C(Z))”_1f T e, 2) = v(n PP dr
R R

—P
2

< (2C@)" 'R

A

by (2.22). The last term can be made arbitrarily small provided R is chosen big enough. To finish the

proof of (2.21) it remains to prove fRR P v(r, 2) = v(r, 2)|P*'rP*dr — 0 as k — oo. Since for almost all
z € (0, R) we have v(-,z) — (-, ) pointwise almost everywhere on (R, R) as well as the boundedness
of || - vie(*, Dl 8((0.00).rar) BY (2.22) We can apply the convergence principle from the remark above and
deduce

R
f P Y(r, 2) = v(r, )P rPdr — 0 as k — oo.
R

Hence (2.21) is accomplished for almost all z € (0, R).
Defining ¢i(z) = f{rZR} P Yo, z) — v(r, 2)IP*1 P dr we have ¢ — 0 as k — oo pointwise almost
everywhere in [0, R). The sequence (¢y), is bounded in L!'([0, R), dz) since by (2.14)

R
f f P i(r, 2) = v(r, 2P Pdrdz < C f ! (|Vk|erl + |V|p+l) rd(r,z) < C.
0 Jir=R) Q

Moreover, for p € (1, 3], the sequence (¢ ), 1S bounded in WLL([0, R), dz) since

([ [ oo
LY([0,R],dz)

0vk ov

” aéﬁk
0z

2
3drdz)
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2.2. Statement and proof of existence

| v Ov| , 2
(p+1)r” Vi = vIP |— 5 o2 rd(r,z)
fz” *lvg = VPP d(r, )f %—@ rd(r,z)
ov sz
= Cllr(vx — V)llep(rdrdz)f é’zk_a_z *d(r,2) < C

Hence, by the compact embedding W'!([0, R), dz) < L'([0, R), dz) we conclude that at least a sub-
sequence of (¢ ey is converging in L'([0, R), dz) to a limit function, which must be 0 since we have
already asserted the pointwise a.e. convergence to 0 on [0, R). This shows (2.19) on Q4 for p € (1, 3].
For p € (3,5) we make use of Holder interpolation, namely,

6(1-6)
||rVk —ry ||Lp+l(Q rdrd ) — ||rVk rv||L4 (Q rdrdz) || Vk - rvllL() (Q drdz) — C ||rvk rv||L4 (Q4 rdrdz) O

as k — oo, where 6 € (0, 1) is chosen such that p + 1 =46 + 6(1 — 6),i.e.,0 = 5_7”

The combination of convergences on €y, . . ., £, finally proves (2.19). O

Lemma 2.11. The functionals

Iv) = f %F(r Z, r2v2)r d(r,2), I'v)[v] = ff(r, Z 1’2\/2)\/2;’3 d(r,2)
Q

are weakly sequentially continuous on the set K4 C HCl l(r3drdz).

Proof. Let us take a weakly convergent sequence (vi)iew in Ky 1 such that vy — vin H, ! 1(r3dralz) and
vr — v pointwise a.e. in 2. Our goal is now to show at least for a subsequence

1 1
f —F(rz, rzv,%)r3d(r, 7) — f —F(r,z, VPd(r, z) as k — oo (2.23)
Qrl Qrl
and
ff(r, Z, rzv,f)viﬁd(r, z) — ff(r, z, PVWPd(r, 7) as k — oo. (2.24)
Q Q
By (2.18) we find

1 2.2 1 1
ﬁ|F(r,z,r vk)—F(r z,rv)|r <er (vk+v)r+C (lrvkler +|rv|p+)

and hence .
(1IF(r.z. ")) = F(r.z, P V)| = e + V) 1 < Ce (Il + ™) . (2.25)

Theorem 2.10 implies

rve = rvin LP (rdrdz) as k — oo (2.26)

so that we obtain a majorant |rvy],|rv] < w € LP*!'(rdrdz) (cf. Lemma A.1 in [73]). Together with
(2.25) this majorant allows to apply Lebesgue’s dominated convergence theorem and yields

hm (lF(r, Z, rzvz) — F(r,z,r’v)| - erz(vi + vz)) rdrdz = 2€|v|?

—)OOQ

(2.27)

L2(r3drdz)"
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2. Existence of symmetric ground states for a general non-linearity

If we set
. 2.2 2.2
ag = le(r, 2, rvy) — F(r,z,r'v7)|rdrdz
o)
and
e 1202 2 _ 2 2
bk = Ellr (Vk +v )”Ll(rdrdz) - E(||vk||L2(r3drdz) + ||v||L2(r3drdz)) <Ce

then

lim sup a; < lim sup by + lim sup(a; — by)*
keN keN keN

N
< Ce + lim sup (f (IF(r, 2. °V3) = F(r, 2, )| — er’ (v} + VZ)) rdrdz)
keN Q

< Ce + limsup f (lF(r, Z, rzv,%) — F(r,z, )| - erz(v% + v2))+ rdrdz
keN Q

< e(C +2|v|P? ) by (2.27).

L2(r3drdz)

Since € > 0 was arbitrary this shows that lim;_,, a; = 0 and therefore (2.23) holds. The proof of
+

(2.24) is similar since ( [z, rPvOrtvi — f(r,z, ) rv? — er*(v; + vz)) r satisfies an estimate just

like (2.25) if we use (2.17) instead of (2.18). |

Here is our last lemma before we can give the proof of Theorem 2.6.

Lemma 2.12. Foru € H Clyl(rSdrdz), u > 0 we have ||u*|| < ||u|| where x denotes Steiner-symmetrization
with respect to z and || - || is the equivalent norm from Theorem 2.6. Moreover

Iw) <Iw*) and I'Wwu] <I'(w*)[u*].

Proof. We begin by recalling several classical rearrangement inequalities from [45], [46]. Recall first
the Pélya-Szego inequality

f IV fe)2dx < f IV fPdx (2.28)
Rn Rn

for f € H'(R") and ® denoting Schwarz-symmetrization (also called symmetrically decreasing rear-
rangement). Furthermore we have for 0 < f, g € L>(R") the classical rearrangement inequality

f fedx < f feg%dx (2.29)
R R

and the nonexpansivity of rearrangement

f° - g®Pdx < f f — g dux. (230)

R” R

From (2.28) we immediately receive for u € Hclyl(r3drdz) that
f IV.u*|?dz < f \V.ul*dz. (2.31)
R R
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2.2. Statement and proof of existence

Next we want to establish a similar inequality for V,u. We do this first for u € C;°([0, o0) X R). With
the help of (2.30) we find that

* t ok 2
fu (r+tz)—u (F,Z)‘ dzﬁf
R R

t
for almost all r, 7 € [0, 00). Sending t — 0 and using Fatou’s lemma on the left side of the inequality

yields
flV,u*lzszflV,ulzdz (2.32)
R R

for u € C([0, o) X R) and almost all r € [0, o). Since Steiner Symmetrization is continuous in H !
(see Theorem 1 in [16]) we obtain by approximation that (2.32) is indeed valid for all u € Hclyl(r3drdz).

Together with (2.31) we obtain fR IV,..u*Pdz < fR |V,..ul*dz for almost all r > 0 and integration leads

to
f f \V,.u**rdrdz < f f \V,..ul*rdrdz. (2.33)
R JO R JO

Fixing r € [0, o) and applying (2.29) to f(-) = ess sup V — V(r,-) and g(-) = u*(r, -) gives

u(r +t,z) — u(r,2)|°
t

dz

f(ess sup V — V(r, ) u*(r, )dz < f(ess sup V — V(r,)* (u?)*(r, )dz
R R
= f (ess sup V = V(r, ) (u*)’ (r, )dz.
R

Using [lu(r, )l 2wy = llu* (7, )llz2(r) this results in

f f V(r,2) (u*) Pdrdz < f f V(r,2)u*r’drdz. (2.34)
R JO R JO

The combination of (2.33) and (2.34) yields the claimed inequality ||u*||> < ||ul|.
Assumption (v) on f allows to apply Theorem 5.1 in [15] and to deduce

I'(w)[u] = f f(r,z, PuPu*rd(r, z) < f f(r,z, Pu*Hu**rid(r,z) = I'(u*)[u*]. (2.35)
Q Q

Moroever, using (v) with s = 0 shows that for all r € [0, 00), o > 0 the function z — f(r, z, o?) is
symmetrically nonincreasing in z and hence

rz(s+a')2
Oy (r,2,5) := F(r,z,r*(s + 0)*) = F(r,z,17s%) = f f(r,z,0)dt

252

is symmetrically nonincreasing in z. Applying once more Theorem 5.1 in [15] yields

1 1
I(u) = —F(r,z, rPu®)rd(r,2) < —F(r,z, Pu*)rd(r, 2) = I(u®).
212 2r2
Q Q

This finishes the proof of the lemma. O
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2. Existence of symmetric ground states for a general non-linearity

Finally, we are ready to give the proof of Theorem 2.6.

Proof. Recall from Lemma 2.11 the definition I(u) := fQ 55 F(r,z, ru?)rd(r,z) foru € H Cly](r3drdz).
We show that the assumptions (i)-(iii) of Theorem 12 in [70] are satisfied. Let € > 0. The growth
assumptions (i) and (ii) on f imply that for every € > 0 there exists C. > 0 such that the global
estimate 0 < f(r,z,5) < €+ CEISILEl holds. Together with (2.14) we obtain

1 (w)lv

ff(r Z, ru’ )uvr3d(r, z)'
< sf |ru||rv|rd(r, z) + CEf |rul?|rv|rd(r, z)

<eC ||M||H1 [(Pdrdz) ||V||H1 ((Pdrdz) +C. ||u||H1 (drd) Ilv ||H:yl(r3drdz)
Taking the supremum over all v € H! l(r3drdz) with ||v| HL (Pdrdz) = = 1 we see that
I'(u) = o(||ul]) as u — 0. (2.36)

Moreover, due to assumption (iii) on f the map

I’

— M = ff(r, z, S rPuPHutrd(r, z) is strictly increasing for all u # O and s > 0.  (2.37)
Q

Next we claim that

I(su)
2

— o0 as § — oo uniformly for u on weakly compact subsets W of Hclyl(r3drdz) \ {0}. (2.38)
h)

I(Skuk)

Suppose not. Then there are (u )y € W and s, — oo as k — oo such that is bounded as k — co.

But along a subsequence we have u;, — u # 0 and ui(x) — u(x) p01ntw1se “almost everywhere. Let
Qf :={(r,2) € Q : u(r,z) # 0}. Then |QF > 0 and on QF we have |sui(r, z)] = oo as k — oo. Fatou’s
lemma and assumption (iv) on F imply

I(s,u F(r,z, s°r*u?) F(r,z, sr*u?)
( k2 o) = f zk k rd(r,z) > %ui;ﬁd(n z7) > o as k — oo,
s, Q 25,12 o 2sirtu

a contradiction. In summary, (2.36), (2.37), (2.38) imply that (i)-(iii) of Theorem 12 in [70] are
satisfied.

Now we take a sequence (u)rey € M such that J(u) — infy J as k — oo. Since ||V, |ul |2 =
IV, ull;2 we can assume that i, > O for all k € N. Then Theorem 12 in [70] guarantees that for every
k there is a unique #; > O such that v; := fu; € M. We show next that #; < 1 for all k € N. Assume
ty > 1. Then

f frz, Puur*rid(r,z) < f frz, GrtuHu*r’d(r,z) by assumption (iii)
Q Q

= |luf|l* since hur € M

< |lul> by Lemma 2.12

= ff(r, Z, rzu,%)ui;ﬁd(r, z) since u; € M.
Q
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2.2. Statement and proof of existence

This contradicts the inequality I"(u)[u] < I'(uy )[u;] from Lemma 2.12 and thus #; < 1 for all k € N.
Next notice that for fixed (r, z, s) € [0, 0) X R X [0, o) and ¢ € (0, 1] one has

dit (tzf(r, Z, 52)s2 - F(r,z, tzsz)) = 2ts? (f(r, Z s2) - f(r,z, tzsz)) >0

since f is strictly increasing in its last variable by assumption (iii). This shows that the map ¢ —
£ f(r, z, s%)s* — F(r, z, 1*s?) is strictly increasing for ¢ € [0, 1]. From this monotonicity and the inequal-
ity I(truy) < I(truy) from Lemma 2.12 we conclude

1
2J(v) = f (t,flV,,Zu,’:I2 + V(r, 2)tup* — ﬁF(r, Z, rzt,%u,’:z)) rd(r,2)
Q
1
< f (t,%lVr,ZLtkI2 + V(r, z)t,%ui - ﬁF(r, Z, rzt,%ui )r3d(r, 2)
Q

1
22

S— 5

(f(r, Z, rzui)t,%ﬂui - F(r,z, rztiui ) rd(r, ) (2.39)
;

1

< | 3 (f(r, z ru)r'u; — F(r,z, rzui)) rd(r,z)

= 2J(I/tk)

So (Vi)kew € M 1is also a minimizing sequence for J which belongs to K4;. The boundedness of
(Vi)ren 1s established in Proposition 14 in [70]. Hence, we find v, € H;yl(r3drdz) such that vy — v
in H Clyl(r3drdz) along a subsequence as k — oo. In addition, v, € K4 due to Lemma 2.5 and v, # 0
by Proposition 14 in [70] where instead of the weak sequential continuity of / on all of Hgyl(r3drdz)
we use it only on K, ; as stated in Lemma 2.11.

Let us show that v,, € M. Since v, # 0 we can choose 7., > 0 such that t,v,, € M. Arguing in the
same manner as before for the sequence 7, we know that 7, < 1. Assume ¢, < 1. Then as in (2.39)
and using the weak sequential continuity on K, ; as shown in Lemma 2.11 we find

1
2J(teoVeo) < f = (£ PVIVE = F(r2,7v2)) Pd(r, 2)
or

. 1
= lim =
k—o0 Q r
= 2irA14fJ < 2J(teoVoo)

(f(r, Z, rzvi)rzvi - F(r,z, rzv,%)) rd(r,2)

which is a contradiction. So 7., = 1 and thus v, € M. Then by the weak lower semi-continuity of ||-||
and once again the weak sequential continuity of / we conclude

J(Ve) £ likm inf J(vy) = iIA14fJ < J(Voo).

Hence, v, € K4 1s a minimizer of J on M, i.e., a ground state of (2.1) which is Steiner symmetric in
z with respect to {z = 0}. O
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3. Further properties in the case of a
power-nonlinearity

In this chapter we turn away from a general nonlinearity and focus on an odd subcritical power
nonlinearity. This refers to f(r, z, u*)u = T'(r, 2)r’ " |u/’~' u for I': Q — R in the previous Chapter 2.
Moreover, we also restrict the class of coefficients to those which are independent of z € R. Hence,
(2.1) simplifies to

16 (,0u) &u B o1yl 1
3 or (r ar) P +V(@)u =T@)r"" [ul’™ uin Q. (3.1)

We assume that the coefficients V and I satisfy
(i) V,T € Wh([0, 0)),
(i) inf V,infT > 0.

In particular, the assumptions of Theorem 2.6 are satisfied and we conclude that there is a ground
state u € H Clyl(r3drdz) of (3.1) which is symmetric about {z = 0}. Moreover, due to u € K4 we have
u>0,cf. (2.4).

Since W'*([0, o)) corresponds to Lipschitz-continuous functions assumption (i) above can equiva-
lently be replaced by V,I" € W*(R?) where here V and I are not considered in cylindrical coordinates
but as functions of the variable x € R,

By Lemma A.5 weak solutions of (3.1) in H ‘yl(r3drdz) correspond to weak solutions U € H'(R?) of

C

VXVxU+VX)U =Tx)|UP"'UinR?

where
U =u(r,)| x1 |,r= /2 +x3andz=x,. (3.2)
0

The overall goal of this chapter is to establish several properties of weak solutions of (3.1). We
ensure regularity and exponential decay of weak solutions of (3.1) in Section 3.1. Section 3.2 shows
that the linearization around a ground state u is a Fredholm operator. Some general considerations of
cylindrical eigenfunctions are given in Section 3.3. The fact that the linearization around a ground
state u possesses exactly one negative eigenvalue will be provided in Section 3.4. Section 3.5 ensures
useful monotonicity and symmetry properties of weak solutions of (3.1).
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3. Further properties in the case of a power-nonlinearity

3.1. Regularity and exponential decay

In this section we guarantee exponential decay of weak solutions of (3.1) and exclude a possible
sign-change of ground states of (3.1). First, we introduce some notaion. Let

19 (50| &
L = —ﬁa—r(r E)—G—ZZ'FV(I’),

where D(L) = chyl(r3drdz) C Lgyl(r3drdz). Since L corresponds to a five-dimensional Schrodinger

operator with cylindrical symmetry we abbreviate

1 (,0) &
—AS,Cyl = —ﬁa (V E") - 6_Z2

By Lemma 11 in [5], the operator L: nyl(r3drdz) C Lgyl(r3drdz) - Lgyl(r3drdz) is self-adjoint. The
energy functional corresponding to (3.1) reads
1 1
J: Hyy(r'drdz) - Riu e 5 f (Ve + VO ) Pd(r, ) - — f Ly~ ! P d(r, 2).
Y 20 7 p+1Ja
(3.3)

Like already done in (2.10) we equip Hclyl(r3drdz) with the norm

Il = f (1V,cul® + V@) ) Pd(r. 2),
Q

which is due to V € L*([0, 0)) and inf V > 0 equivalent to the norm given in Definition 1.1. More-
over, we have

(u,v) == f (Veout - Vv + V(nuw) rd(r, z).
Q

Our first goal is to improve the regularity of vector-valued weak solutions U of the form (3.2) of
VxVxU+V@U=-AU+ V@)U =T@)|UP" UinR? (3.4)

and afterwards transfer this regularity via (3.2) to the regularity of scalar solutions u of (3.1). Pre-
cisely, Theorem A.6 tells us that every component of U is a C*>%(R?) function with arbitrary a € (0, 1).
Moreover, Lemma A.7 ensures u € C*([0, ) X R) . Having established regularity of u we are able to
deduce the following result.

Corollary 3.1. Let u be a ground state solution of (3.1). Then either u > 0 or u < 0.

Proof. Let u be a ground state solution of (3.1) and assume that # has non-vanishing positive and
negative part, i.e., u = ut —u~ with u™ # 0,u” # 0. Then due to the continuity of u we conclude
that |u| has to possess zeros, i.e., there is a point (r*,z*) € Q such that [u(r*,z*)| = 0. Moreover,
since u is a ground state of (3.1) we infer that |u| is also a ground state (recall Theorem 7.8 in [46]).
Then Harnack’s inequality (Theorem 8.20 in [39] and recall u € L*(€2) due to Lemma A.7) gives
supg |u| < C(K)infg |u| = 0, where K denotes an arbitrary compact subset of {2 containing the point
(r*,z*) i.e., lul = 0 in Q, a contradiction. O
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3.2. Fredholm-property of second derivative

Due to Corollary 3.1 we restrict throughout the first part of this thesis to positive ground state solutions
of (3.1).

Our next step is to ensure exponential decay for weak solutions of (3.4). Therefore, we need the
notion of Kato classes which we repeat in the following definition.

Definition 3.2. (see [65]) Let w,(x,y) = |x — y|2_” forn > 3 and wy(x,y) = —log|x — y|. A measur-
able function v: R" — R belongs to the Kato class K, if

lim supf wu(x,y) [v(y)|dy = 0 in case n > 2,
{lx—yl<p}

=0 xeRrn

supf [v(y)|dy < oo in case n = 1.
{lx-yl<1}

xeR

If O C R" is open we denote by K, (O) the set of measurable functions v: R" — R such that vl lies
in the Kato class K,. We denote v € K, 1,.(O) if and only if v1lg € K,(O) for all compact K C O.

We are now in a position to prove the exponential decay result.

Lemma 3.3. Let U be a weak solution of (3.4). Then for every u € (0, Vess inf V), there is a constant
C, > 0 such that |U(x)| < C,e™™ for |x| sufficiently large.

Proof. Let W = V(r)-T(r)|U? ~!on R3. For applying Proposition 5.2 in [51] (with R = 0) for every
component of the R*-valued function U we have to check W~ € K3(R?\ {0}) and W* € K310,.(R*\ {0}),
where W* denotes the positive/negative part of W.

The claim W* <V € K3 ,(R* \ {0}) is true, since

. V(x) . 1 : i’ : 2
lim supf dy < Clim supf —dz = 4nC lim supf rdr = 2nClimsup p° = 0.
t { 0

P20 g3 x—y|<p} |x - )’| P=0 yer3 lzI<p} |Z| P=0 v ep3 =0 g3

From Theorem A.6 we observe U € L¥(R3) and hence W~ < C|U/”™! € L®([R?). Then W~ €
K3(R3 \ {0}) follows by replacing V by I'|U|” ~!in the calculation above.

To apply Proposition 5.2 in [51] (and then obtain exponential decay of weak solutions of (3.4)) we
also have to get some information about oes(—A + V(r) - I'(r) |U IP~1). Theorem 8.3.1 in [55] yields

Tess(=A + V() =T UI"™") = 0res(=A + V(1)), (3.5)

since we know by Theorem A.6 that () U™ € L¥(R?) € L2.(R®) and I'(n) U™ — 0 as

|x| = oco. Due to oess(—A + V(7)) C [ess inf V, co) and ess inf V > 0 all assumptions of Proposition 5.2
are verified and consequently every component of U has exponential decay at infinity, i.e., also |U]|
and the claim follows. O

In particular, due to the exponential decay of U in (3.2) we deduce exponential decay of u.

3.2. Fredholm-property of second derivative

In this short section we ensure that the linear operator J” (u): H lyl(r3drdz) — H'! l(r3alralz) where u is

c cy
a positive solution of (3.1) is a Fredholm operator with index 0.
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3. Further properties in the case of a power-nonlinearity

The first and second Fréchet derivatives of J in (3.3) are calculated to be
dJw)v] = f (V,,Zu Vv + V(uy = Ty ul ™! uv) r’d(r,z) forv € H,(rdrdz),
Q

d*J(u)[v, w] = f (Vr,zw -V, v+ V(r)wy — pl“(r)rp_1 |u|P~! wv) rd(r,z) forv,w € Hclyl(r3drdz).
Q

Via the Riesz representation theorem there are J'(u) € Hclyl(”3drd2) and a linear operator J”(u) €
L (Hclyl(r Ydrdz), H,(r’ drdz)) such that

(J'(w),v) = dJ)v] for all v € H},\(Fdrdz),
(J" v, w) = d*J(w)lv, w] for all v, w € H},(r’drdz). (3.6)

We will also write V.J(u) instead of J'(«) and V2J () instead of J” (u).

Theorem 3.4. The linear operator J" (u): Hclyl(r3drdz) - Hclyl(r3drdz) defined by (3.6) is a Fredholm
operator with index 0 provided u is a positive solution of (3.1).

Proof. Let u be a positive solution of (3.1). We prove that J” (1) = Idy —K, where K : Hgyl(r3drdz) -
Hclyl(r3drdz) is a compact operator. Besides, let @ : Hclyl(r3drdz) — Hclyl(r3drdz)’ denote the isometric
Riesz isomorphism. For v € Hclyl(r3drdz) we define the mappings

Id,: Hclyl(r3drdz) s> Riwe L(V,,Zw -V,.v+ V(rwv) r’d(r,z) = (w,v) and
F,: Hclyl(r3drdz) > Riwe fl"(r)rp_lu”_lwvr3d(r, 2).
Q

Hence, by (3.6) we get
Ty = N Jw)v,-]) = @' Ad,) - p®~' (F,) =v— p®~' (F,).

We now show that K: H cly](r3drdz) — Hc‘yll(r3drdz), v — F, is a compact operator. For this purpose,
let (vi)ren be a bounded sequence in H 1yl(r3drdz). Hence there is ¥ € Hclyl(r3drdz) such that vy — ¥

C

as k — oo along a subsequence. Let € > 0. We choose a bounded rectangle Q = [0, RIx[-%Z]l c Q
such that

&

||F(r)rp—lup—1 ||L°°(Q\Q) < m,

where C := maxey ||[vill. Using the compactness of the embedding Hclyl(Q, r’drdz) — Lzyl(Q, r*drdz),
we receive for a further subsequence (again denoted by (Vi )ien):

£
2|[T@yre-tur-||

v - Vk||L§yl(Q,r3drdz) <
L>(Q)

for all k£ large enough. Altogether, we infer

”K‘/} - Kvk”HC’yl](ﬁdrdz) = sup
[Iwl|

f (P u~'w® — vp)rid(r, z)'
Q

13,51
Hcyl(r drdz)
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3.3. Cylindrical eigenfunctions

S f L™ ul”™" Wl 1D = wilrd(r, 2)
<1Jo

Wil (3.
Hcyl(r drdz)

+  sup f TP ulP~ Wl D = vl d(r, 2)
Q\Q

”w”H! (r3(irdz)S 1
cyl

-1 p—1 v
< sup [P ||L00(Q)”W||L§yl(Q,r3drdz)”v_vklll‘zyl(Q’r}drdZ)
Wl 1 1(r3drdz)sl
ey

-1, p-1 IN
+ sup PO on o W2 @030 19 = Velli2 @0 3drde)
||W|| ) <1 ( \Q) cyl eyl
Hcyl(r3drrlz)_

< [T M ey 19 = Vilz2 .y + [T 0™ ) (9l + C) < &

for k € N large enough. Since & was arbitrarily chosen we conclude ||[KV — Kvi|| H\(Pdrds) 0 as
. cy
k — o0, so K is a compact operator.

Because the set of compact operators is a two-sided ideal also K := ®~'K is compact. The fact that
compact perturbations of the identity are Fredholm operators with index 0O is well-known (theorem of

Riesz-Schauder, see [72] Satz VI.2.1) and this finishes the proof since J”(u) = Idy1 (34,4, —K. O
cyl -

3.3. Cylindrical eigenfunctions
We now state and prove some basic properties of first (and higher) eigenvalues of
L= —=Asey + V(r) = pL(r)r’ " u?™! (3.7

with D(L) = chyl(r3drdz) where u denotes a positive ground state solution of (3.1). L is a self-adjoint
operator, see Corollary A.2. We will make use of a variational characterization of eigenvalues. For
this purpose we cite (in our notation) the ‘max-min principle‘ (Theorem XIII.1 in [61]): For n € N
define

4,(Q) = sup F(o1,. .. ¢n1) (3.8)
Plseens ‘Pn—leHl(r‘%)
where
Fer,...opm) = inf by, y) (3.9)
ver! Pyl ,3)=1.
velgy ___VA;mJLLZ r3)

where b denotes the bilinear form associated to L, i.e.,
b(p, ) = f (V,,Zgo -V, + V(r)ey — pF(r)rp_lu”_1<pw) r3d(r, Z) (3.10)
0

for all o,y € H Clyl(r3drdz). Note that ¢4, ..., ¢, are not necessarily linearly independent. Then, for
each fixed n € N, either

(a) there are n eigenvalues (counting degenerate eigenvalues according to their multiplicity) below
the bottom of the essential spectrum, and 4,,(€2) is the n-th eigenvalue counting multiplicity, or
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3. Further properties in the case of a power-nonlinearity

(b) 4,(Q) is the bottom of the essential spectrum, i.e., 4,(2) = inf{1 : A € 0(L)} and in that case
Ay = Apy1 = Ayyp = ... and there are at most n — 1 eigenvalues (counting multiplicity) below
1,(Q).

We call 1, := 4,(Q) from (3.8) the principal eigenvalue of L, i.e.,
b
e W) _

- 1 (3 2 1 (3drds
wEHcyl(r drdz) ||w||L2(r3) wEHcyl(r drdz)
Hl//HLz(r3)=1

by, ¥) (3.11)

although it may be that 4, is the bottom of the essential spectrum.

In the same manner, we write 1,(Q) for Q C Q if we consider L in (3.7) on the domain D(L) =
chyl(fz, r*drdz) N H)(Q, r’drdz) where we always assume that the boundary of Q is at least Lips-
chitz. Of course, then the infimum in (3.11) is taken over functions ¢ € H(l) (Q, r*drdz) such that
||l//||L2(Q,r3) =L

Now we are ready to give some general properties of first eigenfunctions which are well-known. The
proof of the following lemma is inspired by chapter 6.5 in [34].

,cyl

Lemma 3.5. Let Q C Q be a Lipschitz-domain and suppose that A,(Q) is attained by a first eigen-
function v, € H(])’Cyl(Q, r3drdz). Then v,

(a) is continuously differentiable on )
(b) vanishes at no point of Q.
Moreover, 1,(Q) is simple.

Proof. (a) Assume 1 € Rand v € H&Cyl(f), r3drdz) is a weak solution of
—Ascqv + V(r)y = A+ F(r)pr”_lu”_lv.

Denote by Qs < RS the 5-dimensional representation of Q (see Section 1) and consider v as a cylindri-
cal function in Q5. We conclude from the equation above and Theorem 8.8 in [39] (,i.e., a local version
of Lemma A.10 for ¢ = 2) that v € H; (€Qs). By Sobolev embedding we conclude v € L\° (Qs), i.e.
v e W2%Qs). Since W1%(Qs) is embedded in CL (€s) (see Theorem 4.12 in [1]) Lemma 1.3 then
yields the desired claim.

(b) Assume v, (r, z) = 0 at some point (r,z) € Q. Our first claim is that Qf = {(ro)e Q:v(r,z) >0}
as well as Q™ = {(r,2) € Q : v{(r,z) < 0} are both nonempty. If Q" = @ or Q™ = (@ then v; < 0 or
v; > 0 and by the strong maximum principle we receive strict negativity/positivity of v, contradicting
our initial assumption. So Q™ # @ and Q* # 0. Define

v+(r Z) — Vl(r,Z) ,(r,Z) € Q+’
R ,(r2) e Q)

and v~ :=v" —v;. Hence, V,,v* =V, v, in Q, V,.v" =0in Q- and similar equations hold true for
v™. Our goal is now to show that

b(v*,v) = VI, g 0 and BOTvY) = 4V g ) (3.12)
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Plugging v; = v" — v~ into the bilinear form b and exploiting the disjoint support of v* and v-, which
leads to a vanishing of the mixed terms b(v*,v™) and b(v~,v*), we get

A1 = by, vy) = b0 V) + bV, v) 2 UlVilleg,s + Ul e = A (3.13)

where the definition of A, as the infimum of the Rayleigh-quotient has been used. So (3.13) has to
be an equality which proves (3.12). Hence, v* and v~ are minimizers of the Rayleigh-quotient b(-, -)
and hence both are weak solutions of —As .10 + W(r, )¢ = A1 where W(r, z) :== V(r) - pL(r)rP~tyr~!
with Dirichlet boundary conditions on 9Q \ {r = 0} and Neumann boundary conditions on {r = 0} if
part of 9Q. The maximum principle now implies v* > 0 or v* = 0 in Q and likewise v~ > 0 or v~ = 0
in Q. Hence, Q* = 0 or Q~ = 0, contradicting our assumption above which finishes the proof of part
(b).

Finally, assume that v and ¥ are two eigenfunctions corresponding to 1,(€2). Then

fﬂ vrid(r, z)
=y
fQ v2r3d(r, )

V=9

is also an eigenfunction corresponding to 1,(Q), i.e., does not change sign in Q. But 9 is Lzy](r3drdz)—
orthogonal to v which is contradicting the fact that the product vd is sign-preserving and non-zero in

Q. This proves the last part. O

3.4. Spectral analysis

In this section, we turn away from regularity questions but instead focus on an investigation of the
point spectrum of the linearization and its corresponding eigenfunctions. The overall goal of this
section is to prove that the linearized operator

L= =Asey + V(r) = pL(r)yr’ ™ u?™!

with D(L) = nyl(r3drdz) has exactly one negative eigenvalue, where u is a positive ground state
solution of (3.1).

We first prove that L admits at least one negative eigenvalue. For this purpose, the ground state
property of u is not needed. The proof is based on a comparison argument, see also Appendix B of
[63].

Theorem 3.6. Let u be a positive solution of (3.1). Then the operator L in (3.7) has at least one
negative eigenvalue.

Proof. We introduce
Ly = =Asey + V(r) — C(r)rP~tur!

with D(Ly) = D(L). Ly is a self-adjoint operator. We have Lyu = 0 so that 0 € o(Ly). Since u > 0 we
even conclude A,(Ly) = 0 and (L) C [0, 00), see Section 3.3. Notice that

L=Ly-(p—-DI@r’ur,

41
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Due to the exponential decay of positive solutions we infer that (p — 1)I(r)r?~'uP~! is a relatively
compact perturbation so that oes(L) = 0ess(Lg) C [0, o) (see Section XIII.4 in [61]). Due to

b(u,u) = — f (p — DI w'rd(r,z) < 0
Q

we have 4;(L) < 0 and 4;(L) can not belong to (L) C [0, c0). Thus 4;(L) has to be an eigenvalue
of L and the proof of Theorem 3.6 is done. O

To prove that L has at most one negative eigenvalue we have to restrict to ground states. The Nehari
manifold from (2.3) reads in our setting

M = {v € H,(Pdrdz) \ {0} : f

Q
= {v € H},(rdrdz) \ {0} : J'(v)v = 0}.

(IV,0* + VW?) Pd(r,2) = f T(r)r ™ P! Pd(r, 2)

Q

We now prove a basic lemma concerning minimization of J subject to another constraint. Therefore,
we also introduce

M, = {w € H\,(Pdrdz) : f L)y~ wiP*! Pd(r,z) = 1)
Q

Lemma 3.7. Forwe H 1yl(r3drdz) \ {0} define

o Joy (Ve + V(yw?) Pd(r, 2) _
(fQ ()=t Pt rd(r, Z))W Jo(w)

Then there is a one-to-one relation between minimizers u € M of J and minimizers w € M, of Ji,
namely

W= “ . (3.14)

(5, D= ! rd(r, z))ﬁ

for v in M. In this case we have J(v) = (% - Iﬁ) fg (IV,,Zv|2 + V(r)vz) r3d(r,z). Since u is a ground
1 1

state solution, we have J(u) = inf,cy J(v) =t c. We shorten k = 5 — ) and d := inf,cp, Ji(w). Let
(ur)renw € M be a minimizing sequence for J and set wy, := L — € M. Then:
(S T@rr=uP*! Pd(rz)) PT

\ 4V rid ’ g
Jo (IVrett? + V) P i :( f (|v,,zuk|2+v<r)ui)r3d<m>)
(LT el e )™

p-1

_(J(uk))’”' (c)’p’}
= - |- as k — oo.

K K

d < Jiw) =
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3.4. Spectral analysis

On the other hand, let (wy)rey € M) be a minimizing sequence for J; and choose 7, € R such that
Uy = tw, € M, ie., t,%fg(lvr’zwkIZ + V(r)wi) rd(r,z) = t,f“ fgl“(r)rl"1 welP* Pd(r,z) = tf“, SO

te = (o (IVrawe + VW) rd(r, z))ﬁ. Hence,

ptl
p-1

L_H
— kdr T as k — oo.

¢ < J(w) = K( f (IV,cwil® + V(rw;) Fd(r, z))
Q

p-1
These two inequalities result in d = (i)"“ . In particular, u is a minimizer of J on M if and only if w
given by (3.14) is a minimizer of J; on M;. O

With the notation of Lemma 3.7 and the bilinear form b from (3.10) we prove another auxiliary
statement.

Lemma 3.8. The following statements hold true:
(a) We have

(77 G) = F0)J5 () [0, 0] = 2b(. ) — (A@ )2 (3.15)

forall p, ¥ € Héyl(r3drdz), where A Lgyl(r3drdz) - Lgyl(rS’drdz) is given by

Ap = c( f C(ryr? WP~ wer'd(r, z)) Ly WP~ w (3.16)
Q

2p

and the constant c is defined by ¢ := J()2(1 — p) (fg L~ WPt Pd(r, z))_"“.
(b) We have

(J7G%) = FG0) T3 () . @] 2 O for all @ € HY(rdrdz). (3.17)

Proof. (a)Letw, o,y € H lyl(r3drdz). For J, we calculate

C

1-p

S w)le] = 2(f L(ryrr wp! r3a’(hZ))pHflﬁ(r)r”_1 wl”™! wer’d(r, z) and
Q Q

JywW)le, ] =2(1 - p) (f L) wiP*t rd(r, Z))_[M (f L) wiP = werd(r, z))-
Q Q

p+l
( f T(r)r™! |w|"‘1wwr3d<r,z))+2p( f (e wpPt! r3d<r,z>) f C(ryr?= wP™ yor’d(r, 2).
Q Q Q
This results in

(7 G0y = Fm) 5 () [, ] = 2 fQ (Vo Vit + V(r)p) (. 2)

- Jw)2p ( f C(rrP~ WP Pd(r, z))pH f L WP oyrd(r, 2) + Jw)2(p - 1)-
Q Q
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3. Further properties in the case of a power-nonlinearity

( f C(r)yrP~! [P+ r3d(r,z))_p+l f L) r WP Wertd(r, z) f L) Wi yrid(r, ). (3.18)
Q Q Q

So with w given by (3.14) and J(u) = J(ow) we further get

L=p
1+p

ﬂwwj}V%“WM“W%wuﬂ ‘fFUV“WM“WWPdn@

Q Q

» fQF(r)rf"l ™" urid(r, 7) fQ (|V,,Zu|2 + V(r)uz) rd(r, 2)

u - = "
(LT ™ pdr ) S TOr ™ rder2)

= f LA P~ pyrd(r, z), (3.19)
Q

f L) ™ gyrid(r, 2)
Q

where the last equality is due to the fact that u solves —As . ju + V(rju = C(ryr?=! Pt Plugging
(3.19) into (3.18) we end up with (3.15).

(b) Recall J(w) = % forw e H(}yl(r3drdz). Hence the chain rule gives

ﬂmm=hwmmﬁﬁymﬂmm
2

T W) 1L w) — W)L W), ¢ + T, )l J5m)lw] = J;w) w1 T,(w)le]
- J2(w)

for ¢ € H,,(rdrdz) and

I w)le, ¥

Jw)lel

-2
Jo(w)

T5w)[y] for (¢, 4) € Hy\(Pdrdz) x H,(rdrdz).

At ', using J'(W) = 0, i.e., J,(W)[@lJo(W) = J,(W)J5(W)[e] for all ¢ € Hclyl(r3drdz) and setting y = ¢,
the equation above simplifies to

T ), e12(F) = LWL Wlg, ] _ I/ (W), ¢) = J0)I3 (), ¢)
J2(W) (%) '

T W), ¢] = (3.20)

Since W is a minimizer of J we have f”(ﬂ/)[go, @] = 0 for all ¢ € Hclyl(r3drdz) and so (3.17) follows
from (3.20) taking into account J,(w) > 0. |

We are ready to prove the counterpart of Theorem 3.6.

Theorem 3.9. Let u be a positive ground state of (3.1). Then the operator L in (3.7) has at most one
negative eigenvalue.

Proof. We have a look at the eigenvalues of A and its corresponding eigenfunctions: Let u € C and
pE Lgyl(r3drdz) be given with Ap = ug, i.e.,

¢ ( f (™" Wl werd(r, z)) L)~ WP~ = g
Q
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3.4. Spectral analysis

Then either u = 0 with corresponding eigenspace {¢ € Lgyl(r3drdz) D@ Ly TP WP~ W) or

H=c ”r(r)rp_lwp”i%ﬁ)
reformulate (3.15) as

with eigenspace {¢ € Lzyl(r3drdz) s = (e~ WP~ w with & € R). We

2b(p,Y) = J* (0, ¥0) + (A, ) 23 (3.21)

where J*(¢,¥) = (J{’(W) - f(ﬂ/)]é’(ﬂ/)) [p,¥]. We show that (3.21) allows at most one negative
eigenvalue of L.

Assume by contradiction that L has two negative eigenvalues yu, us, i.e., Lo; = pip; fori = 1,2 with
@1 Lr2g3) @2 Hence, (Lo, i)y < 0 for i = 1,2 and (Lo, 92)12,3) = (Lga, 91)123) = 0. Using
these two statements, (3.21) and J*(¢, ¢) > 0 for all ¢ € Hclyl(r3drdz) we get

0> a? (Lgy, ‘701>L2(r3) +ﬁ2 (Leps, 902>L2(r3) = (L(ap: + Byp), gy +ﬁ‘102>L2(r3)

1 5 (3.22)
> > (A(apr + Bpa), apr + Bpa) 2 forall (a,B) € R™\ {(0,0)}.

If o1,02 Lp2g3 C(r)re= WP~ so is apy + Bpr L2 C(r)r?~ WP~ . Thus

(Alap; + Bp2), apr + B2 =0

holds true by definition of A. But this is a contradiction to (3.22).

2

If ¢, is not Lcyl(r3drdz)—perpendicular to L(r)r?~" |[w]P~1 W we choose

Jo D@~ [wP ™ opyrd(r, 2)
o D)=t ol g Pd(r, 2)

B:=1land a = -

to obtain ag; + B> L23 C(r)r?' WP~ . As before we receive (A(apr + Bpa), apr + Bp2) 23 = 0
contradicting (3.22). If ¢; is not Lzyl(r3drdz)—perpendicular to T(r)r?~" |w|P~' W we choose
Jo, = Wl oy Pd(r, 2)

a:=1land g :=—
g Jo TOrr=1 [l vgard(r, 2)

which leads to the same contradiction as before and finally finishes the proof. O

In summary, we have shown that for every positive ground state u the operator L possesses exactly
one simple negative eigenvalue. To close this section we show a symmetry property of the first
eigenfunction.

Lemma 3.10. The eigenfunction v, associated with the only and simple negative eigenvalue A, of L
is symmetric about {z = 0}, i.e., an element of

Hyymm = {v € Hclyl(r3drdz) . v is symmetric about {7 = 0}} .
Proof. We know that v, € H Clyl(r3drdz) satisfies
—As vy + V(v — pl“(r)r"’_1 |u|p71 v = A1vq in Q.

By Lemma 3.5 we may assume v; > 0 in Q. Define v,(r,z) := vi(r, —z) on Q. Then due to u(r,z) =
u(r,—z) on Q we obtain that v, is also an eigenfunction of L for the eigenvalue A,. Lemma 3.5 and
Vill2g3) = 1 = |Ivalli2) imply vy = v, which finishes the proof. O
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3.5. Symmetry and monotonicity of positive solutions of (3.1)

In this section we prove that for every non-negative weak solution u of (3.1) there exists a 6 € R such
that u is symmetric about {z = 6}. In addition, we prove that these solutions are (strictly) decaying in
z-direction. We prove monotonicity and symmetry with the help of the moving plane method, see the
paper of Li [44] or the classical paper of Gidas, Ni and Nirenberg [36] for similar results.

We first recall a maximum principle which we state now:

Theorem 3.11. (Maximum principle)
Let G C R" be a domain, u € C*(G) N Hy(G), u # 0 and ¢ € L*(G) such that —Au + cu > 0 in G and
u>0inG. Thenu>0inG.

Moreover: Is xy € 0G with u(xg) = 0 and G satisfies an inner sphere condition at x, (that is: there
exists an open ball B C G such that BN G = {xy}), then %(xo) < 0, where v denotes the outer unit
normal vector to G.

Proof. We have
~Au+cu>-Au+cu>0inG

so that the statement follows from the strong maximum principle and the Hopf boundary lemma
applied to —Au + c*u > 0 in G, see Section 2.3 in [35]. O

Here is our main result for this section.
Theorem 3.12. Every non-negative, non-trivial weak solution u of
—As cqu(r,z) + V(ru(r,z) = C(r) P u(r, z)? in Q (3.23)

is strictly positive on [0, 00) X R, i.e., on R> and symmetric about {z = 0} for some 6 € R. Moreover,
Z—?(r, 7) < 0 for all z > 6 and arbitrary r > 0.

Proof. Our proof is nearly the same as Theorem 1.1 in [44], but for completeness we repeat it here
adapted to our case.

First, we prove u > 0 in R®. Since W = V(r) — T(r)r’'uP™! € L*(R%),0 £ u > 0 in R> and
—Au + Wu = 0 we conclude u > 0 in R> by Theorem 3.11.

The next step is to show symmetry and monotonicity concering the z-direction. Therefore, consider
the domain X(77) := {x € R® : x5 < i} for 5 < 0. First, assume 17 < —K where K > 0 is chosen such
that

7k = max{pL (")’ 'u(x)’"' : x € Z(K)} < inf V.

Notice, that the exponential decay of u (see Lemma 3.3 and the conclusion thereafter) guarantees the
existence of a constant K with the desired properties. Define u,(x) := u(x;, X2, x3, x4, 217 — x5) and set

wy(x) = u(xy, xp, X3, X4, 21 — X5) — u(Xxy, ..., Xs),

sowy = uy—uand wy(xi,...,x4,m) = Oforall (x1,...,x4) € R*. Both u and u, are solutions of (3.23)
and therefore, by using the mean value theorem the difference w), satisfies

—Aw, + V(Pw, = D)™ (uh - u”) = ¢'(r, £)(u, - u)(x) (3.24)
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where g(r, 1) == T(r)r’~'t", (t > 0) and & is between u,(x) and u(x).

Since we want to prove w,, > 0 in X(17) we assume that there exists a point x € X(77) such that w,(x) <0
and want to derive a contradiction. From w,(y) > —u(y) — 0 for [y| — co we know that w, has to take
its negative minimum at some point X € X(57). Clearly, Vw,(X) = 0 and

Aswp(x) > 0. (3.25)

At X € (1) we deduce by using (3.24) and 7 := \/)_cf + X5+ X+ X

0> TP (4l - u”) (%) = g'(F. &), — u)(®),

with 0 < u,(x) < & < u(x). Notice g'(7, ) < g'(F,u(X)) < 7, 1.e., g'(F, &) — V(¥) < 0. At the minimum
point X, equation (3.24) reads

Awy(X) + (§'(r, &) = V(r) wy(X) = 0. (3.26)

But this is a contradiction since Aw,(¥) > 0 by (3.25) and g'(, &) — V(r) < 0. Hence, w,, > 0 in X(7)
foralln < —-K.

By continuity we conclude w, > 0 in X(n) for  in a maximal interval (—oo, #7]. This maximal 7 has
to be finite since otherwise 0 < w,(x) = u(xy, ..., x4, 217 — x5) — u(x) in X(n) for all n € R would lead
to 0 < —u(x) in X(n) by sending n — oo and keeping x fixed contradicting the strict positivity of the
ground state.

Now we are going to prove wy = 0 in X(77). Suppose w; # 0 in (7). Having in mind

—Awy + (V(r) = &' (r, ) wy = 0,w; > 0,w; € C*(X(7))

and V(r) — g'(r,-) € L*(R’) (due to the exponential decay of uz and u at infinity) the maximum
principle directly yields w; > 0 in X(77). By the maximality of 7 we find a sequence (7;)rery With
Mk "\ 77 as k — oo and corresponding points y, € X(17;) such that w,, (y;) < 0. By decay at infinity we
can again assume that y; is chosen such that

Wy, (yx) = min wy, (x), Vw, (») = 0. (3.27)
X€X(1k)

If [yi| = oo as k — co we conclude u(y;) — 0 as k — oo. As before we would receive g’(r, &) < V(r)
as k — oo where 0 < u,, (x) < & < u(x) and we end up with the same contradiction as above in (3.26).
For this reason, the sequence (y; )iy must be bounded. Thus we find a subsequence of (yi)ren (again
denoted by (yi)ren) and a X € X(77) such that y, — X as k — oo. Since the function wy is strictly
positive in Z(77) we conclude that X € 8%. Moreover, since wy(x1, ..., X4,77) = 0 the Hopf boundary

lemma (the addendum of the maximum principle above) is applicable and implies %()_C) < 0, where

v is the outer unit normal to 9Z(7), so 2—2:;—’(56) < 0. But we derive Vw;(¥) = 0 from sending k — oo in
(3.27), a contradiction. Hence, wy = 0 in (7)), i.e., u is symmetric about {xs = 77}.

The value 7 is unique. Indeed, assume w,, = 0 for some 1 < 7. Then u is symmetric about {xs = 7}
and {xs = 7}, so u has to be periodic in xs-direction. But this is a contradiction to the exponential

decay of u at infinity and so we get w,, # 0 for all < 7.
Again the maximum principle implies w,, > 0 in X(n) for n < 7 and Hopf boundary lemma yields
awy

s (X) < 0 for y lying on the hyperplane {x € R’ : x5 = 1}, so aa—;;(x) > ( for x € X(77). This proves our
desired results concerning the xs-direction. O
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4. A Liouville theorem and a-priori bounds

In this chapter we again assume V,I' € W'*([0, c0)),inf V,infI" > 0. The goal of this chapter is to
provide a Liouville theorem which then leads to a-priori bounds for positive solutions u € Hgyl(r3drdz)
of

(—af —~ %a, — 02 + V(r)) u(r,z) = T’ 'uP(r,z) in Q, (4.1)

and positive solutions u € Hé,cyl(Qk’ r*drdz) where Q == {(r,2) € Q: r* + 22 < k*} and k > 0 of

3
(_aff — 70 a; + V(l’)) u(r,z) = T(r)r’ ' ul (r,2) in O,

u =0 on o \ ({0} X [~k, k]), (4.2)

0

2L = 0 on {0} x [k, k.

ov
In (4.2) we assume that V,T satisfy V,I" € W'*(€,),inf V,infI" > 0 and V, T are not depending on z.
The mixed Dirichlet-Neumann boundary conditions in (4.2) are first written down formally. The right
boundary conditions for the differential equation in (4.2) are included in the space Hé,cyl(Qk, rdrdz)
and explained in Definition 1.5 with Q = Q. In other words, (4.2) is valid for u € Hé’cyl(Qk, rdrdz)

if and only if for all v € H(l),cyl(Qk’ r’drdz)

(Voou -V, v+ V() rd(r,7) = f LA uPvrd(r, z)

Qk Qk

holds true. Due to the cylindrical symmetry of functions in Hé,cyl(Qk’ r*drdz) the Neumann-boundary
conditions at {r = 0} X [k, k] are incorporated in a natural way. In Lemma 4.14 we will see that weak
solutions u € Hé’cyl(Qk, r3drdz) of the differential equation in (4.2) are classically differentiable in r
and z up to the boundary so that the boundary conditions in (4.2) can be understood in a pointwise
sense.

We prove the following Liouville theorem:

Theorem 4.1. Let p € (1,2). Then there is no non-trivial, positive solution u € H'. (r*drdz) of

loc
3 ol 5
—0%u — —0,u — 02u =T(0)"'u” in (0, 00) X R, (4.3)

Note that the test functions in (4.3) are not allowed to have support on {0} X R.

Remarks 4.2. (a) It is an open question whether Theorem 4.1 holds true for a larger range of expo-
nents than only for p € (1,2). The techniques we use only work for p € (1,2), but a natural candidate
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for the validity of a Liouville Theorem would be p € (1, Z%g , ¢f. Theorem 8.2. in [59]. For the system
—AU = |U|P'U we have n = 3, i.e., p € (1,5) could be expected, see also the discussion in the
introduction.

(b) It is clear that the statement remains valid if I'(0) in (4.3) is replaced by an arbitrary constant
¢ > 0. Nevertheless, in the proof of Theorem 4.1 we always write I'(0) since this is the connection to

(4.1) and (4.2).
The resulting a-priori bounds for positive solutions read as follows.

Theorem 4.3. Let [py, p*1 C (1,2). Then there is a constant C = C(py, p*) > 0 such that
lrzell oo jo.00yxm) < € 4.4)
for every positive weak solution u € H,y,,, of (4.1) and every p € [p,, p*].

The proof of Theorem 4.3 is done by contradiction. Hence, assume that there are sequences (p;) jen
and positive solutions (u;)jey in Heymm of (4.1) with exponents p; € [p.,p*] C (1,2) such that
p;j — pe(1,2)as j — ooand ||ru|l~q) — oo as j — oo. Thus, there is a sequence (r},z;) e in Q
such that

M; = rju; (rj,zj) ‘= sup ruj(r,z) — oo. 4.5)
(r,2)eQ
Recall that by Theorem 3.12 we know that z; = 0 for all j € N. In order to derive a contradiction we
distinguish three cases (convergence is understood up to subsequences):

pj-1

1) rjMJ2 —0as j— o

Pt
2 .
2) rle. — o00as j — o

pjfl

3) rijT—>c€(O,0<>)asj—>oo

Those three cases are investigated in the following Sections 4.2-4.4. One important ingredient on
the way to Theorem 4.3 is that we can scale both, the scalar equation (4.1) as well as the R3-valued
equation

—AU + V(x)U =T(x)|UJP~'U in R?. (4.6)

This chapter is structured as follows: We present both scaling procedures in Section 4.1 and highlight
an important connection between these two variants which will later allow us to use both procedures
next to each other. In Section 4.2 we lead the first case to a contradiction by investigating the scaling
procedure for (4.6). Once case 1) is ruled out we can use the scaling procedure for (4.1) to deduce a
non-zero, non-negative solution of a limit equation. The strategy is to prove that this limit equation
only admits the trivial solution among the set of non-negative solutions. This is done in Section 4.3
for case 2). The most challenging case is the third one. In this case the limit equation is (4.3) and
the proofs of Theorem 4.1 and Theorem 4.3 are treated in Section 4.4. Afterwards, in Section 4.5
we use the a-priori estimates in Theorem 4.3 to deduce a uniform Hclyl(r3drdz)—b0und for ground
states. In Section 4.6 we investigate (4.2) and obtain similar results as for (4.1). Due to the bounded
domain, we do not have to restrict to ground states and therefore the following uniqueness result can
be established.
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4.1. Two ways of scaling and their commonalities

Theorem 4.4. Let k > 0. Then the following statements hold true:

(a) There is py = po(k) > 1 such that (4.2) has only one positive solution for p € (1, py).

(b) Let p € (1,2) be arbitrary. Then the number of non-degenerate positive solutions of (4.2) in
Hé’cyl(Qk, r3drdz) is less or equal to one.

Finally, in Section 4.7 we return to (4.1) and establish the finiteness of the number of ground states in
Hymm under the assumption of non-degeneracy.

4.1. Two ways of scaling and their commonalities

We continue to use the notation in (4.5). The first scaling which is done on the level of the scalar
equation (4.1). We set

]—pj

M.

P! rp+rM; o L
Vit [—rjM]. ?L,0o)XR >Ry vi(r,2) = ————u; (r.,- + er : ,zMj ’ ) 4.7
J

pi—1

Hence, with Q; = [—rijj2 ,00) X R we have v;(0,0) = I and [[v||;~@; = 1 for all j € N. Further-
more, we introduce

j I-pj

> 2 [~ 2
r.—rj+er ,z.—zMj ,

i.e., we have u;(F, ) = %vj(Mﬁ.p"_l)/z(? - r)), Mj.pj_l)/ZZ) in [0, c0) X R. Formally, we compute

Pj
Mj M. p-n2 > i
B;Mj = —?Vj + TMJ / 8er, ﬁzuj = Taz\)j,
Pj
M; M; _ ;
ngj = 27—3]Vj - 27.—2]M§p/ 1)/2(9er + Tjafvj.
In combination with (4.1) this yields
3 M M p;
- o apil D ' ~1)/2 ' '
V(l")l/lj — T (7 lbt?'/ — a;uj + aguj + ;8;14]. = ’~._2]M§‘p! )/ (9r\}j - ?—;Vj + T] (83\/]' + ang) .
Finally, multiplication by M ;p ’ implies
— 2 . —_— . — 2 .
arv](r’ Z) rijl’/—l)/z + rarvj(r7 Z) aZv](r’ Z)
ey l—p: rj 1 (4.8)
=I(rj+rM;* )vf’(r, )M, PIvir; + rM;* vi(r,z) — 5V, 2).

(rjME.P_/_l)/Z + r)
The second scaling is done for (4.6). Notice that we have

sup ruj(r,z) = sup |U;(x)|,

(r2)eQ xeR3
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4. A Liouville theorem and a-priori bounds

where U;(x) = uj(r,2)(—x2, x1,0)" and U; satisfies (4.6) for p = p;. Lety; = (vj1,yj2,;3)" € R?
denote the point where |U|| attains its maximum, i.e., |U(y;)| = sup, s |U;(x)|. Precisely, we choose
y; = (r;,0,y;3)" which is possible due to the radial symmetry in the first two components. With this
notation, we introduce

I-p;

N 1 pj
Uj(x) = VU‘/U/ + xMj ) for x € R>. 4.9)
J

Again due to Theorem 3.12 we have y;3 = 0 for all j € N. By definition of M; we have \U 0] =1as
well as ||l7j||Lm(R3) = 1 for all j € N. We know that U; satisfies

—AU; + V(x)U; = T)\U,1"~'U;, (4.10)

with divU; = 0 for all j € N. Moreover, by elliptic regularity U; € C**(R?) for all @ € (0,1) and
|0° U;(x)] — 0 as |x| — oo for all multi-indices § € Ng with |8] < 2, see Theorem A.6. We introduce

lfpj pjfl

I=y;+ xMjT, ie,x=M;* (¥-y;). Then

Uj® = M;O,(M, ™ (% - y)

and (4.10) transfers to

I-p;

j . ) L o~
~MAU(x) + V(y; + xM; 7 YM;U(x) = T(y; + xM; 7 )M |0 (0P~ U (x).
A division by Mﬁ.’j leads to

l—pj 1-p

—AU;(x) + Mjl._ij(y j+xM;7 U (x) = T(y; + xMjTj)lljj(x)Ipf_l U;(x) in R’ 4.11)

Finally, we highlight an obvious but important connection between the two scalings, namely we have

ri—0as j— ooifandonlyify; - 0as j — oo (4.12)

duetor; = \[y;, +y3,andy;3 = Oforall jeN.

4.2. The first case

In this section we exclude that the maximum points y; accumulate at zero very fast. Precisely, we
show the following result.

it
Lemma 4.5. The case riM; * — 0as j — oo can not occur.

Notice that the arguments given in the proof of Lemma 4.5 work for arbitrary p € (1, o) and not only
for p € (1,2).

pi—1
Proof of Lemma 4.5. Assume by contradiction that rJ-Mj/T — 0as j — oo. Hence, r; —» 0as j— oo
since M; — oo and p; — p € (1,2) as j — oco. In particular, also y; — 0 as j — oo by (4.12). We

now pass to the limit in (4.11) in case of y; — 0 as j — oco. Therefore, let K C R? be compact and

52



4.3. The second case

lp lp

K’ cc K. We have I'(y; + - M 7 )|U |Pi= 1U Ml p’V(y] + - M -2 ) € L*(K) and hence also in LI(K)
for all g > 2. Thus, Theorem 9 11 in [39] 1mpl1es

1- -pj lfp

1T llw2axry < CLE KYUT sy + TG + MNP 05 = MV + M i)
< Co(K', K) VK (1 + Il e, + ||V||Lw<Rs)) < C(K',K)

for constants C;(K’, K), C»(K’, K),C(K’, K) > 0. Herewith, ”Uj”WZ,q(K/) is uniformly bounded in j €
N. Since K’ CC K and K C R? was arbitrary this allows us to choose a subsequence which converges
weakly in W JI(RY) and, since g > 2 was arbitrary, strongly in C (R*) to U € C} (R*) N Wli’g(l[@) for
all g > 2. From (4.9) we infer |U. (0)] = 1 for all j € N. In particular, we conclude |U(0)| = 1 due to
U;—> UinCL (R¥as j - oo.

In the following, we denote the components of U and U; by U,, U, and U; respectively U;;, U;, and
Ujs,ie., U;;: R* > Rforallie{1,2,3}and j € N. Hence, U;3 = 0 for all j € N entails Us = 0. We
now prove that U;(0) = U,(0) = 0 which then contradicts the fact that [T (0)| = 1.

First claim: U, is odd in x,.

4.13)

Due to the special choice y; = (r;,0,0) and the structure U ;(x) = u;(r, 2)(=x2, X1, 0) forall j € N we
infer by (4.9) that U}, is odd in x, for all j € N. The convergence U;; — U, in C} (R) as j — oo
then implies that also U, is odd in x;.

Second claim: U,(x) > 0 for x € R? with x; > 0 and U,(x) < 0 for x € R? with x; < 0.

Due to (4.9) we have

. 1 1opj . opj I-rj
Uja(x1, x2, x3) = ﬁu‘/[\/(yj,l +x1M; P+ xoM p",X3Mj ? ](yj,l +xiM;* )

pj-1

(\/(yjl +x M 2 )2+x2M1 i X3M N ](yj,le2 +x1).
N—————
=:h(x)

=:g(x)

We have g(x) > 0 for all x € R®. Let x € R? with x; > 0. Then A(x) > 0 due to v;1 = 0 and thus
U ;2(X1,x2,x3) > 0. On the other hand, let xeR? with x1 < 0 be given. Then by assumption of the

lemma, there is j, € N such that rjM y,lM < |x;| for all j > j,. Hence, h(x) < O for all
j > jo which entails U,(x) < 0 and proves the second claim.

Due to the continuity of U, we conclude U,(0) = 0. The first claim implies U,(0) = 0. This violates
|U(0)| = 1 and the proof is done. o

4.3. The second case

rit
In the previous section we have seen that r;M i > — 0as j — oois impossible. Therefore, it remains
pj-1 pj-1

2

to consider the two cases r;M;> — oo as j — oo or there is ¢ € (0, c0) such that rjM].T — c as

pj-1

J — oo. In both cases we make use of (4.8) with v; from (4.7). The case riM; ’ > o0asj— oois
excluded by the next lemma. ‘
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4. A Liouville theorem and a-priori bounds

pi-1
Lemma 4.6. The sequence (rijjT ) jen is bounded.

Notice that since we end up with an equation in R?, Theorem 8.4 in [59] works for arbitrary p € (1, o)
and therefore Lemma 4.6 is valid for all p € (1, c0) and not only for p € (1,2).

pj-1

Proof of Lemma 4.6. Assume by contradiction r;M . *

;7 —coas j— co. Let K C R” be compact and

pj-1

K’ cc K. Since r;M;* — coas j — oo there is jo € N such that K C Q; forall j > jo. From (4.8)
we deduce that the coefficients in front of d,v;, V(r; + er.l_p 2 2)v ; and v; converge to zero uniformly
on K as j — co. Additionally, the right hand side is an element of L*(K) and hence of L7(K) for all

q > 2. Hence, by Theorem 9.11 in [39] respectively Lemma A.11 we conclude similar to (4.13)
IVillweakry < (K", K)VIKI (1 + ([Tl + [IV]]0) < C(K', K),

for constants C;(K’, K), C(K’, K) > 0 where |K| denotes the two-dimensional measure of K. Thus,
lvjllw2e(x+y 1s uniformly bounded in j € N. Since K C R? was an arbitrary compact subset and
K’ cc K, this allows us to choose a subsequence which converges weakly in WIZO’Z(RZ) and, since g > 2

was arbitrary, strongly in C! (R?)tov € CL_(R®)NW4(R?) for all g > 2. Since I'(r; + er.l_p j)/z)v?j >

‘ loc loc loc
inf T v the limit inequality for v reads

~32v — 32v > inf TV in R?,

Moreover, v € L*(R?) and v > 0 due to the maximum principle for superharmonic functions. Theo-
rem 8.4 in [59] implies v = 0, a contradiction to 1 = v;(0,0) — v(0,0) as j — oo. |

4.4. The third case

pj—l

It remains to lead riM, > — c € (0,00)as j — oo to a contradiction. As mentioned at the beginning
of this chapter, this case is the most difficult one and it is here that we need the restriction p € (1,2).

We first derive the limit equation for (4.8). Due to rjM;.p e (0,00) as j — oo the limit

domain is [—-c, o) X R. Moreover, r; — 0 as j — oo, soalso 7 = r; + erl_p")/z — 0as j — oo. Let
K C (—c, ) X R be compact. We rearrange (4.8), namely,

1 2
o r@,vj(r, 7) = 0vi(r,2) +

—va-(r z) —
IR —1)/2
riM; + (rij.p" i +r)

svi(r,z)

1-p; I-p;

=T(r; + erTJ)vfj(r, ) Mjl._ij(rj + erTj)vj(r, 2),

Now the right hand side is bounded in quoc((—c, 00)XR, rdrdz) so that Lemma A.11 implies that (v;) jen
is bounded in Wli’g((—c, o) X R, rdrdz) for all ¢ > 2. Notice that for compact K C (—c, o) X R the
denominators on the left hand side are bounded away from zero. We conclude similar to the other
two cases that (v;) jen converges weakly in leo’f((—c, o0) X R, rdrdz) for all g > 2 and strongly in ClloC
tov e WIZO’Z((—C, 00) X R, rdrdz) N C! ((—=c,0) X R) N L®((—=c, o) x R). Hence, due to ¢ > 0 and the

loc
Lipschitz-continuity of I" the limit equation for v then reads

1
~0%v - 8,y — 0%v +
- :

= = r)zv =T(0W in (=c, ) X R
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4.4. The third case

Let v = (¢ + r)u, then u satisfies
3 o
~0u = ——du—Fu =TO)(c + /"' in (=, ) xR,
c+r

where positivity of v is passed to positivity of # on (—c, c0) X R. Notice that due to ¢ > 0 we receive
1 =v(0,0) = (c + 0)u(0,0), i.e., u(0,0) = % # 0. After a translation we receive

3 51 5 .
—(9fu - ;Bru - Ggu =T(0)r"'u” in (0, 0) X R

and u(c,0) = % # 0, which is precisly (4.3). Notice that the left hand side of (4.3) can be seen as a
five-dimensional Laplacian. Since we cannot conclude that (4.3) is valid for » = O the limit equation
only makes sense in R> \ {x € R’ : x; = x, = x3 = x4 = O}.

We assume that Theorem 4.1 holds true and finish the proof of Theorem 4.3. Assume by contradiction

that (4.4) is violated. Then with the notation from the beginning of this chapter, we consider the
pi-1 pj—l

sequence (rij/T) - Lemma 4.5 and Lemma 4.6 imply that ;M ;> — ¢ € (0,0) as j — co. This

J
then leads to a non-trivial, positive solution of (4.3). This contradicts Theorem 4.1 and finishes the

proof. O

It remains to prove Theorem 4.1 which is done in the following. We first fix some additional notation.
Let ¢, denote the n-th unit vector and S r={xeS":|xxe,l > g} fore € (0,1) and S” denotes
the n — 1 dimensional sphere in R". Moreover, for x € R" we introduce spherical coordinates, i.e.,
(p,0) = (||, ﬁ) € [0, 00) x S™~!. The first eigenvalue of the negative Laplace-Beltrami operator —Ay

on S " 1s denoted by A 1,D(§ 7). We recall the following auxiliary result:
Lemma 4.7. 1, 5($") = O(¢) as £ — 0.

Proof. This follows from the even more general results in [21] (formulae (1) and (2) and the refer-
ences there), see also [19]. ]

Consider Kg. = {x € R" : ﬁ €S %, 1x| > R}. In particular, the limit equation (4.3) makes sense in

Kre forall e > 0 and all R > 0. Let ¢, . denote the first Dirichlet eigenfunction of —A on S " such that
||‘,01||Loo(§g) = 1. We set

Ve(p, 0) = p%p1(0) in Kg, (4.14)
where @ = a(g) € Ris chosen such that Av, = 0. Indeed, due to the Laplacian in spherical coordinates,
oo on—1 1
A= ap 0 ap + p_2A9’

and —Apg; . = ) .1 . WE Obtain

—Av(p,0) = (—a(@ — 1) = (n = Da + A1) p*2¢1:0) = (@ + n—2) + A1) p* *1.:(0).

Therefore, a, = a(e) has to satisfy —a2 + @,(2 —n) + ;. = 0, i.e.,

~2-nxJQ-n2+4d, 2-n 2 -n\
a, = > = F + A1

55



4. A Liouville theorem and a-priori bounds

We now choose the minus-sign, so

2—-n (2—n
@, = -

2
7 7 ) +4.=2-n-0()ase — 0, (4.15)

cf. Lemma 4.7.

Here is another estimate of auxiliary character.
Lemma 4.8. Let € € (0,2). Then there is a constant C; = C(g) > 0 such that r > C1p in K.

Proof. Let x € Ky, i.e.,|= + ¢e,| > €. Therefore,

x| =

E<|X re =201+ (4.16)
| x| |x]

Solving (4.16) for z = x, we obtain Fx, < (1 — £)|xl, i.e., |z < (I — £)p. Finally, we infer

2 2
r2:p2_22>p2_1_8_2 p2:p21_1_8_2 :p2821—8_2
B 2 2 4

and the choice C; := £4/1 — j—z is possible. i

We now explicitly work in five dimensions and we start with an estimate of the nonlinearity in (4.3).
Therefore, for compact subsets S, cC S let K, == {x € R>: (£ €S2, |x| > R}.

£,

Lemma 4.9. Let K > 0, p € (1,2) be given and u be a non-trivial, positive solution of (4.3). Then
there are Ry = Ro(K) > 0, &y € (0, 1) and a compact subset Sgo’c CcC Sgo with intho,C #0in Sgo such
that

~Asu > Kp~2u for x € K 4.17)

0,€0°

Proof. We choose &y > 0 so small that

p<l- (4.18)

holds true, where a, is chosen by (4.15). This choice of & > 0 is possible due to Lemma 4.7 and
(4.15). The value g is fixed for the rest of the proof. We first show that there is d., = 6(&p) > 0 such
that

U= 0P 091 6,(0) In K 4. (4.19)

We establish (4.19) by a maximum principle on unbounded domains, see for instance Lemma 2.1 in
[10] or (MP) on page 2295 in [14]. We apply the maximum principle to the function

W§(p7 9) =u- 6"'50(/), 9) in 7Cl,sos

where ¢ > 0 is determined now. Due to u > 0 in K| ., and the Dirichlet boundary conditions of v,, on
0Ky \ {x € R : |x| = 1} we have ws > 0 on 0K, \ {x € R’ : |x| = 1} for arbitrary § > 0. Due to
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4.4. The third case

u > 0 on the compact set 0K, N {x € R’ : |x| = 1} we conclude that ws > O on {x € R" : |x| = 1}
provided 6 > 0 is chosen sufficient small, say smaller than 6., > 0. Moreover, due to [|¢; gll.~ = 1
and a,, < 0 we have ws, > —0,,. Finally, we compute

Aws = -T(0)"'uP < 0in K .

Hence, (4.19) follows from the above cited maximum principle on unbounded domains.
Combining the estimate in (4.19) with Lemma 4.8 guarantees

PP > Cf_lpﬁ_luﬁ_lu > Cf_lp’_’_l5‘,’;’0_][)“80(’_’_1)90?;5(H)Lt = Czp(%‘ﬁl)(ﬁ_l)‘aﬂf_l(@)u in K

where C; = Cs(g) = CP'60," > 0. We now choose @ # $3 _ cc §3 . Thus there is C; > 0 such that
@1e = C3>00nS3  and therefore

Czp(agﬂ)(p_l)gof—l(e)u > C2C§_lp(%°+1)(ﬁ_l)u — C4p(f¥so+1)(17—1)u in 7({:,80 (4.20)

with C4 = Cy(gg) = C2C§’_l. By considering ‘K,;',g0 - (Kf’go for all R > 1 we now establish (4.17) for
sufficiently large R. This is possible if the exponents in (4.20) satisfy (a,, + 1)(p — 1) > =2 which
is already guaranteed by (4.18). Hence, due to the these exponents (4.17) is valid if R > O is chosen
large enough, i.e., R > Ry = Ry(K). ]

We continue to use the notation in front of Lemma 4.9.

Remark 4.10. Let R > 0 be given. Since the interior of 20’6 w.rt. § 20 is non-empty there is a point
Pr € R’ such that Bg(Pg) C 7(13,.90' Moreover, we can choose Py in such a way that there is C>0
with R < |x| < CR in Bgr(Pg) for all R > 0, see the sketch below. The estimate from below is trivial,
since we can w.l.o.g. assume that one of the components of Pg has an absolute value larger than 2R.
The bound from above follows since by trigonometric identities Py depends linerarly on R.

The following result allows us to produce a contradiction to the statement of Lemma 4.9.
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4. A Liouville theorem and a-priori bounds

Lemma 4.11. There is a constant C > 0 such that

2
fBR(PR) Vil dx

[
R(PR) P dx

inf <C 4.21)

weH ) (Br(PR)) fB

holds true uniformly in R > 0.

Proof. In order to show the statement it suffices to indicate for fixed R > 0 a function ¢x which
satisfies (4.21) with a constant C not depending on R > 0. Let R > 0. Then we choose P from
Remark 4.10. We choose ¢g to be the first Dirichlet eigenfunction of —A in Bg(Pg). Notice that in
Br(Pg) we have R < |x| < CR for a constant C > 0, again by Remark 4.10. In particular, we have

1
- f lprl*dx < f "’iz'dx.
C*R? Jgy(ro Br(Pe) X

Due to the variational characterization and translation invariance of the first eigenvalue we have
A1 (Br(Pg)) = 2:41(B;(0)). Hence, we conclude

2 2
Jsuir V0rPdx Jsuir 'V orPdx

—— <CF s—— = CRUB(Pr) = CU(B1(0))
J;?R(PR) ﬁdx LR(PR) Prix
and the choice C := C?1,(B;(0)) finishes the proof. O

Finally, we are ready to give the proof of Theorem 4.1. The idea is to combine the results of
Lemma 4.9 and Lemma 4.11 to deduce a contradiction with the help of the so-called Agmon principle,
see for instance Theorem 1.5.12 in [25].

Proof of Theorem 4.1: Let p € (1,2) and assume we have a non-trivial, positive solution of (4.3). We
choose K > C, where C is from Lemma 4.11. Then by Lemma 4.9 there are Ry > 0,&y € (0, 1) and
compact §7 . cC S 20 such that (4.17) holds true. Let ¢ € C°(Bg,(Pg,)) be arbitrary. We now apply

the principle of Agmon. Therefore, we multiply (4.17) with %2 and integrate over Bg,(Pg,) which

yield
2 2
f (—Au‘i - K(’%)dx >0
Bry(Pry) u p

An integration by parts (recall ¢ € C°(Bg,(Pg,)) gives

¢ ¢’ ¢’
f VoPdx > f (lV(plz _wiuf - Vgolz)dx _ f Vv dx = f —aufax,
Bry(Pgy) Bry(Pgy) u Bry(Pr,) u Bry(Pgy) u

In summary,
(pz
f (|V<)o|2 - K—z) dx > 0 for all ¢ € C°(Bg,(Pg,))- 4.22)
Bgy(Pry) P

By density, (4.22) holds true for all ¢ € Hé (Bg,(Pg,)) which contradicts Lemma 4.11. O
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4.5. A-priori bounds for ground states

Theorem 4.3 already guarantees some a-priori bounds for positive solutions of (4.1). This section is
devoted to a corollary which arises from Theorem 4.3 since inequality (4.4) allows for good uniform
estimates on sequences of ground states of (4.1).

Corollary 4.12. Let [p4, p*] € (1,2). Then there is a constant C = C(py, p*) > 0 such that
||u||HC1y](r3drdz) <C

for every positive ground state solution u € Hyymm of (4.1) and every p € [p,, p*].

Proof. We add a parameter to our notation of Nehari manifolds, i.e., for p € (1,2) set

M, = {u € Hyymm \ {0} : f (1V,cul® + Vru?) rd(r,2) = f C(r)yr=" ul*! r3d(r,z)}.
Q Q

In addition, we set N, := miny,, J,, where also the energy functional now possesses the additonal
information about the exponent of the nonlinearity. Recall that for u € M, we have

1 1 1 1
J == — r Pl 0+l .3 4 7)== - 2
(1) (2 Py 1)fg (Nr= |u|™ rd(r, z) (2 Py 1)Ilull

with || - || from (2.10). Furthermore, let u,_. be a ground state solution of (4.1) for p = 2 —&. We scale
uy o by ascalarz, € R such that ¢, u, . € M. This condition forces

p lluz—eI” o
p- - .
" TP up— |t P (r, 2)

Notice that due to p; < 2 — & for all j € N and the uniform bound (4.4) we ensure

f L) Ny P d(r, z) < C*57P) f L) Nuy_o | P d(r, z)
Q Q

for a constant C > 1. Since u,_, € M,_, this implies

o |
ty, < C =Crn' <C=. (4.23)
Jo D)=y P51 P d(r, 2)

Hence, making use of the minimization property of ground states, we conclude

1
0 <Ny, <y, (tpu2-0) = (_ _ )|z,,j|2||uz_€||2

11 3
2 pj+l 2 01-2¢
= l_—l1|fp,~| Ny < EC ¢ Nog,

2 2—-e+1
where in the last inequality we used (4.23) as well as
1 1

27 pl :(pj_l)(2_8+1)<2—8+1<§
53— e (1-&)p;+1) = p;j+1 ~2

This shows |lu, || < C, uniformly in j € N by definition of N, and the statement follows from the
equivalence of || - || and || - |13 draz)- O
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4. A Liouville theorem and a-priori bounds

4.6. A problem on a bounded domain

We modify our original problem to obtain a related problem on a bounded domain. For this purpose,
letk>0and Q; :={(r,2) € Q: P +72 <k*). In Hé,cyl(Qk’ r*drdz) we consider the problem
—As eyt + V(r)u = T(r)r’'u? in Q,

i =0o0ndQ\ ({0} x [k, k]), (4.24)

@ = 0on {0} X [k, k],

ov
with V,T € W'*(€Q,;) not depending on z and inf V, inf I > 0. We recall a maximum principle in small
volume domains, cf. [11]. We consider —A + c(x) with ¢ € L¥(€;5), where Q5 == {x = (x,...,Xs5) €
R3 : (|(x1,...,x4)],x5) € Q}, see Section 1. Then the maximum principle in small volume domains
for —A + c(x) reads as follows and notice that there is no assumption on the sign of c(x).

Theorem 4.13. (Proposition 1.1 in [11]) Assume Qc Q5 with diam Q < d. Then there is § > 0
depending only on d and ||c||. such that

(A + c(x)w > 0in Q, limsupw(x) < 0and |Q] < 6
x—0Q

imply w <0 in Q.

We now state and prove symmetries of positive solutions of (4.24) on €, which should not be surpris-
ing if we compare this result with Theorem 3.12 which is the analogue on Q.

Lemma 4.14. Let p € (1,5) and V,T € Wh(Qy),inf V,inf T’ > 0, V(r,z) = V(r),I(r,z) = T(r). If uy
is a positive solution of (4.24) then uy. is twice differentiable in r and z up to the boundary, symmetric
about {z = 0} and decreasing in z-direction away from {z = 0}.

Proof. Let u; be a positive solution of (4.24). We identify u; with a function in the five-dimensional
ball Q; s with Dirichlet boundary conditions. The regularity result can be obtained by a bootstrap-
ing procedure like already done for the unbounded domain case in Theorem A.6 and Lemma A.7.
Roughly speaking, we first prove ru € L*(£Y;) by rewriting (4.24) as a system (Lemma A.5). With
ru € L* () we get ngyl(Qk, r*drdz)-bounds for the right hand side of (4.24) and arbitrary g > 2
since the left hand side of (4.24) is nothing but a five-dimensional Schrodinger operator with cylin-
drical symmetry and V € W!'*(Q) so that we can use classical regularity theory. Then Morrey’s

embedding and Schauder theory finishes the proof (Lemma A.7).

We now turn to the monotonicity and symmetry property. Therefore, we first show 0,,u; > 0if xs <0
by means of the moving plane method, compare Theorem 3.12. In the following, we drop the index
k in u; and simply write u. Let n € (—k,0). Denote X(7) = {x € s : x5 < n}. In particular,
2n — x5 € 5 for x € X(n7) and we can introduce

uy(x) = u(xy, -+, x4,2n — x5) for x € () and w,, = u,, — uin ().
Our goal is to show w,, > 0 for all € (=k, 0). By the mean value theorem w,, satisfies

—Aw, + V(r)w, = L(ryrP! (ug - u”) = c(x,mw, in Z(n),
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4.6. A problem on a bounded domain

for c(x,n) between pl"(r)rp‘luﬁ_l(x) and pI'(r)r’~'uP~!(x), i.e., ¢ is bounded. Moreover w, = 0 on
0Z(n) since u = 0 on 0€Y; 5. We now show

wy, > 0in X(n) for all n € (=k,0). 4.25)

If 0 < 17 + k is small then Theorem 4.13 implies w,, > 0 in Z(77). Hence, there is a maximal iz < 0 such
that w,, > 0 in X(n) for all 7 € (=k, f1). In order to prove (4.25) we have to show

i=0. (4.26)

Assume by contradiction i < 0. Then by continuity we conclude w; > 0 in X(f1). Since w; # 0
on 0X(j1) we infer w; > 0 by the maximum principle. We show wj,, > 0in X(z + ¢) for all € > 0
sufficiently small. By Theorem 4.13 there is 6 > 0 such that the maximum principle holds for L; =
—A + V(r) — c(x,n) in subsets of X(iz) with measure smaller than ¢. Let K be a closed set in X(jz) such
that |[Z(@) \ K| < ¢. In particular, wy > 0in K. By continuity there is & > 0 such that for all & € (0, &]
we have

|Z( + &) \ K| <6 and wyy, > 0in K. 4.27)
By the mean value theorem we again deduce
~AWgie + V(rWase = c(X, i + E)Waee In X(1 + &) \ K
and wg,, £ 01n 2(i2 + &) \ K due to wzy, > 0 on K. The maximum principle in narrow domains

implies wy.. > 01in X(i1 + &) \ K. Hence, by (4.27) we get wy., > 01in Z(f1 + &) for all € € (0, g9] which
contradicts the maximality of jz and herewith proves (4.26), i.e., also (4.25).

In the next step we show d,,u > 0 if x5 < 0 and prove the symmetry about {z = 0}. Since w,, > 0 in
2(n) and w(xy,- -+, x4,17) = 0 Hopf’s lemma applied on {x € Q5 : x5 = n} implies

0> 0 wy(x1,- -+, X4,1) = =20, u,(x1,- -, x4,1) forallp < 0 and all (xi,...,x4,77) € Q5.
Moreover, w,, > 0 for all n € (—k, 0) implies wy > 0, i.e.,
u(xy, ..., x4, x5) < ulxg,...,xs,—xs) for x5 <O0. (4.28)
We can now repeat all the arguments above for n € (0,k) and again end up with w,, > 0 for all

n € (0, k). This entails u(xy, ..., x4, x5) < u(xy,..., x4, —xs) for x5 > 0 and herewith u(xy, ..., x4, x5) =
u(xi,...,x4, —xs) by (4.28). This altogether finishes the proof for the z-direction. O

4.6.1. A-priori bounds for positive solutions on bounded domains

Before we give the a-priori bounds we again give two ways of scaling, similar to Section 4.1.

a) Scaling of (4.24): Let (u;) jeir be a sequence of positive solutions of (4.24) for p = pjand p; — p €
[1,2) as j — oo. Set

M = max rui(r,z).
I ey ir:2)
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4. A Liouville theorem and a-priori bounds

From Lemma 4.14 we infer that M; = r;u;(r;, 0) for suitable r; € [0, k). Thus, for a subsequence there
18 7' := limj_ r; € [0, k]. We introduce

lfpj
rj+ I”Mj 2 1-pj I-pj )
2 2 ;
u; rj+er ,zMj for j e Nand (r,z) € R

vi(r,z) = M.
j

(4.29)

pj-1

2
such that (rij s r) +7 < ksz’_l,rj +rM;” > 0.

lfpj

In particular, v;(0,0) = 1 for all j € N. Hence, using the same calculations as already carried out
in front of (4.8) we deduce that v; satisfies (4.8) with the domain of definition from (4.29). The
conditions for the variable r in (4.29) can be expressed as

L/ Pt
b e b (k=M (kM =22
—riM;? < r<|yk-2M; 7 —r)|M;? = — (4.30)
\/W+FJMJT

b) Scaling of the vector-valued equation: As already done in Section 4.1 we can consider (4.24) as

~AU + V(x)U = T(x)|UI”"'U in Bx(0), @31
|U| = 0 on 0B(0), '
where the two variants are connected via U(x) = u(r,z)(=xz, x1,0)7. Let (U i)jen be a sequence
of solutions of (4.31) with exponent p = p;. Again, let y; = (y;1,y j,z,yjﬁ)T € B, (0) denote the
point where |U}| attains its maximum, i.e., |[U;(y;)| = sup g, |U;(x)|. Once more, we can choose
yj = (r;,0,0)". We introduce

- 1 rj Irj
Uj(x) = EUJ(YJ"'XMJZ ) for |yj+)ch2 | < k. (4.32)
Then similar to (4.11) the function U j satisifies
T rj .
—AUj(x)+Mjl._pr(y j+ XM U (x) = Ty + xM ;2|0 (01~ U(x) (4.33)

I-p;

]
in{xeR3: vj+xM;* | <k}
We are now able to prove the following result.

1

Theorem 4.15. Let p; — 1 or pj — p € (1,2) as j — co. Then (Mj)jé/TN is bounded.

Remark 4.16. Theorem 4.15 entails the following a-priori bounds which is the analogue of Theo-
rem 4.3: Let [py,p*] € (1,2) and k > 0. Then there is a constant C = C(py, p*,k) > 0 such
that

lrull sy < C

for every positive weak solution of (4.24) and every p € [p«, p*].
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4.6. A problem on a bounded domain

L_]
Proof of Theorem 4.15: Assume by contradiction that M, * — oo as j — oco. We distinguish three

cases with several subcases.

1) re € (0,k).

2) r. = k with subcases

pi-1 pi-1 1

2a) (k= r)M,* — oo, 2b) (k= r)M,* — 0, 20) (k—r)M,* — c € (0,c0) as j — co.

3) ro = 0 with subcases
pj—l pj—l pi-1
2

— 0, 3¢) rJ-ijz — ¢ € (0,00) as j — oo.

3a) rjMJ.T — oo, 3b) r;M,

The different treatment is needed since limit domain and limit equation which will arise from (4.8)
and (4.29) depend on the quantity lim;_.(k — rj)Mj * respectively lim;_,, rjM ; 2. Moreover, we
distinguish p; — 1 from p; — p € (1,2) since p; — 1 leads to a linear limit problem, whereas in
case of p; — p € (1,2) the limit problem stays non-linear.

The vector-valued scaling (4.31) and (4.33) will help us to rule out the cases 2b) and 3b), this is
done in the postponed Lemma 4.17 and Lemma 4.18. In the following we investigate the other cases
by passing to a limit equation. After this is done, we summarize all appearing cases and derive a
contradiction in each of them.

pj—1
Case 1): 7, € (0,k): Then r.,-MjJT — o0 as j — oo. From (4.30) we deduce that the limit domain is
R2. Hence, for a compact set K C R? we can guarantee that there is j, € N such that K is a subset of
the domain of definition of v; for all j > j,. In this sense, due to V,I" € L¥({) and |[vjll;~ = 1 we
infer that the right hand side of (4.8) is bounded in quoc(Rz) for all g € [2, 00). By elliptic estimates
(see Theorem 9.11 in [39]) we obtain for an arbitrary compact subset K’ cC K and g € [2, 00) chosen
arbitrarily

l—pj
Loy
||Vj||W2~‘1(K’) < Ci(K', K)(||Vj||m(1<) + ||F(rj + er : )ij

lfpj

1_ . —_—
—Mj p’V(rj+er2 Wi —

1
— 1% '”L‘!(K) (4.34)
/2 + )2 J )

< Co(K', K)VIKI (1 + [Tl + IVIIzs) < C3(K', K)

where |K| denotes the two-dimensional volume of K. The estimate in (4.34) is done independently
of j € N. Thus we conclude that (v;)jen converges weakly in Wi)’f(RZ) for all g > 2 and strongly in

C,.RHtove W@Z(Rz) N L*(R?). Hence the limit equation reads

—02v — 82v =T(re)v in R? (4.35)
in case of p; — 1 as j — oo and

—02v — 82y = T(ro)V’ in R?, (4.36)

if pj > p €(1,2) as j — oco. Notice that we have v > 0 in (4.36). But in case of (4.36) the non-
existence result for classical non-negative solutions (see Theorem 8.4 in [59]) applies, a contradiction.
Thus, (4.36) is ruled out. We will rule out (4.35) later.
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4. A Liouville theorem and a-priori bounds

pj-1
Case 2): ro = k: In particular, rijlT — oo as j — oo. We investigate the subcases 2a) and 2c)
mentioned before.
pj-1
2a) (k — rj)Mj/T — 00 as j — oo: By (4.30) we again obtain the limit domain R? and similar to case
1) we conclude that the limit equation is (4.35) respectively (4.36).
pjfl

2¢) (k- rj)MjT — ¢ € (0,00) as j — oo: From (4.30) we infer

pi—-1
o k)M, 2
r<(k- rj)Mj 2 -

pi—1 pi—1
1 i 1 -
VM =2+ M VM =2 4 M

-1

it K2 2 r ’
= (k - rj)ijz X 7 £ Py + X / — £ o1 — C
(k+1;) (k+ rl,-)zMj" T [kzMj?.i—l 24 ,,J_M.JT

J

it
as j — oo. Hence, the limit domain is (—co,¢) X R. Since rij * — ooas j — co we can repeat

the estimates in (4.34) in order to conclude that (v;) e converges weakly in leo’g((—oo, —c) X R) and
strongly in C'((—co,—c) xR) to v € Wz’q((—oo, —c) X R) N L®((—o0, —¢c) X R). The limit equation

is again (4.35) respectively (4.36) but ti(l)ics time in (—oco,c) X R. The Dirichlet condition for u; on
0 \ ({0} X [—k, k]) carries over to a Dirichlet condition for v on the half-line {c¢} X R. This is done
with the help of regularity theory up to the boundary, i.e., we first have to transform our expanding
domain to a fixed domain which makes it possible to use appropriate results. Since this is a lengthy
and routine calculation we skip it here. Notice that similar calculations are carried out in detail in the

proof of Lemma 4.18.

The case (4.36) in (—o0,¢) X R is ruled out by the classical non-existence result for classical non-
negative solutions in a half-space (see Theorem 1.3 in [38]).

Case 3): ro, = 0: Again, we treat the two subcases 3a) and 3c).

pi-1

3a) rjM].j2 — o0 as j — oo: Once more, the limit domain is R? and the limit equation is (4.35)
respectively (4.36).
pj-1

3¢c) rijT — ¢ € (0,00) as j — oo: Here the limit domain is (—c, c0) x R. Shifting the 1/r2-term in
(4.8) to the left hand side, we can use Lemma A.11 to obtain uniform leo’f((—c, 00) X R, rdrdz) bounds
of (v;)jen for all g € [2,00). In particular, (v;);en converges weakly in leo’f((—c, 00) X R, rdrdz) and
strongly in C. ((=c, ) X R, rdrdz) to v € C}, ((—c, c0) X R, rdrdz) N L¥((—c, o) X R). In particular,
v # O since v;(0,0) = 1 for all j € N. Herewith, we end up with

1 1
Oy =0y ———dv+ e = TOvin (e, ) xR (4.37)

if pj— lasj— ocoand

1 1

—03\/—05\/— W+ >
c+r (c+7r)

v = T(0W” in (=c,00) X R (4.38)
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in case of p; — p € (1,2) for a function v € Clloc((—c, 00) X R) N Wi’f((—c, o00) X R, rdrdz) for all
q € [2,00). Like already carried out in Section 4.4, v = (¢ + r)u and a translation then transforms
(4.38) in a non-trivial solution of (4.3). But this is ruled out by Theorem 4.1.

Summing up the previous cases, we end up with either
—87v — 02v =T'(r)v in R? or (-00,¢) X R (4.39)
for fixed r, € [0, k] and ¢ > O (cases 1), 2a), 2¢) and 3a)) or (4.37) with ¢ > 0 (case 3c¢)).

pj-1
We derive a contradiction in each of these cases which will then show that (MjT ) jer 1s bounded. We
first turn to (4.39) and afterwards deal with the remaining case (4.37) in 3c).

So from now on consider (4.39) and abbreviate Q,, := (-0, c) X R respectively Q. = R2. Since
all v; are known to be strictly positive the limit function v is non-negative. Due to the minimum
priniciple for superharmonic functions (again compare Theorem 2.13 in [35]) we conclude that v
has to be strictly positive. Let R > 0 and choose P € Q. such that Bg(Pgr) C Q.. Moreover,
let (A;(Bgr(Pr)), ¢1r) denote the pair of first eigenvalue and first eigenfunction of —A on the two-
dimensional set Bg(Pg) with Dirichlet boundary conditions. Since first eigenfunctions are positive
we have fBR Po) vy rdx > 0. By the variational characterization of the first eigenvalue (compare
Lemma A.12) we obtain

(B = .

Thus, we can choose R > 0 so large that A,(Bg(Pg)) < I'(r). Thus,

(T(reo) — A1(Br(Pr))) vy rdx > 0.

Br(Pr)

Additionally, (—0% — 82)¢1 g = A1(Br(Pg))¢1.r in Br(Pg) holds true, i.e., by (4.39) we conclude

0 < (N(rw) = Ai(Be(P))) vy px = f (Vv Ve + @, + @)1 r) dx
Br(Pg) Bgr(PR)

01 R
:f y 1 do
oBp(Pr) OV
0p1 R

where we have applied Green’s formulae to obtain the last equality. But Hopf’s lemma implies == <
1),~71

0 on 0Bg(Pg) which is a contradiction to (4.40). Hence, the sequence (Mj'T )jert 18 bounded in this
case.

(4.40)

We now investigate case 3c), i.e., we consider (4.37) in (—c,00) X R with ¢ > 0. Again v > 0 on
(—c, 00) X R by the strong minimum principle and the results of Lemma A.7. By a further translation
we have

1 1
~0%v — (')5\/ - =0,v+ v =T(0)vin (0,0) XR.
r r

By Lemma A.12 we can choose R > 0 so large that 4,(Ag2r) < I'(0) holds true, where Ag,x denotes
the annulus with inner radius R and outer radius 2R. Similar to the case before (1,(Ag2r), ¢1.r) denotes
the pair of first eigenvalue and eigenfunction of —Ajz + rlz on Agg. In analogue to (4.40) we derive

1
0 < (@IO) - ﬂl(AR,R))f v grd(r,2) = f (Vr,zv V. 01r + VA3 R + §V901,R) rd(r, z)
AR2R AR2R
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4. A Liouville theorem and a-priori bounds

0
= f % "Dl’RdO' <0,
OAR2R dv
pj-1

a contradiction. Thus, again (MJ.T ) jerr 18 bounded which finishes the proof. O

We now exclude the cases 3b) and 2b) from above. Our arguments are independent of the limit of the
sequence (p;)jen. In both cases we make use of (4.32) and (4.33).

pi-1

-
Lemma 4.17. The case 3b) from above, i.e., ro, = 0 with rJ-MJ. 2 — 0as j — oo can not occur.

pi-t ~
Proof. Assume by contradiction that ro, = 0 with ;,M;*  — 0 as j — co holds true. Recall that U
rit vt
is defined for all x € R? such that [y jMJ. T4+ < kMJ. 7", i.e., the limit domain is the entire space R*.

The proof is finished by the same arguments as given in the proof of Lemma 4.5. O

We finally exclude case 2b). Here, the usual way of passing to a limit equation does not work since
the domain of definition of U jin (4.32) is given by all x = (xy, x2, x3)T € R3 such that

|x|? 2r; Pt
pj—l +k+}"'X1 <(k_rj)sz ’
(IC + Ii/)]bl} 2 J

i.e., the limit domain is (—c0,0) X R? and the point 0 (where |U(0)| = 1) lies on the boundary of
this set. Therefore, the local CI]OC convergence on compact subsets is not sufficent to deduce a non-
trivial solution of a limit equation. Instead, the argument we give to exclude this case is similar to an
argument in the classical paper of Gidas and Spruck, see case 2) (P € dQ) in Section 2 in [38] or the
proof of Theorem 1 in [62]. We give the details here.

pj-1

Lemma 4.18. The case 2b) from above, i.e., ro, = k with (k — rj)M] > — 0as j — oo can not occur.

pj-1
Proof. Assume r,, = k with (k — rj)MJ.T — 0 as j — oo. Our investigation is based on equation
(4.31) for U; expressed in 3-d Euclidian coordinates. In a first step we perform a transformation by
flattening the boundary near the point (k, 0,0)" € 4, which allows us to switch to half-balls. The

boundary of O near (k,0,0)" is parametrized via x; = Y(x2,x3) = /k? — x3 — x3. Therefore, the
transformation is as follows:

Xy = (X, X3) = X1, Xy = Xp, X3 = X3. 4.41)

Thus, x € € refers to x| = 0, whereas x| > 0 corresponds to points x € €. We rewrite (4.31) for
U; near (k,0,0)" in the coordinates x’ = (x, x}, x};)". Due to (4.41) it holds

X3

X2
0,, = =0y, 0., =0y =0y — ———O0y.
: ? So(x, x3) !

x, T —ax’ ’ ax
! 2o, x3) U
Consequently,

2 _ 92
& =,
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X2
0 =d, 0, - ————a,
- 2( 2 Y(x, x3) 1)

X2
_ (8 o Lax,) o W(xa, x3) + ¢(2x22,x3) 8. — X3 (a L Lax,)a
2 P(x, x3) ! Y(x2, X3) ! ¢(x2,x3) 2 Y(xo, x3) !
PN X3 o 2x, 8? Y(x2, x3) + ll/;xz P
2 Y(x, x3)* 1 WYX, x3) T Y(x2, X3) !
6; = a)zc’ + xg 28)2c/ - ZX3 ai'x l/’(xz’ X3) w;xz = 6
30oY(x,x3)* 1 (X, x3) 1 Y(x2, X3)

In summary,

2 2
x2+X3
A A x2 + x3 02 2x; > 2x3 52 2Y(x2, x3) + P(x2.%3) P
x — .X, s T T _ T X .
W(xa, x3)2 1 (X2, x3) 2 P(xp, x3) TS Y(x, X3)? :

The maximum in y; = (r;,0, 0)" of |U|| transforms to a maximum in y;. = (k-r;,0, 0)" of |W;| where
Wix') = U((p(xh, X3) — 7, x5, x5)1).
Therefore, (4.31) near (k, 0, 0)” for U jand p = p; turns into
5 5 x2+x2
(_ RS 2x 2x;3 2 20, x3) + Y(x2,x3)

TRy 1 O 0. W,
Hoe o e W T e 2 @
+ V(W = L)W' W,

in {|x'| <k} N {0 < x} <&} for 0 < k < k and 6 > 0 small. We now perform a further scaling via

T ’ 1 ﬂ / ’
W/(x):ﬁW/(sz X +yj)~
J

In particular,
- 1 , 1
IW;(0)] = EIWj(y,-)l = EIUJ(VJ-)I =1 (4.43)

and due to %, = /3 = 0 we deduce Dirichlet-boundary conditions for W;, namely

5t it ’ ’ ’ 1 ’ ’ 1
Wi(=M;? ¥}y, x5, x3) = ﬁWj(O, x5, X5) = ﬁUj( K2 = x5 — x3, X2, x3) = 0. (4.44)
j

J

~ )
We now calculate the equation which is satisfied by W;. Therefore, let X := M,* x" +y’. Hence,
Pj -1 p/+1 pj 1 ’

W(x)—MW((x y)Mz)and(? W(xj)—M HW((x y)Mz)forl—l23 Thus,
)

- . | P pi X2t X3
V(X)W(X) = T®IW X Wi(%) = M Ay W (x )+ M] max W, (x )
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~2

X X 24 (%, X3) + i
OMU—2 5 W) - 2M”’~—62, W i(x') - ASES)
P (X, X3) T2 T p(Fy, X3) 1 W(%a, X3)?

P
M j 2 6x/1 Wj(x )
A multiplication with M;p / gives

1
M7 (0 + X

1 ~N\TH NP 0 ’ Y ’

V() ——=W;(x') ~T®W;(x)" = Ay W;(x') + - 8% Wi(x')
MP~ kK2—M R+ X
J J :
lfpj i
M].T)c’2 . M;* X, .
-2 &y Wix) =2 03«1 < Wi(x)
V& = MG+ ) J& - M0+ (4.45)
2\/k2 1 [’/(x 2) + Ml'ipj(xlz‘*'x'z)
K- M Ty 1= 7
M7 0, Wi(x)

kz—Ml p’(x +x

/2 it Pt .
on {x' € R* : \/(x’l + M k= )2+ P+ 2 < kM f 0 {x) > —(k - )M, }. Notice that
pj-1
the coeflicients in front of di, , 8}2(, o 8}2(, % and d,;, are converging to zero in L™ due to M, 7 > o0as
1 2 1

Jj — oo. The left hand side in (4.45) is also bounded in L™ since V,I" and W are bounded From
(4.43), (4.44) and the mean-value theorem we infer

1= |W;(0) - W;(— M y,)l JZ (W;i(0) = Wii(=M, 7 y)P
: (4.46)
pj-1 - rj-t
< Z sup |VWN(§I)|2(]€ - rj)M]T < ||VWj||L°°(Bpj(0))(k - rj)MJ ? s
i=1 ety ety

pjfl

it Pt
where p; = M, > (k —rj). Since (k — M, > — 0as j — oo the estimate in (4.46) produces a
contradiction if (||VV~VJ»|| L=(8,, ©))jen 18 uniformly bounded in j € N. Therefore, it remains to prove that

(||VWJ~|| Lm(Bpj(O))) jen 18 uniformly bounded in j € N which is now done with the help of Corollary 6 in
[62]. Obviously, we have B, (0) C B1(0) N {x] > —p;} for j € N sufficiently large, i.e., for j € N large
enough we conclude

”VWj”L‘X’(B,,j(O)) < NIVWille 0012 >-p;1)- (4.47)

pjfl

We perfrom a last translation in x| direction, i.e., Wj(x’) = Wj(x' - MjTy;.) so that

”VWJ'||L°°(Bl(0)ﬂ{x'l>—pj}) < ||VW/||L°°(BQ(O)O{)C’1>O}) (4.48)
for j large enough. Notice that B;(0) N {x} > —p;}) is a subset of the domain of definition of W; and

the Dirichlet-boundary conditions are satisfied due to (4.44). Moreover, the coefficients in front of
the first and second order derivatives in the equation which is satisfied by W; does not differ from the
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4.6. A problem on a bounded domain

coefficients in the equation for W; since the coefficients of the first and second order derivatives do
not depend on x|, see (4.42). We are now in a position to apply Corollary 6 in [62]. Therefore, let F j
denote the right hand side in the equation for Wj and notice that F'; is uniformly bounded in L. With
this notation we infer for j € N sufficiently large and p € (2, c0) large enough

IVWll=s,0nx 500 < CsobllWillw2e(s,0)n1x;>0n
< CsopC (”Fj”LP(Bz(O)ﬁ{x'l>0}) + ”Wj”LP(Bz(O)ﬁ{x’l>O})) < CsonC V|B2(0)].

The combination of (4.47), (4.48) and (4.49) then yields the uniform bound of (”Wj”L"“(Bpj(O))) jen and
finishes the proof. O

(4.49)

4.6.2. Uniqueness near p = 1

The next theorem ensures uniqueness of symmetric positive solutions of (4.24) near the exponent
p = 1. We follow the approach by Damascelli, Grossi and Pacella in [23]. Our result can be seen as an
extension which also works in the cylindrical setting for non-constant coefficients V = V(r),I" = I'(r).

Theorem 4.19. Fix k > 0. Then there exists py = po(k) > 1 such that (4.24) has only one positive
solution in Hé,cyl(Qk’ rdrdz) for all p € (1, po).

Proof. Let u; and u, be two distinct positive solutions of (4.24) in Hé,cyl(Qk’ r3drdz). Hence,

0= (Veztty - Vootty + V(O uysty — Vg - Vytty — V(Puyuy) rd(r, 2)
Qi

= f LY (i) = uo?) Pd(r,2) = f Ty s (™ = ™) P2,
Qk Qk

Herewith, the possibilites u; > u; on  or u; > u, on £ are ruled out. Thus, w := u; — u, has to
change its sign on €.

Assume that the statement of the theorem is false, i.e., there are two sequences of positive solutions
(1) jen and (up j)jen of (4.24) for p = p; — 1 as j — oo and u;; # u,; for all j € N. We set
iy )= 174'_1/, and iy ; = % on Q where M ; = |lruy jllz=~, and Ma; = ||ru jllz~,- In the following,

we only give the arguments for M ;, the ones for M, ; are exactly the same. By Theorem 4.15 we
pit _
know that (M, ;) jEZN is bounded. Therefore, we have Mﬁ g RN u? € [0, 00) along a subsequence as

J — oo. The function it ; satisfies ||rity j||z~q, = 1 and

— _ i~ agPi=1=pj
—As gty j + V(i j = T(r)rP My iy on Q,

;= 0 on 0 \ ({0} X [k, k]), (4.50)
017!1,j

ov
Recall that there is C; > 0 such that Mf’jj_l < C, for all j € N. By testing (4.50) with i, ; we deduce

= 0 on {0} X [k, k].

f (Ve ; + V(I3 ;) Pdr2) = f T(ryrr ™ My T Pd(r, 2)
QO O

4.51)
< DI f rd(r,2) < Cs
Q
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4. A Liouville theorem and a-priori bounds

uniformly in j € N. Therefore, [|it; ||z, ) 1 uniformly bounded in j € N. In particular, the
right hand side in (4.50) is uniformly bounded in Li(€, r*drdz) for all g € (1, 197 (recall that Q
corresponds to a five-dimensional ball). Due to global regularity theory (see for instance Lemma 9.17
in [39] or Theorem 5 in [62]) we obtain global bounds for ||i; J'szv 9 0y Another application of

Sobolev’s embedding quarantees global bounds for (it ;)jey in LI(€Y, rdrdz) for all g € (1, o].

Therefore, (i) ;) en 1s bounded in Wczﬁ(Qk, r*drdz) for all g € (1,00) which finally leads to global

bounds in C'(Q, r*drdz). Therefore, 1, ; — & € C'(Q;) and  satisfies

~As eyt + V()i = @°T(r)ii in

it = 0 on 9 \ ({0} X [k, k]), (4.52)
98 _ 0 on {0} X [k, K].
ov

The minimum-principle yields i > 0in Q. Assume u = 0. Then i is an eigenfunction of —As .+ V(r)
to the eigenvalue 0, a contradiction since o"(—As .y + V(r)) C [ess inf V, c0) and ess inf V > 0. Hence
u > 0. We now investigate the weighted eigenvalue-problem

—As o + V(r)p = AL(r)¢ in Q for A > 0. (4.53)
Minimizers of the Rayleigh-quotient

B fgk (IV,,z<p|2 + V(r)goz) rd(r, z)

B(e,
(@, ) ka T(r)@2r3d(r, 2)

,p € H(l,’cyl(Qk, r3drdz)

are weak solutions of (4.53) with A; = mingcyi(q, ) B(@, ¢). We calculate

inf
B(p,¢) > inf V >0
supl’

due to our assumptions on V and I'. Following the proof of Lemma 3.5 we conclude that minimiz-
ers do not change sign and that the eigenvalue A, is simple. We denote the simple eigenfunction
corresponding to A; by ¢;. Due to it > 0 in ; and u > 0 we obtain

it = to, fort > 0and i = A;.

. . _ . o . . _pi—1 .
The convergence discussed yields it; ; — f¢; in Cl() as j — oo, i.e., we get ui’j — 1 in compact
subsets of (); as j — oco. Herewith

=t Pt !

p 2 _ .
' LN =Ad1as j— o

uniformly in any compact subset of €. In the same manner, we conclude i, ; — ¢; in Cl(ﬁk) and

”gjj_l — A; in compact subsets of Qy as j — co. For j € N, we introduce w, := p——p2 —. Hence,
, W T2
w; satisfies
~Aseqw; + V(Pw; = L)’ g;(r,2)w; in O,
w; = 0on 0 \ ({0} X [—k, k]), 4.54)

aWj

—— = 0on {0} X [k, kI,

ov
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4.6. A problem on a bounded domain

Pj Pj
u(rz)—uy (r,2) ~
where g;(r,z) = m on the set Q; = {(r,z) € Q : uy j(r,2) # u j(r,z)} and g;(r,z) = 0 on the

set Q; \ Q ;. On arbitrary compact subsets K C €, we conclude

pj _ Pj Pj=Pj _ Pj =Pj
LUy Ty Ml’jul’j Mz,j”z,j

-1
- — — = p‘é‘:'(r’ Z)pj P
wj =ty M= My
where we applied the mean value theorem in the last step to obtain &;(r, z) between M, jii; ;(r, z) and

M, jit, j(r, z). Herewith there is a constant C; > 0 such that||gl|;~q,) < C; forall j € N and 55.”_] — A
in compact subsets of €); as j — oco. Similar to (4.51) we deduce

f (19,052 + Vew2) Pe(r, 2) = f L) g,(r, wArd(r,2) < TkeC f P2(r,3) < C.
Q

Qk Qk

Therefore w; — w € Hé,cyl(Qk’ r3drdz) as j — co. Again global regularity theory establishes uniform

ny”f(Qk, r*drdz)-bounds for (w i)jen and all g € (1, 00) which also guarantees w; — win C 1(ﬁk) as

J — oo. Thus, due to the local convergence of g; — A; as j — oo the limit function W satisfies

—As. ey + V()W = LT(r)W in Q,
w =0 on % \ ({0} X [k, k]),
oW

5 0 on {0} x [k, k].

1.e., again there is > 0 such that w; — ¢, in C l(Q_k) as j — oo. This yields the desired contradiction
since ¢; does not change sign in £ but at the very beginning of this proof we have seen that w; has
to change sign for every j € N. Hence, (4.24) has only one positive solution in Hé,cyl(Qk’ r’drdz) near
p = 1 which finishes the proof. O

4.6.3. Uniqueness in the class of nhon-degenerate solutions

Theorem 4.19 shows uniqueness of positive solutions of (4.24) for p near one. We now restrict to the
class of non-degenerate solutions and obtain with the help of the a-priori bounds in Theorem 4.15 the
same result for the range of all p € (1,2). Here, a positive solution u of (4.24) is called non-degenerate
if the linearized operator

~Aseq + V() = pL)rP ™ u?™" s Hy o (Q, Pdrdz) — H gy (., rdrdz)
is invertible.

Theorem 4.20. Let p € (1,2) and assume that every positive solution of (4.24) is non-degenerate.
Then (4.24) has only one positive solution in Hé! Cyl(Qk, r*drdz). In particular, the number of nonde-

generate positive solutions u € H(l)’cyl(Qk, rdrdz) of (4.24) is less or equal to one.

Proof. Let p > 1 be the maximal number such that the uniqueness of non-degenerate solutions in
H(l)’cyl(;ﬁdrdz) of (4.24) is valid for p € (1, p). If p > 2 there is nothing left to show, so let w.l.o.g.
p < 2. We first show that the uniqueness then also holds true for p = p.
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4. A Liouville theorem and a-priori bounds

Assume by contradiction that (4.24) has two distinct positive non-degenerate solutions for p = p
denoted by it; and i1,. Hence, for

H: Hj (., rdrdz) X (1,2) = Hy . (Q, P’drdz); H(u, p) = =Ascu + V(ru — D)’ ulP ™ u

we have H(ity, p) = 0 = H(it,, p) and (ul, p), B 98 (3,, p) are invertible. Notice that H is differentiable
with respect to p € (1, 2). Indeed, we have

% = —pL()r ™" = (p — DIl u (4.55)
14

and we now prove that the right hand side of (4.55) is an element of H‘1 l(Qk, r*drdz). Due to
p € (1,2) we compute with the help of (2.14) (notice Hé,cyl(Qk’ rdrdz;) ¢ H lyl(r3drdz) by zero-
extension)

sup

[ P——

<(p-DIT=  sup flrul”IVIrd(r,z)
1J

”V”Hlmk Bdrd)S

< (p = DIz ( f lru|*P rd(r, z)) sup ( f vzrd(r,z))z < oo,
Qi

”V”Hl(gkr drdz )—

f (p — DI(rP 2w’ uvrd(r, )
Q.

<1

Moreover, Holder’s inequality gives

sup f pL() P ulP~vrld(r, 2)
”v”Hl(Qk r3drdz )_1 Qp
<pllll~  sup f PP " lrd(r, 2)
”V”Hl(g r3drd)<1 Q

2p+D)
3
< p”FHL”"”rul L[H—](Q Pdrdz) (Lk rd(r, Z)) sup ”v”Lgyl(Qk,ﬁdrdz) < 0.

”V”Hl(Qk Bardn <1

Thus, the implicit function theorem yields neighborhoods P; and P, of p and continuous functions
hy: P, — Hé,cyl(Qk’ rdrdz), hy: Py — Hé’cy](Qk, r3drdz) such that h(p) = @ty # it, = h»(p) and

H(hi(p),p) =0forall pe P, H(hy(p),p)=0forall p € P,.

By continuity of /; and h, and the fact that &1; # i1, we infer that there are at least two non-degenerate
solutions for p close to and smaller than p, a contradiction to the choice of p. Hence, we also have
uniqueness for p = p.

By definition of p < 2 we find a sequence (p;) e Which decreases to p as j — oo and two different
non-degenerate positive solutions of (4.24) for p = p; denoted by u; j and u,; (j € N). Let i be the
unique non-degenerate positive solution of (4.24) for p = p. We show that

upj — i, uy; — it in Hy eyt (% rdrdz) as j — oo, (4.56)
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4.6. A problem on a bounded domain

where we only prove u; ; — i in Hé Cyl(Qk, r*drdz) as j — oo since the arguments for the sequence

(u2,j) jew are exactly the same. Due to Theorem 4.15 we have [|ru; jll;~, < C uniformly in j € N. We
test (4.24) by u; ; and deduce

fQ (IVreur i + Vg ;) rPd(r.z) = f
k

Qe

L ~'w?* ' Pd(r, z) < CP I e f rd(r,z) < C,

Qe
i.e., we find a uniform Hé,cyl(Qk’ r3drdz)-bound. Thus, there is u € Hé,cyl(gk’ r3drdz) such that u; ; —
uin H(l)’cyl(Qk, r3drdz) as j — oo. Therefore, u is a weak solution of (4.24) for p = p. Moreover, u is
non-degenerate by assumption, i.e., by uniqueness, u = iz which proves (4.56).

For je Nwesetw; :=u;;—ujand w; := wjllw; Hence,

-1
sty

—Ascqw; + V(r)w; = T(r)rPi~! (uf’] - u§’l> =T(r)p;&i(r, 2" 'w; in O,

where &(r, z) 1s between ru, j(r, z) and rus j(r, z) for (r,z) € . A division by |[u; j—uo j| HI (@) yields
~Aseq; + V(r)Ww; = T(r)p;éi(r,2)P'Ww; in Q. (4.57)

Since [[Wjlly .+ = 1 forall j € N we deduce the existence of w € H(‘),Cyl(Qk,Pdrdz) such that
w; = win H(l)’cyl(Qk, r*drdz) along a subsequence as j — oco. Our goal is to identify w as a non-trivial
solution of the linearization around a non-degenerate solution of (4.24). This then contradicts the
non-degeneracy and finishes the proof. By testing (4.57) with w; we obtain

1= ”Wj”lgfé(ﬂkﬁ) = pjf F(l’)fj(r’ Z)p-f_IW?r3d(r, 2). (4.58)
Qi

We now show with the help of Lebesgue’s dominated convergence theorem that we can pass to
the limit in (4.58). Due to the compact embedding Hé’cyl(Qk, rdrdz) — Lﬁyl(Qk, rdrdz) we have
ruy j, rip; — rit in L‘C‘yl(Qk,m’rdz) as j — oo and rw; — rw in L‘C‘yl(Qk,rdrdz) as j — oo. Thus,
we find g € L*(,r’drdz) and a subsequence (again denoted by (ruy ;) jen, (ruz j) jer) such that
lruy j(r, 2)|, [ru, j(r, 2)| < g(r, z) for almost all (r,z) € Q; and h € L*(Qy, r*drdz) such that wjl < h(r,z)
for almost all (7, z) € € (see Lemma A.1 in [73]). Due to p; — p € (1,2) we may assume p; < 2 for
all j € N. Then we estimate

1€(r, P~ W (r, 2)* < 2max{lru j(r, 2, rug j(r, DY (r, 2)?

28(r,Dh(r,2), g(r2) 21,

< 2¢(r, 20" 'h(r,2)* <
g(r,2) (r,2) {2h(r, e or0) < 1.

Thus, m(r, z) = 2|1l (1 + g(r, 2))h(r, z)* for (r,z) € € is an L'-majorant for ['(r)&;(r, z)"f"lwﬁ since

3
jﬂmMQﬁﬂn@SﬂwmwM@“h«jﬁ#waﬂ
Qi oyt =5 (072

1

7
2 8
+Mmme@mMMmm([rM@@)<w
oyl 5 cy Q

k
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4. A Liouville theorem and a-priori bounds

Hence, Lebesgue’s dominated convergence theorem and (4.58) imply
1=p; f L(nE(r, )P~ 'wird(r,z) — p f L) aP "W rid(r, z) as j — oo.
Q Qe

Thus w # 0. In a similar manner, from (4.57) and the estimates obtained for the right hand side of
(4.57) we conclude that w € Hé,cyl(Qk’ r’drdz) is a weak solution of the limit equation

_AS,cylw + V(I’)W = F(l’)]_?rﬁ_] — 51— -

Hence, w is a non-trivial solution of the linearization of (4.24) around #. This contradiction finishes
the proof. O

4.7. Consequences of non-degeneracy in the unbounded
domain case

In the previous section we have seen that non-degeneracy of all positive solutions in the bounded
domain € leads to uniqueness of positive solutions. We now return to problem (4.1) on the full space
and prove that a non-degeneracy assumption leads to finiteness of ground states.

Again we assume that the coeflicients V, I satisify V,T € W*([0, 0)) and inf V,inf " > 0. Moreover,
for this section we assume throughout the following assumption:

0 is not an eivenvalue of the operator Lyyym = —As oy + V(r) — pI'(n)r? “lyrt 4.59)
with D(Lgymm) = {v € chyl(r3drdz) : v is symmetric about {z = 0}}, '

where u denotes an arbitrary positive ground state solution of (4.1) with p € (1, 2).

Remark 4.21. We restrict to p € (1,2) in (4.59) since this is the range of p where we can use the
a-priori bounds for ground states of (4.1) established in Section 4.5. These bounds get important in
Section 4.7.2. The results in Section 4.7.1 are valid for all p € (1,5) under the assumption (4.59).

We first give a reformulation of assumption (4.59).
Lemma 4.22. The following statements are equivalent:
(a) Assumption (4.59) holds true.

(b) If the second eigenvalue of the operator Lemm in (4.59) exists, then it is positive for all ground
state solutions of (4.1).

Proof. Let u denote a ground state solution of (4.1). We deduce the equivalence of (a) and (b) by
the following consideration. Since by Corollary A.2 we know that o eg(Leymm) € [ess inf V, o) and
essinfV > 0, we conclude that zero does not belong to the essential spectrum of Lgyy,. From
Section 3.4 we know that Ly, has exactly one negative eigenvalue 4;. Since the associated eigen-
function ¢; is symmetric with respect to {z = 0} (Lemma 3.10) and 4, is simple (Lemma 3.5) we infer
that the second eigenvalue of Lyymm is positive if and only if O is not an eigenvalue of Lgymm. O
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In the following we use the space
Hynm = {u € Hclyl(r3drdz) such that u is symmetric about {z = 0}} .

We give some consequences of assumption (4.59). The next lemma provides the connection between
Lgymm and J”(u) as defined in (3.6).

Lemma 4.23. Assume (4.59). Then the linear operator J”(u) : Hyymm — Hgymm is invertible.
Proof. By Theorem 3.4 we only have to prove the injectivity of J”(u). Assume that there is a v €

Hymm such that J”(u)v = 0. Via the identification of the Riesz representation theorem we get

0 ="y, w)y = f (Vr,zv V.o w+ V(rpvw — pF(r)rp_lup_lvw) rd(r,z) for allw e Hymm.
Q

In other words, v is a weak solution in Hyymm Of Lymmv = —Ascv + V(r)v — pL(r\-tu?~ly = 0.
Thus v € chyl(r3drdz). Since 0 ¢ 0 (Lsymm) We conclude v = 0, i.e., J”(u): Hymm — Hsymm 18
one-to-one. O

We are now able to give a first application of Lemma 4.23 in terms of perturbation theory, i.e., we
look at the perturbed equation

—Ascqu + V(ru = (I'(r) + gh(r, P P, (4.60)

where € > 0 and 4 € L*(Q) is symmetric about {z = 0}. We show the existence of solutions of (4.60)
by the implicit function theorem. The associated perturbed energy functional on Hgyy,, reads

Vr 2 p—1
T.(u) = f N V) 2 0y + eh(r ) 1P| P 2)
A\ 2 2 P
This can be rewritten as
Je(u) = Jo(u) + eG(u), (4.61)

where Jy denotes the unperturbed functional (3.3) restricted to Hgymm and

rP1

p+1

G: Hymm — Ryu > — f h(r,7) P! P d(r, 7).
Q

We now find critical points of the perturbed functional J,, i.e., weak solutions in Hyymm of (4.60).

Theorem 4.24. Assume (4.59) and let h € L*(Q) be symmetric about {z = 0} and u € Hgyny, denote a
ground state solution of the unperturbed problem (4.1). Then there is &y = gy(h) > 0 such that (4.60)
has a weak solution u, € Hymm for all € with |e| < &). Moreover, u, — u in Hymy, as € — 0.

Proof. We have to find critical points of J, for ¢ sufficiently small. Let u € Hgymy denote a ground
state of the unperturbed equation, i.e., Jj(u) = 0. In the sequel, we guarantee the existence of w =
w(g) € Hyymm such that J (u + w(e)) = 0 for & sufficiently small. From (4.61) we immediately deduce
JL(v) = Jy(v) + eG’(v) for all v € Hyyppy. Hence, we define
F: RX Hymm = Hyymm; (8, w) = Jo(u +w) + eG'(u + w).

Since u is a critical point of J, we infer that F(0,0) = 0. We have F € C'(Rx Hgymm) and D, F(0,0) =
Ji ), ie., D,F(0,0): Hymm — Hgymm 1s invertible by Lemma 4.23. Hence, the implicit function
theorem is applicable and proves the existence of gy > 0 as stated in our claim such that J.(u+w(¢g)) =
0 for all € such that || < g;. Herewith, our weak solution is u, = u + w(e). In particular, the implicit

function theorem yields w(-) € C'((—&y, &y)) and w(0) = 0 which proves the additional claim u, — u
in Hymm as € — 0. O
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4.7.1. Extension of non-degeneracy to Hclyl(r3drdz)

Under assumption (4.59) we can drop the symmetry about {z = 0} and deduce non-degeneracy of
ground states in a larger space in the following sense.

Theorem 4.25. Assume (4.59) and let u € Hclyl(r3drdz) be a positive ground state of (4.1). Then for
J"(u): Hclyl(r3drdz) - Hclyl(r3drdz) we have ker J"' (u) = [0,u].

Proof. Letv € Hclyl(r3drdz) be a solution of
—As v+ V(r)y = pL()r’'uP~v in Q.

By Theorem 3.12 there is 6 € R such that u is symmetric about {z = 6}. Since

() +v(r,20 - 2) N v(r,z) — w(r,260 — 2)

v(r,z) > >

=:v1(r,2) + vo(r,2) for (r,2) € Q

and v; is symmetric with respect to {z = 6} whereas v, is antisymmetric w.r.t. {z = 6} we have a
splitting

1 3
Hcy](l’ drdz) = Hsymm,9 @ Hantisymm,e’
where

Hoymmg = {v € Hy,(drdz) : v(r, 2) = v(r, 260 — z) for almost all (r, z) € Q},
Haniisymmeo = {v € HY, (P drdz) : v(r,z) = =v(r, 26 — z) for almost all (r,z) € Q.

With ¥,(r,z) = vi(r,z — 6) we have ¥, € Hynp, 1.6., Lemma 4.23 yields ¥, = 0. Thus alsov; =0
holds true. We have to show v, € [g—‘z‘]. Therefore, we again make a spectral analysis of L. Considered
in Hclyl(r3drdz) we know by Theorem 3.6 and Theorem 3.9 that L has exactly one negative eigenvalue
with corresponding eigenfunction ¢; and o (L) C [ess inf V, 00). Hence, considered in Hpisymm,g We
have oes(L) C [ess inf V, 00) and no negative eigenvalues. Indeed, if Lig,,,,.., Would have another
negative eigenvalue, then L would have either two negative eigenvalues or one negative eigenvalue
with multiplicity two, a contradiction to Theorem 3.9. Since L d,u = 0 we infer that O is the first
eigenvalue of L considered in Hygisymm,o-

In general, every w € Hpisymme 1S by antisymmetry uniquely determined by its values in Q* =
(0, 00) X (6, 00). We can repeat the steps in the proof of Lemma 3.5 that Dirichlet eigenfunctions corre-
sponding to the first Dirichlet eigenvalue 0 do not change sign in Q*. As a consequence, the Dirichlet
eigenvalue O is simple and since we already know that g—‘; < 0in Q7 is a Dirichlet eigenfunction
associated with the eigenvalue O we end up with v, € [0,u]. This finishes the proof. O

4.7.2. Finiteness of the number of ground states

The overall goal of this section is to use the non-degeneracy assumption (4.59) to prove that
~As et + V(r)u = T(r)r’ ' u? in Q (4.62)

has only a finite number of ground states in Hyymm for p € (1,2).
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4.7. Consequences of non-degeneracy in the unbounded domain case

First of all, we introduce some notation. We work with the dual space of H Clyl(r3drdz) in the following.

1

Therefore, we denote the dual of H,(r’drdz) by H_,(r*drdz) equipped with the norm

C

||<,0||Hc—y1](r3drdz) = sup |e(v)| fore € Hc_yll(r3drdz),

Wlg1,3,=1

where we abbreviated H'(7?) := Hclyl(r3drdz). Recall the notion Ky := Ki’f c H'(Pdrdz) and its
definition from (2.4). Next, we give an auxiliary result.

Lemma 4.26. The operator —Asy + V(r): Hclyl(r3drdz) - Hc‘yll(r3drdz) is an invertible isometry.

Proof. We first prove that the weak formulation of —A + V(r) in R’ preserves cylindrical symmetry.
4

Let (al-j) = A € O(4). Hence, 6; = ijl ajjai; for i,k = 1,...,4. We dentote a point in R’ by

ij=
(X, xs), where X = (x, ..., x4). For sufficiently smooth functions # and ¢ we formally compute

45 P Yo 3
;a—x] (u(AX, x5)) - ox; (p(AX, x5)) = ,-,Zk;‘1 (8—%) (A%, xs)a;; ((’)_xk) (A%, xs5)ay;
= (Vzu-V;ip) (A%, xs).

For cylindrically symmetric functions u, ¢ € H'(R3) we have u(A%, xs) = u(%, xs) and @(A%, x,) =
©(X, x,). Hence, we receive

f V (u(AX, x5)) - V(p(AX, x5))dx = f (Vu - Vo) (X, xs)dx.
RS RS

We next show that —As .,y + V(r) is an isometry from H Clyl(r3drdz) to Hc‘yll(r3drdz). For this purpose,
take u € Hclyl(r3drdz). Then

[V = Aseyit] 0= sup [V = Aseuu)(v)|

{V:”V”Hl(r3>=“

f V(ruvrd(r,z) + f V,,Zu-vr,zvﬁd(r,z)‘: sup [, Vs
Q Q {

ViVl ,3,=1)

= sup
Wil ,3,=1)

= ||u||H1(r3) ,

where we made use of the Hahn-Banach theorem in the last equality. Moreover, applying the Lemma
of Lax-Milgram to the bounded and coercive bilinear form a(v, w) := fQ (V,v- V. .w+ V(r)yw)dx on
H'(R%), we see that —A+V(r): H'(R") —» H'(R") is bijective. Hence, —As ¢y + V(r): Hgyl(r3drdz) -
Hc‘yll(r3drdz) is invertible by the open mapping theorem. O

In the following, we say that a solution u of G(u) = 0 1s isolated if there is 6 > 0 and a neighbourhood
B;s(u) such that G™'(0) N Bs(u) = {u).

Lemma 4.27. Assume (4.59) and let p € (1,2). Then every ground state in Hyymy of (4.62) is isolated.
Proof. Let p € (1,2) and consider the map
-1 -1y, -1
G Heymm = Hommi G) = 1t = (=As e + V(1) (L@ ul™"u),

see Lemma 4.26 for the invertibility of —As.,; + V(r). We have G(u) = 0 for every ground state
u € Hymy of (4.62). By assumption (4.59) we know that u is non-degenerate. Hence, we infer by
means of the implicit function theorem that « is an isolated solution, i.e., there is a neighbourhood
Bs(u) of u in Hyppm such that G~'(0) N Bs(u) = {u}, see Proposition 1.3 in [27]. O
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4. A Liouville theorem and a-priori bounds

We now give the result of the finiteness of ground states.

Lemma 4.28. Assume (4.59) and let p € (1,2). Then the number of ground states in Heymm of (4.62)
is finite.

Proof. Assume by contradiction that there are infinitely many ground states in Hgyym. Then we find

a sequence of ground states (4,),cn C Hgymm such that G(u,) = 0 for all n € N. In particular, from

Corollary 4.12 we know that ||u,||; o < C uniformly in n € N. Hence, there is it € Hgymy, such that
cy

u, — it in Hclyl(r3drdz) as n — oo, Again, it € K, ; by Lemma 2.5 and i is a weak solution of (4.62).

Additionally, Theorem 2.10 implies ru, — riz in L y+1

value theorem

| (rdrdz) as n — oo. We conclude by the mean

fr(i’)r"_l(lunl"+1 —|al"*yrd(r, 2)| < IVl (p + 1)f|§f,’(r, Dlru(r, z) — ria(r, 2lrd(r,z) = 0
Q Q

as n — oo where &,(r, z) is between ru,(r, z) and rii(r, z) and &, is uniformly bounded in Lf ;] (rdrdz).
Hence,

1 1 1 1
J(uy) = (5 ry 1)Lr(r)r”_llun|p“r3d(n 7) = (5 Y I)Lf(r)rp_llﬁlp“r3d(r, z)asn — oo,

Since # is a weak solution of (4.62) we deduce
f (el rd(r, 2) = f (1V,.cal* + V(#®) rd(r, 2).
Q Q

Therefore also

1 1 1 1 _ )
(5 oy 1) fg (IVr,z,un|2 + V(r)ui) rd(r,z) - (5 e 1) fg (|Vr,zu|2 + V(r)uz) rd(r, z)

asn — oo, i.e., U, — i in Hgyl(r3drdz) as n — oo. In summary, due to J(u,) = J(u,,) for all n,m € N
we obtain that J(u,) = J(it) holds true. So i is also a ground state to (4.62). Thus # is an accumulation
point of ground states which contradicts Lemma 4.27. Consequently, the number of ground states is
finite. =
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A. Appendix to part |

The content of the appendix of part one is split in two parts. We first investigate basic aspects of the
cylindrical Laplacian and determine the spectrum. The second part is devoted to regularity questions
in cylindrical spaces and related issues.

A.1. The cylindrical Laplacian

We start with a statement which clarifies the selfadjointness and the esssential spectrum of the cylin-
drical Laplacian. We then extend this to certain differential operators appearing throughout this thesis.

Theorem A.l. Let

—As ey D(=Ascy1) C Lgyl(r3drdz) - Lgyl

1 2
(r3drdz); _As’cy]bl __ 0 ( 3614) o“u

sor\"ar) a2
Then —As, is selfadjoint and 0(=As 1) = Tess(=As 1) = [0, 00) in both of the following cases:

(@) D(=Ascy) = HZ, (rdrdz),

(b) D(=Ascy1) = {u € nyl(r3drdz) : u is symmetric about {z = 0}}, where the symmetry about {7 =
0} is also incorporated in Lzyl(r3drdz).

Proof. The proof is done in two steps. The first one is to show the selfadjointness of —As . in both
cases. The selfadjointness in case (a) is provided by Lemma 11 in [5].

In case (b) we also deduce selfadjointness of —As i, since the operator respects the additional sym-
metry about {z = 0}, i.e., —Asyu € Lgyl(r3drdz) and —As ., u is symmetric about {z = 0} in case of
u e D(_AS,cyl)~

We now turn to the claim concerning the spectrum of —As ;. The idea is to show that for the radial
Laplacian —As g = —p% %(p“%) where p = |x] € [0, 00), we have 0 (=As 1a0) = Tess(—As1aq) = [0, 0).
Therefore, we make use of the fact that the Laplacian —As without any further symmetries satisfies
0(=As) = 0es(—=As) = [0, 00), see Theorem 7.6 in [41]. Notice that —As,q as well as —As o, do not
possess eigenvalues since —As only has essential spectrum. The claim of Theorem A.1 then follows
SiIlCC D(_AS,rad) - D(_AS,cyl) - D(—A5)

It remains to show 0(—=Aq) = [0, 00). Since —As ;.4 1S a positive operator we conclude o (—As,q) €
[0, 00). We now show [0, 00) C 0(—Asq). We take Weyl sequences for the Laplacian in five dimen-
sions and transfer them to Weyl sequences for the radial Laplacian in five dimensions which then
Shows 0"(—As raq) € [0, 00). Let 2 > 0,u € CX(R®) and f := —Au — Au. We set

u(p) = f u(x)do, = i u(px)do,
$,(0)

w5p4 w5 Js 0
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A. Appendix to part I

where w,, = |S""!|. In particular,

1 1
i) =— f Vu(px) - xdo = — f Vu(x) - xdo, = — Au(x)dx. (A.1)
Ws Js,(0) wWsr Js,0) wsr* B,(0)
Multiplying f with — and integrating over S, we obtain
1
7 f (=Au(x) — Au(x))do, = 7
wsp™ Js, wsp
From (A.1) we deduce
4 1
i'(p)=— < f Au(x)dx + " f Au(x)dx,
WsP~ JB,(0) WsP™ Js,0
1.e.,
1 —7/ 4 =1 4 =/ 1 4—y ’
—— Au(x)dx = —il" (p) — — Au(x)dx = =" (p) — =il (p) = = (p*T () . (A2)
WP Js,(0) WsP~ JB,0) P P
Hence, it satisfies
1w, v _
> (o' (0)) — Au(p) = f, (A3)

where f(p) = #ﬂ fs . f(x)do,. We now consider Weyl sequences for —As with 4 > 0. A Weyl

sequence (i, )qen for —As satisfies f, := —Au, — Au,, — 01in L>(R’). We already proved that ii,, satisfies
(A.3) with i replaced by i, and f replaced by f,. We now show that f, — 0 in L*([0, o0)). Indeed,
due to (A.3) and (A.2) we compute

i} o _ © (] , 2
1ol 2 000y = @5 fo Fupyptdp = ws fo (7 (o' (o)) —xlﬁ(p)) ptdp

o 2
— = [T oo - o) ap
ws Jo P S ,(0)

< — f IS, O | (=Auy(x) = duy(x))*dordp
Sp(0)

[ [ o~ a0 dodo = - Bty = ey > Oas i <o
$,(0)

Since A > 0 was arbitrary this calculation shows 0 (—As,4) € [0, o) and the proof is done. O

Corollary A.2. The operator L := —As .y + V(r) — pL(r)r’~'ul~" is selfadjoint where u is a positive
ground state solution of (3.1), V and I satisfy the assumptions at the beginning of Chapter 3 and
D(L) is one of the two options from Theorem A.1. Furthermore, we have 0 es(L) = Tegs(—As 1+ V(1))
and o(—Asy + V(r)) C [ess inf V, 00).

Proof. The selfadjointness of L in both cases follows directly from Theorem 8.10 in [32] since L
differs from —As . only by a multiplication operator which is bounded and symmetric with respect
to the L2(r*drdz)- scalar product.

The conclusion o ess(—=As eyt + V(1)) = Oess(=Aseyt + V(r) = pL'(r)r’~'uP~") holds true since in both
cases the term —pI'(r)r”~'uP~! is a compact perturbation (remember the exponential decay of positive
solutions of (3.1)) and the essential spectrum is stable under such perturbations (see Section XIII.4 in
[61]). The last statement follows due to Therorem A.1 and the boundedness of V. a
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A.2. Regularity in a cylindrical framework and the operator —Asz ¢, + rlz

A.2. Regularity in a cylindrical framework and the operator
_A3,cyl + rlz

In this section we collect several basic statements which allow us to switch between different settings,
namely vector-valued equations in R* and a scalar equation in cylindrical coordinates. Once this is
done, we recall aspects in LP-regularity theory and transfer this to our cylindrical framework. We
close this section by investigating one of the appearing operators in the cylindrical setting, precisely
the operator —As . + r‘—z For this purpose, let

2

Wclyl(rdrdz) = {v € Hclyl(rdrdz) : f %rd(r, 7)< oo}.
Q

The first lemma highlights connections between three different spaces.

Lemma A.3. Let U: R? - R*,u: Q — R, ii: Q — R be related as follows:

U(x) = u(r,2)(—=x2, x1,0)" = @(—xz, x1,0) for x = (x1, X2, x3), 7 = Jx% + x%,z =x;3. (A4
Then the following statements are equivalent:
(a) U e H'(RY),
(b) ue Hclyl(r3drdz),
(c) it € ‘Hcly](rdrdz).
Moreover, we have

WUl 23y = ||ru||L3v](r3drdz) = ||17||L§yl(rdrdz) and
=2

2 — 2 2 3 _ ~12 u_ ~2 (AS)
UG gy = 27 | (Vo +1P) Pd(r2) = 21 | |Vt + = + 2| rd 2.
Q Q

Proof. (a)&(b): This is included in Lemma 10 in [5].
(b)e(c): Obviously we have u € Hclyl(r3drdz) if and only if £ € Hclyl(r3drdz), i.e., if and only if

u u u i, u
0, (—) =T _ =, = - € Lzyl(r3drdz).
r rorr’r’r

Trivially, & € L? 1(r3drdz) iff & € Lzyl(rdrdz) and % € Lgyl(r3dra’z) iff i1, € Lgyl(rdra’z). Hence, it

. r Cy
remains to show

i, — = € I3, (rdrdz) if and only if it,, = € L2, (rdrdz).
r r

The direction from right to left is clear. Vice versa, let i1, — % € Lfyl(rdrdz). We use Hardy’s inequality
(2.13) to obtain

17£2 u2 il 2
f —rd(r,z) = f —rdr,) <C f \V,.ul*r*d(r,z) = C f (a,——) + i | rd(r, 2) < co.
Q r? Q r? Q Q r ‘
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A. Appendix to part I

Moreover,

fgﬁfrd(r, 7) = fg(u, — g + ﬁ) rd(r,z) < 2[(( — %)2 + (%)2) rd(r,z) < oo

and the proof of the three equivalences is done.

The statement for the L2-norms in (A.5) is clear. On the level of H'-norms we formally calculate

| XXl XiXp x§~ r—x%/r~ X2 !
VU (x) = —TW + 7% _ﬁur - 2 u, _TMZ )
A.6)
_ 2/ 2 T (A
VU = (= 4 g, 122, - B2 Tg
2 - 7‘2 1’2 rs 7"2 r I"3 s r Z .
Hence,
x? x? x? x2 x? x? i
VU, + VU, _—; 2+r—§a3+r—§a§+7? +r—;ur+r—; f:a§+a§+ﬁ. (A7)
which proves
o
IVUIZ2 g = 27rf (IVr,zul2 + —2) rd(r, 2).
Q r
In the same spirit
X1X !
VU (x) = (—1—2ur, —u—-2u, —xzuz) ,
r
xf X1X2 !
VU,(x) = Tu, + u, Tu,, xXiu,| .
Thus,
VU () + VU (01 = rPup + rPul +2(u” + ruwy).
Notice that
d
f2(u + ruu,)rd(r,z) = f — d(” 7) =
o dr
and therefore
f VU dx = 2n f (Fu + rul)rd(r,z) = 2n f IV, .ul*rd(r, 7)
R? Q Q
which finally establishes (A.5). O

Lemma A.3 entails the following result.

Corollary A 4. H Clyl(rdrdz) is a Hilbert space with respect to

f, g>'Hclyl = fQ(Vr,zf Vgt fegt %) rd(r,z) for f, g € W;yl(rdl’dZ)-
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A.2. Regularity in a cylindrical framework and the operator —Asz ¢, + r%

Proof. Let (it}) iy be a Cauchy sequence in H Clyl(rdrdz). We have to show that there is ii € Wéyl(rdrdz)

such that <ﬁj — i, i — ﬁ> — 0 as j — oco. By Lemma A.3, in particular (A.5) we infer that

(]_{]

5 cyl
(%(—xz, X1, O)T)jeN is a Cauchy sequence in H'(R?). Hence, by pointwise almost everywhere identifi-
cation along a subsequence there is i such that %(—xz, x1,0)" = L(=xp,x,0)" in H'(R?) as j — oo.
Thus, Lemma A.3 yields it € Wgyl(rdrdz) and (A.5) gives <ﬁj — i, i — 5‘>H1 — 0as j — oo. |

cyl

Here is a crucial result which together with Lemma A.3 ensures that the concept of a weak solution
can be transferred between an R3-valued equation and its cylindrical counterpart.

Lemma A.5. Let Q C Q = [0, ) X R and
Q3 ={x = (x1,x,x3) € R?: (I(x1, x2)l, x3) € Q}~ (A.8)

Again, let U: Q3 — R, u: Q — R, ii: Q — R be related as in (A.4). Moreover, let V,T be cylindri-
cally symmetric, i.e., V(x) = V(r,z7),I'(x) = I'(r, ). Then the following statements are equivalent:

(a) U e Hé(fh) is a weak solution of

~AU + V(U =T U U in Qs, (A.9)
(b) ue Hé (Q, Pdrdz) is a weak solution of

3 _ 0. A
—Bfu - ;8ru - 8§u +Vru=T0r)r" ' uinQ, (A.10)

(c) il e Hé (Q, rdrdz) is a weak solution of

1 1 N
~0it — =001 — 0% + —ii + V(r, 2)it = T(r,2) [al"™" it in Q. (A.11)
r r
_x)
Proof. (a)e(b): Let U(x) = u(r,z)| x1 |and ¢ € C2(Q) with ®(x) := ¢(r, 2)(—x2, x1, 0)7 for x € Qs.
0

By making use of the compact support of ¢ we obtain
d
f Que + rup, + ru,¢)dx = 27rf Que + rue, + ru,@) rd(r,z) = 2ﬂf —(rzuga)d(r, z) =0.
Q3 Q Q di’
From (A.6) we infer that
(VU) - (VD) dx = f (rzur(,o, + U, + 2uQ + rup, + ru,go) dx
Q3 Q3

= 27rf V.u-V,.ord(r,z).
Q
Moreover,

f I(x)|UP' U - ®dx = 2n f TP ulP ™ upr*d(r, z)
[0} Q

83



A. Appendix to part I
and in the same manner fﬁ3 V(x)U - ®dx = 2n fg V(r)uprid(r, z) holds. In summary
fﬁ ((VU)- (YO)+ VU -® -T|UP™' U - ®)dx
=2 jg; (thu Vo0 + Vug —TrP™ uP™! ugo) rd(r, z).

(b)&(c): Again let ¢ € C2(Q). For u = £ and @ := rp € C(€) we obtain

fyzaworae = [ - 2)(E - ) 28] o
0 Ie) r r r r r

1
= jj (ﬂr(or + ﬁﬁ‘:o + ﬁz‘pz) rd(r,z) — jj (it,gb + @rﬁ) d(r,z)
Q o

1 d 1
= f VitV ¢+ =up|rd(r,z) - f — (a@)d(r,z) = f VitV ¢+ =ug|rd(r,z),
a r2 o dr o r2

where we made use of the compact support of @ and @(0, z) = 0 for (0, z) € Q. Trivially,
f V(ruer'd(r,z) = f V(ragrd(r, z),
Q Q
f L™ lul”™" uprid(r, z) = f ()l agrd(r, 2).
Q Q
In summary,
f (V,,Zu Voo + V(Pug — T(r)rP ™ ufP™! ucp) rd(r,z)
Q
1
= f (V,’Zﬁ V.o + g+ V(rag — I(r) |t ft@) rd(r, z)
a r

holds true.

Theorem A.6. Let p € (1,5) and U € H'(R?) be a weak solution of (A.9). Then U; € C>*(R?) for
all @ € (0,1),i € {1,2,3} and |0°U(x)| — 0 as |x| — oo for each multi-index B = (B1, B2, B3) € Ny with

Bl == 1B1] + [Ba] + B3] < 2.

Proof. The idea is to apply Theorem 8.1.1. in [18] to every component of (A.9). Nevertheless we

repeat the details suitably adapted to our case.
Rewrite (A.9) as

~AU; + U; =T(")|UP U; + (1 = V(r))U; fori=1,2,3.

Hence,

F((1 +47° 1€7) FU) = T IUP™ U + (1= V() U; (A.12)

in the space of tempered distributions with ¥ being the Fourier transform and # ! its inverse.
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A.2. Regularity in a cylindrical framework and the operator —Asz ¢, + r%

By our assumption we have U € H'(R?), in particular U € L°(R*) for 2 < s < 6 by the Sobolev
embedding. Let2 < p < ¢ < oo. If U; € LY(R?) for all i € {1,2,3} we get |U""' U; € L9P(R?) and
by (A.12) we conclude U; € H>7(R3), the Bessel potential space. Since H>7(R?) = W>5(R3) (cf.
Chapter V, Theorem 3 in [66]) we then receive U; € Wz’%(R3). Recall the Sobolev embedding

1 2
W2ERY) — 'R, ifr>Land- > 2 - 2. (A.13)
p r q 3
Now let (7)) jen, be defined by
1 j( 1 2 2 )
—=p - + - |.
rj p+1 3(p-1) 3(p-1Dp/
It holds that "% < % duetop <5,ie.,d:= % — Z{} > (. This leads to
IS R R O
Figl  Tj p+1 3(p-1 p+1 3(p-1)
=(p-1p’ L 2 =-—p/ls§<—6forjeN
= Pp+1 3(p_1)—P s J 0-
0 (rl) . is a strictly decreasing sequence with ri — —oo for j — oo. For j = 0 we get % = [ﬁ, N
77 JeNg J

ro > 0. Herewith there is k € N, with rl, >0forall 0 </ < kand ﬁ <0.

Let i € {1,2,3}. Our next step is to show U; € L"*(R?). We already know U; € L"(R?) so we are done
if we can show U; € L (R?) provided U; € L"(R?) for I < k — 1. Assume U; € L"(R?) for some
[ <k-1. We have

) ,(1 2 2 ) 2 1 2p 2 2 1
——==pp - + ;
p+1 3(p-1) 3(p-Dp/

Ty 3
so by (A.13) we get U; € L'(R?) for all r > 2 with 1> L 2 = L In particular U; € L+ (R?) since

3 7141

= — + — E—— ,
3 o 3p-1 3(p-1) 3 nn

1 2 1
Ol —(1 +—r1+1) >—duetol/<k—-1andr,; > 0.
T p 3 p
Altogether U; € L*(R%). Applying the Sobolev embedding once more yields U; € L"(R?) for all r > ;—"
with } > f—k - % = rklﬂ < 0. In particular, we may choose r = oo to get U; € L¥(R?) for arbitrary

ie(l,2,3)andso U € L°(R?) and |UJP"' U; € LY(R>) forall 2 < g < oo and i € {1,2,3}.
So far we have shown that the right hand side of (A.12) lies in LY(R?) for all 2 < ¢ < co. Hence, we
deduce U; € H>(R?) = W?4(R?) for all 2 < g < co. This results in T(») |U/”' U; + (1 = V(r)U; €
W4(R3) for all 2 < g < oo since

IT) U™ Ui + (1 = V) Uillze < T WO MUz + (1 + V)Tl < 00

and

V(TP Ui+ (1 = V@)Ul
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= [1(YED P U; + TV (UP™ U) + (1= VE)VU; = (YY) Uil
<118, Tllw U1 11Ul + Tl (TP VU + (p = DIUP (VO - D) U,
+ (1 + VIV Uilly + 10, VIl Uil < oo,

since
U VU; + (p = DIUP (VO - U)Ul, < IUIIE! VU, + (p—1) [Tolro VU, < oo,

where ||[VU||;, denotes the Frobenius L7-norm of the matrix VU.

In summary, (-A + Id)U; € WH(R?) for 2 < g < oo, so (-A + Id)D;U; € L1(R?) for j € {1,2,3}
and2 < g < o0, ie., F! ((1 + 4n° Iflz)TDjUi) € LY(R3) for all 2 < g < oo. As above we conclude
D;U; € WH1(R?) for all 2 < g < . Since j € {1,2, 3} was arbitrary, we arrive at U; € W>4(R?) for all
2 < g < oo. Due to the Sobolev-Morrey embedding (see for example Theorem 6 (ii) in Chapter 5.6 of
[34]), U; € C>*(R?) for all @ € (0,1) and $PU;(x) — 0 as |x| — oo for all B € N3 with |8| < 2. Since
i € {1,2,3} was arbitrary, the proof is finished. O

We transfer the regularity statement from Theorem A.6 to the cylindrical framework.

Lemma A.7. If U(x) = u(r,z) (—x2, X1, 0) is a weak solution of (A.9), then u € C*([0, o) x R), and
#u(r,z) - 0as r* + 22 — oo for each multi-index 8 € N§ with |8 < 2.

Proof. By Lemma A.5, a weak solution U of (A.9) gives rise to a weak solution u € H(}y](r3drdz) of
(A.10). On page 14 in [5] the equality of sets

HYy(Pdrdz) = {u: (0,000 xR > R:uo¥ e H'R)}, (A.14)

where

PR SR Oy o (e ads),

is proved. Recall that ||Ul| g3y = 71l 1((0.00)xr)> 1-€-»
[lrull 2 ((0,00)xm) < ©0 (A.15)

by Theorem A.6. Hence, by the embedding Hclyl(r3drdz) — Lgyl(r3drdz) c LIRY) forall2 < g <L
which is a consequence of (A.14), we conclude with the help of (A.15) that the right hand side of
(A.10) is an element of LI(R%) for all 2 < ¢ < 2. Consequently, the bootstapping argument already
applied in the proof of Theorem A.6 suitably adapted to the scalar case implies u € L¥(R>), i.e.,
u € L=([0,00) x R). Hence, u € W>4(R>) for all ¢ > 2. We now show that the right hand side of
(A.10) is in WH4(R) for all g > 2. We have

TP uPllpagesy < C TN Ntllages) < o0,

IV (@™ ) lzagesy < 1L IV (77107 )l + 10, Tlloll? "l

= Il [lpr” "™ Ve + (p = DuPr”=> (1, y20 ¥30 yan O llg + 118, Tlleollr? ™ i)
< Pl u?" ' Vully + (p = DIl 2ully + 10, Tlleallr? u?ll,.
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A.2. Regularity in a cylindrical framework and the operator —Asz ¢, + r%

If p > 2 these summands are finite due to ru, u € L°(R>) and u, |[Vu| € L4(R>) for all ¢ > 2. In case of
p € (1,2) we split the second term into

-2 -2 -2
7=l | Lawsy < PP~ uP |l Lo, o)) + 171l || Laws\ B, 0))-

The integral over the unbounded domain is finite due to the exponential decay of u (see Section 3.1).
By exploiting (A.15) the integral over the unit ball in R> can be estimated via

) 3
|lr? u"||z,1(Bl(0)) ff—r drdz < oo.

In summary, we conclude u € W39(R>) for all ¢ > 2. Using Morrey’s embedding theorem we end up
with u € C>*(R%) for all a € (0, 1), in particular, u € C*(R5).

Exploiting the cylindrically symmetric profile of u, denoted by u.y, we receive

UYL, - -+, Y5) = Ueyi(r,ys) for all (yy, ..., ys) € R such that r = [y + -+ )2

In particular, u(y;,0,0,0,ys) = ucyi(y1,ys) for (yi,ys) € [0,00) X R, i.e., ey € C?%([0, 00) X R). O

For A C R? and ¢ € [1, ) recall the definitions

q/2
Ul n, = f U dx, UG, = f [Zwv(xn +|U|) dx,

q/2

dx.

2

* Z VUx)P + U
i=1

3

U2y = f >,
A\ k=1

We now establish a link between the norms of U and ii.

D*U;
(9xj6xk

Lemma A.8. Let A; CR? and A C Q be related as in (A.8) and U(x) = @(—xg, x1, 07 e Wg’q(A3).
Then it € W*4(A, rdrdz) and

lellwracararaz < €l1Ullweacas) (A.16)

forall k € {0, 1,2} and all g € (1, o) for a constant ¢ = c(q, k) independent of U € Wg’q(A3).

Proof. For the sake of readability we suppress the domain of integration A respectively As.

We immediately obtain ||U|[zs = |illze(rara) Which proves (A.16) for k = 0 with ¢(q,0) = 1 for all
q € (1, 00). In order to prove (A.16) for k = 1 we use (A.7). Altogether, we have

~ 12 ~ 12 ~2 q/2
[ f (18 + . + )" rd(r,z)

1 q/2
< cf(|a,|2 + i + i’ + az) rd(r,z) < C||U|\!
I

wha

Hence, (A.16) for k = 1 is also proved and only the case k = 2 is left to show. Basically this is a
routine calculation which we carry out next.
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In the following, for i € {1,2} and j € {1, 2,3} let VU,; denote the j-th component of VU;. Since the
proof for k € {0, 1} is already done we only have to verify

f (1P + 1P + liP)" rd(r,2) < e(,2) f (

Therefore, with the help of (A.6) we calculate (VUZ ]) fori e {1,2}, jk € {1,2,3}. The result reads
as follows:

q/2
dx. (A.17)

DU, |*

0x;0x;

d VUL xfxz . Xr* — 3x%x2 _— 0r - 3)6%)(21"~
11) = ——= Uy — u, ’
dx; r3 r# ro
d d X1 X2 3x1x2 — x1 1 xr° = 3x,x%r
—— (VUn) = —— (VU12) = ==l + —— i, + i,
dx, dx; r r r
d x3 x; — xp1? _ X1 — x§r~
—(VU12) = - u,,+3 3 ity + 3————1i,
r3 r
d x1x2 X1X2
—— (VU) = ——— (VUzz) = -0+~
dx; r? r
x2 rr—x
d_g (VUIZ) 7‘ urz Tub
xf r—xi
- (VUzl) = e+ —3— i,
d x xrr—x3 Xr—xr
1~ 1 -
d_ (VU21) = urr +3 4 u, + 16 u,
X1
2 2 2 3 2
X7Xo 3x(Xy — Xor® _ XpF® = 3X{XoF _
A (VU) = o (VU = g, - SR, B R,
2 2 2 3 2
(VUsy) = lxza N Xr —3x1x2ﬁ _ar —3x1x2ra
d 2 ]"3 rr }’4 r r6 9
X2
-5 (VU13) = T Uy,
d 3 r
X1 .
-5 (VU23) - Mzz
The terms dim (VU3), dxz VU3), dx (VUy) and - > 4 (VUy) are not needed and they do not matter

since they only enlarge the right hand side in (A. 17) Using the expressions above we infer

d 2 2
— (VU
] (VU

d
— (VU
+‘dx3( 23)

= Q.
In the same manner,
d 2 d 2 2
]— | + v
dX3
x|+ 2x7 x2+x2 24 2 2x§x§ s SHx)
> L+ Uyl — s +r - — i,
r# r r
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A.2. Regularity in a cylindrical framework and the operator —Asz ¢, + r%
where we neglected the positive coefficients for &2 in the first estimate. We now guarantee that
2
Jik=
which will then finish our proof. To verify (A.18) we rearrange the eight summands and merge for
terms which contain &2 , &2, ii%, i, i, it it O iL,il.

VU,, 2 i, (A.18)

ka

rrs

First of all, we look at the coefficient in front of i#? which is

P (xl)c2 +2x7x5 + x5 + 28 + 245 + xfxg) =r % +x) =1, (A.19)

so this one is fine. We show that the coefficients in front of #,,ii, as well as i,,it vanish. Gathering the
terms with i,,ii, we get

6 6
—6r" (3x1x2 + 3x1x2 + x2 + xl) + 6r° (2x1x2 + x2 + xl) = —— + -=0.
r
Likewise, for the coefficient corresponding to i,,.ii we obtain

6r 8(3x1x; + 3x7x5 + x5+ x0) — 6r7°Q2xT x5 + x5 + x)) = 2T as 0.

Next, we calculate the remaining three coeflicients. The coeflicient for the mixed term i, i is
2r‘10( — r(3xixy — x1) = 2rBxy x5 — X117 — 9r(xar® — x3)°
— 9r(x1r — xl) - 2r(x2r — 3x1x2) - r(xlr — 3x1x2) )
=27 (=3:3(2x7 - ) - 9] + x{x3) - 3x7 (23 — x7)?)
= —6r7(x] + x3)° = —6r7°. (A.20)
For the coefficient in front of i#* we derive
3710 (x%(x% —2x7)% + xj(x7 — 2x5)% + 3x5(x5 — r7) + 3x7(x] — r2)2)
=302 + ) =3 (A21)
Finally, the coeflicent attached to @#* simplifies to
3r8 (x%(Zx% — 37 + x(xF = 2x3)* + 3(x0x] + x1x5 )
=38 (4 +8) =32 (A22)
Uniting the previous calculations in (A.19), (A.20), (A.21) and (A.22) we infer

2 2

d 1 2 1
— (VUp)| 2 ii> +3 —uz——u + —ii*

L dx; r4

i,j,k=1
3 1\’

=i, + = (u -~ —a) > i,
r r
which finally proves (A.18). O
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A. Appendix to part I

We now turn to the promised regularity theory for our cylindrical setting. Therefore, recall the classi-
cal L2, respectively LP-regularity theory, see for instance Theorem 9.11 in [39]. There, an operator of
the type

n

Lu= ) adlx)Diju+ y b (x)Du+c(x)u
i=1

ij=1
is studied and one of the results reads as follows.
Theorem A.9. Let =E be an open set in R" and u € leo’f(E) NLP(E), p € (1,00) be a strong solution of

the equation Lu = f in E with f € LP(E). Moreover, let there be A, A > 0 such that the coefficients of
L satisfy

a’ e COE),b',c e L>E) fori,j=1,...,n,

> dEg; > NP for all ¢ € R,

i,j=1
la|, b, |c] < A fori, j=1,...,n.

Then for any domain Z' CC E we have
lllwerey < C (lello) + 1)) -

where C = C(p,A,A,Z, 2, w(a"’)) and w(a”) denotes the modulus of continuity of the coefficient
al,i,j=1,...,nonZ.

Next, we give an additional lemma which tells us how to boost weak solutions to Wli’f—solutions ina
general framework.

Lemma A.10. Let g € [2,00), f € L! (R"),V € Ly (R") and u € WI’Z(R”) be a weak solution of

loc loc

-Au+ V(x)u = f.
Then u € W2A(R™).
Proof. Letn € CX(R"),0 < n <1 denote a cut-off function. Formally, we deduce
A(qu) = uAn + nAu + 2Vu - Vn.
Thus,

—A(mu) = uAn + fn+2Vu - Vn - V(x)nu € L2 (R™). (A.23)

loc

Hence, for A cC R" Theorem 8.8 in [39] implies nu € W**(A). For Ay cC A withn = 1 on A, we then
conclude Vu € W'2(4A,) — anfnz(Ao). Hence, the right hand side of (A.23) is in Lfcz so that Theo-
rem 9.15 in [39] implies nu € Wz’n%(Ao). Hence, for A; cc Ay we have Vu € Wl’n%(Al) — L»%(Al).
Thus, we can bound the right hand side of (A.23) in = (Ay), i.e.,nu € W2’nzf"4(A1). Repeating these
steps finitely many times and using Wl’%(Ar) — L%(A,) for r € N we obtain an embedding in
L>(A,) once 2r + 2 > n. In particular, we have nu € L;]OC(R") so that nu € Wi’f(R”) which finally
entails u € leo’cq(R”). This finishes the proof. |
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A.2. Regularity in a cylindrical framework and the operator —Asz ¢, + r%

Analogously to Theorem A.9 we derive the following result:

Lemma A.11. Let g € [1, ), f € L? . (rdrdz). Consider

cyl,loc
T T P
—07it — —0,it — 0ii + it = finQ (A.24)

and let i1 € Hclyl(rdrdz) be a weak solution of (A.24). Then i € Wzy’q (rdrdz). Moreover, for compact

cyl,loc
sets K" cc K cc Qthereis C = C(K', K, q) > 0 such that
illwake rardey < CK', K q) (Il ok raraey + 1ok ravas) - (A.25)

Proof. By Lemma A.5 we set U(x) = %(—xp,x1,0)", F = f;(—xz,xl,O)T and deduce U € H'(R?), F €
L4(R?) as well as

~AU=VxVxU-=FinR?

weakly. By Theorem A.9 (applied to each component of U) we obtain U; € Wi)’f(]@) fori e {1,2,3}
and

Uillw2aky < C(K', K, @) WUillacky + 1Fillacky) (A.26)

for compact sets K’ cc K cc R3, alli € {1,2,3}and C = C(K", K, q) > 0. Let K’, K ¢ Q denote the
cylindrical counterpart of K’, K € R3. Then the combination of (A.26) and Lemma A.8 implies

litllw2az: rarazy < C(@ DNUillwaaxry < Cq, 2)CK', K, @) (WUillaky + | Fillzack))
= C(¢.2C(K", K. @) (11l 0(& rarazy + 1ok sara)
which verifies (A.25). ]
Finally, let R > 0 and set Agog == {(r,2) € Q: R < Vi + 2 < 2R}. We investigate the operator

1 _ ;
“Aseyi + Hy eyi(Arars rdrdz) C H(Agor, rdrdz) — He\(Agor, rdrdz), (A.27)

where

2
1%
H oi(Apag, rdrdz) = {v € H (A ox. rdrdz) : —rd(r,7) < o

AR2R

and 7‘(&}(AR,2R, rdrdz) = ﬂ(icyl(AR,ZR, rdrdz)’ denotes the dual space of W&,cyl(ARlR’ rdrdz), recall
Definition 1.5.

Lemma A.12. The operator in (A.27) has positive discrete spectrum (A;(Agagr))ien and A;(Agar) =
5 Ai(A1p) forall i € N,

Proof. For u,v € H, ey1(AR 2k, rdrdz) we consider

B(u,v) := f (Vr,zl/l . Vr,zv + %) rd(r, 2).

AR2R
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A. Appendix to part I

Moreover, for f € Lgyl(AR,zR, rdrdz) and v € (Hol’cyl(AR,ZR, rdrdz) set

Fr(v) = fvrd(r, 7).

AR2R

Then due to the Poincaré inequality on the bounded domain Ag>x and the Lemma of Lax-Milgram we

deduce that B(u,v) = F(v) has a unique solution u € Wé’cy](AR,ZR, rdrdz). Therefore, we can define
the operator K : Lgyl(AR,ZR, rdrdz) — 'H(}’Cyl(AR,ZR, rdrdz), f + u. Due to the compact embedding
Wé,cyl(AR,zR, rdrdz) < Lfyl (Ag g, rdrdz) we conclude that K : Lgyl (Agog, rdrdz) — Lgyl (Agog, rdrdz),
S — Kf is compact. Moreover, K is symmetric W.r.t. -, );2(a,..rdrdz) SO that K possesses discrete

spectrum (u;);eny With zero being the only accumulation point of eigenvalues. Note that zero is no
eigenvalue of K. Otherwise, by definition of K there would be ¢ # 0 such that

0= f @vrd(r,z) for all v € Hy . (A or, rdrdz),

AR2R

a contradiction. We denote the eigenfunctions of K by (¢;);cy. Notice that ¢; € W(icy](AR,ZR’ rdrdz)
due to K¢; = K¢; = pip;. Then again by definition of K we deduce

1 1
(_A3,Cy1 + ﬁ) i = ;901' on Agor (A.28)

so that the eigenvalues of —Aj .y + riz are A;(Agar) = i By testing (A.28) with ¢; we conclude that
A; > 0. For the last statement we consider

1 .
(_AB,cyl + ﬁ)% = Ai(A1p)piin Ao

together with Dirichlet boundary conditions on dAg > for i € N and define w;(r, z) = ¢;(%, %) on Ag k.
Then

1 1
(—83 - ;8, - (9? + ﬁ) Wl'(r, Z)

1 r oz R r oz r oz R? r oz
(2] Ran () (5. 2) o o 2
R2( PR R FOY\RR) T \RR) T 2Y\RR

_ Ai(A1) i(r z) B /L'(AR,zR)W

R A\RR)T TR TP

i.e., Ai(Agar) = 2842 for all i € N, O
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5. Existence of polychromatic ground
states in one dimension

In this chapter we investigate
VXVXE+V((xJE =TI|E"'E in R (5.1)

for p € (1, %), a constant I' > 0 and a potential V: R?> — R. In the previous chapters our approach
consisted in a monochromatic ansatz E(x, ) = U(x)e™' for U: R* — R? (compare Chapter 2). In this
chapter, we first reduce (5.1) to a scalar nonlinear wave equation by using polarized fields. Then we
make a polychromatic ansatz via a Fourier expansion in time. The polarized fields have the form

E(x,t) = (0,u(x,,1),0) (5.2)
for x = (x1, X2, x3) and u: R* — R. Plugging (5.2) into (5.1) and abbreviating x := x; we deduce
—ttey + V(XU = TlulP™" ufor (x,1) e RxR (5.3)

where also the potential V' is assumed to only depend on the one-dimensional parameter x;. We are
looking for weak time-periodic solutions of (5.3) in a sense which will be clarified later in Defini-
tion 5.1.

The following calculations are only done on a formal level, we rigorously justify them later. Our
ansatz for u: R> — R reads as follows

u(x,t) = Z i (x)e™ with w > 0, f;: R — C and ﬁ_k =it_ronRforall k € Zyyq. 5.4)
keZ()dd

Here and throughout this chapter we use the following notation: Zyy = 2Z + 1, Zeyen = 2Z and
Noaa = 2Ny + 1. For ky € Nogq we abbreviate Zodqx, := {k € Zoqa such that |k| < ko}.

Formally,
uEn= Y w@e ™ = Y inme ™ = ) i(0e ! = ulx),

k€Zoqa k€Zoaa k€Zoqa
1.e., u is real-valued. Additionally, u# from (5.4) is indeed T := %—periodic in time since
2n - ika(t+22) - kot 2k
ulx,t+ —) = i (x)e w) = i (x)e™ e™ = u(x, ).
w k€Zoqd k€Zoda

For k € Zyqq we can write k = 2m + 1 with m € Zqye,. Thus, u is % = Z-antiperiodic in time due to

n . . o
ulx,t+ =) = Z i (x)e* ety = Z i (x)e* P Mo = _y(x, 1).
w

k€Zodd k€Zodd
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5. Existence of polychromatic ground states in one dimension

Concerning the potential we assume that V: R — R is periodic and has the special form
Vix) = a +:86per(x)a (55)

where 6, denotes a 27- periodically distributed delta potential. We assume that the delta distribution
is not located at the end points O and 27 (or integer multiples of 27) but somewhere in between. We
abbreviate the set of the location of delta potentials

Iy ={xeR:x=¢+2nn:ne7l.

The parameter 8 € R refers to the strength of the delta interaction whereas o € R is a shift.
We set D := R x [0, T). Here is our concept of weak solutions.

Definition 5.1. We call u € L*(D) of the form (5.4) a weak T-periodic solution of (5.3) if u is T-
periodic in the second component and

" bl ) = ; f Jul uvd(x, 1) (5.6)

k€Zoqaa b

holds true for all v which have a representation v(x,t) = Y iz . De(x)e* with ko € Noga such that

odd,k
b € H'(R) and v, = _y for all k € Zogay, where

2

K _ -
b (i, V) = f(it,;(x)ﬁl’c(x) - Eﬁk(x)fzk(x)) dx — k* Z i (¢ + 2nn)vi (s + 21n).
R

nez

Now we can state the main result of this chapter.

Theorem 5.2. Let p € (1,2), T > 0 constant and V: R — R be a 2n-periodic §-potential given by
(5.5) with a > 0 and 8 = 16a. Then (5.3) possesses a non-trivial weak 87 \Ja-periodic solution in the
sense of Definition 5.1.

In the following we write f(x,) = limy, f(y) and f(x_) := lim, », f(y) for a piecewise continuous
function f and x € R.

Remark 5.3. A slighlty different way of introducing the concept of a weak solution reads as follows:
We call u € L*(D) a weak T-periodic solution of (5.3) if u is T-periodic in the second component and

fu(—v_xx + V(x)v,)d(x,t) = Ff |ul?~ uvd(x, t) (5.7)
D D

ikwt

holds true for all v which have a representation v(x,t) = Zkezodd,ko D(x)e* @ with D, = Dy for all

k e Z'odd,k() and

vi €Ny ={f € L*(R) : [ e Lz(R),f abs. cont. on R, f’ abs. cont. on R\ I,
f'(xy) = f(x2) = =K f(x) for all x € I} for all k € Zogq.

As N turns out to be the domain of a self-adjoint operator in L*(R), the set Ny is dense in L*(R) for
all k € Zygq, see Section 5.1. Moreover, we will see that by is the associated bilinear form of this
operator and that (5.7) is satisfied if (5.6) holds true.
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5.1. The delta point interaction in one dimension

This chapter is structured as follows: In the next section we briefly recall parts of the general theory of
delta point interactions (c.f. [2]) and how domain and spectrum of self-adjoint Schrédinger operators
involving delta point potentials can be characterized. In Section 5.2 we specify our operator (in the
sense that we choose the parameters from Theorem 5.2) and study the spectrum of this operator. It
turns out that O is in a spectral gap. More precisely, for every k € Zy,yq we define a suitable operator
L, which corresponds in a sense to the frequency ikw in (5.4) and we guarantee that O is in a spectral
gap of all these operators (Ly)kez,,,- In Section 5.3 we first perform formal calculations with the poly-
chromatic ansatz which then lead to a Hilbert space in which we seek for appropriate solutions of a
Floquet-Bloch transformed variant of (5.3). After having established a functional analytic framework
we study the consequences of the uniform spectral gap in Section 5.4. The following Section 5.5 is
devoted to regularity issues which will allow us to incorporate the nonlinearity in a variational setting.
This enables us in Section 5.6 to find solutions of the variant of (5.3) by minimizing a suitable func-
tional on the so-called generalized Nehari manifold. Finally, Section 5.7 ensures that indeed (5.6) is
valid which proves Theorem 5.2. In order to keep the presentation comprehensible some technical
points are shifted to Appendix B.

5.1. The delta point interaction in one dimension
We consider the one-dimensional differential expression
Lu = —u" + (@ + BSper(x))u 0N R, (5.8)

where @ € R and 3 € R \ {0} corresponds to the strength of the delta potential. We always assume that
the point interaction is located at ¢ € (0, 2) but not on the boundary.

One way to rigorously define (5.8) is to incorporate the action of the delta potential in the domain
of a differential expression L on a densely defined subspace of L?(R). With the notation introduced
previously we set

D(L) = {u € L*(R) : u abs. cont. on R, u’ abs. cont. on R \ I,
- (5.9)
u'(x,)—u'(x) = Bu(x) forall x € Iyand —u” + au € Lz(R)}.

For u € D(L) from (5.9) the operator L in (5.8) is self-adjoint by Theorem 1 in [20]. In (5.9) the
functions are interpreted in a classical sense. We rewrite the domain of definition in (5.9) by making
use of weak derivatives. Here, 1 is not a function anymore but a distribution. Thus,

D(L)={ue L’(R): Lu € L*(R)} = {u € H'(R), tl¢s2mcs2nnr1y € H (S + 270, 6 + 271(n + 1))
foralln € Z, Z e’ |7 < oo, u'(x;) — u'(x_) = Bu(x) for all x € 15},

L2(¢+2nn,g+2n(n+1))
nez

see (3.16) in the bachelor thesis of Martin Belica [8] for the last equality sign. We now introduce the
concept of a weak solution of Lu = f. For f € L*(R) we say that u € H'(R) is a weak solution of
Lu = fif

f (' ()¢’ (x) + au(x)p(x)) dx + B Z u(s + 2rn)s(s + 2n(n + 1)) = f J()e(x)dx

R nez R
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5. Existence of polychromatic ground states in one dimension

holds true for all ¢ € C°(R). Therefore, for u,v € H '(R) we consider the bilinear form b associated
to L given by

b(u,v) = f ) (u'(x)m + au(x)@) dx + Z u( + 2mn)v(s + 27n). (5.10)

nez
Lemma 5.4. The bilinear form b in (5.10) is well-defined on H'(R) x H'(R).

Proof. We only have to treat the term )}, u(s + 2n)v(s + 27n). Recall the one dimensional Sobolev
embedding H'(I) — C(I) for a bounded intervall / C R. For n € Z and 0 < & < 7 we infer

|I/t(§‘ + 27Tn)| < ||u||LN(§+27m—£,g+2ﬂn+£) < CSob ”u”Hl(g+27rn—s,§+27rn+s))

and the same for v. Hence, we obtain

L V) 2
D s + 2mm)(s + 2nm)| < C > Ml sm-s.gszmmeen M goomegramvey

nez nez
< Ciop lllz ey Ml vy - o
It can be shown that bilinear form b and operator L are related via
b(u,v) = (Lu,v) >, forallu € D(L),v € H'(R),

see Theorem VIII.15 in [60].

In the following, we recall the definition of the discriminant D(-) (compare Chapter 1 and § 2.1 in
[31]) and present its precise form when associated to (5.8). The discriminant allows us to gain a
sufficient control of o(L).

Definition 5.5. Consider for u € D(L) the expression
—u”" +(V(x) - Du onR (5.11)

with 2n-periodic potential V: R — R and A € R. Let A\(-, 1), A»(-, A) be a foundamental system of
(5.11) on [0, 2] with A1(0,2) = 1, A7(0,4) = 0, A»(0,4) = 0,A%(0, 1) = 1. Then

D:R — R, D) := A;(2x, ) + A5(2nm, A)
is called the discriminant associated to (5.11).

Lemma 5.6. The dicriminant D(-) associated to (5.8) reads

£ sin7x VA=) +2cos(2n VA - &) for A—a >0,
D) = 2+ 273 forA—a =0, (5.12)

\/% sinh(2mr V—(1 — @)) + 2coshQQn V—-(1 —a&)) ford—a <O.

The proof of Lemma 5.6 and further explanations can be found in Appendix B.1. The relevance of
the function D becomes clear by the following characterization of o-(L).

Theorem 5.7. We have o(L) = {1 € R : |[D(1)| < 2}.

Proof. In [17] it is shown that the classical Sturm-Liouville theory can be generalized to include
delta-point interactions, see also the appendix of [20]. Herewith, the result follows for instance from
Chapter 2 in [31], precisely Theorem 2.3.1 and the discussion thereafter. m|
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5.2. The spectrum of the operator family (L;)iez,,,

Plugging ansatz (5.4) in the left-hand side of (5.3) we formally compute
Lx,tu = Uy + V(x)u,t = Z (_1’/‘,;(’ _ wszV(x)ﬁk)eikwt,

k€Zoaa
For k € Z,4q we abbreviate
d? d?
L=~ Kw*V(x) = —T5 - AW’k = Bw kS per(X). (5.13)

Note that L; has the form (5.8). Due to Lemma 5.4 and Theorem VIII.15 in [60] for f,g € H'(R) the
corresponding bilinear form reads b;: H'(R) — C,

b9 = [ (7T - e S W) dx ol Y fis + 2migls + 2w, (5.14)
R

nez

5.2.1. Spectral properties of L,

In this section we compute the spectrum of L; depending on k € Zy4q by making use of Theorem 5.7.
Since k appears in L; only as k* we restrict to k € Ny in the rest of this section. We give conditions
on the parameters (w, @, ) € Ri such that zero lies uniformly in a spectral gap of L, for all k € Ny
in the sense that there is a constant ¢ > 0 independent of k € N4, such that

(—clkl, clkl) € p(Ly) for all k € Nygq. (5.15)

The last part of this section reveals that the spectral gap can not grow superlinearly in k € Nyyq which
means that (5.15) is optimal up to constants.

By Lemma 5.6 the discriminant D, associated to L; reads

~ A2 inQr VA+ aw?k?) + 2 cos2n VI + aw?k) for 1> — a2,
D) = 2 - 2mBuw’ for A = —aw?k?, (5.16)
——L2E_sinh(27 V=1 aw?k?) + 2 cosh2n V=1 - aw?k?)  for A < —awk’.

Before we turn to our main result we give an auxiliary estimate.
Lemma 5.8. For m € Ny we have
+1<\/ 2 ) 2m+1<\/ sy L 2mrl S
TSN T T s A

mil _ 23, 0021 oom o L
e = 5smt 55 > 3+ 5. Hence,

\/m2+m+1—2m+1>,/mz+ﬂ+i—m+1
4 25 3 36 6

which establishes the first of the desired inequalities. The second inequality is clear. As before we
compute

Proof. Obviously we have m + § —

2 - — =" il 2, 7 = -
m+m+4+ 75 m+25m+100<m +3ﬂl+36 m+6

which finishes the proof. O

1 2m+1 , 27 29 5 25( 5)2
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5. Existence of polychromatic ground states in one dimension

We choose our parameters (w, @, 8) € R? for the rest of this chapter to be related as follows:

1
a>0,w= and 8 = 16q. 5.17
Ve B (5.17)
This is precisely the assumption of Theorem 5.2 since (5.17) leads to T = 2 = 8x+/a. With this

choice we formulate a result which treats the case k > 3.

Lemma 5.9. Suppose (5.17). Then

kK k
(——,—) C p(Ly) forall k € 2N + 1.

100° 100
Proof By Theorem 5 7 we have to show |Dy(1)| > 2 forall 1 € (- 100, 100) and all k£ € 2N + 1. Since
—m > —qw*k? = _E for all k € N we only have to deal with the first case of the case distinction in

(5.16). Due to (5.17) we have to guarantee that

[k K2 / k
|2cos(27r /1+E)——s1n[27r /l+—]|>2for Al < jogandall k€ 2N + 1. (5.18)
k2

A+ T
The idea is to simplify (5.18) in order to find sufficient conditions which imply the validity of (5.18).
Since |2 cos (27r AJA+ ’1‘—2) | < 2 it is sufficient for (5.18) to prove

K / k
—|sin[27r /l+—]|>4f0r Al < J5g andall k € 2N + 1. (5.19)
k2
1,/1+E
\/_ /k2
LN L L
+l6> +160r||<100

which is in particular valid for || < 155 oo’ i.e., the range of A in (5.19). Hence, a sufficient condition for
the validity of (5.19) and therefore also of (5.18) is to verify

. [ k), _ V2 k
|sm(27r A+E)|>?f0r Al < S5 and all k € 2N+ 1. (5.20)

To establish estimate (5.20) we take a closer look at the argument of the sine-function in (5.20). Since
k € 2N + 1 we can write k = 2m + 1 with m € N and therefore

2\//1+k2—\/4/1+ 2 4 +1e \/2+ +1 2m+1\/2+ +1+2m+1
16 EEmE S N Ty T Ty N T T s

for || < <=

Note the inequality

Hence, Lemma 5.8 implies

k? 1 5 k
2 — f — 21
‘M+16€( mt o m+ 6) or |/1|<100 (521

100
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odd

The periodicity of the sine-function ensures
1 1 5
| sin (n(m ¥ 8))| = |sin(Z)] = 5 =sin(~Z)| = |sin (n(m ¥ g)) . (5.22)
The monotonicity of the sine-function and (5.21), (5.22) then gives

[sin[2nyfa+ & |>|sin(7—r)|—lfor A <~ andallke 2N+ 1
16)' = 6/! 2 100 ‘
In summary,

/ k? V29 1 V29 1 V29 k
in|2r4fl+—||l-—>-—-——>-—-——>0for || < —andallke2N+1 (5.23
|sm[7r +16] st 27 st 27 I > (0 for | |<1ooan all k € + ( )

which verifies (5.20) and finishes the proof. O

The estimate (5.23) in the preceeding proof is the only reason why we focus on £ > 3 in Lemma 5.9.
Thus, we now have to deal with the case k = 1.

Lemma 5.10. Suppose (5.17). Then 0 € p(L,).
Proof. Using (5.16) we obtain by direct computation
D\(0) = —4 sin(f) ¥ 2cos(f) - 4<-2,
2 2

Hence, 0 € p(L,) by the characterization in Theorem 5.7. O
Summarizing Lemma 5.9 and Lemma 5.10 we obtain the following result.
Lemma 5.11. Suppose (5.17). Then there is a constant ¢ > 0 such that

(—clkl, clkl) € p(Ly) for all k € Nyyq. (5.24)
Proof. By Lemma 5.10 and since the resolvent set is open there is a constant ¢ > O such that (¢, ¢) C
p(Ly). With the help of Lemma 5.9 we obtain (5.24) with ¢ := min {E, llm}. O

We next show that for each k € N,qq the operator L; has spectrum to the left of —%_ as well as to the

100
right of Wko which justifies the notion of a spectral gap.

Lemma 5.12. Suppose (5.17). Then for each k € Zygq we have o (L) N (—oo, —ﬁ) # 0 as well as
(L) N (5 ) # 0.

Ptgof. W:a first show that —& — & € (L) which implies o(Ly) N (—c0, —5) # 0. Since —& - £ <

—1e < 700 and cosh(x) — sinh(x) = ¢~ a direct computation implies
KK 2 : 2 —nk? -
|D T | = 2|cosh(nk?) — sinh(nk?)| = 2™ < 2¢7 < 2,
ie., —% - % € o(Ly). On the other hand, since 11—4 - '1‘—2 > 11@ we have
kR . 2 2 2
|Dk T 16 | = |—2 sin(7k”) + 2 cos(mk )| =2 |cos(7rk )| =2.
Thus, % - ’l‘—z € o (L) which gives o (L;) N (ﬁ, o0) # 0. O
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5. Existence of polychromatic ground states in one dimension

Finally, we give a result which in a sense complements the statement of Lemma 5.11. It guarantees
that the spectral gap containing zero can not grow superlinear in k, i.e., the growth rate in Lemma 5.11
is optimal up to a constant factor.

Lemma 5.13. Suppose (5.17) and let f: Nogq — [0, 0) be a function with f(k) — oo as k — oo.
Then there is no constant ¢ > 0 such that

(=clklf (kD) clkl f(kD)) € p(Ly) for all k € Zoga. (5.25)

Proof. Again it suffices to restrict to k € Nyg9. Suppose that the growth rate in (5.25) holds true

for a constant ¢ > 0. W.Lo.g. we may assume that ¢ < 11—6 and f(k) < k for all k € Nyy so that
k2

—clklf(k) > - = —aw?k?. Therefore, only the first case in (5.16) plays a role. In particular, by the

characterization in Theorem 5.7 we have

k? [ k? [ k?
| - \/: sin [277 A+ E] + 2 cos [277 A+ E]| > 2 for |A| < ckf(k) and all k € Nygq. (5.26)

©2
/1+R

We show that for k € N4 sufficiently large there is A* € (—ckf(k), ckf(k)) such that 27 \/A* + ’1‘—2

equals an integer multiple of 7 which then entails |Dy(1*)| = 2, i.e., a contradiction to (5.26). For this
purpose, we again write k = 2m + 1 for m € N and investigate the range of

2
Ay i [—ckf(k),ckf(k)] - R,A+— 44+ kz

We claim
Ap(=ckf(k)) < m* < Ap(ckf(k)) (5.27)

for k sufficiently large. Since % =m?+m+ ﬁ and 4ckf(k) > 0 the second inequality in (5.27) holds
true for all k € Nyyq. The first inequality holds true if and only if

1
—4cm+ D) fCm+1)+m+ 1 <0
which is true for m sufficiently large due to f(k) — oo as k — oo. Therefore, (5.27) is verified provided

k is sufficiently large. Hence the mean value theorem guarantees the existence of A* € (ckf(k), ckf(k))
such that A¢(1*) = m?. As already mentioned above this contradicts (5.26) since |Dy(1*)| = 2. O

5.3. The functional analytic framework

In this section we first use the Floquet-Bloch decomposition in order to derive a suitable functional
analytic framework for our problem. This leads to a Hilbert space in which we work for the rest of
this chapter.
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5.3. The tunctional analytic framework

5.3.1. Calculations via Floquet-Bloch decomposition

In this short section we introduce some notation which will later help us to treat the indefinite
quadratic part of the energy functional arising from the family of operators (Ly)kez,,. For basics
on the Floquet-transformation 7~ see Section B.2. Let  := [0, 27) denote the interval of periodicity

and 8 = [—%, 1) the Brillouin zone. The sequence of Bloch waves for the operator L, is denoted by

(W) jeryy, Where Y0 P x B — Cforall (j, k) € Ng X Zygq. For s € B they satisfy
Libja,8) = LW, 5) in P (5.28)
together with the quasiperiodicity condition
Vik(x +2m,5) = ez’”'swj,k(x, s) forall (x, s, j,k) € P X B XNy X Zogq. (5.29)

For fixed s € B,k € Zogq due to Vi € H'(R) we have ¢ (-, s) € H| (R) for j € Ny and (1) jerv, are

a (-, ") 2 -orthonormal and complete system of eigenfunctions in L*(#) and
A i(s) < App((s) < - < Ajy(s) > o0 as j — oo,

see also Section 3.4 in [30]. Recall o(Ly) = e, seg Aja(s) for all k € Zyq4, see for instance § 2.3,
§ 2.4 and Theorem 5.3.2 in [31] or Section 3.6 in [30]. Using the completeness of the Bloch waves
(see Theorem B.3), for i, € L*>(R) we obtain

(x) = ) f (T, 9), 04, ), W x(x, $)ds in LX(R) for all k € Zoaa. (5.30)
jeNg VB
In particular, due to (5.28) we formally have
L= f (T 902 9), Aa( W, )ds forall k€ Zaga. (531)
jeNo VB

We justify (5.31) later on in Corollary B.6. In the following, for a function i, : R — C with &, € L*(R)
and an index k € Z,4q We abbreviate
ﬁk = Tftk,

~ ~ 5.32
i14(5) = (B0 90,03 9) . 32

where (f, g)p = fp f(x)g(x)dx for f,g € L*P). The indefinite quadratic functional (see (5.33))
gets now motivated by the calculations in the following lemma where we continue to use the previous
notation. After the minimization procedure in Section 5.6 we do the back-transformation on a rigorous
level in Section 5.7.

Lemma 5.14. Fix k € Zyyq and let i, € D(Ly), ¥, € L*(R). With the notation of (5.32) we have

f Liiydedx = ) f k(A (5)D ja(5)dls. (5.33)
R B

JeNo
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5. Existence of polychromatic ground states in one dimension

Proof. We proceed in two steps. First we show that

i W) 2y = f i 14(5)D 14 (5)dss for all fiy, D € L*(R). (5.34)
B

JENg

Since 7 : L*(R) — L*(P x B) is unitary we have
(e Vid ey = T i, TV 12 pxs) = f((Tﬁk)(', ), (T VG5 ) p2ep) ds. (5.35)
8

Recall that the family (¢«(:, 5))jen, 18 an orthonormal basis in L*(P) for all s € B. Therefore, we
receive

(TG 9. (T Ny = D (T 90 9) g (TIOC 905, 9)
o (5.36)
= > Ar) ().
J€No
Matching (5.35) and (5.36) we derive
(f1gs D1 2y = f D i) s)ds = > f ()7 j(s)ds (5.37)
B jeny jeg V8

and it remains to verify the permutation of summation and integration in (5.37) to affirm (5.34).
Indeed, by the inequality of Cauchy-Schwarz we have

1 1
2 2
x = x X x 2 = 2
> f B1j4(5) 4 5)ds]| < Z||u,,k||Lz(B)||v,,k||Lz(B)s(z ||u,,k||Lz(B)] [Z ||v,,k||L2<B)] :
B

jENQ jENO jENO jGNO

Moreover, Bessel’s inquality gives

D il = lim > f (T2 .84 9)) 1 s
n—oo B

JjENy j=0
= lim f 2 HT W 9.0 9) Pl
n—oo Bj:O
~ 2 — a2
< f [T 8. $)IPds = el e
B

The same calculation holds true with & k> i Teplaced by P k> V. This justifies the last step in (5.37)
and proves (5.34).

In a second step, we exploit (5.34) for @, € D(L;), ¥, € L>(R) and Corollary B.6 in order to establish
(5.33). Precisely,

(Lidiis D)2y = ) | fB (TLAC 9,010, ), Dis()ds = fB TOIMOTROYE

JjeNo JeN

and the proof is done. m|
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In a next step, we slightly generalize the statement of Lemma 5.14.

Corollary 5.15. For k € Zyyq we have

ACRAEDY fs ()T j()ds

=
with by given by (5.14) and all iy, v, € D(by) = H'(R).
Proof. Recall that
by (i, V) = (Lydiy, Vi) for all &y, € D(Ly) and all ¥, € D(by).

The statement now follows from Lemma 5.14 and the fact that D(L;) is dense in D(by) for all k € Zqq,
see for instance Chapter IV, Theorem 2.4 (v) in [32]. There it is proved that the domain of a lower
semi-bounded operator L > —C with C > 0 is dense in the domain of the associated bilinear form
b with respect to the norm induced by || - || := +/b(,-) + C|| - ||> whenever the operator is constructed
from the bilinear form by a so-called Friedrichs-extension (which in particular applies for our case L;
and b;). The statement D(b;) = H'(R) follows from (5.14) and Theorem VIII.15 in [60]. O

5.3.2. The right Hilbert space

Finally, we are ready to introduce a Hilbert space in which we seek solutions. Due to Lemma 5.14 set

H = {it = (ﬁj,k)jeNo,keZodd :ft];k: B — C measurable for all (j, k) € Ny X Zogq,

ﬁj,k(s) = I;;tj,—k(_s) for all (]’ k’ S) c NO % Zodd < B
and Z f |/lj,k(s)||§lj,k(s)|2ds < oo},
B

JENQ,kEZoga

where we consider the space over the field R and not C. We equip H with the canonical inner product
and norm

(i, Vg = Z f (N ()P a(s)ds  and  lilly == K@, @) for i1, 7 € H.

JENQ,kEZogd

The following lemma justifies the condition ik(=s) = i i—k(s) for all (j, k, s) € Ny X Zogq X B incor-
porated in H.

Lemma 5.16. Let it € H and iy, be given by

n(x) = ) f ()W 14 (x, $)ds. (5.38)

jeNg V'8

Then iy = ii_y for all k € Zoga.
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5. Existence of polychromatic ground states in one dimension

Proof. Since y j; satisfies (5.28) and (5.29) we conclude
‘pj,k = lpj,—k on P x B for all (], k) € Ny X Zogd- (539)
Taking the complex conjugates of (5.28) and (5.29) leads to

—U7 (X, 5) = PV a(x, 5) = (Wl 9),

W i(x + 2, 8) = Yialx, s)e 2.

This reveals that ¢ ;(-, s) can be chosen such that

Wik(,8) = (-, —s) for all (j, k, s) € Ny X Zygq X B. (5.40)

In order to finish the proof it suffices to ensure fzs I ()W (X, $)ds = fB i1 (S)Wj—i(x, s)ds for all j €
Nj since the claim then follows from (5.38). Note that since 8B is symmetric about {s = 0} the condi-

tion &;4(s) = &t;_1(—s) for all (j,k, 5) € NgxZogqX B s equivalent to &t ;4 (—s) = &t; (s) for all (j,k, 5) €
Ny X Zogq X B. Therefore, in the following calculation we first use (5.40), then profit from the fact that
B is symmetric about {s = 0} and finally exploit (5.39). Hence, for j € N, we deduce

Lﬁj,k(s)l/’j,k(x,s)dszLﬁj,k(s)wj,k(x7_s)dszLﬁj,k(_s)wj,k(x’s)ds

=fﬁj,k(—s)lﬁj,—k(s)dé‘:fﬁj,—k(S)lﬁj,—k(S)dS
8 8

which finishes the proof. O

Next, we introduce some further notation which we use later to deal with the indefinite character of
the problem. We introduce the projections £* and £~ by

H* =P "H :={ieH :iij; =0 whenever 1;,(s) <0 for all s € B},
H™ =P H ={iteH : i =0 whenever 1;,(s) > 0 for all s € B}.

Moreover, we consider the bilinear form B: H x H — C,

B v = ) f Ai(8)it ()71 (s)ds for it, 7 € H.
B

JENO,kEZoqa

Then we have a splitting H = H* & H~ (recall that by Lemma 5.11 there is no triple (j, k, s) €
Ny X Zoaa X B such that 1;,(s) = 0) with

B(i, ) = |P*illy, — 1P~ ill3, for all it € H. (5.41)
Therefore, we abbreviate &i* := P*it and &~ := P~ ir. Additionally,
a7, = 015, + a1

e, it g, i || < |lillg for all i € H.

In the rest of this section we deal with regularity questions. Roughly speaking, we show that elements
of H already lead to H'(R) regularity of the functions i, given by (5.30).
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5.4. Fine tuning of prefactors and resulting optimal estimates

Lemma 5.17. Fix k € Zyqq. Then

D(L) = {u= ) L (W (. $)ds = ) L 2, (9)liu(s)Pds < o)

Jj€Ng J€No
Dby ={u= ) f i (W j(x, $)ds = ) f (Nl (s)Pds < o).
T T

Proof. We know that D(Ly) = {f : Lit, € L*(R)}. In particular, by Lemma 5.14 and Ajx(s) € R for
all (j, k, s) € Ny X Zogq X B we deduce

A~ 112 2|~ 2
Lty = f 4(8)Plija(5)Pls
jeNg VB

which proves the claim concerning D(L;). The second part concerning D(b;) then follows from
Corollary 5.15 and the second representation theorem (Theorem 2.8 and Section IV.4 in [32], or see
Section 10.2 in [64]). ]

We give an application of Lemma 5.17.
Corollary 5.18. Let (it i) jeNy kezos € H. Then iy from (5.30) satisfies iy, € H'(R) for all k € Zogq.

Proof. Recall that by definition (it k) jeNokeZo € H if and only if

odd

> f (N u(5)Pls < o, (5.42)
B

JjENo,k€Zoaq
where iij(s) = <T (-5 8), ¥ ne s)>73. In particular we deduce from (5.42) that
Zfl’lj,k(s)nﬁj,k(sﬂzds < 00
jeNg VB

for all k € Zyyq. Therefore @, € D(by) = H'(R) by Lemma 5.17 and (5.14). ]

5.4. Fine tuning of prefactors and resulting optimal estimates

We now give further estimates which incorporate the k-dependance. For k € Z.,33 we abbreviate
2 . .
Vi(x) = —% — kzéper(x). We first introduce some notation. Recall

<Lku9 ()0>L2(R) = f/ld <P/ll/l, Q0> for ue D(Lk)9 @ € LZ(R)9
R

where (P)),cr denotes the projection-valued measure (see for instance [61] or Definition VII.1.9 and
Theorem VIIL.3.2 in [72]). We next introduce for v € H'(R) the splitting v = P*v + P~v with

00 0
Pty =yt = f Ad{(Pw,-)y, P vi=v = f Ad{(Pw,").
0 —

(%)

Then D(by) = D(b;) ® D(b,) with D(b;) = P*D(by). Notice that due to the representation in Corol-
lary 5.15 D(by)" refers to 7;,(s) = 0 whenever A;,(s) < 0. Vive versa, D(b;)~ transfers to ¥;x(s) = 0
if 4jx(s) > 0. Subsection 5.2.1 entails the following corollary.
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5. Existence of polychromatic ground states in one dimension

Corollary 5.19. There is ¢ > 0 such that

b, v) = (v, V) = e [kl VI g, for all v € H'(R) and all k € Zoaa. (5.43)
Moreover, c k| in (5.43) is optimal in the sense that (5.43) does not hold true for any ¢ > 0 and any
coercive f: Nygg — [0, 00) with c |k| replaced by ¢ |k| f(|k|).
Proof. Recall that for a self-adjoint lower semi-bounded operator A: D(A) c L>(R) — L*(R) we have

AL Dpe
fég(fA ) —||f||2 = inf o(A). (5.44)

L2(R)

The idea is now to split the indefinite operator L; into a positive definite and a negative definite oper-
ator L;, apply (5.44) and then use the density of D(L;) in H '(R) (see Corollary 5.15). We introduce a
further splitting, namely for u € L*(R) we split u = Pju + P,u with

00 0
Piu ::f 1d(Pu,-), Pyu ::f 1d (Pu, ).
0 —

(o)

Assume for a moment that
Li: PiD(Ly) C PiLA(R) — PiL*(R), Liu = Liu (5.45)

are self-adjoint operators. Then L; is positive definite and L, is negative definite. Thus we conclude
from (5.44) and Lemma 5.11 that

< ;u, u>L (R) <L,:u, u>L2(R)
in > > k|, inf —————— > k| (5.46)
uEP;D(Lk) ||M||L2(R) MEPED(LI‘) ||M||L2(R)

for ¢ > 0. The combination of (5.46) and Corollary 5.15 then shows

o B N B ¢
<L;P;u’ P;u>L2(R) - <Lk P2 u? P2 M> 2 Clkl (||P§u||i2(R) + ||P2 u”iZ(R)) Z ElklllulliZ(R)

and (5.43) then follows from the above mentioned density statement. It remains to verify (5.45). We
show (5.45) for L], the statement for L, follows in the same manner. Due to

<L]-:I/l, QO> = f /ld <P/lua ‘10> = f ﬂd <I/l, P/1‘10> = <I/t, L}:¢>
0 0

we have that L] is symmetric. Moreover, letu € $; L*(R). Since L; and the projection-valued measure
P, commute we also know that L; and P; commute. Hence, Liu = LiPyu = PJLiu € P} L*(R), i.e.,
also the mapping property of L; in (5.45) is proved. Since o(L]) = o(L;) N (0, c0) we obtain from
Theorem VIIL3 in [60] that L; is self-adjoint and the proof is done.

The second part of the claim then follows from Lemma 5.13. O

The benefit of an estimate like (5.43) lies in the k-dependance since later we want to sum over k € Zq4q.
We want to construct a similar lower bound with ||v’||i2 ® instead of ||v||i2 ® in the right hand side of
(5.43), i.e., we want to prove the following result.
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5.4. Fine tuning of prefactors and resulting optimal estimates

Theorem 5.20. There is a constant ¢ > 0 such that
b (v v = bi(v, V) > #nwnim forallve H'(R) and all k € Zygq. (5.47)
Proof. We prove (5.47) by several case distinctions. Let A € (0, 1) be fixed for the whole proof.

1): Let v € D(b;)*. We distinguish two cases.
a): fR (v’2 /e 2) dx > 0: Then a mulitplication by 1 — A > 0 directly implies

f (v’2 + Vkvz)dx > 1 f Vv2dx. (5.48)
R R

b): — [ (2 + 1%?) dx 2 0: Recall by (B.10) that

1 1
B ) vis +2xn)’ < Pk’ (2— o )nanz(R) + BRIV e (5.49)
nez
Therefore,
V aw*k? Bw’k?
” k2 2
Lv de—Ll_/lvdx: T || IILZ(R)+mZv(g+27m)

nez
w’k? 11 ) Bw*kre
< 1 — 1 (Q +ﬁ(5_{ + 2_8)) ||V||L2(R) + mi”v ”Lz(R)'

2 we have ﬁ“’ k % < 1 and thus

) 2wk? 1 1
v ”iz(R) < T-1 (CY +,3(§ + Z_Sk)) ||V||iz(R)-

1-
Buw?

In particular, for € = ¢, ==

In summary, we conclude

L (V,z 4 Vk(x)v2) dx fR (sz + Vk(x)v )dx IIVIILQ(R) S Clk 1-2 1

212 :

(5.50)

Since g is of order we infer that

-4

1 1
c|k| = O(—)
2w2k2 +B(21_7r + 21?;{) |k|3

Therefore, merging (5.48) and (5.50) we deduce fR (v’2 + Vk(x)vz) dx > i fR v2dx for all v € D(b;)*
for a constant ¢ > 0.

2) Letv € D(by)". ie., [ (v2+ Viv?)dx < —clk| [ v?dx. Hence, by (5.49) with & = & =
deduce

1

Bw’ke;

, 1
fR v2dx < (aw’k —c|k|)||v||L2(R)+ﬁw2k2(5T )nanz(R) VI
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5. Existence of polychromatic ground states in one dimension

which entails

1 1
" 2,2 22 4 L 2
[|v IILZ(R) < 2(aw k* — clk| + pwk (2ﬂ + 28k)) ||v||L2(R). (5.51)
In analogy to the first case we now conclude
” 2 2 2 2 2
—fR(v + Vv )dx ~ —fR(V + Vv )dx VI g S VI 2 g
”v/”iZ(R) ”V”iZ(R) ”v,”iZ(R) B ”v’H%Z(R)
[Ivi[?
and due to (5.51) the fraction & is of order - which together with the factor c|k| establishes our
il I g
L2®)

claim also in the case v € D(b;)".
Finally, merging the two estimates for D(b;)™ and D(b;)~ and exploiting a* + b* > %(a + b)* we end
up with

o ¢ N2 2 ¢ "
bV v = b(v, v )Z@L((W) +(v ))dxszRv dx

for a constant ¢ > 0 and the proof is done. O

5.5. Further regularity results in space and time

In Corollary 5.18 we were able to deduce H'(R)-regularity in space of the sequence (fi)ez,,,- The
goal of this section is to establish an embedding which transfers regularity of the sequence (i )iez,,,
to regularity of the composite function in space and time u = u(x,t) = Yz .. i(x)e*®!. The main
result is the following theorem.

odd

Theorem 5.21. The linear operator S: H — L1(D),

S x,0 = Y f (W j(x, 5)ds e
B

JEN(,kEZoqq
is bounded for all q € 2, 81 where D =R x [0, T).

We split the proof of Theorem 5.21 in several steps. First, we give two auxiliary lemmata which are
needed later.

Lemma 5.22. Let v = (vi,v2)" € R Then there is a constant ¢, > 0 such that
1—-cos(v-x
f —E )dx = ¢V + V2.
R? |x]2

Proof. The proof of this statement is done in arbitrary dimensions within the proof of Proposition 4.1
in [29]. The first step is to show that w.l.0.g. it suffices to prove the statement for v = (|v|, 0) since

1 - . 1 -
f coss(v x)dx :f COS§|V|X1)dx,
R2 |x]2 R2 |x]2

see (4.8) in [29]. Afterwards the integral can be computed explicitly by the substitution y = |[v|x. O
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5.5. Further regularity results in space and time

The proof of the next lemma is again given in Appendix B.1.

Lemma 5.23. For R > 0 we have

00 R x2
f f ————dxdy <4R(1 +R).
0 Jo (x*+y?)s

In order to obtain sufficient regularity of the composite function u = u(x,t) we make use of several
intermediate spaces. These auxiliary spaces are introduced now. Let

~ . ) 1,
A = {(f)xezy, : u € H'(R) for all k € Zogg and ) (lkl [ —||uk||§2(R)) < oo}

3
keZodd |k|

with

A A 1
@zl = J > (|k|||uk||§2(R)+ WW;H;(R)).

kEZodd

Moreover, forr > 0and D = R x [0,T) let

H'(D) = {u: D — R;u(x,t) = Z e (x)e™ s.t. iy (x) = fi_i(x) for all k € Zygq

kEZOdd

and )" f (1+& + Y|F in(€)Pdé < oo,
R

kGZOdd

where F denotes the Fourier transform with respect to the space-variable x € R. We equip H'(D)
with

il = | Y, [+ + Ry

k€Zoaa

Notice that u € A"(D) is T-periodic in the second component. Additionally, for r € (0, 1) and Q C R?
open recall the fractional Sobolev space (see [29])

|u(x, s) — u(y, )]
|()C, S) - (y7 t)|1+r

H(Q) = {u e LA(Q): € L3(Q x Q)}

with

_ 2
lullirr) = \/ fg luCx, HPd(x, 1) + fQ fg l'(i();)tz (yfli))}l’z(sl)lr)d(x,t)d(y, ).

Finally, we also introduce a periodic fractional Sobolev space. Therefore, let D, := R X (—nT, nT) for
n € N. Then

H;er(Rz) ={u:R>>R:ueHD,)forallneN anduis T — perodic in the second component}

with [lullgy, 2 = llullaro,)-

Here are another two lemmata of auxiliary character.
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5. Existence of polychromatic ground states in one dimension

Lemma 5.24. Let n € N and r € (0, 1). Then there is a constant ¢ = c¢(n, r) > 0 such that

el 5r(p,y < c(n, Nullarp,) (5.52)
forall u € H',_(R?).

per

Proof. We only show (5.52) for n = 2. The case n > 2 can be established by the same techniques.

We have ||ul|? = 2||ul? i.e., it remains to bound the expression

LZ(DZ) LZ(DI)’
lu(x, 1) — u(y, s)|
d(x,0d(y, s)
*fD‘z j;)z |(x’ f) — (y, s)|2(1+r) y

by a constant multiple of ||u||? (Dy)" The idea is to split the domain of integration D, X D, in several
parts. Due to symmetry of the integrand in the variables ¢ and s it is enough to consider the three cases

Dt,se(-T,T) 2)telT,2T),s€(0,2T) 3)tel[T,2T),s € (-2T,0)

which are treated one after another.
. : : luCx,H)—u(y,s)P? 2
1) t,s € (=T,T): We directly obtain fo(—T,T) fo(—T,T) Wd(x’ nd(y, s) < ||ul| Dy

2) te|[T,2T),s € (0,2T): With the substitution (7, §) = (r — T, s — T) we obtain

lu(x, 1) — u(y, s)I?
d(y, s)d(x,t)
Jl;x[mr) Lx[o,zn Cx, ) = (3, $)P1+D

|I/l(x, f) - u(ya §)|2 ~ ~ 2
= = = d(y, Hd(x,t) < lullzrp,-
fo[O,T) fo[—T,T) |(x, ) = (v, HPFA D)

3) te|T,2T),s € (=2T,0): In this case we estimate

lu(x, 1) — u(y, s)?
d(y, )d(x, 1)
LX[T,ZT) Lx(—zr,m Cx, 1) = (y, )P
1

<2 f Ju(x, Dl d(y, s)d(x, 1) (5.53)
RX[T,2T) rx(—27.0) [(X, 1) = (v, $)[F+2" O
1

+2 f lu(y, s)? f d(x, )d(y, s)
Rx(~2T,0) rx(721) [(X, 1) = (v, $)[P+2"

For shorter notation we set

L, = d(y, s) for (x,t) e Rx [T,2T),

1
\[Rx(—ZT,O) (x, 1) = (y, P2

1
L= d(x, 1) for (v, s) € R x (=2T,0).
¥, fo[T,QT) |(x, 1) — (y, 8)|*+?" (x, 1) (v, $) ( )

Then with (z,6) = (y — x, s — 1), t € [T,2T) and polar coordinates 7 := Vz? + §*> we infer

1 1 1
I, = f ———d(z,0) < f ————d(z,0) < f ————d(z,0)
" Ity (@ O rx(-47—1) (2, O)P2" r2\Br0) (2, O3
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5.5. Further regularity results in space and time

In the same manner, with (z,0) == (x —y,t — ), s € (=27, 0) we deduce

Ly = f —55d(z,6) < f —d(z,6) < f  _d(z.6) =
’ Rx(T—s27—s) (2, O)**2" rx(r4T) (2, O+ 22\8y0) (2 O)P2 T2r

In summary, (5.53) implies

Jux, 1) — u(y, s)I°
d(y, s)d
Lxmn fnw_zm) I(x, ) = (v, 5)|>*2 O, 8)d(x, 1)
2r

< = (f |u(x, £)[*d(x, l)+f lu(y, $)PPd(y, s))
rT*" \Jrxir.or) Rx(-2T.0)
4

74
iz, < o,
and the proof is done. O

Lemma 5.25. For (z,6) € R? and u € L*(D) we have

f lu(x, s) — u(x + z, s + 6)[*d(x, s) = 2T Z f 1 = cos(kwd + E(F iy )€ dé.

kezodd

Proof. By using that u is real-valued we directly calculate

f lu(x, s) — u(x + z, s + 8)[*d(x, s) (5.54)
ff (uk(x + Z)eikw(s+6) _ ﬁk(x)eikws') Z (If/\tk(x + Z)eikw(s-HS) _ ﬂk(x)eik“”)dsdx
0 keZ(,dd k€Zoga
ff (l/lk(x + Z)eikw(s+§) _ i\tk(x)eika)S)(lf/\ll_k(x + Z)ei(l—k)w(s+(5) _ lf/\tl_k(x)ei(l—k)ws)) dsdx
0 kezodd leZeven
f f Mk(?C + Dii(x + 2™ =y (x + 2y (x)e T
0

kEZodd ZEZeven

— () By (x + 7)o 4 ﬁk(x)ﬁl_k(x)eﬂ“”)dsdx

=T f Z (ﬁk(x + D)0 (x + 2) — I(x + 20 ()™ — ()i (x + 2)eT + ()i ( x)) dx
R

k EZodd

where in the last equation we interchanged the order of summation and integration over s which is
possible due to Fubini. Notice that we have

le™ — 11> = 2 — (™ + e7™) = 2(1 — cos(x)). (5.55)

Thus, with the help of Plancharel’s Theorem, basic calculation rules for the Fourier transform and
(5.55) we can continue the chain of equalities in (5.54) by

f lu(x, s) —u(x+z,5 + 6)|2d(x, s)
D
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5. Existence of polychromatic ground states in one dimension

lkw(5 ~ —ikwo 2,

=T Z f(litk(x + 7)1 + i () - 0 (x + 2 (x) — e 0 () (x + z))

keZ()dd

=T > | liw(x+ e = i()Pdx =T ) Nl + 9™ = (),

k€Zodd R k€Zodd
=T >0 IF (- + 9™ = ) IRy = T - M@ ™) = NF )i,
k€Zodd k€Zoad
= f (1 = cos(kws + ENNF i) (€)Pdé. O
keZodd

In the end, we have all ingredients to deduce several embeddings from H into the spaces introduced
previously. The first result summarizes the outcome of Section 5.4 and demonstrates a connection

- 1
between H and the spaces H 3 (D),H 3 (D) as well as HI;‘CI(RZ).

Theorem 5.26. The following linear operators are bounded:

Sii H = AL S = () = Y [ FiaCoa(r, 90 for k € Zoa

J€Ny

Sy: A = Hi (D), (Saliiczy) (6 1) = Y y(x)e™”,

k€Zoqa
Ss: I:I%(D) - Héer(Rz),Sw(x, t) == u(x,s), wheres=t mod T,
Sy I:I%(D) - H%(D),S4u(x, 1) = u(x,s), wheres=t mod T.

Proof. We investigate the four operators separately.

1) Boundedness of S;: Due to by(v*,v*) = bi(v,v7) = X jen, fB |/lj,k(s)||\7j,k(s)|2ds, Corollary 5.19 and
Theorem 5.20 we know that there is C > 0 such that

Il (VA1 2 ||v I < C I/lj,k(S)II\'?j,k(S)lzdS (5.56)
® e ®)

Jj€No

for all v € H'(R). Setting v = i in (5.56) and summing over k € Zyqq gives

|| ((Slﬁ)k)kezodd “i] = Z (lkl ”uk”LZ(R) |k|3 ” ||L2(R)) C f |/ljk(S)||MJk(S)|2dS - C”u”]—{’

k€Zoaa Jj€Ny, kEZOdd

which proves the boundedness of S;.

2) Boundedness of S,: By Plancharel’s identity we obtain

1R, = IF IR e, = fR EFa)@)Pde.

Recall Young’s inequality ab < < - 31’—’ for a,b > 0. Thus, we infer

1+ & +k? T, )
o= f(l + & + kD)3 |F g ()P de = k; L(T) |k|* |F (&) dé

kEZ odd

1S () kez ol - 1
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5.5. Further regularity results in space and time

11 24k 3
( +'f ! Z|k|)|7—‘ak(§>|2d§

5 fR
7; 2 E " 5 g
fR(Z@+ lk')' Helde = 4|k| i W * s,

k€Zoda k€Zoda kEZodd

2
—|| (ke I

which shows the boundedness of S,.

3) Boundedness of S3: Fix n € N. Then due to periodicity

i, = | tutx0Pdce = 20 [ s oPdc.
Dy,

(5.57)
= 2nT fluk(x)lzdx < 2”T||”” 3

k Ezodd

Moreover, with the help of the substitution (z, 0) := (y — x, s — t), Fubini and the periodicity of « in the
second component we obtain

_ 2
f f e, ) = 4 I 4 gy, 5)
Dy oy 150 = (s )

3 2
f f‘ lu(x, 1) — u(x +5Z,l+ o)l d(z,8)d(x. 1)
><( Y R I(z,0)|2

f f lu(x, 1) — u(x + z,t + 8)[*d(x, Hd(z, 5) (5.58)
7 |(z.0)3 I,

1
= LZ |(Z )lz ||M(Z +- 5 + ) l/l(', ')”iZ(Dn)d(Za 5)

1
=2n f |(Z’ 6)| ||M(Z + - 6 + ) u(.’ ')HiZ(D)d(Z, 5)

Due to Lemma 5.25 and Lemma 5.22 we conclude

1
2n f TETLORRCARRUCE A

T ff 1- cos(ka)é + fz)d(z’ O\ F in(&)Pdé (5.59)

kGZ »dd (Z’ 6)| 2

= 4nTc Z f Vw?k? + §2|(7"uk)(§)|2d§<C(n)Tllull '

k€Zoqa

for a constant ¢(n) > 0. The combination of (5.57), (5.58) and (5.59) implies

~ 2
ISzull v < @+eANT|ull”,
HiioB) A4 (D)

i.e., the boundedness of S3. The boundedness of S4 follows in the same spirit. O
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5. Existence of polychromatic ground states in one dimension

The next lemma contains a crucial step in our regularity considerations.
Lemma 5.27. Let

1 , fte[-T,T],
2—1t , ifte(T,27),

2+ 2t ifte(-2T,-T),
0 , ift € (00, 2T U [2T, o).

p: R >R, (1) =

1
Then gu € Hi(R%) and the multiplication operator Ss: H} (R - H i(R?), u — u is bounded.

1
Proof. Letu € Hf,‘er(Rz). Notice that ¢ is Lipschitz-continuous with Lipschitz constant % By defini-
tion of ¢ and the periodicity of u in the second component we have

ol e, = f e, 0Pd(x, 1) < 2lull} ) < 2l |
Rx(—2T,2T) Hyer(R%)
It remains to bound the expression
f lp(u(x, 1) = p(s)u(y, )i’
r2 Jre (x,0) = (3, 9|2

by constant multiples of || - ||;2p,) and || - IIH%(DI)

d(x,t)d(y, s)

. Therefore, we split the domain of integration into
nine subdomains, namely,

Q ={(x,t,y,5) e R* : 1,5 € (=2T,2T)},

Q, :={(x,1,y,5) € R* : 1,5 € [2T, 0)},

Qs ={(x,t,y,8) € RY:t,s€ (=00, =2T1},

Qs = {(x,1,y,5) € R* : t € (=2T,2T), s € [2T, )},
Qs == {(x,t,y,5) € R*: s € (=2T,2T), t € [2T, )},
Q¢ = {(x,1,y,5) € R* : t € (=2T,2T), s € (=00, 2T},
Q; :={(x,1,y,5) € R* : s € (-2T,27T),t € (—o0, 2T},
Qg :={(x,1,y,5) € R* : t € (—00, 2T, 5 € [2T, 0)},
Qo = {(x,1,y,5) € R* : s € (—00, 2T, € [2T, c0)}.

With I, f le@ute— ¢ g ¢y ) for r € {1,2, . .., 9} and Fubini we have
(e, 0)—=(y, A)I2

lp(t)u(x, 1) — @($)u(y, 5) :
- d(x,t)d(y, s) = I..
fRz fR (x,0) = (3, 5)I3 Z‘

Due to symmetry in the variables (x, f) and (y, s) we infer that I, = Is = I = I;. Since ¢ = 0 on
(=00, 2T U [2T,0) we have I, = I; = Ig = Iy = 0. Therefore, it is sufficient to estimate /; and I,
which will be done in the following.
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5.5. Further regularity results in space and time

Estimation of /;: We have

_ 2
I = f f lp(D)u(x, 1) QD(S)uEy, s)| d(x. 0d(y, 5)
X(=2T,2T) JRX(-2T,2T) I(x, 1) — (v, 5)|2

<9 f f (Iw(t)(u(x, t)—u(y,SS))l2 [(p(2) — @(s)u(y, s )|2) dx.)d(y. 5)
X(=2T,2T) JRx(-2T,2T) I(x,0) = (, 9)I2 (x,7) = (3, 5)I2

and both summands will be treated separately. With the help of ¢ < 1 and Lemma 5.24 for n = 2 we

infer
_ 2
f f () (ulx, 1) M(y’iS))I d(x.)d(y, 5)
RX(-2T,2T) JRX(-2T 2T) |(x, 1) = (3, $)|2

u(x, 1) = u(y, )I” 1
f f O d(x,nd(y,s) < llul”, < e, Dlul’,
Ex(-2727) Jax2ran) |(x, 1) = (v, 8)|2 H#(Dy) 47" "HA(D)

with the constant c(2, 1) from Lemma 5.24.

For the second summand we use the Lipschitz-continuity of ¢ and the substitution (z,9) = (x—y,t—s)
in order to estimate

_ 2
f f |(ep(2) QD(S))M(Y,SS)I d(x. 0d(y, s)
Rx(-2T.27) JRx(-272T) (X, 1) = (¥, )|
Y 2
_f f It = sPluGy. 9F A 0d(. 5)
Rx(-2T,2T) JRx(-21.2T) |(x, 1) — (Y, s)l

= — f lu(y, s)? f -d(z,0)d(y, 5)
RX(~2T,2T) Rx(~2T-52T-s) |(Z,0)|2
52

L f UGy, HPd(y, 5) f d(z,6)
Rx(=2T2T) Rx(-4TAT) (2, 5)|

5 &2 128 5
= —2 [u(y, H)I*d(y, s) d(z,0) < — (1 +47) llull}>
RX(~T,T) (0,00)x(047) (2, 0)|2 r

due to the periodicity of u in the second component and Lemma 5.23.
Estimation of I4: First of all, notice that for 7 > 0 and ¢ < 2T by polar coordinates

1 1 © 1 dr
d(z,0) < f d(z,0) = 27rf —rdr = .
fo[ZT_t,@ I(z, 6)|3 R2\Bar0) |(z,0)|2 Tt 13 2T — ¢

Thus, the substitution (z,0) := (y — x, s — f) and the Lipschitz-continuity of ¢ imply

Hu(x, ?
T e ey
Rx(=2T.2T) JRx[2T,) |(X, 1) — (y, §)|2

1
=f (P lu(x, f)|2f =d(z,0)d(x, 1)
RX(-2T.2T) Rx[2T-1,) |(z, 0)|2

< f lp2T) = (1) |uCx, 1) d(x, 1)
Rx(=2T,2T)

A
V2T — ¢
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5. Existence of polychromatic ground states in one dimension

4
<= QT = 0 lu(x, nPd(x, 1)
T RX(=2T,2T)

32n 641
<— ju(x, DPd(x, 1) = —=lull7p,
VT Jerx-2ram Nl

The combination of the estimates of /; and I, together with the symmetry considerations yield

f le(u(x, 1) = e(s)u(y, s)P
el o) - (93

1. 5 647 128 ,
d(x,)d(y, s) < c(2, Z)”u”H%(Dl) + (ﬁ + T(l +4T) | llull;>p,

where again c(2, }‘) denotes the constant from Lemma 5.24. This finishes the proof. O

We now give the last chain of embeddings.
1
Corollary 5.28. Forany u € ngr(Rz) and any q € (2, %] we have

lltllzoy < llpullzome) < c(@ligull,y o, < c(@) \/EIIMIIHir(RZ)

with ¢ and ¢ > 0 from Lemma 5.27 and a constant c¢(q) > 0 not depending on u.

Proof. The last inequality is precisely Lemma 5.27 whereas the first inequality is trivial due to pu = u
on D. The second inequality follows from an embedding theorem for fractional Sobolev spaces,
precisely, H %(Rz) — LY(R?) for all g € [2, 8], see for instance Theorem 6.5 in [29] or Theorem 1.66
in [4]. O

After all these calculations we are finally ready to give the proof of Theorem 5.21.
Proof of Theorem 5.21: With the linear operators from Theorem 5.26 we have Sit = (8308, 0 §))it

in ngr(Rz). Due to the boundedness of S;, S», S3, S5 and Corollary 5.28 we conclude

ISillzopy < 1S5(Sillramz) < c(@IISs(S| < c(Clisall . c(@)Clll,

H%(R%
where C := ||Ss|| > 0 and C := C||S5/lIIS:|IIISi || > 0. O

5.5.1. Compatibility of nonlinearity and Hilbert space

In summary, Theorem 5.21 guarantees that S transforms elements of H into L?(D)-functions for all
q €2, 81. In this section, we use this result to control the nonlinearity in (5.3).

By standard calculations (compare Proposition 1.12 in [73]) we infer that the functional

5
Ji: LP(D) = Ry T\ (w) = f uCe )P d(x 0. p € [1.3]
D
is continuously Fréchet-differentiable with

Jwhl=@p+1) f lu(x, OIP " u(x, Hv(x, 1)d(x, 1) for all u, v € L' (D) real-valued.
D
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5.6. Minimization on the generalized Nehari manifold

Recall that the linear transformation

S: H — LPN(D); it — (Sii)(x, 1) = Z ftj,k(s)wj,k(x, s)dse "

JENO,kEZoqq

is bounded by Theorem 5.21. Moreover, let
.]1:7‘[—>R,J1 ::j]OS. (560)
Then J, € C'(H;R) and by chain rule we have

T/ (@)[¥] = T(Si)[Sv] for all i, 7 € H. (5.61)

5.6. Minimization on the generalized Nehari manifold

In this section we minimize a functional J on a suitable set, the so-called generalized Nehari manifold
which is introduced later. Due to Section 5.5.1 we are able to define J: H — R by

0 = () — —— I,
J@) 3= 3Jo0) = Fogs 1@

with

Jo(it) = Z O ()Pds = NIz, = a3,

J€No,kE€Zodd

Ji(it) = f ISP d(x, 1).
D

By standard calculations (compare again Proposition 1.12 in [73]) we obtain the following result.

Lemma 5.29. We have J € C'(H) with

J'(@)[7] = Re Z f Aj,k(s)ﬁj,k(s)ﬁj,k(s)ds—; f \Sii|”~! SaSvd(x, t).
B D

JEN0,kEZoaq

In particular we have J'(it) = O for it € H if and only if

Re Z f Aix()iji(8)Dja(s)ds = ; f St~ SaSvd(x, 1) for all ¥ € H. (5.62)
B D

JjENy,k€Zodq

5.6.1. A variant of a lemma of P.L.Lions

Next, we modify Lions Lemma (see for instance Lemma 1.21 in [73]). Therefore, we need to work
with sequences in H which we denote by (#i,),«v, i.€., for each n € N we have i, = ((ﬁ k) jeNo keZog d) .
n
Recall that we can interpret a function Siz with &t € H as a function on D which is periodically
continued in the second component. This is needed since in Lemma 5.31 we consider Sii on balls

B,(y) which can exceed the set D.
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5. Existence of polychromatic ground states in one dimension

Lemma 5.30. Let r > 0 and T > 0. Then there is a sequence (y;)en in R X [0, T') such that
((1) D c UleN Br(yl),

(b) Each pointy € D is contained in at most four balls B,(y;).

Proof. We choose (,);en to be an enumeration of the lattice ¥Z> N D where we assume w.l.o.g. that
r < T (otherwise ¥Z> N D = 0 and the statement of Lemma 5.30 is obvious). The statement then
follows. o

Here is our variant of Lions’ Lemma.

Lemma 5.31. Let g € [2, 8y and r > 0 be given. Moreover, let (ii,)pen be a bounded sequence in H
and

zeD

supf |Sii,|%d(x,t) = 0 as n — oco. (5.63)
B:(2)

Then Sii, — 0 in LI(D) as n — oo for all § € (2, d).

S

Proof. Fix it € H and y € D. Then by Holder interpolation for s € (g, %) there is A = ;_q% such that

8
3

A
”SMHLA(B o) = ”S”HLq(B 0))”8”” (B( ))

For s = 2 + % we have A = % and in particular

~ 1-2)s ~112 ~112 ~11(1=2)s
ISitlly o5,y < ISl o ISP < ISPy sup||Sitlljy - (5.64)
L3 (B:(y)) L

La(B(y)) L)) zeD L1(B(2))

We now choose the sequence (y;);en from Lemma 5.30, then use (5.64) for y = y; and perform a
summation over / € N. Due to Lemma 5.30 we obtain

~118 ~118 ~(1=-A)s
1Sz, < D ISl < D ISy - supliSallygs,,

leN leN (B:01) zeD

The following Lemma 5.32 guarantees the existence of C > 0 such that

2 ~112
D saly < Clall,

JeN I

In summary,

ISl py < Cllitll5, sup S| (5.65)
z€

L4(Br(2))

for any &t € H. Plugging the sequence (it,) ey into (5.65), assumption (5.63) entails [|S#,|zsp) — 0
as n — oo. For g € (2, %) again Holder interpolation yields

ST 1Sl - for A= 22 if g e (2, 5),

”Sﬁ ” < L*(D) ~(g 2)
nllLi(D) = ~ 1= 2 5(3-9)
IS nIIL%(D)IISunII sy ford =g fifge s, 5,
which finally yields the desired result ||Sit,||ap) as n — oo for all g € (2, %)_ O
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5.6. Minimization on the generalized Nehari manifold

Lemma 5.32. With the notation of Lemma 5.30 there is a constant C > 0 such that

sl < Cllill3, for all it € H.
L3 (B,

o o)

Proof. Recall the compact embedding H %(B,(y,)) — Lg(B,(y,)) (Corollary 7.2 in [29]). Note that
due to Lemma 5.30 we can divide the balls B,(y;),l € N in two classes N, and N,, where the set N,
contains all balls which are completely in D and N, contains all the others which protrude beyond
D. For B,(y;,), B,(y1,) € N, the Sobolev constant in the compact embedding above is the same since
(as in the classical case) they are invariant under translations. The Sobolev constant for the class N,
may differ from the one for N; but again the constant stays invariant for all B,(y;) € N, since by
Lemma 5.30 we can choose the balls in such a way that they always protrude beyond D in the same
way. Thus there is ¢ > 0 such that

~2 ~ ~112
Dlsar, <ey sl
L3 (Br(y)) =S H2(B(

JeEN rOi

) forall [ € N, (5.66)

We abbreviate D, := | J;q; B-(y;). Due to the overlapping property in Lemma 5.30 we calculate

~ (< 2
>Tisap :Z( f Sild(x, 1) + f f (S0 = (SDO-IF 4y, s))
HIBOm g7 \ B0 BonJBOon (1) = (. 9)]2

leEN
~ QR 2
<4 f (Sii)(x. H2d(x. ) + 4 f (S0 = (SBO I gy, ).
D, D, JIb, |(x, 1) = (3, $)|2

(5.67)
Due to r < T (recall the proof of Lemma 5.30) and Lemma 5.24 we conclude
Sit)(x, 1) — (Sit)(y, s)?
| s pacen [ EEREDZIEDR I g0 .
D, b, JD, (%, 1) = (y, 9)I2 (5.68)
< ISl < el\Sall®
H3Rx[-T2T) H% (D)

Finally, Theorem 5.26 (recall Sit = (8408, 0 Sy)itin H %(D)) and the combination of (5.66), (5.67),
(5.68) gives

~112 ~All O~[12 ~112
DS, <daSal?, < Clall,
L3 (Br(y) H4(D)

leN

and the proof is done. O

5.6.2. The minimization process

The exposition in this section is closely related to the one in [70]. We first verify the assumption (By)
at the beginning of Chapter 4 in [70].

Lemma 5.33. The following statements hold true:

(a) Ji is weakly lower semicontinuous,

r r
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5. Existence of polychromatic ground states in one dimension

J ~
(b) limgg 7 = 0 and lim;_o 242 = 0
H

(c) For a weakly compact set U C H \ {0} we have

. Ji(si)
lim =

s—oo g2

uniformly with respect to it € U.

Proof. (a) Since J; is continuous and convex (recall § is linear) it is in particular weakly continuous.
Due to p > 1 we obtain

T
Mp+n Ji@@a] = Jl( ) > T+ )Jl( ii).

We now also verify the last inequality in (5.69). It suffices to prove that S: H — LP*!(D) is one-to-
one. Therefore, let ii € H be given with Sit = 0. In particular, Sii € L*>(D) and

”Su”LZ(D) f |ujk(S)| dS

] EN() k€Zodd

i.e., 1 = 0 and (5.69) is verified.
(b) By embeddings we have

N

Ji@[v] = flSﬁl”_lSﬁSf/d(x,t) < Cllallg 171l
D

In particular, we conclude

Ji (@) _
L < clal?,' — 0asi— 0in H.
el
Moreover, J(it) < C||u||” 1 and according to this lim;_,o m;‘) = 0 since p > 1.
H

(c) Let U ¢ H \ {0} be weakly compact and ¢ := infiey ||Sillr+1(p). We show that 6 > 0. There
is a sequence (it,)nen in U with ||Sit,||p+1(py — 6 as n — oo. Since U is weakly compact there is
it € U and a subsequence such that ii,, — & in H as m — oo. In particular, Si,, — Sii in L*(Dyoe)
as m — oo and therefore by a further diagonal argument we can assume w.l.o.g. that Sii,, — Sii
pointwise almost everywhere in D. In particular, Fatou’s lemma gives

R TIE ~ p+1 p+l
§ = lim inf IS, II},", ,, = ISEI]), ) > 0

due to O ¢ U. Thus, for an arbitrary sequence (s,),cn With s, — o0 as n — oo we infer

J1(snil) 1 +1
inf = inf s?7'J,(it) = 7" inf ||Si||? =sP71o"! 5 c0asn — oo
el 52 acy " (@) " heu I ”L”“(D) n
and the last equality sign shows that this statement holds true uniformly in U. m|
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5.6. Minimization on the generalized Nehari manifold

We next introduce some additional notation. Let
M={aeH\H :J@@li] =0and J'(@#)[v] =0 forall v € H}
denote the so-called generalized Nehari manifold. Moreover, for it € H we set
H@@) =RaeH =R'a"eH,
where R* = [0, c0). Finally, let S denote the unit ball in  and define S* := S N H*.
The next two statements guarantee (B;) and (B3) of Chapter 4 in [70].
Lemma 5.34. The following statements hold true:

(a) For eachw € H \ H~ there exists a unique nontrivial critical point m;(W) of Jlsw). Moreover,
m;(W) is the unique global maximum of Jl4w) as well as J(m;(Ww)) > 0.

(b) There exists 6 > 0 such that ||my(W)*|lg = 6 for all w e H\ H.

(c) For each compact subset K C H \ H™ there exists a constant C = C(K) such that ||m(W)||ly <
C(K) forallw € K.

Proof. (a) Obviously, we have H(w) = H (W), so w.l.o.g. let w € S*. We divide the statement of
part (a) in three steps which automatically give the desired result.

First claim: There is R > 0 such that J(it) < O for all &z € H (W) with ||it]|ls > R.

Suppose not. Then there is a sequence (ii,),en in H (W) with ||it, |l = n and J(it,) > O for all n € N.

Set ¥, = IIuﬁﬁw’ so there is ¥ € H (W) such that ¥, — 7 as m — co. Due to

J(itn,,)

0< ——
i, 117,

I i, llgvn,)

1 ~+ 112 ~—
= 5 (Wl = li) = 70,55 it I,
Lemma 5.33 (c¢) entails ¥ = 0 since otherwise (5.70) can not hold true as m — oo. On the other hand,
Ji = 0 implies ||V, |lsr > ||V, |l so that ||V |l > ¢ for a further subsequence and ¢ € (0, 1]. Due to
¥y, € H(W) and W € §* we have ¥, = r,,W for r,, > 6. This implies 6 < r,, = ||V, |l < IV, [l = 1.
Thus there is r € [6, 1] such that r,, — r as m — oo which entails ¥; — rw # 0 as m — oo. This
contradicts ¥ = 0.

Second claim: J|z) has a maximizer it; € M N HW).
Let r > 0. By the structure of J and w € S* we have

Jow) 1, T .

N R
2 o2 et
and therefore J(rw) > 0 provided r is chosen sufficiently small. Hence, sup J|# > 0. The first
claim implies that a maximizing sequence (ii, ),y has to be bounded, so there is it; € H such that
it,, — ity as m — oo. Similar as already done in the first claim after (5.70) we infer that &I} = rw
for r > 0, i.e., it; € H(W). Lemma 5.33 (a) implies that J is weakly upper semicontinuous and so

J(#t;) = max Jlg € (0, 00). The variational principle of Ekeland (see Theorem 2.2 in [33]) implies
J,(ﬁl)lﬂ(ﬂz) = O, i.e., ill eMn ﬂ(W)
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5. Existence of polychromatic ground states in one dimension

Third claim: If it; € M N H(W) and @i, € H(W) with ity # it then J(itp) < J(ity).
We write ii, = (1 + r)it; + Vfor v € H™ and r > —1. Due to it; € M we further have J'(it;)[it,] = 0.
We have

%(B((l + r)ft] +\~/,(1 + I")I]] +\~/‘) - B(ﬁ],ﬁ]))

= %(((1 +r)* = DBy, ity) + 2(1 + r)B(it,, ¥) + B, f;))

157115,

= B(@, r(% + Dity + (1 + 1)) -
Together with z := (5 + iy + (1 + r)v and
Fom N[ ——_— = p-1 Qr Q3
0=J'@lzl = B, 2) - T |Sity [P~ Sity Szd(x, 1)
D
this leads to the expression

1 T
J(itp) — J(iy) = 2 (B((1 + r)igy + v, (1 + )iy + ) — B(iay, ity)) + T+ D) (Vi@@ty) = Ji((1 + )ity + 7))

__||V||§,+ r
B 2 T(p+1)

r
(J1(i1y) = J (1 + Pty + 7)) + T f |Sit, |1 Sit; Szd(x,1) < 0
D

due to Lemma 38 in [70].
(b) First, consider ¥ € H*. Then we have
lim 20 _ 1im(1 M) (ﬁ)) -1
0 72, =0\2 T(r+ DIE,) 2
due to Lemma 5.33 (b). Thus there is py > 0 such that J(¥) > %IIT/II?H for all v € H* with |[P]ler < po.
Hence for p € (0, po) we findnp = IZ with J(¥) > n for all ¥ € H* with |[V]l¢y = p. Now, let w € H\H".
Due to the structure of J we infer that
[l G0) 117
% > J(m, (). (5.71)

Since m; (W) is the maximizer of J|gy we conclude

Ty () > J(puwvinw) > 1. (572)

and the combination of (5.71) and (5.72) finishes the proof of part (b).

(c) Since my(W) = my (W) it again suffices to consider a compact set K C S*. Suppose the
statement is violated. Then there is a sequence (W,),en In K with ||my(W,)|ly > n for all n € N.

W.l.o.g. we can assume that there is w € K such that w, — W as n — co. Due to the representation
my(W,) = r,W, + ¥, with r, > 0 and ¥, € H~ we obtain [lm; (W,)|I7, = r; + |[7,ll3,. Since

1 1
0 < JOm () < = (I 67)* g = b ()71l = 5 (s = 17153
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5.6. Minimization on the generalized Nehari manifold

we deduce ||[V,||l < r,, forall n € N and r,, — oo as n — oo because of ||[m;(W,)||lg — o0 asn — co.

Hence, the sequence (:—) . is bounded and therefore we find ¥ € H~ such that :—’" — P asm — oo.
n/ne nm

Next, we set

~ . ml(wn) _ o~ T}n
n — Wn -
rn rn
so that
i, = W+V="ftasm — oco. (5.73)

The set U = {1} U {i1,, : m € N} is weakly compact. Due to (5.73) and w € S* # 0 we conclude
it #0,i.e.,0 ¢ U. Finally,

r Jl(rnmﬁnm)
p+1) r2

1 1
~ 2 ~ 2 ~— 112
0 < Jmi(Wwy,)) =r, (illuZmllw - Ellunmllw T T >
2 (C I -]l(rnmﬁnm))
T — —00

2 Tp+1)

by Lemma 5.33 (c) which gives the desired contradiction. O
Lemma 5.34 enables us to consider the two maps
mp: H\H — Mand my :=mylg+: ST > M.
By Proposition 31 in [70] m, is continuous whereas m;, is a homeomorphism. We introduce
¥: ST > Ryw > J(ma(W)).

The next result is proved in Proposition 32 and Corollary 33 in [70].
Lemma 5.35. (a) ¥ € C'(S*,R) with

DrY(W)IZ] = lma(0) |l J' (ma(W)[Z] for w e S, Z € TaS™, (5.74)

where Dy stands for the derivative in tangential direction of the sphere and T;S* denotes the
tangent space of S* at the point i.

(b) If Wy),en is a Palais-Smale sequence for ¥ then (ii,),en = (ma(Wp)),en is a Palais-Smale
sequence for J.

Finally, we can turn to our overall goal of this section and verify the following statement.

Theorem 5.36. The functional J admits a ground state i, i.e. it € M satisfies (5.62) and J(it) =
infyep J(V).

Proof. We take a minimizing sequence (W,),«y in S* for ¥ and set &1, := m,(W,). In particular, as
a consequence of Ekeland’s variational principle the minimizing sequence (W,),ey can be chosen in
such a way that ||[Dy¥(W,)|| = 0 as n — co. Due to (5.74) we deduce

DY (W,) = i, llgJ' (@), 5+ — 0 asn — oo
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5. Existence of polychromatic ground states in one dimension

and Lemma 5.34 (b) entails J'(ii,)|r, s+ — 0 asn — oo. Since it, € M the derivatives of J at i, in
normal direction vanish, i.e., in summary we have J'(ii,) — 0 as n — oo.

Lemma 5.37 which is suffixed to this proof guarantees that (it,),cv is bounded. Thus, there is it € H
such that i, — it as m — co. We now proceed in three steps:

First claim: J'(it) = 0.

We choose a dense subset M C H such that elements ¥ € M enjoy the property that S¥ has compact
support in D. By Theorem B.9 we know that such a set M exists. Moreover, the compact support in
D allows to apply compact Sobolev embeddings. Therefore, for ¥ € M we conclude

J’(ﬁ)[v]:(a*,v*)—(a:v)—; f |SitlP ' SiuSvd(x, 1)
D

= lim J' (i, )[#] = 0.

m—o00

Since M is dense in H and J'(it) is continuous we deduce J'(i1) = 0.

Second claim: W.l.o.g. we may choose & € H which satisfies J'(it) = 0 as well as &+ # 0.
We first show that

lim inf sup f \Sit,[*d(x, 1) > 0. (5.75)
Bi(2)

n—oo zeD

Suppose (5.75) is violated. Then Lemma 5.31 implies ||Sit,||;»+1py) — 0 as n — oo along a subse-
quence which we again denote by (i, ),cn. Therefore, we conclude

f |Sit,|"~" Sit,, Sit* d(x, 1) — 0 as n — 0.
D
Due to J'(ii,)ii;, — 0 asn — oo and
1~ Nt ~+112 I ~ -1 Qry Qyt
J ()i, = 1, 1, — T f \Si,|”~ Sit, S, d(x, 1)
D
we obtain ||17t::||3{ — 0 as n — oo, a contradiction to Lemma 5.34 (b). Therefore, (5.75) is valid and
we find 6 > 0, a sequence (y,),eyv in D and a subsequence of (@i, ),cn (again denoted by (it,),en) such

that

f |Sit,|>d(x, 1) > 6 > 0 for all n € N. (5.76)
Bl()’n)

The idea is to shift Sii, in such a way that we can make use of compact embeddings for the shifted
sequence. For this purpose, notice that for y, = (x,, t,)" with x, € R, 1, € [0, T) we have x,, = 2m, +r,
with m, € Z,r, € [0,2n) for all n € N. Lety, = (r,, t,)" € [0,27) x [0, T). Using this notation we

define v, = (‘:}"'k) , for n € N via
S JEN{)J{EZOdd
x . 270 WS N
Vn (8) ="y, ().
Notice that v, € H for all n € N due to
= 2 = 2
> f ()P, (5)P s = f j4() i, ()P < o0
jENokeZogg V' B JENg keZoag ¥ B
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5.6. Minimization on the generalized Nehari manifold

and

—27timy, s X

i, (=5) = Dy, (=9

—2mimy, s ~

9nj,k(s) =e unj,k(s) =e

where we used that i1, € H for all n € N. Moreover, we have

Sﬁn(yn) = Z fﬁnj,k(s)'vl’j,k(xn7 S)dseikwln
B

jEN(),k ezodd

f ﬁnj’k(s)eZRismn wj,k(rna s)dseika)t,, (577)
B

JENO,kEZoqa

Z f\X}”./‘,k(S)Wj,k(”n’ s)dse™ = Svu(y))-
B

JENO,kEZogd

The calculation in (5.77) together with (5.76) and y;, € [0, 27) X [0, T) for all n € N show
f \S7,1%d(x, t) > f |S¥,[*d(x,7) > 6 foralln € N
B B1(y)

where B := [-1,27+ 1] x [~1, T + 1]. Hence, the compact embedding (see for instance Corollary 7.2
in [29]) on the compact set B yields ¥ € H with IS [|Lr+1py # 0. We now prove some additional
properties of (V,),a¢ Which ensure that (v,),av 1s also a Palais-Smale sequence. We have ||\7n||(2H =
||17tn||${ as well as B(ii,,, ii,) = B(¥,,V,) with B from (5.41). This entails

i3l = 119, 117 and |, llg = 1,19 for all n € N. (5.78)

In particular |[f||s # O for all n € N. From (5.77) we infer that fD |Sit, [P d(x, t) = fD ISP d(x, 1).
This and (5.78) entails J(it,) = J(V,). In order to prove that (¥,),ay 1s a Palais-smale sequence it
remains to show that

I/' @Il = 0as n — oo. (5.79)

Therefore, we treat Jj) and J| separately. For w € H we calculate

AT IEY f Al )it (s = f ()P () (5)dls
JENkEZoga ¥ B JENGkEZogy ¥ B

s (5.80)
= Z f /lj’k(s)\:/nj’k(s)v’f)j’k(s)eZHimns — J(')(f}n)[weZHimnS].
B

JENO,kEZogq

Similarly, we obtain

Siiy(x, 1) = S(Fpe 7M™ (x, 1) = Z e_z’”'m”sﬁnjk(s)w‘,-,k(x, s)dse
jGNo,kEZOdd

= Z P (W ja(x = 27y, s)dse™ = Sv,(x — 2my, t).

JENQ,KEZ o4
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5. Existence of polychromatic ground states in one dimension

Thus,

S @t = = f |Si,l7 Sit, Sk (x, )
D

; f \S,,(- — 27m,,, )P SV, (- — 2m,,, )SWd(x, £) (5.81)
D

r .
T f 7,17 SP,SW(- + 27tm,, )d(x, 1) = J|(#,)[Wwe*™"*].
D

From (5.80) and (5.81) we conclude that
T @)[w] = J' (5,)[we™]. (5.82)

Moreover, for m € Z notice that A,, : H — H, W > Wwe > is a bijection with inverse A, !: H —
H,Ww +— we?™s_ Thus, by (5.82) we conclude that ||J’(it,)|| = |/’ (#,)l], i.e., |/ F)I| — 0 as n — oo.
In summary, we have shown that (¥,),«y is a Palais-Smale sequence so that J'(¥) = O follows as in the
first claim.

Since we have already established 7 # 0 with J'(¥) = O the last part of the claim, namely #* # 0 can
be deduced from the following consideration. Assume by contradiction that ¥* = 0, i.e., = ¥~. Then
testing J'(¥) = 0 with ¥ we infer

1 r
=715, = = f \SvPH d(x, 1),
20 T ),

a contradiction since the left hand side is negative whereas the right hand side is positive. Hence,
veM.

Third claim: &# minimizes J on M.

Since it € M by the second claim we obviously have J(it) > infs(J. To finish the proof we have
to show the reverse inequality. For this purpose, recall infp(J = infg+ Y. In particular, (it,),qy 1S @
minimizing sequence for J|y. Therefore, Fatou’s lemma implies

(1 1
infJ = lim J(@i, ) = — (— - ) f \Sit,, [P d(x, 1)
M m— oo D

T\2 p+1

r{1 1

> (= - APt d(x 1) = J(@).

_T(2 p+1)fD|Su| (x. 1) = J(i0) O

Lemma 5.37. Any Palais-Smale sequence (it,),cy of JIpm is bounded.
Proof. We show that there is a constant C > 0 such that
llilly < CJ(@)7 for all it € M.
Due to it € M we have J'(it)[it — &"] = 0. Thus,
||f4+||3{ =J' @[]+ ; L |Sit|”! SiSii*d(x, t)

> - (5.83)
= J/@la—a]+ f (Sl SaSi* d(x,1) < IS}, 1S 1o
D

L[l+l(D)
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5.7. The back-transformation to space and time

Recall that it € M implies J(it) = ZFT(fp_fl))HSﬁlli:jl D)’ Therefore, by Theorem 5.21 we derive

T(p-1 i
P=D syt ) il (5.84)

r
=D .
?HSMH IS&™ || r+1py < C(p, T, T) (m P+ (D)

L+l (D)

with C(p, T,T) := CH2 2/ 70 Tn summary, (5.83) and (5.84) show

i llse < C(p, T, DI @7 (5.85)

Analogously, one shows
it |l9¢ < CJI(@H)7. (5.86)
Both (5.85) and (5.86) finish the proof. O

5.7. The back-transformation to space and time

In this section we prove Theorem 5.2, i.e., we prove that the ground state iz of J obtained previously
in Theorem 5.36 leads to a weak solution of (5.3) in the sense of Definition 5.1.

Proof of Theorem 5.2. Let it € H denote the critical point of J from Theorem 5.36. In particular, i
satisifes

Z f () ja($)Dja(s)ds = ; f St~ SiSvd(x, 1) for all ¥ € H.
B D

jGNo,kEZUdd
In the following we fix a test function v which satisfies the conditions prescribed in Definition 5.1,
L.e., there is ko € Nogq such that v(x, 1) = ez, Px(x)e’ and O € H'(R), D = ¥ for all k € Zoga -

In particular, by Lemma 5.17 we conclude that ¥ = ® k) jeNg keZ. € H. Recall that

odd, kg
bilit, 90 = f (D ju(s)ds
jeNy VB
for all i, 9, € H'(R) by Corollary 5.15. Therefore,
r
Z by (i, V) = 7f|8ﬁ|”_185t817d(x, 1) (5.87)
D

k EZodd

and (5.6) is satisfied. Thus, we see that u = Sii is the desired weak solution of (5.3) which finishes
the proof. O

5.8. Remarks on a further reaching solution concept

In this short section we briefly sketch an idea how to generalize the concept of a weak solution &t € H
to our problem (5.3). The idea is to rewrite the quadratic expression ;<7 . bi(it, Vi) in (5.87) as
suitable duality pairings, see Definition 7.2.1.b in [34]. Therefore, let

My = {¥: D> RY¥@E)= Y dix)e™ : Gy = i for all k € Zoga,

k€Zoqa
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5. Existence of polychromatic ground states in one dimension

X 1.
2 2
i € LA(R) for all k € Zogq and k;Z T 52 22z, < 0.

~ A

My = {¥: D - RY¥(, 0= > du0)e™ : i =y forall k € Zog,

kEZDdd

g € H'(R) for all k € Zogq and Z P P — (s + 27n)* < oo}

kGZodd JNEZ

equipped with

Py, = }]mwmmm)mdmmm: §:|PM@+%M2

k€Zodd k€Zodd NEZ

Thus, we have

Mf={0: D 5RO = > Gux)e™ : G = Gy forall k € Zoaa,

k€Zoqa

@ € L*(R) for all k € Zogq and Z Jkf? ||‘Pk“L2<R> Oo}’

k€Zoqa
M; = {(D: D - R &1 = Z Gu(x)e™ : @ = ¢4 for all k € Zoga,
kezodd
@ € H'(R) for all k € Zqq and Z kP15 + 27n)|* < OO},
kEZOdd,HEZ

where the duality pairings (-, ), , {*, )y, are given by

1
<
~
‘6>|
~

QU
kgl

(¥, @) pgyxmr

Ui(s + 2nn)@r(s + 27n).
kEZOdd JNEZL

(¥, (D>M2xM; :

Recall that the ground state iz € H satisfies (5.87). For it € H and

Sii(x,1) = Z f Ui (SO 4 (x, s)dse™ = Z e (x)e*e

; B
JEN0,kEZodq k€Zoda

we conclude (Sit), € My, (Sii), € M, since

1
Z |k|3| Lz(R) < oo, Z |k|||uk||L2(R)

kEZodd kezodd

where the derivatives of Sii w.r.t. x and ¢ have to be understood in distributional sense (recall that we
only know Sit € H %(D)). Moreover, due to (B.10) with € = # we deduce

2

Wl(zkwuk)(g P =y ‘l"—lmk(g + 27n)?

kGZOdd JNEZ kGZOdd JNEZ
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5.8. Remarks on a further reaching solution concept

2

w 1 k2 N 2 1 A7112
< ((ﬂ : 5) I8l e, + 5] ”k”m))

kEand

1
2 A2 A2 ~ 12
<o ) (|k|||uk||Lz(R) + mlluﬂlu(w) < Cllal,.
k€Zoda

i.e., (Sit), € M,. Thus, we can rewrite (5.87) as

((S)er (S Datyars = @ (SiDes (SPD s = BSer (SHDasyenss

_L f S|P SiaSvd(x, 1).
T Jp

In particular, for ky € Nyqq the solution concept sketched above works for

v(x, 1) = Z ()t

k€Zodd k

with 9, € H'(R) and 9, = $_; for all k € Zoadx, and therefore it is an extension of our concept of a
weak solution in Definition 5.1.
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B. Appendix to part i

This appendix is tripartite. We first give the proofs of Lemma 5.6 and Lemma 5.23. Afterwards,
we recall some basic aspects of Floquet-Bloch theory. In the end, we give the details concerning an
argument in the proof of Theorem 5.36.

B.1. The proofs of Lemma 5.6 and Lemma 5.23

We now give the proof of Lemma 5.6, which is meanwhile classic, see for instance formula (8) in [43]
or the results of Lotoreichik and Simonov [50] who obtained related expressions for similar cases.
Proof of Lemma 5.6: We introduce y := A — « and investigate

-1 + BOper(x)f = pf on [0, 27). (B.1)

We distinguish the cases u > 0 and u < 0.

1) 4 > 0: We introduce sectionally defined functions @, ®,, ®3; and ®, where each of the pairs
{Dy, D3}, {D,, Dy} together with a matching condition at x = ¢ describes a fundamental solution of
(B.1) on [0, 27).

A fundamental system for (B.1) on [0, ¢) is given by

@, (x) = cos(yux), Po(x) = sin( y/ux),
whereas on (¢, 271) we obtain

D5(x) = ¢3 sin( \ux) + ¢4 cos(y/ux),

B.2
@,(x) = &3 sin( yux) + ¢4 cos(y/ux), B.2)
where ¢3, C4, €3, C4 € R are chosen such that the jump conditions at x = ¢ are satisfied, i.e.,
D(5) = D\(s) + P (s), B3
D}(5) = Di(s) + BDo(s). '
Moreover, the continuity of fundamental solutions at x = ¢ forces
Dy(s) = D3(5), Da(s) = Dy(s). (B.4)
The combination of (B.3) and (B.4) leads to the linear systems
sin(ys)  cos(vus) \(Cs cos(\us)
e =1 B (B.5)
cos(ys) —sin(us)) e sin( yjus) + ~ cos(us)
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and

(sin( VES)  cos(+/ls) )( ) ( sin( \/_5‘) ) (B.6)
cos(yus) —sin(us)|\& cos(\us) + £ sm( V) '

The solutions of (B.5), (B.6) are given by

(53) cosz( VES) (03) 1+£ sm( \/_g) cos( VHs)
C4 1——s1n(\/_g)cos(\/_g) ——sm (\/_S‘) '

By plugging these constants into (B.2) and denoting the sectionally defined pairs {®;, @3}, {D,, D4}
by ¥, and ¥, we obtain a fundamental system

) (x) = {C;? e e,
o cos( \/ﬁg)z sin( y/ux) + (1 — % sin( y/ug) cos(yus)) cos(\ux) ,x € [g,2m),

Wo(n) = {Sm( Vi) | . xel09),
(1+ = sin(g /1) cos(s /i) sin( y/ix) — = sin(g \j)* cos(\px) ,x € [, 2n),

where the system {¥, \/Lﬁ‘PZ} satisifies ¥1(0) = 1,¥{(0) = 0, #‘PZ(O) =0and \/Lﬁ‘I”Z(O) = 1. Hence,
1
D(u) = ¥,2n) + —¥,(2n)
Vi

= %(COS( \/,l_tg‘)2 + sin( \/ﬁg‘)z) sin(2m /i) + 2 cos(2m /1)

= % sin(27 /i) + 2 cos(2m /).

The substitution u = A — « then implies the first part of the statement.

2) pu < 0: We keep the notation of case 1) but here the fundamental solutions read
@, (x) = cosh( /—ux), ®,(x) = sinh(+/—ux) on [0, ¢)
and
®3(x) = ¢3 sinh(\/—ux) + ¢4 cosh( /—ux), ®4(x) = &3 sinh( \/—ux) + ¢4 cosh( \/—ux) on (g, 27).

The requirement of continuity and the jump condition for the derivatives translate to the linear systems

(sinh( \V=Hs) cosh( ﬁg)) (E ) ( cosh( \/_ <) )
cosh(/=ug) sinh(+/=ug))\c sinh(/-5) + = COSh( V=1S)

and

(sinh( \=Hs)  cosh( ﬁg)) (E ) ( sinh( \/_ 9] )
cosh(/=ug) sinh(+/=ug))\¢ cosh(v/-us) + 7= smh( Ty,
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B.1. The proofs of Lemma 5.6 and Lemma 5.23

The solutions hereof are given by
(53) _ [ \/% cosh( \/ﬁg)2 ) (53) (1 + = cosh( V—Hs) sinh( y/=ug)
&) ~ 1 = & cosh(y/=ps) sinh(y=ps) ) \¢ /= sinh( V=7s)” '
In summary a fundamental system reads
cosh(y/=px), x €[0,¢),

¥ (x) = vi—w cosh( y=us)? sinh( /—fx)
+(1 - VL_? cosh( y/=fs) sinh( y=xs)) cosh(—x), x € [g, 27),

sinh( \/_x) x€[0,¢),
Y(x) =1 +—= cosh( \V=Hs) sinh( 4/=ug)) sinh( 4/—1x)
—\/—_7‘ smh( \—Hs)? cosh( y/—ux), x € [¢,2n),

where the system {¥}, -='¥,} satisifies ¥,(0) = 1,¥(0) = 0, 7=¥2(0) = 0 and -='¥5(0) = 1.
Hence,

1
D(u) =¥,2n) + \/——ﬂ\yé(zﬂ)

\/ﬁ_ﬂcosh( V=us)? sinh(2m \/—p) — \/_“

= \/ﬁ__'u sinh(27r /=) + 2 cosh(2 \—p).

sinh( v/=u¢)? sinh(2m /=) + 2 cosh(27 \/=p1)

Again the substitution ¢ = A — « yields the desired claim.
The value of D(0) in (5.12) arises since u — D(u) has to be continuous at 4 = 0 and

lim A sin(2m \u) + 2 cosQrfu) =2 + BT = lir(r)l
T §o0"

u—0*

\/lg—_u sinh(27r \/=p) + 2 cosh(2 /=)

which can be seen by Taylor expansion. This finishes the proof. O
The section is closed by the estimation of the integral in Lemma 5.23.

Proof of Lemma 5.23: With the help of the substitution z = 1‘ we calculate

f f —dxdy —f f ————dxdy —f f dzdy
0 (x2+y2)4 0 y2( +1)4 (1+z2)

ff ded f R[ 2 ?d szl L,

zdy = — | —— y = — y.
\/_(1+z2)4 o Wl Vi+22 0o VY 1+ &
5

We split the last integral in two parts. We have

''2R 1
f dy < f —dy 4R. (B.7)
0 \/§ 4 R_z2
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4
Notice that 1 + R—z < (1 + g) forally > 0,i.e., {/1+ ,;_22 -1< § for all y > 0. Therefore, we conclude

[ e f“l(,/lﬁ_l]d
roVy 41+1;—22 ! 41+ roVy y: (B.8)

1
< 2R f —dy = 4R”.
1 y7
The combination of (B.7) and (B.8) then yields the desired estimate. O

B.2. Basics on Floquet transformation and Bloch waves

In this section we consider and recall the notion of Bloch waves and the Floquet transformation.
In comparison to differential operators with constant coeflicients plain waves e™** are substituted
by so called Bloch waves, whereas the Fourier transform is replaced by the Floquet transformation.
The basic statements on the Floquet transformation listed here can be found in [30] and [42]. The
bachelor thesis of Martin Belica [8] shows that the main results stay valid for our -potential type
operators. Altough these concepts work in arbitrary finite dimension we only recall the definitions
and statements for dimension one which allows us to keep additional notation at a minimum.

Let # := [0,2n) denote the interval of periodicity and B := [—%, %) denote the Brillouin zone. We
now recall the Floquet transformation.

Definition B.1. Let f € L*(R), x € P, s € B. The Floquet transformation T is given by

f(x = 2mn)e”™™ " = Y f(x — 27an)e*™",

Theorem B.2. The Floguet transformation T : L*(R) — L*(P x B) is well-defined and an isometric
isomorphism with inverse

(Tf)(x, ) =

(T_lg) (x —2nn) = % fB g(x, De 2" g]

forge X(PxB),xcPandn € Z.

For fixed s € B we consider the quasi-periodic eigenvalue problem

d2
Y(x + 27, 5) = e yY(x, s) for x € P,

d2 .
(__ + V) Y(-,8) = AsW(, s) in P, (B.9)

with V: R — R being 2n-periodic. Fix s € B. Then it can be shown that (B.9) has a complete, L*(P)-
orthonormal system (¢/(-, 5)) jen, of eigenfunctions. The corresponding eigenvalues are denoted by
A;(s) and are ordered in increasing way (double eigenvalues are counted twice), i.e.,

Ap(s) £ Ai(s) £ -+ < Aj(s) > 0 as j — oo,

The eigenfunctions (-, s) are called Bloch waves. By varying over s € 8 we obtain that the Bloch
waves are complete in L?(R) in the following sense:
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B.2. Basics on Floquet transformation and Bloch waves

Theorem B.3. Let f € L*(R) and define

1 n
fu(x) = ﬁ ]ZO L<(Tf) ¢, 9),¥;(, S)>L2(7D) vi(x, s)ds for x € R.

Then f, — fin L>(R) as n — oo.

We now pass to the family of operators (Ly)iez,,, from Section 5.2. Therefore, notation gets modified
and the eigenfunctions of L; are denoted by (¥ ;) jen,, the corresponding eigenvalues by (4;(s)) jex, -
Here is another technical lemmata which is used in the following.

Lemma B.4. The following statements hold true.

(a) Let f € D(Ly). Then f(2rn), f'(2nn) — 0 as n — +oo.

(b) Let f € H'(R). Then for & > 0 we have

D If(s +2mm) <

nez

i

& 7112
)”f”LZ(R) E”f ”LZ(R)

Proof. (a) Recall ¢ € (0, 2r). Therefore, & = % > 0. We first show that

1 1
fQmy? < 2( )Ilf(27m+ Mgy + 104l

Indeed, for n € Z we set u,(x) := f(2nn + x). Then (B.11) is equivalent to

1 1 1,
MO(O) < ~ (1 + )”un”iZ(_g,E) + 5””””%2(—8,8)‘

2

We compute

1 (4 1 °
1(0)? = - I @ |t + &), (07| dr = - I )

1 0 0
< - f u,(1)°dt + 2 f |u, (D, (£)\dt.

In the same manner

0
u,()*dt + % f (t + &u,(Hu, (t)dt

1 (0) = -1 f 4 |(e = D, (0] dt < ! f ) u,(1)2dt + 2 f 8|un(t)u;(z)|dt.
e Jo dt € Jo 0

By adding (B.13) and (B.14) we conclude

(. 1 1,
1,0 < 5 Ll + Ml 2y < 2(1+ )nunuy( eor * M

which establishes (B.12) and herewith also (B.11). Notice that

2 2 2 2
DoNFQan + sy S Uy < 0 and D IFQan+ My < I ag < 00

nez

nez

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)
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Thus,
| f2nrn + -)||§2(_w), \lf'2rn + -)||§2(_8,€) — 0asn — +oo. (B.15)

so that f(2nn) — 0 as n — oo follows from (B.11) and (B.15).

We now turn to the proof of f’(271n) — 0 as n — +oo. Due to

44 44
Z I1f7(2an + )”L2( ce) = Z 1 ||L2(g+27rn c2nns1)) < P

nez nez

we infer that
lf”(2nn + .)||iz(_&8> — 0asn — +oo. (B.16)

Replacing f, f by f’, f” in the calculations for (B.11) we can show that

1
f@mn)* < 5(1 + )Ilf Qrn+ N2y —||f"(27rn+ Wzomy

and the proof is finished by (B.15) and (B.16).

(b) This estimate requires some changes to the strategy in (a) so we give the details. For n € Z we set
u,(x) == f(s + 2nn + x) and show

1 1
1, (0) <(2—+ - )nunum S [ (B.17)

Then (B.10) follows from (B.17) by summation over n € Z. We have

0 0 0
1, (0)% = }T f d%[(t+7r)un(t)2]dt:% f un(O)zdt+§ f (t + m)untd, dt

| o 0 (B.18)
< - f whdt + 2f |, |dt.
T Jr -
In the same spirit we establish
u,(0)* < = f wdt +2 f |, |dt. (B.19)
Adding (B.18) and (B.19) leads with the help of Young’s inequality to
1
100 < Ty 1
2 2 2
< leun”LZ(_ﬂ-,ﬂ) + gnun”y(_ﬂ,ﬂ) + EHu"”LZ(—ﬂJT)
which verifies (B.17) and herewith also (B.10). O

We next consider a quasi-periodic problem on the interval # and derive several connections to the

family of operators (Lj)iez,,,- Precisely, for s € 8 we set

D(Lg““si) = {f € L*(P), f cont. on [0, 2xr], f’ cont. on [0,¢) U (¢, 27], f € L*0,¢), f” € L*(s,2n),
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(&) = f1(67) = =K f(5), f2m) = & f(0), f'(27) = ™ f'(0)}.

quasi

If f e D(LzuaSi) then f has a periodic extension on R and therefore L™ f := (L f)|p makes sense.
Vice versa, if f € D(L) then flp € D(L""). Moreover, L™ has pure point spectrum, namely
oL = Ujer, 4jx(s) due to the definition of L"™. We now highlight an important connection
between L™ and L.

Lemma B.5. Let f € D(L;), g € D(L™). Then

(TLefC9).8)p = (T fC.9). L™ ),

holds true for all s € B.

Proof. Let s € B. We have

27 -
(TLef (. 5).8)p = fo 3 (Lef)x = 2mn)e g ().

nez

We show that permutation of summation and integration is allowed. Therefore, for m € N we set

()= ) (L) = 2xme™ g ().

neZ,n|<m

Then

()] < [8CO D I(Lif)(x = 27m) (B.20)

nez

and the expression on the right hand side of (B.20) is in L!(#) since by monotone convergence we
have

2 T
f 12001 ) I(Lef)0x = 2xmldx = fo gL f)(x = 2m)ldx
nez

0 nez
< liglzepy D Wi fC = 27mllizepy = lgllzepllLifllizqey < .

nez

Thus, summation and integration can be interchanged and by partial integration we calculate

21 21
(TLf(-,5),8)p = f Z(ka )(x = 27n)e*™ " g(x)dx = Z f (Lo f)(x — 2mtn)e¥™ " g(x)dx
0 nez nez 0
27 5 (B21)
= Z ( f(x = 2n)e”™ " L g(x)dx + [ f/(x = 2mn)e™™ " g(x) — f(x — 2ﬂn)e2”i5”M]oﬂ) .
0

nez

The proof is done if we can show that

Z |/ = 2mn)e™™ g () — fx - 2nn)e2”"s"M]z” =0 (B.22)

nez
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since from (B.21) we then infer the desired result by again interchanging summation and integration.
It remains to verify (B.22). This is done now. By using the quasi-periodicity of g and rearranging
terms we deduce

J— . ——2n
D 1= 2mme () — flx = 2mme™ g ()]
nez
= D& (1 @r(1 = e - f/(=22m)) 5(0) - (f2n(1 = m) = f(-272m) g(0)).  (B.23)
nez

Notice that (B.23) is a telescoping series and (B.22) then follows from the fact that
' Qr(1 = n)), f(=2xn), f2r(1 — n)), f(=27n) — 0 as n — *oo,
see Lemma B.4. O

As already introduced in (5.32), for a function f € L*(R) and j € Ny, k € Zogq We set

Fiuds) = ((THC, ), 054, 8))

2Py’

where (ifj(:, 5))jeny, denotes the set of Bloch waves for the operator ;. The next statement can be
found in Theorem XIII.98 (¢) in [61]. In the proof we profit from Lemma B.5.

Corollary B.6. Let ity € D(Ly). Then for s € B we have

(T Led, ), 5, 8)),, = ia(9)ihuds) (B.24)
and
Ly = Z f/lj,k(s)ftj,k(s)lpj,k(x, s)ds in L2(R). (B.25)
jeNy VB

Proof. Lemma B.5 and the definition of ¢ entails
(T LedueC, ), 050 9)), = (T, ), Liria> 9)), = Aa(9) (T, ), 01545 9)),, = s 9)tjad).

Thus, (B.24) is established. To show (B.25) notice that due to &, € D(L;) we have w := L, € L*(R)
and therefore

W= Z L Wi 1 (x, )ds in LA(R)

JE€No

with Wj(s) = <‘]'w(-, RVTICH s)>7). By (B.24) we conclude

W34(8) = (T L, ), W34, 8)),, = i 9)ijads)

and the proof is done. m|
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Since the spectrum of L; is bounded from below we know that there is M > 0 such that A;,(s) > —M,
for all (j, s) € Ny x 8. We introduce pi(s) == A;x(s)+ M +1 > 1 as well as Ly == Ly + My + 1. Then
Ly is a positive operator. The corresponding bilinear forms on H'(R) are denoted by by and byy.
Moreover, the study of one operator L; for k € Zyyq can be seen as a monochromatic aspect whereas
the polychromatic functions only appear if those L; operators are summed over k € Z,qq. Thus, we
define

Himono = {it = (fHj) jen, : fjx: B — C measurable s.t. Z fpj,k(s)lﬁj,k(s)lzds < oo}
jeNy V8
with

il = f Hi(tjas)Pds.
B

J€No
Here is a first result concerning the space Hj mono-

Lemma B.7. Let it € H mono- Then

(x) = Y f i (W i (x, $)ds € H'(R).

jeNp V8

Proof. For n € Ny set uj(x) := Z?:o fB (s i(x, s)ds. Then u]l — uy in L*(R) as n — oo. Moreover,
we have u} € D(Ly,) for all n € Ny. Since D(Ly) € D(byy) = H'(R) we obtain u} € H'(R) for all
n € Ny. Parseval’s identity (see (5.34)) entails for m > n € N

(LUl — ui’), uy — uf}Lz(R) = Z f,uj’k(s)litj’k(s)Fds —0asn <m — oo, (B.26)
8

Jj=n+1

In particular, (u}),av is a Cauchy-sequence in H '(R). Thus, u, — win H '(R) which proves our
claim. O

m

Remark B.8. From (B.26) and ( Ly (1} — u'™), u’ — u’! = by — U, u? — ul') we deduce that
AUy — Uy ) Uy — Uy KUy = Wy Wy — Uy

the norms || - ||pi ry and |44, .., are equivalent.

L2(R)

B.3. A technical point in the proof of Theorem 5.36
In this section we close the proof of the first claim of Theorem 5.36. Therefore, let
N ={McH: - H, supp Sit N int D compact for all it € M}.

Once more, we need some additional notation. We introduce S mono : Hi.mono — H'(R) by

Sk,monoﬁ(x) = uk(x) = Z ‘[Baj,k(s)wj,k(xv S)dS.

Jj€Np
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Recall that the mapping property of Sy meno 1S described by Lemma B.7. Moreover, for ky € Nogq let
Zoddk, = 1k € Zoaa * |k| < ko} and set

Hy, = {it = (k) JENo ke Zoaazy - it : B — C measurable for all (j, k) € Ny X Zodd i,

it4(8) = &t _1(—s) for all (j,k, ) € No X Zogax, X B and (i 1) jerty € Himono for all k € zodd,ko}

with

lillgg, = | D] f ()i ju(5)Pds.
JENO,KEZoqd £

Finally, let H, := {v € H'(R) : supp v compact},

Hy={ue H'(D):u(x,) = > w(x)e™ :uy € H'(R) and it = )

k€Zoda k
and
Hy, . = {u € Hy, : supp u; compact for all k € Zyaq ,}-

The corresponding mapping reads Sy, : Hy, — Hy, given by

Spofi(x, 1) = Z Z f it (W (x, 5)dse™™" = Z Sk monotii(x)e* .

k€Zoda ky JENo k€Zodd

Notice that Sy, i is real-valued due to the condition ht ixk(s) = bt j—k(=s) for all (j, k, s) € Nog X Zoqar, X B
incorporated in H;, and Lemma 5.16.

In the proof of Theorem 5.36 we chose an element of N. This gets justified now.
Theorem B.9. N # 0.

Proof. With the notation introduced above we verify

{119«

S (Hiyo) = Hy, for all ky € Nogg (B.27)

and

{l-lle
) #, = (B.28)

ko€Nodq

Assume that (B.27) and (B.28) are valid. Then

{124
U SitH,o  =H (B.29)

ko€Nodd

and therefore Uy ay,,, S '(Hy,.) € N. Indeed, take i € H and € > 0. Due to (B.28) we find

' € Urerng Hio With [li' — @llye < £. In particular, there is k; € Nogq such that &' € H,,. (B.27)
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B.3. A technical point in the proof of Theorem 5.36

guarantees "* € S¢'(Hy, ) with [|@'? — @'|lz < §. Hence, Sy,#" € Hy, . so that Sy, &' has compact
support in D and ||i'® — dt|ly < ||i@'0 — @'lg + ||@' — @l < &, i.e., (B.29) holds true.

Thus it remains to prove (B.27) and (B.28) which is done in the following. The proof of (B.28) is
immediate by the definition of Hj, so only (B.27) needs to be proved.

For this purpose, in a first step we show that S,;inono(Hcl (R))” Wemono Himono for k € Zogq. The
mapping Si.mono 18 bijective and continuous: Indeed, mapping properties of Sy mono, injectivity as well
as the continuity follow from Lemma B.7 and the equivalence of norms mentioned in Remark B.8.
Take u € H'(R). Then i ik(s) = <(Tu)(-, $), ¥ k(s s)>¢) satisfies Sy mono#? = u Which shows that Sy mono
is also onto. Therefore, S mono has also a continuous inverse. Thus

k,mono - “k,mono

P E— k,mono — pe—" 72 953 _
Stnono HIE) ™ = S (FIE ") = S g H B) = Hino.

We now use this density result to verify (B.27). Fix ky € Nygq. The spaces Hy,, Hy,. and Hj, are by
definition isomorphic to ky + 1 copies of the "monochromatic" variants, i.e.,

Hy, ~ H'®) X --- X H(R), Hy, . ~ H'(R) X -+ x H'(R) and Hy, = H_y.mono X+ X Hig.mono -

ko+1 times ko+1 times ko+1 times

Notice that due to the equivalence of || - || (=) and [l ..., We infer that on the ko + 1 copies the norms
llitllyg, and Xgez,, ay k||, on, @€ equivalent. The desired density result now follows from the density
in the monochromatic case and the fact that we only consider a finite number of copies. Hence, also
(B.27) is established and the proof is done. |
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