KIT | KIT-Bibliothek | Impressum | Datenschutz

OpenGL® API Based Analysis of Large Datasets in a Cloud Environment

Mexner, Wolfgang; Bonn, Matthias ORCID iD icon; Kopmann, Andreas ORCID iD icon; Mauch, Viktor; Ressmann, Doris; Chilingaryan, Suren ORCID iD icon; Tan Jerome, Nicholoas; Kamp, Thomas Van de; Heuveline, Vincent; Lösel, Philipp; Schmelzle, Sebastian; Heethoff, Michael

Abstract (englisch):

Modern applications for analysing 2D/3D data require complex visual output features which are often based on the multi-platform OpenGL® API for rendering vector graphics. Instead of providing classical workstations, the provision of powerful virtual machines (VMs) with GPU support in a scientific cloud with direct access to high performance storage is an efficient and cost effective solution. However, the automatic deployment, operation and remote access of OpenGL® API-capable VMs with professional visualization applications is a non-trivial task. In this chapter the authors demonstrate the concept of such a flexible cloud-like analysis infrastructure within the framework of the project ASTOR. The authors present an Analysis-as-a-Service (AaaS) approach based on VMware™-ESX for on demand allocation of VMs with dedicated GPU cores and up to 256 GByte RAM per machine.

Zugehörige Institution(en) am KIT Institut für Beschleunigerphysik und Technologie (IBPT)
Institut für Photonenforschung und Synchrotronstrahlung (IPS)
Institut für Prozessdatenverarbeitung und Elektronik (IPE)
Scientific Computing Center (SCC)
Universität Karlsruhe (TH) – Zentrale Einrichtungen (Zentrale Einrichtungen)
Publikationstyp Buchaufsatz
Publikationsjahr 2018
Sprache Englisch
Identifikator ISBN: 978-1-5225-2785-5
ISSN: 1844-7600
KITopen-ID: 1000071278
HGF-Programm 56.03.30 (POF III, LK 01) Soft Matter, Health and Life Sciences
Weitere HGF-Programme 54.01.01 (POF III, LK 01) ps- und fs-Strahlen
Erschienen in Design and Use of Virtualization Technology in Cloud Computing. Ed.: P. Kumar Das
Verlag IGI Global
Seiten 161–181
Serie Advances in Computer and Electrical Engineering
Bemerkung zur Veröffentlichung Result of the BMB Collaboration ASTOR, finished 2016
Schlagwörter VMware vSphere, PCI-pass-through, AaaS, Scientific Cloud, Astor, GPU Virtualization, Shibboleth

Download
Originalveröffentlichung
DOI: 10.4018/978-1-5225-2785-5.ch006
Seitenaufrufe: 858
seit 25.04.2018
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page