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Abstract

A spontaneous breakup of a liquid jet into a chain of droplets is a common phenomenon

observed in daily life. Typical examples are the formation of droplets from a falling

jet under water-faucet and in the process of raining. This phenomenon has also been

used for technical applications, such as fabrications of nanoparticles from nanowires and

inkjet printing. The morphological stability of a liquid jet, which describes whether the

jet remains a uniform radius cylinder or transforms into a sequence of droplets, has been

addressed by the classical Plateau-Rayleigh criterion according to the condition that

which state has the lower surface energy/area.

In the first part of the present thesis, I aim to derive a generalized morphological sta-

bility criterion, regarding the limitations of the Plateau-Rayleigh theory, such as non-

conservation of mass and non-consistency with experimental observations. The current

stability criterion is achieved by applying the non-increasing surface energy principle as

well as by analyzing the distribution of the mean curvature, which corresponds to the

capillary force that causes the stabilization or spheroidization of jets. In contrast to the

classic Plateau-Rayleigh theory as well as other existing criteria, the present criterion

has following benefits: (i) It can be applied for perturbations of all possible amplitudes

a ∈ [0, R0], where R0 is the radius of the jet. (ii) It obeys the non-increasing free energy

principle. (iii) It is in good agreement with simulation results based on the-state-of-

the-art phase-field models. (iv) It agrees with existing criteria in their corresponding

validity range.

As shown in the Plateau-Rayleigh criterion, perturbations at a fluid-fluid interface may

dissipate or grow with time. With the aim of understanding the dissipation behavior

and the interaction of the resulted droplets, the corresponding numerical simulations

and analyses are carried out in the second part of the current thesis. In the former

case, it has been found that there is a critical capillary force above which perturbations

dissipate in a under-damped manner, which gives rise to a capillary wave. In the latter

case, the studies reveal that the migration speed of droplets is significantly enhanced

with the consideration of capillary flow. As a further extension, the effect of capillary

flow on the size distribution of droplets in the spinodal decomposition process where

multi-droplets occur is discussed in comparison with the conventional LSW theory.



Zusammenfassung

Ein spontanes Aufbrechen eines Flüssigkeitsstrahls in eine Kette von Tröpfchen ist ein

allgemeines Phänomen, das im täglichen Leben beobachtet wird. Typische Beispiele sind

die Bildung von Tröpfchen aus einem fallenden Strahl unter einem Wasserhahn und beim

Regnen. Dieses Phänomen wurde auch für technische Anwendungen, wie die Herstel-

lung von Nanopartikeln aus Nanodrähten und für das Tintenstrahldrucken, eingesetzt.

Die morphologische Stabilität eines Flüssigkeitsstrahls, die beschreibt, ob der Strahl

ein einheitlicher Radiuszylinder bleibt oder in eine Sequenz von Tropfen umgewandelt

wird, wurde durch das klassische Plateau-Rayleigh-Kriterium unter der Bedingung ange-

sprochen, dass der Zustand die niedrigere Oberflächenenergie oder die kleinere Fläche

aufweist.

Im ersten Teil der vorliegenden Arbeit möchte ich ein verallgemeinertes morphologisches

Stabilitätskriterium mit Bezug auf die Einschränkungen der Plateau-Rayleigh-Theorie,

wie die Nicht-Konservierung von Masse und die Nicht-Konsistenz mit experimentellen

Beobachtungen, ableiten. Das aktuelle Stabilitätskriterium wird durch Anwendung

des nicht steigenden Flächenenergieprinzips sowie durch Analyse der Verteilung der

mittleren Krümmung erreicht, die der Kapillarkraft entspricht, die die Stabilisierung

oder Sphäroidisierung von Strahlen bewirkt. Im Gegensatz zu der klassischen Plateau-

Rayleigh-Theorie sowie anderen bestehenden Kriterien hat das vorliegende Kriterium

folgende Vorteile: (i) Es kann für Störungen aller möglichen Amplituden a ∈ [0, R0]

angewendet werden, wobei R0 der Radius des Strahls ist. (ii) Es gehorcht dem nicht

wachsenden Prinzip der freien Energie. (iii) Es stimmt gut mit Simulationsergebnissen

auf Basis modernster Phasenfeldmodelle überein. (iv) Es stimmt mit den bestehenden

Kriterien in ihrem entsprechenden Gültigkeitsbereich überein.

Wie in dem Plateau-Rayleigh-Kriterium gezeigt, können Störungen an einer Fluid-Fluid-

Grenzfläche mit der Zeit dissipieren oder wachsen. Mit dem Ziel, das Dissipationsver-

halten und die Wechselwirkung der resultierenden Tröpfchen zu verstehen, werden die

entsprechenden numerischen Simulationen und Analysen im zweiten Teil der vorliegen-

den Arbeit durchgeführt. Im ersten Fall wurde festgestellt, dass es eine kritische Kap-

illarkraft gibt, oberhalb derer Störungen in einer unterdämpften Weise dissipieren, was

zu einer Kapillarwelle führt. Im zweiten Fall zeigen die Studien, dass die Wanderungs-

geschwindigkeit der Tröpfchen bei der Berücksichtigung der Kapillarströmung signifikant

erhöht wird. Als zusätzliche Erweiterung wird der Einfluss der Kapillarströmung auf die

Größenverteilung von Tröpfchen im spinodalen Zersetzungsprozess, bei dem Mehrfachtrö-

pfchen auftreten, im Vergleich zur herkömmlichen LSW-Theorie diskutiert.



Preface

We often observe the breakup of a liquid jet into a chain of droplets. Daily examples

are the formation of droplets from a falling jet under water-faucet and in the process

of raining. It was believed that the breakup is due to the gravitational force before

the work of Rayleigh (Nobel prize winner in physics, 1904). Based on a former work

of Plateau, Rayleigh found that this process is actually driven by the capillary force

rather than gravity. Their results are known as the Plateau-Rayleigh criterion, which

has been collected in many textbooks of materials science and regularly serves as a useful

reference in industrial applications.

The present thesis revisits the work of Rayleigh and discusses the effect of capillary

force on the related topics. The background of Rayleigh’s work as well as the relevant

applications are reviewed in chapter 2. In chapter 3, I present two state-of-the-art numer-

ical modeling techniques, which are employed to numerically corroborate the renowned

Plateau-Rayleigh criterion. The results of the corroboration are shown in chapter 4.

Inspired by the flaws of the Plateau-Rayleigh criterion, such as, non-conservation of

mass and contradiction with experimental observations, I aim to derive an alternative

morphological stability criterion, which is expected to be a generalization of Rayleigh’s

work. In chapters 5 and 6, I present the simulation results for the formation of capillary

wave and the motion of droplets, which both are driven by the capillary force. The

numerical models as well as the corresponding simulation results haven been published

in the following peer-reviewed articles

� Article 1: F. Wang∗, A. Choudhury, M. Selzer, R. Mukherjee, B. Nestler, Phys.

Rev. E 86, 066318 (2012).

� Article 2: F. Wang∗, R. Mukherjee, M. Selzer, and B. Nestler, Phys. Fluids 26,

124102 (2014).

� Article 3: F. Wang∗, M. Selzer, and B. Nestler, Physica D 307, 82 (2015).

� Article 4: F. Wang∗ and B. Nestler, Scripta Mater. 113, 167 (2016).

� Article 5: F. Wang∗, M. Ben Said, M. Selzer, and B. Nestler, J. Mater. Sci. 51,

1820 (2016).

In the final chapter, I conclude the thesis and discuss other possible applications of the

phase-field models, which have been published in the following article
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� Article 6: F. Wang∗ and B. Nestler, Acta Mater. 95, 65 (2015).

I have obtained the permission from all the co-authors and publishers to partially or

entirely use the published results (including texts, equations, tables and figures) in cur-
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I have to thank Dr. Abhik Choudhury and Dr. Michael Selzer for helping me to get

started in the group and for all their guidance and support. I am grateful to Dr. M.

Berghoff for his generous help of using latex and to Mr. O. Tschukin for his active and

valuable discussions.

Finally, I thank my wife and my parents who continually support me.

vii





Contents

1 Introduction: Synopsis 1

1.1 Morphological stability of liquid jets . . . . . . . . . . . . . . . . . . . . . 2

1.2 Under-damped capillary wave . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Effect of capillary flow on motion, coarsening and coalescence of droplets . 3

2 Literature review 5

2.1 Effect of surface tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Plateau-Rayleigh theory . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Surface energy minimization concept . . . . . . . . . . . . . . . . . 9

2.2.1.1 The work of Rayleigh in 1878 . . . . . . . . . . . . . . . . 9

2.2.1.2 The work of Rayleigh in 1879 . . . . . . . . . . . . . . . . 9

2.2.1.3 The work of Carter and Glaeser in 1987 . . . . . . . . . . 10

2.2.2 The wavelength corresponding to the maximum speed of breakup . 12

2.2.3 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3.1 Linear stability analysis: the work of Nichols and Mullins 13

2.2.3.2 Nonlinear stability analysis . . . . . . . . . . . . . . . . . 15

2.2.4 Applications of the Plateau-Rayleigh theory . . . . . . . . . . . . . 15

2.2.5 Capillary bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Motion of droplets due to capillarity . . . . . . . . . . . . . . . . . . . . . 17

3 Methods: The Cahn-Hilliard-Navier-Stokes and the Allen-Cahn mod-
els 21

3.1 The free energy functional for non-uniform systems . . . . . . . . . . . . . 23

3.2 A mathematical definition of the chemical potential and the Cahn-Hilliard
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Definition of the chemical potential in a tangent functional space . 24

3.2.2 The Cahn-Hilliard model . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Capillary tensor and the Cahn-Hilliard-Navier-Stokes model . . . . . . . . 26

3.3.1 The stress balance at a fluid-fluid interface and the capillary tensor 26

3.3.2 The Cahn-Hilliard-Navier-Stokes equation . . . . . . . . . . . . . . 27

3.3.3 Non-dimensionalization of the Cahn-Hilliard-Navier-Stokes equation 28

3.3.4 Discretization and staggered mesh . . . . . . . . . . . . . . . . . . 29

3.4 Simulation system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 The multi-phase Allen-Cahn model . . . . . . . . . . . . . . . . . . . . . . 35

3.5.1 The Allen-Cahn model . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.2 Volume preservation technique . . . . . . . . . . . . . . . . . . . . 36

ix



Contents x

3.6 In accordance with the thermodynamical law . . . . . . . . . . . . . . . . 36

4 Corroboration of the Plateau-Rayleigh criterion 39

4.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Validation of the classic Plateau-Rayleigh criterion for tiny perturbations 40

4.3 Significant deviations of the simulation results from the Plateau-Rayleigh
criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 The problems for the stability criterion in literature . . . . . . . . . . . . 43

5 A generalized morphological stability criterion for liquid jets 45

5.1 A general surface energy minimization concept . . . . . . . . . . . . . . . 45

5.2 Physical mechanisms for spheroidization . . . . . . . . . . . . . . . . . . . 47

5.3 Derivation for the generalized morphological stability criterion . . . . . . 48

5.4 Comparison of the present stability criterion with existing criteria and
with the simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 An application to the detachment of nanowires . . . . . . . . . . . . . . . 53

6 Underdamped capillary wave 57

6.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Effect of capillary flow on motion, coarsening and coalescence of droplets 67

7.1 Analytical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1.1 Bipolar coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1.2 Solution of the Laplace equation in the bipolar coordinate . . . . 71

7.1.3 Stream function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.1.4 Interpretation of the analysis . . . . . . . . . . . . . . . . . . . . . 81

7.2 Numerical investigation on the motion of the droplets driven by capillary
flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2.1 Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2.2 Transition from motion to coalescence . . . . . . . . . . . . . . . . 86

7.2.3 Coalescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2.4 Coarsening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2.5 Phase separation affected by capillary flow in Fe-50 at% Sn alloy . 90

7.2.6 Phase separation influenced by capillary flow in Fe-40 at% Sn alloy 92

8 Conclusion and outlook 97

8.1 Conclusion and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.2.1 Irregular perturbation . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.2.2 Satellite mini droplets . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.2.3 Other applications of the numerical models . . . . . . . . . . . . . 100

A Capillary tensor 103

B Surface Laplacian evaluation 105



Contents xi

C Coefficients 107

D Velocity and stream function 109

E Expansions 111

F Matrices 113

G Recursion 115

H List of Symbols 117

I List of Abbreviations 119

Bibliography 121





Chapter 1

Introduction: Synopsis

When a flat fluid-fluid interface/surface is perturbed, the mean curvature of the inter-

face/surface is inhomogeneous and the capillary flow is subsequently induced. In the

present thesis, I investigate the effect of capillary flow at a fluid-fluid interface/surface us-

ing the phase-field models, namely, the Cahn-Hilliard-Navier-Stokes and the Allen-Cahn

models. Both methods are in accordance with the fundamental law of thermodynamics

that the free energy of the system is non-increasing with time. In particular, the research

contents are classified into three categories:

� Morphological stability of liquid jets due to capillarity

� Capillary wave at a fluid-fluid interface

� Effect of capillary flow on the motion of droplets

The first topic is motived by the experimental observation that a continuous fluid jet

may break up into a chain of droplets after perturbations. A daily example is shown in

Figure 1.1: Illustration for a falling jet under water faucet. This figure is from the
website: www.flickr.com.
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Fig. 1.1, where the falling jet under water-faucet sometimes is a continuous cylinder and

occasionally breaks up into a chain of droplets. The question arising is that when the

liquid jet is stable and when it is unstable. This topic was investigated by Lord Rayleigh

(Nobel prize winner in physics, 1904) based on a former work of Joseph Plateau. The

derived criterion is known as the Plateau-Rayleigh criterion, which has been collected in

many textbooks. However, I shall point out the limitations of this criterion and propose

an alternative one, which seems to be more general.

In the second topic, I focus on the dissipation behavior of the perturbation at a fluid-

fluid interface. I shall figure out when the dissipation of perturbations is over-damped

and when it is under-damped. In the lateral case, the perturbation oscillates sinusoidally

and the amplitude exponentially decreases with time, which results in a capillary wave.

The present study on this topic is to advance our understandings on the formation of

capillary wave. In the third topic, I investigate the effect of capillary flow on the motion

of the droplets. In the following sections, I present a brief overview of the work.

1.1 Morphological stability of liquid jets

This portion of the thesis deals with the morphological stability of a liquid jet which is

perturbed by a cosine/sinusoidal function in the radial direction. As shown by Rayleigh

[1], the final state of the perturbed jet is a chain of droplets if the wavelength of the

perturbation is greater than the circumference of the jet. Otherwise, the end-state is

a uniform-radius cylinder. In chapter 4, I corroborate Rayleigh’s criterion using the

Cahn-Hilliard-Navier-Stokes (CHNS) model. However, Rayleigh’s work is based on the

consideration of tiny perturbations. For perturbations of larger amplitudes, I observe

that the simulation results of the CHNS model significantly deviate from the classical

Plateau-Rayleigh criterion.

Motivated by the above observation, I aim to derive a generalized criterion in chapter

5. In the first part of chapter 5, I propose a novel surface energy minimization concept.

In contrast to the assumption that the initial cosine/sinusoidal perturbation remains

harmonic all the time in literature, the temporal perturbation is expressed in a more

general form. The objective is to obtain the critical setup which obeys the non-increasing

free energy principle. In the second part of chapter 5, the corresponding dynamic equa-

tions is examined to derive the critical setup for the breakup of liquid jets. The present

criterion is compared with the work of Rayleigh [1, 2], Nichols and Mullins [3], Carter

and Glaeser [4], and Nayfeh [5]. Which criterion obeys the non-increasing freee energy

principle and which not are further discussed.



Chapter 1. Introduction: Synopsis 3

1.2 Under-damped capillary wave

This part discusses the dissipation behavior of perturbations at a fluid-fluid interface

and is presented in chapter 6. The diffusion potential correlates to the mean curvature

of the interface and after the perturbation, a surface diffusion/convection is induced due

to the inhomogeneity of the mean curvature. In two dimensions, the mean curvature at

the convex position is greater than the one at the concave place and the surface flux of

the surface diffusion/convection is from the convex to the concave positions, resulting

in the dissipation of the perturbation.

The objective of this chapter is to investigate when the perturbation dissipates in a

under-damped manner and when it does not. In the former case, the amplitude of the

perturbation exponentially decreases but oscillates sinusoidally with time, giving rise

to a capillary wave. The critical condition for the occurrence of the capillary wave is

obtained by using the Fourier analysis.

1.3 Effect of capillary flow on motion, coarsening and co-

alescence of droplets

This part of the thesis is presented in chapter 7. In the first part, I analytically ex-

plore the motion of two droplets in a bipolar coordinate. The Laplace equation for the

concentration and the stream function for the convection are solved analytically with

appropriate boundary conditions. The Laplace equation is coupled with the stream

function through the balance between the capillary force and the viscosity force.

In the second part of this chapter, I study the motion of two droplets using the CHNS

model. Depending on the distance between the droplets and the size ratio, I investigate

the effect of capillary flow on the motion, coarsening and coalescence of the droplets.

Moreover, the effect of capillary flow on the motion speed of droplets is explored. As a

further extension, I study the role of capillary flow in the spinodal decomposition process

where multi-droplets occur.





Chapter 2

Literature review

Surface tension is an important property of materials. At a static fluid-fluid interface, the

effect of surface tension is quantified by the renown Young-Laplace equation, which states

that the pressure difference across the interface equals the surface tension multiplying

the curvature. When the mean curvature or surface tension is inhomogeneous, a fluid

flow is induced and the treated problem is in the context of fluid dynamics rather than

fluid statics. The induced flow is named as capillary flow and gives rise to distinct

morphological patterns in natural science.

One typical example for the pattern formation due to capillary flow is that a liquid jet

can simultaneously break up into a chain of droplets. This topic was addressed by the

classical Plateau-Rayleigh criterion, which will be overviewed in the current chapter.

Achievements from other scientists as well as the corresponding technical applications

of this topic are also briefly reviewed.

2.1 Effect of surface tension

Surface tension is due to the asymmetry of molecules forces, such as cohesion and adhe-

sion. It plays a significant role in materials science, physics, chemistry, biology, etc. At

constant temperature T and pressure P , surface tension equals Gibbs free energy G per

surface area A and it is defined as

σ =

(
∂G

∂A

)
T,P

.

Fig. 2.1 shows an example for a natural observation of the effect of surface tension [6].

Water-walking insects usually climb water menisci and seek land to lay their eggs or

avoid predators. This climbing ability is a necessary adaption for their ancestors as they

evolved from terrestrials to live on the water surface. During the climbing process, the

5
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Figure 2.1: Meniscus climbing by the water treader Mesovelia [6]: (a) Mesovelia ap-
proaches the menisci from right to left. (b) Climbing process captured by
a high speed video. (c) Schematic illustration of the meniscus-climbing
of Mesovelia. Reprinted with permission from Nature Publishing Group
© 2005.

weight of the water-walking insect is balanced with the surface tension force

ρgh = σκ,

where ρ is the density of the insect, g is the gravitational acceleration, h(x) and κ are

the analytical expression and mean curvature of the menisci, respectively.

At static, the pressure difference across the fluid interface equals the capillary force:

∆p = σκ. When the curvature κ is non-uniform, a pressure gradient occurs and drives

the motion of the fluid. For solid phases, the diffusion potential changes with the mean

curvature and the evolution of the system is caused by the surface diffusion. Either the

convection or the surface diffusion tries to minimize the surface energy, or to reduce the

surface area for isotropic surface tension.

A typical example for the surface area minimization is coalescence. When two droplets

are in contact, the non-uniform curvature around the neck causes the motion of the

droplets to join each other, as shown in Fig. 2.2 (a). The convergence state is a droplet

which has less surface area than before coalescence. The role of coalescence is crucial

in the formation of rain. As droplets are carried by the updrafts and downdrafts in a

cloud, they collide and coalesce to form larger droplets. Another example is that, when

we mix the salad, the suspended oil-drops coalesce in the vinegar.
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Contrary to coalescence, a perturbed fluid-column can simultaneously breaks up into

separate droplets, as illustrated in Fig. 2.2 (b). This process is also to minimize the

surface area, as in the case of coalescence, and is observed in many physical systems

with applications to such fields as circuit technology, annealing, and sintering. The

question arising is when the jet decomposes into a chain of droplets and when it is

morphologically stable.

The well-known classic pinch-off condition of liquid jets is according to Plateau [7] and

Rayleigh [1]. The analyzed setup consists of a R0-radius jet, which is axisymmetrically

perturbed by a wave function with amplitude a, wavelength λ or wavenumber k, so

that the surface of the jet is represented by r = R0 + a cos kz. With a variation of the

wavelength λ, two distinct convergence behaviors appear [8–20]. In the first case, the

perturbation decreases in amplitude and the final state is a jet of uniform radius. In the

second case, the jet decomposes into a chain of spherical particles and we describe this

process as spheroidization.

According to the classic PR criterion, the jet simultaneously decomposes into a sequence

of droplets when the wavelength of the perturbation is greater than the circumference

of the cylinder λ > 2πR0. Otherwise, the jet is morphologically stable.

Coalescence

Pinch-o

(a)

(b)

Figure 2.2: Illustration for coalescence and pinch-off.

2.2 The Plateau-Rayleigh theory

In literature, there are two types of theories to derive the morphological stability criterion

of jets. The first type is based on the non-increasing free energy principle, in accordance

with the basic thermodynamic law. Typical works of this kind are, for example, Rayleigh

in 1878 [1] and 1879 [2], as well as Carter and Glaeser [4]. The second type is based on

the linear [3] or non-linear stability analysis [5] focusing on the evolution equation. In

all of the works, the following form of axisymmetrical perturbation

r = R0 + a cos kz, (2.1)
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is considered except of Rayleigh’s theory in 1879 where he considers a perturbation of

the form

r = R0 + an cosnθ cos kz, (2.2)

where n is an integer, an is the perturbation amplitude, and θ is the angle in the polar

coordinate of the perpendicular plane.

R0

(a)

λ

(b)

Figure 2.3: Schematic figure: (a) Illustration of a liquid cylinder with radius R0.
(b) Description of a cylinder perturbed by a sinusoidal function R0 +
a cos(2πz/λ) in the radial direction, where λ and a are the wavelength
and amplitude of the perturbation, respectively.

The perturbation of Eq. (2.1) is sketched in Fig. 2.3 and is a special case of Eq. (2.2)

for n = 0. We denote the radius of the jet, which has the same volume as the perturbed

state, as Ru. The relation between R0, Ru and a is obtained by the constraint of

constant-volume, which gives rise to different results for the two sorts of perturbations.

For the perturbation of Eq. (2.1), the relationship between R0, Ru and a is obtained by

matching the volumes, πR2
uλ =

∫ λ
0 π[R0 + a cos(kz)]2dz, which yields that

R2
u = R2

0 + a2/2.

For the perturbation of Eq. (2.2), the equivalent of the volumes πR2
uλ =

∫ λ
0

∫ 2π
0

1
2 [R0 +

a cosnθ cos kz]2dθdz yields two different results:

R2
u =

R2
0 + a2/2 for n = 0,

R2
0 + a2/4 for n = 1, 2, 3, · · · .

(2.3)

These two distinct results are due to the fact that the integration
∫ 2π

0 cos2(nθ)dθ is 2π

for n = 0 and is π for n 6= 0.
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2.2.1 Surface energy minimization concept

2.2.1.1 The work of Rayleigh in 1878

Assuming isotropic surface tension σ, Rayleigh derived an expression for the difference

of the surface energies before (Eu) and after (Ep) perturbations as [1]

Ep − Eu =
πa2σ

2R0

[(
2πR0

λ

)2

− 1

]
.

According to the energy concept that lower free energy state is favored, the perturbed

cylinder detaches into a string of spherical particles if the wavelength λ is greater than

the circumference of the cylinder 2πR0. The jet is morphologically stabilized otherwise.

Accordingly, Rayleigh obtained a critical perturbation wavelength for the morphological

stabilization

λcrit
1 = 2πR0. (2.4)

The problem of this criterion is that the volumes of the initial and perturbed states are

not equivalent, namely, ∫ λ

0
πr2dz 6= πR2

0λ.

2.2.1.2 The work of Rayleigh in 1879

The careless consideration of the non-consistency of volume/mass at the compared states

is subsequently amended by Rayleigh himself in 1879 [2]. The corrected form of the

Plateau-Rayleigh criterion reads

λcrit
2 = 2πRu, (2.5)

where Ru is related to the radius R0 and amplitude a, as shown in Eq. (2.3). The second

form of the Plateau-Rayleigh criterion is also obtained from the energy minimization

concept:

Ep − Eu =
πa2

nσ

4Ru
[(2πRu/λ)2 − 1], (2.6)

where Eu = (2πRuλ)σ is the surface energy of a jet with uniform radius Ru. The

acquisition of the term (2πRuλ)σ benefits from the binomial approximation for the

radius R0 [2]

R0 = Ru −
a2

8Ru
. (2.7)

A comparison of Eq. (2.7) with Eq. (2.3) results in a residual term a4

64R2
u

, which is

negligible only if the amplitude is much less than the radius Ru. Hence, the second

form of the Plateau-Rayleigh criterion merely holds for tiny perturbations. For the

general case of finite amplitude, the Plateau-Rayleigh stability criterion fails to predict

the morphological stabilization of jets, as pointed out by Carter and Glaeser [4].
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2.2.1.3 The work of Carter and Glaeser in 1987

Carter and Glaeser [4] reexamined the Rayleigh stability criterion and found that the

critical wavelength shifts away from that predicted by Rayleigh. The energy minimiza-

tion concept which was used by Rayleigh is employed again by Carter and Glaeser.

Assuming uniform surface tension, the calculation of the surface energy turns to the

evaluation of the surface area and is expressed as

Ep = σ

∫ λ

0
2πr

√
1 +

(
dr

dz

)2

dz

=
8σπR0a

β
E(β), (2.8)

where β2 = a2k2/(1 + a2k2) and E(β) is the complete integral of the second kind of

modulus β. It is noteworthy that the evaluation of the surface energy has to be subject

to the constraint of constant-volume.

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0  0.2  0.4  0.6  0.8  1

(E
p
-E

u
)/

σ
 x

1
0

4

a/R0

∆E = 0 at αm

Figure 2.4: Illustration for the results of Carter and Glaeser [4]: the difference of the
surface energy as a function of the ratio a/R0.

The work of Carter-Glaeser is summarized as two parts:

� (i) For λ > 2πRu, the difference of the surface energy ∆E := Ep−Eu monotonically

decreases with the scaled amplitude a/R0, as shown by the dashed line in Fig. 2.4.

In this case, any perturbations increase in amplitude to decrease the surface energy,

resulting in the spheroidization.

� (ii) For some wavelengths λ < 2πRu, the surface energy passes through a maximum

value at a/R0 = (a/R0)m =: αm, as illustrated by the solid line in Fig. 2.4. To

reduce the surface energy, the perturbations decrease in amplitude for 0 < a/R0 <

αm and increase in amplitude for αm < a/R0 < 1, as sketched by the blue lines

with arrows. Therefore, Carter and Glaeser proposed the following condition for
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the critical configuration
dEp
da

. (2.9)

The result (ii) indicates that for λ < 2πRu, the perturbed jet is capable to transform

into separated spheres as long as the amplitude is sufficiently large, in contrast to the

PR criterion. However, the stability criterion of Carter and Glaeser is not given in a

closed form. With the linear relativity as high as 0.99, Ma et al. [22] approximated the

result of Carter and Glaeser as

λcrit
3 = 2πRu(1− 0.34a2/R2

u). (2.10)

Another energy minimization concept for the spheroidization of jets is based on a com-

parison of the surface energy of the perturbed jet with the sphere which has the same

volume. For a jet with mean radius Ru, the corresponding radius of the sphere is

Rs = (3R2
uλ/4)1/3. For isotropic surface energy, the comparison of the surface energies

turns to the evaluation of the surface areas, which yields that

λcrit
s = 4.5Ru. (2.11)

This stability criterion occasionally appears in some textbooks [23] and is obviously

not accurate according to the work of Carter et al [4]. In Fig. 2.5 (a), I plot the

normalized critical wavelength as a function of the scaled amplitude and compare the

stability criterion of Eq. (2.11) (the horizontal solid line) with the one from Carter-

Glaeser (the dashed line with triangles). According to the surface energy minimization

concept of Carter and Glaeser, above the dashed line, the end-state of the jet is a row

of droplets, and below the dashed line, the final state is a uniform radius cylinder. The

(a)

0

0.05

0.1

0.15

0 0.2 0.4 0.6 0.8 1

(E
p-

E
u)

/σ

a/R0

(b)

Figure 2.5: Illustration for the limitation of the criterion, Eq. (2.11).
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stability criterion of Eq. (2.11) crosses with the result of Carter and Glaeser at around

a/Ru ≈ 0.7. According to the criterion of Eq. (2.11), there is a new morphologically

unstable region (the hatched line filled area) and a new morphologically stable region

(circle filled area). Herein, I highlight that these two regions are actually in conflict with

the surface energy minimization concept and the corresponding explanation is shown in

Fig. 2.5 (b), where I plot the difference of the surface energy (Ep −Eu)/σ as a function

of the scaled amplitude a/R0. As can be seen from the figure, the surface energy of the

state of a/R0 = 1, which corresponds to a droplet-structure, is higher than the state

of a/R0 = 0, which depicts a uniform radius cylinder. According to the criterion of

Eq. (2.11), the final state has to be a uniform radius cylinder. However, if the initial

state (the blue circle) locates at the right hand side of the energy barrier (black circle),

the jet cannot converge to a uniform radius jet because of the existence of the energy

barrier.

2.2.2 The wavelength corresponding to the maximum speed of breakup

Apart from the critical wavelength, Rayleigh has also derived a prevailing wavelength

which corresponds to the fastest breakup. The derivation is based on the Lagrange

equation with the estimated potential and kinetic energies.

According to the work of Rayleigh [2], the potential energy per unit length is expressed

as

E′ := E − 2πRuσ =
1

4
πR−1

u a2
nσ(k2R2

u + n2 − 1),

where 2πRuσ is the surface energy per unit length for a jet of uniform radius Ru and E

is the surface energy per unit length for the perturbed jet. If n is unity or any greater

integer, the difference of the surface energy E′ is positive, indicating that the jet is

morphologically stable. For n = 0, the jet is stable or unstable according as kRu is

greater or less than unity, which yields a critical perturbation wavelength, as shown in

Eq. (2.5).

The kinetic energy per unit length is obtained by solving the Stokes equation in the

cylindrical coordinate

K =
1

4
πρR2

u

In(ikRu)

ikRuI ′n(ikRu)

(
dan
dt

)2

, (2.12)

where ρ is the density and In is the modified Bessel function of the n-th order. Knowing

the kinetic as well as the potential energies, the motion of the fluid follows the Lagrange

equation d
dt
∂(E+K)
∂(ȧn) = ∂(E+K)

∂an
, yielding

d2an
dt2

+
σ

ρR3
u

ikRuIn
In(ikRu)

(n2 + k2R2
u − 1)an = 0.
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Figure 2.6: Dispersion relation for the morphological stability of rods according to
Eq. (2.13).

If we assume an ∝ eωt, we obtain the following dispersion relation

ω2 =
σ

ρR3
u

ikRuI
′
n(ikRu)

In(ikRu)
(n2 + k2R2

u − 1). (2.13)

The dispersion relation for kRu < 1 and n = 0 is shown in Fig. 2.6, where the growth rate

is scaled by
√
ρR3

u/σ. We observe that the maximum growth rate occurs at kRu ≈ 0.697,

which yields a wavelength corresponding to the maximum speed of the breakup

λm ≈
√

2λcrit = 2
√

2πRu.

2.2.3 Stability analysis

2.2.3.1 Linear stability analysis: the work of Nichols and Mullins

According to the derivation of Mullins [3], the normal velocity vn at any point of a

surface caused by the surface diffusion is expressed as

vn = Bs∇2
sκ, (2.14)

where the mobility Bs is related to the surface diffusivity Ds. For small-amplitude

perturbations, the mean curvature is approximated as [3]

κ =
1

r
+
d2r

dz2
=

1

R0 + a sin(2πz/λ)
+ a(2π/λ)2 sin(2πz/λ). (2.15)
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Using the binomial expansion and only keeping the first order terms in a, we have

1

R0 + a sin(2πz/λ)
≈ 1

R0
− a sin(2πz/λ)

R2
0

. (2.16)

Substituting Eq. (2.15) and Eq. (2.16) into Eq. (2.14) yields that

vn = Bsa(2π/λ)2

[
1

R2
0

− (2π/λ)2

]
sin(2πz/λ). (2.17)

The normal velocity of the interface can also be calculated as the derivative of the

displacement with respect to time

vn =
dr

dt
=
dR0

dt
+
da

dt
sin(2πz/λ). (2.18)

Comparing Eq. (2.17) and Eq. (2.18), we have the following equalities

dR0

dt
= 0,

1

a

da

dt
= Bs(2π/λ)2

[
1

R2
0

− (2π/λ)2

]
.

The critical geometrical configuration is given by the condition of da
dt = 0, which gives

rise to a cutoff wavelength

λcrit
1 = 2πR0, (2.19)

as the result of Rayleigh in 1878.

Figure 2.7: Formation of droplets viewed with a stroboscope light source and long
exposure photograph (a) and a continuous light source and fast-shutter-
speed photography (b). The figures are taken from Ref. [24].
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2.2.3.2 Nonlinear stability analysis

Expanding the wave in terms of the ratio ε := a/Ru till the third order

r = R0 +

3∑
n=1

εnRu +O(ε4), (2.20)

Nayfeh [5] performed a nonlinear stability analysis in the scope of fluid dynamics and

obtained another critical wavelength

λcrit
4 = 2πRu/[1 + 3a2/4R2

u]. (2.21)

Herein, the initial wave does not remain in harmonic with time and this fact indicates

the incompleteness of the result of Carter and Glaeser.

2.2.4 Applications of the Plateau-Rayleigh theory

Figure 2.8: Fabrication of nanoparticles from nanofiber [26]: (a) A microscopic pre-
form is thermally drawn into a fiber. (b) A magnification of the nanofiber.
(c) Occurrence of the Plateau-Rayleigh instability. (d) The instability
time as a function of temperature. (e) and (f) SEM images of the ob-
tained nanoparticles. Reprinted with permission from Nature Publishing
Group © 2012.
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Figure 2.9: SEM images of Polymethyl methacrylate (PMMA) nanostructures by an-
nealing PMMA nanofibers in ethylene glycol for 3 h at different tempera-
tures: (a) room temperature, (b) 80, (c) 90, (d) 100, (e) 120, and (f) 140
�. This figure is from Ref. [27].

The classic Plateau-Rayleigh stability criterion is used to understand lots of natural

phenomena and has broad applications. Fig. 2.7 illustrates the formation of droplets

under a water faucet [24]. When the water-column is falling down, it is stretched by

the gravitational force. With distances far away from the faucet, we observe a chain of

droplets. When the water-column is thin enough, the gravitational force is negligible in

comparison with the surface tension force. Thus, the detachment of the water-column

into a series of droplets can be understood using the Plateau-Rayleigh theory. Another

daily example of Plateau-Rayleigh instability occurs in urination. The stream of urine

experiences instability after about 15 cm, breaking into droplets, which causes significant

splash-back on impacting a surface [25].

In engineering applications, the Plateau-Rayleigh instability is often used for the fabri-

cation of uniformly sized, structured spherical particles spanning an exceptionally wide

range of sizes. Fig. 2.8 shows a fabrication process of nanoparticles from nanofiber from

a recent literature [26]. At the beginning, a microscopic preform is thermally drawn

into a fiber. Subsequent thermal processing induces the Plateau-Rayleigh instability,

which results in the detachment of the fiber. A magnification of the fiber is illustrated

in Fig. 2.8 (b). Fig. 2.8 (c) shows the occurrence of the Plateau-Rayleigh instability

when a temperature gradient is imposed along the fiber. The calculated instability time

for different temperatures and diameters is given in Fig. 2.8 (d). Fig. 2.8 (e) and (f)

show the SEM images of the obtained nanoparticles with diameters ranging from 20 nm

to 500 µm.

In Fig. 2.9, I show another example which depicts the transformation of PMMA nanofibers

to nanoparticles [27]. The PMMA nanofibers are annealed in ethylene glycol at different

temperatures for 3 h. When the temperature is less than the glass transition temper-

ature of PMMA, the fiber structure of the polymer is retained, as shown in Fig. 2.9
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(a), (b) and (c). When the temperature is higher than the glass transition temperature,

transformation from nanofiber to nanoparticles is observed, as illustrated in Fig. 2.9

(d), (e) and (f). The mechanism for the morphological change of the nanofiber is the

Plateau-Rayleigh instability. The fabrication of nanospheres, which is based on the

Plateau-Rayleigh theory, has been widely reported in many other references [28–33].

2.2.5 Capillary bridge

Fig. 2.10 illustrates a liquid jet with a length of λ. At the positions of z = 0 and

z = λ, the liquid jet is in contact with two rigid bodies with an arbitrary shape, such

as two planar surfaces shown in Fig. 2.10. This kind of setup is usually named as

capillary bridge, which occurs, for instance, in the process of soldering [34], in atomic

force microscopy [35] and in living nature [36]. Thermodynamically, the liquid jet takes

the shape which has the lowest surface area. According to Rayleigh’s criterion, if the

length λ exceeds a critical value, the liquid bridge may be unstable and breaks up into

two droplets, as illustrated in Fig. 2.10.

One significant difference of the capillary bridge from Rayleigh’s consideration is that

the liquid jet in the longitudinal dimension does not have free boundaries. At the contact

boundaries, as highlighted by the black circles, the following force balance condition

σ1 = σ2 cos θ + σ3 (2.22)

has to be fulfilled. It is noted that Eq. (2.22) also holds, if the capillary bridge breaks

up into two droplets. At static, the shape of the capillary bridge is obtained by using

the Young-Laplace equation with a constraint of Eq. (2.22) at the contact [37].

2.3 Motion of droplets due to capillarity

After the breakup of the jet, the concentration along the surface of the resulted droplets

may be non-uniform, if there is a mass transfer between the droplet-phase and the

surrounding phase. Also, the shape of the droplet may slightly deviate from a sphere

and the mean curvature along the surface of the droplet is inhomogeneous. According to

the Gibbs-Thomson effect, the interfacial concentration along the surface of the droplet

is inhomogeneous as well. Consequently, the concentration gradients at the surface of

the droplet induce a flow, as sketched in Fig. 2.11. This kind of phenomenon occurs

in daily lives, e.g., when we mix the salad, we see the motion and coarsening of oil

droplets suspended in vinegar. This sort of motion has also been in situ captured in the

Al-Bi alloy [38]. This phenomenon was primarily explained by Brownian motion [39].

However, it has been recently demonstrated that the motion of the droplets is caused

by the gradient of the concentration or surface tension [40].
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Figure 2.10: Illustration for a capillary bridge and its breakup state.

For a small capillary number, the droplet stays in the form of a sphere or nearly a

sphere. A natural choice to address the motion of the droplet is to solve the system

equations in the polar or bipolar coordinate. In the motion process, the mass transport

follows the convective diffusion equation, which transfers into the Laplace equation when

the Péclet number of the system is much less than unity. For an impressible flow, the

convection profile is obtained by solving the biharmonic equation for the stream function.

The general solutions of the Laplace equation and the biharmonic equation have been

derived by Stimson and Jeffery [41, 42]. The Laplace equation and the biharmonic

equation are coupled by the condition of force balance between the capillary force and

the viscosity force.

The effect of capillarity on the motion of droplets has been widely studied. Golovin

et al. [43] theoretically calculated the motion speed of the droplets when two droplets

approach each other. The analysis of Golovin et al. is carried out in the bipolar coordi-

nate based on the general solutions found by Stimson and Jeffery. The similar strategy
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has been employed by, for example, Haber et al. [44], Meyyappan et al. [45] and Keh et

al. [46], to study the motion of two droplets due to thermal gradients. Those mentioned

theoretical studies have been partially confirmed by the recent numerical experiments.

For instance, Shimizu and Tanaka [40] studied the motion of droplets in the process

of phase separation by employing the Cahn-Hilliard-Navier-Stokes equation, which is

sometimes known as model H according to the notation of Hohenberg and Halperin [47].

They found that in the process of phase separation, the barycenter of the droplets moves

in a particular direction, in contrast to the stochastic motion. This kind of motion be-

havior provides an evidence that the motion is driven by the capillary force rather than

due to Brownian motion. Although Shimizu and Tanaka in their publication stated that

the directional motion is a novel mechanism, the motion, coalescence and coarsening

due to surface tension have been realized at least 30 years ago (see Ref. [43]).

Motion Coalescence Coarsening

Figure 2.11: Illustration for the effect of capillarity on the motion, coalescence and
coarsening of droplets.





Chapter 3

Methods: The

Cahn-Hilliard-Navier-Stokes and

the Allen-Cahn models

In this chapter, I present two phase-field models that are used for the numerical experi-

ments. The first one is the Cahn-Hilliard-Navier-Stokes model, which has been published

in Ref. [48]. This model is a combination of the Cahn-Hilliard model with the Navier-

Stokes equation, where the former one is for the mass conservation and the latter one

concerns the momentum conservation. In the convective Cahn-Hilliard equation, the

flux contains two contributions: one from diffusion, which is caused by the gradient of

chemical potential, and the other from the capillary flow, which is induced by the gradi-

ent of curvature. The capillary flow is modeled by the capillary tensor, which is derived

either from the Cahn-Hoffman-ξ vector [49] or with the aid of Noether’s theorem [50].

In the second part, I briefly overview the volumed-preserved Allen-Cahn model, which

was introduced by Nestler al. [51]. In contrast to the conserved order parameter of con-

centration in the Cahn-Hilliard model, the order parameter φ in the Allen-Cahn model

is not a conserved variable. The fundamental concept of both models is to minimize the

free energy or to maximize the entropy functional of the system, in accordance with the

second law of thermodynamics.

21
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Model I: The

Cahn-Hilliard-Navier-Stokes

model
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3.1 The free energy functional for non-uniform systems

I consider a two-phase system composed of two components. The two phases are sep-

arated by a diffuse interface in the length scale of d0, where d0 is the capillary length.

The free energy functional for the non-uniform system is obtained by integrating the

free energy density over the domain V

F(c) =

∫
V
g(c,∇c,∇2c, · · · )dx,

where the free energy density g depends on the mole fraction c and the derivatives ∇c,
∇2c, · · · . A Taylor expansion of the free energy density with respect to the uniform

state yields

g(c,∇c,∇2c, · · · ) = g0(c) +
∑
i

∂g

∂ ∂c
∂xi

∣∣∣∣
0

(
∂c

∂xi
− 0

)
+
∑
i,j

∂g

∂ ∂2c
∂xixj

∣∣∣∣
0

(
∂2c

∂xixj
− 0

)

+
1

2!

∑
i,j

∂2g

∂ ∂c
∂xi
∂ ∂c
∂xj

∣∣∣∣
0

(
∂c

∂xi
− 0

)(
∂c

∂xj
− 0

)
+ · · · , (3.1)

where the subscript |0 denotes the value evaluated at the uniform state. The free energy

density of an isotropic system is a scalar value, which is invariant to the symmetric

operations: reflection and rotation. Hence, we have the following equalities

∂g

∂ ∂c
∂xi

∣∣∣∣
0

= 0, ∀i, ∂g

∂ ∂2c
∂xi∂xj

∣∣∣∣
0

= 0, i 6= j,
∂2g

∂ ∂c
∂xi
∂ ∂c
∂xj

∣∣∣∣
0

= 0, i 6= j.

With the definition

κ1 :=
∂g

∂ ∂
2c
∂x2i

, κ2 :=
1

2

∂2g

∂ ∂c
∂xi
∂ ∂c
∂xi

,

Eq. (3.1) is reduced to

g(c,∇c,∇2c, · · · ) = g0(c) + κ1∇2c+ κ2(∇c)2.

The free energy functional is thus rewritten as

F(c) =

∫
V

[g0(c) + κ1∇2c+ κ2(∇c)2]dx.

The Laplace term κ1∇2c is equivalent to ∇ · (κ1∇c)− dκ1/dc(∇c)2. Utilizing the diver-

gence theorem and the homogeneous Neumann boundary condition∫
V
∇ · (κ1∇c) =

∫
∂V
κ1∇c · nd`, ∇c · n = 0 at ∂V,
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we obtain the final expression for the free energy functional

F(c) =

∫
V

[f(c) + κc(∇c)2]dx, (3.2)

where the following definitions: f := g0 and κc := κ2 − dκ1/dc have been made. Ac-

cording to the definition, it is evident that f(c) is the free energy density of the bulk

phase. The modeling parameter κc is often called the gradient energy coefficient, which

is related to the width of the diffuse interface and the interfacial energy.

3.2 A mathematical definition of the chemical potential

and the Cahn-Hilliard model

3.2.1 Definition of the chemical potential in a tangent functional space

Let us define the following notations:

� F ∈ H1, where H1 is the Sobolev space

� Functional F : H1(V )→ R

� The Gâteaux derivative F ′(c): H1 → TcH
1, where TcH

1 is the tangent space at c

in H1

� h(c,∇c) := f(c) + κc(∇c)2

Similar to the Fréchet derivative, the Gâteaux derivative for a functional F is defined as

F ′(c)[ψ] =
d

dε
F(c+ εψ)|ε=0, (3.3)

where ψ is a test function in the tangent space TcH
1. I look for the representation of

the Gâteaux derivative F ′(c)[ψ]

F ′(c)[ψ] = 〈µ, ψ〉, ∀ψ ∈ TcH1, (3.4)

where µ is a function in the tangent space TcH and is defined as the chemical potential.

Substituting Eq. (3.2) into Eq. (3.3) yields

F ′(c)[ψ] =

[
d

dε

∫
V
h(c+ εψ,∇c+ ε∇ψ)

]∣∣∣∣
ε=0

=

∫
V
∂1h(c,∇c)ψ + ∂2h(c,∇c) · ∇ψ

=

∫
V
∂1h(c,∇c)ψ +∇ · [∂2h(c,∇c)ψ]− [∇ · ∂2h(c,∇c)]ψ. (3.5)
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With the divergence theorem∫
V
∇ · [∂2h(c,∇c)] =

∫
∂V
∂2h(c,∇c) · n

and the boundary condition ∂2h(c,∇c) · n = 0, Eq. (3.5) is rearranged as

F ′(c)[ψ] =

∫
V

[∂1h(c,∇c)−∇ · ∂2h(c,∇c)]ψ

= 〈∂1h(c,∇c)−∇ · ∂2h(c,∇c), ψ〉, ∀ψ ∈ TcH1. (3.6)

A comparison between Eq. (3.4) and Eq. (3.6), we obtain the expression for the chemical

potential µ

µ = ∂1h(c,∇c)−∇ · ∂2h(c,∇c).

For h(c,∇c) = f(c) + κc(∇c)2, the chemical potential is further expressed as

µ = f,c − 2κc∇2c.

3.2.2 The Cahn-Hilliard model

When the chemical potential is uniformly distributed, the system is in the thermody-

namic equilibrium. When the distribution of the chemical potential is inhomogeneous,

there is a diffusion mass flux J, which drives the system to reach the thermodynamic

equilibrium. It is postulated that the mass flux is proportional to the gradient of the

chemical potential

J = −Λ∇µ,

where Λ is the mobility. In comparison with the mass flux given by Fick’s law J = −D∇c
(D–the diffusion coefficient) and with the relation∇µ = µ,c∇c, the mobility is calculated

by Λ = D/µ,c. For an ideal solution model, we obtain µ,c = RgT/[vm(1 − c)c)], where

Rg is the universal gas constant and vm is the molar volume. Hence, the mobility is

computed as follows

Λ = D
vm
RgT

c(1− c).

The temporal evolution of the mole fraction c follows the mass conservation equation

∂tc = −∇ · J. (3.7)

Substituting the expressions for the mass flux, chemical potential and the mobility into

Eq. (3.7), we obtain the Cahn-Hilliard model

∂tc = ∇ ·
[
D

vm
RgT

c(1− c)∇(f,c − 2κc∇2c)

]
.
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3.3 Capillary tensor and the Cahn-Hilliard-Navier-Stokes

model

Apart from diffusion, convection is another mass transport mechanism for liquid phases.

For a liquid phase with a local velocity of u, the mass flux is formulated as

J = −Λ∇µ+ uc, (3.8)

where the first term is the mass flux due to diffusion because of the gradient of chemical

potential and the second term is the mass flux as a result of convection. In the present

work, we particularly focus on the convection u that is induced by the capillary force.

3.3.1 The stress balance at a fluid-fluid interface and the capillary

tensor

Considering a fluid-fluid interface shown in Fig. 3.1, the force balance between the inertial

force, body force f , viscosity force and surface force is expressed as∫
V
ρ
Du

dt
dV =

∫
V

fdV +

∫
C
σsd`+

∫
S

(n ·TL1 − n ·TL2)dS,

where Ti := −piI + ηi(∇u + ∇uT ), i = L1, L2 is the viscosity stress tensor, I is the

identity tensor, η is the dynamic viscosity, V represents the volume, S denotes the

surface area, C is the arc-length, and n is the normal vector. For a fluid-fluid interface

C

S

V

Figure 3.1: Schematic illustration for the stress balance at a fluid-fluid interface.

with a length of ε, the body force and the inertial force both are scaled by ε3, but the

surface force is scaled by ε2. With Stokes theorem and considering the force in the order

of ε2, the stress balance condition for the surface force at a fluid fluid interface, in the

limit ε→ 0, yields [52]

σ(∇ · n)n− (I− n⊗ n) · ∇σ = n ·TL1 − n ·TL2 , (3.9)

where the left hand side is the general expression for the surface force acting on the

liquid-liquid interface. The first term σ(∇ · n)n is the curvature force and the second
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term which is simply equivalent to ∇sσ is the Marangoni force due to non-uniform

interfacial tension.

From the stress balance condition Eq. (3.9), the interfacial force

Fs = σκn−∇sσ

has to be included for the temporal evolution of the liquid-liquid interface. In the Cahn-

Hilliard model, we formulate the interfacial force in a conservative manner

Fd = −∇ ·Θ, (3.10)

where Θ is a potential energy tensor. According to Noether’s theorem as well as the

derivation (see Appendix A), we use the following form for the potential tensor

Θ = 2κc∇c⊗∇c− κc(∇c)2I.

The equivalence between the sharp and diffuse interface descriptions (Fs and Fd) can be

demonstrated in the following way. We distribute the sharp interface description Fs =

σκn −∇sσ into the diffuse interface by multiplying a Delta function: (σκn −∇sσ)δΣ,

where the Delta function δΣ satisfies
∫∞
−∞ δΣ = 1. Tedious mathematical manipulations

show that the conservative formulation Fd = −∇·Θ is equivalent to (σκn−∇sσ)δΣ [53].

The benefit of using the diffuse description is that the interfacial force in Eq. (3.9)

is simultaneously incorporated and the explicit-tracking of the fluid-fluid interface is

avoided.

3.3.2 The Cahn-Hilliard-Navier-Stokes equation

The convective Cahn-Hilliard equation is obtained by substituting the mass flux Eq. (3.8)

into the mass conservation equation Eq. (3.7), yielding

∂tc+∇ · (uc) = ∇ ·
[
D

vm
RgT

c(1− c)∇(f,c − 2κc∇2c)

]
, (3.11)

where the convective term is equivalent to ∇ · (uc) = u · ∇c+ c∇ · u. With the incom-

pressibility condition

∇ · u = 0, (3.12)

Eq. (3.11) is rearranged as

∂tc+ u · ∇c = ∇ ·
[
D

vm
RgT

c(1− c)∇(f,c − 2κc∇2c)

]
. (3.13)
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With the interfacial force in Eq. (3.10), the generalized Navier-Stokes equation reads

ρ(∂tu + u · ∇u) = ∇ · (−pI−Θ + T). (3.14)

Substituting the formulations for the capillary tensor Θ and the viscosity tensor T into

Eq. (3.14), we obtain the final expression for the Navier-Stokes equation

ρ(∂tu + u · ∇u) = −∇p+∇ · [κc(∇c)2I− 2κc∇c⊗∇c] +∇ · [η(∇u +∇uT )]. (3.15)

In summary, Eqs. (3.12), (3.13), and (3.15) consist of the system equations in the present

work. The evolution of the mole fraction c follows the convective Cahn-Hilliard equation

Eq. (3.13) and the convection field of the fluids is given by the Navier-Stokes equation

with the capillary tensor Eq. (3.15). The pressure in the Navier-Stokes equation is

obtained by solving the Poisson equation Eq. (3.12).

3.3.3 Non-dimensionalization of the Cahn-Hilliard-Navier-Stokes equa-

tion

The capillary length for a chemical model is expressed as [54]

d0 =
σ

(∆c)2µ,c
, (3.16)

where ∆c is the difference of the equilibrium mole fraction of species c in the two im-

miscible liquids. For immiscible liquids in alloys, the interfacial tension ranges from 0.01

N/m to 0.1 N/m. Tab. 3.1 tabulates the interfacial tensions for the immiscible liquids

in several alloy systems with a miscibility gap. For an ideal solution model, we obtain

µ,c = RgT/(vmc(1− c)). With ∆c ∼ 0.1, the capillary length d0 ranges from 10−8 m to

10−10 m.

Parameters σ

Cu-Pb 0.02

Al-In 0.04

Al-Bi 0.06

Al-Pb 0.14

Zn-Bi 0.06

Cd-Ga 0.03

Fe-Sn 0.09

Table 3.1: Interfacial tension for immiscible liquids [55].

The width of the diffuse interface between the two immiscible liquids is characterized by

the capillary length. We thus choose d0, d2
0/D and RgTm/vm as dimensionless factors
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for the spatial length, time and free energy density, respectively. Moreover, the velocity

u, pressure p, gradient energy coefficient κc are non-dimensionalized as follows

u = (D/d0)ũ, p = (d2
0/ρD

2)p̃, κc = (d2
0RgTm/vm)κ̃c.

Here, the tilt symbols stand for the corresponding physical parameters in the dimen-

sionless form. With these dimensionless parameters, the system equations Eqs. (3.12),

(3.13), and (3.15) are rearranged as

∂tc+ u · ∇c = ∇ ·
[
Tm/Tc(1− c)∇(f,c − 2κc∇2c)

]
, (3.17)

∂tu + u · ∇u = −∇p+M∇ · [(∇c)2I− 2∇c⊗∇c] + (1/Re)∇ · [(∇u +∇uT )], (3.18)

where the dimensionless parameters M and Re are expressed as M = κc/(ρD
2) and

Re = ρD/η, respectively.

3.3.4 Discretization and staggered mesh

The system equations are discretized on a staggered mesh [56], as sketched in Fig. 3.21.

For a rectangle mesh with a size of L ×W ×H, we divide the mesh into a discretized

domain Nx∆x ×Ny∆y ×Nz∆z, where L = Nx∆x, W = Ny∆y, and H = Nz∆z. The

scalar data, e.g., the mole fraction c, is located in the center of each cell, as denoted

by ci,j in Fig. 3.2 (a). The velocity components u and v are set at the border of the

cell, as illustrated in Fig. 3.2 (a) for a two-dimensional case and in Fig. 3.2 (b) for a

three-dimensional situation.

{

∆x

{
∆y

(a) (b)

Figure 3.2: Schematic figure for the staggered grid.

1A.C. and M.S. contributed to the implementation of the Cahn-Hilliard-Navier-Stokes model. The
discretization is based on a former work of M.S. in his master thesis. The difference is that M.S. did
the implementation for the AC model for the parameter φ, whereas I extend the implementation for the
CHNS model for the parameter c.
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The time derivative is approximated by the explicit Euler scheme

∂tci = (cn+1
i − cni )/∆t+O(∆t).

The spatial derivative is computed as follows

∂xc
n = (cni+1,j,k − cni,j,k)/∆x+O(∆x),

∂yc
n = (cni,j+1,k − cni,j,k)/∆y +O(∆y),

∂zc
n = (cni,j,k+1 − cni,j,k)/∆z +O(∆z).

The higher order derivative is discretized by the central difference scheme

∇2cn =(cni+1,j,k − 2cni,j,k + cni−1,j,k)/∆x
2 + (cni,j+1,k − 2cni,j,k + cni,j−1,k)/∆y

2

+(cni,j,k+1 − 2cni,j,k + cni,j,k−1)/∆z2 +O(∆x2) +O(∆y2) +O(∆z2)

and

∇4cn = (cni+2,j,k − 4cni+1,j,k + 6cni,j,k − 4cni−1,j,k + cni−2,j,k)/∆x
2 +O(∆x4)

+ (cni,j+2,k − 4cni,j+1,k + 6cni,j,k − 4cni,j−1,k + cni,j−2,k)/∆y
2 +O(∆y4)

+ (cni,j,k+2 − 4cni,j,k+1 + 6cni,j,k − 4cni,j,k−1 + cni,j,k−2)/∆z2 +O(∆z4).

The convective term u · ∇c is discretized by the upwind scheme.

The capillary stress tensor Θ and the viscosity stress tensor T can be written as

Θ =


θxx θxy θxz

θyx θyy θyz

θzx θzy θzz

 and T =


τxx τxy τxz

τyx τyy τyz

τ zx τ zy τ zz

 ,

respectively. The divergence of the capillary tensor results in a vector for the interfacial

force. The components of the vector are denoted by ∇·Θ|x, ∇·Θ|y, and ∇·Θ|z, which

is responsible for the temporal evolution of the velocity in the x, y, and z directions,

respectively. The divergence of the capillary stress tensor is discretized as follows

∇ ·Θ|x =
θxx
i+ 1

2
,j,k
− θxx

i− 1
2
,j,k

∆x
+
θyx
i,j+ 1

2
,k
− θyx

i,j− 1
2
,k

∆y
+
θzx
i,j,k+ 1

2

− θzx
i,j,k− 1

2

∆z
,

∇ ·Θ|y =
θxy
i+ 1

2
,j,k
− θxy

i− 1
2
,j,k

∆x
+
θyy
i,j+ 1

2
,k
− θyy

i,j− 1
2
,k

∆y
+
θzy
i,j,k+ 1

2

− θzy
i,j,k− 1

2

∆z
,

∇ ·Θ|z =
θxz
i+ 1

2
,j,k
− θxz

i− 1
2
,j,k

∆x
+
θyz
i,j+ 1

2
,k
− θyz

i,j− 1
2
,k

∆y
+
θzz
i,j,k+ 1

2

− θzz
i,j,k− 1

2

∆z
,

where the discretizations in the x and y dimensions are schematically illustrated in
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Fig. 3.3 and the calculations for the components of the stress tensor at each point are

listed in Tab. 3.2.

(a) (b)

Figure 3.3: Discretization for the divergence of the capillary stress tensor.

Defining

Fn = ∆t[−M∇ ·Θ|nx + (1/Re)∇ ·T|nx − ∂xxu2 − ∂yy(uv)n − ∂zz(uw)n],

Gn = ∆t[−M∇ ·Θ|ny + (1/Re)∇ ·T|ny − ∂xx(uv)n − ∂yyv2 − ∂zz(vw)n],

Hn = ∆t[−M∇ ·Θ|nz + (1/Re)∇ ·T|nz − ∂xx(uw)n − ∂yy(vw)n − ∂zzw2].

For an incompressible flow, the velocity satisfies the following condition

0 = ∂xu
n + ∂yv

n + ∂zw
n

= ∂xF
n −∆t∂xxp

n − ∂yGn −∆t∂yyp
n − ∂zHn −∆t∂zzp

n. (3.19)

Eq. (3.19) is equivalent to

∂xxp
n + ∂yyp

n + ∂zzp
n = (∂xF

n + ∂yG
n + ∂zH

n)/∆t. (3.20)

Successive over-relaxation (SOR) iteration method [57], which is a variant of the Gauss–

Seidel method for solving a linear system of equations, is used to solve the Poisson

equation Eq. (3.20). The convergence rate of the SOR iteration is significantly affected

by the acceleration parameter, which is chosen to be 1.7 in this work [57]. The stopping

tolerance for the pressure iteration is set to be 1× 10−6.

Thereafter, the components of the velocity u, v and w are updated as follows

un+1
i,j,k = Fn −∆t∂xp,

vn+1
i,j,k = Gn −∆t∂yp,

wn+1
i,j,k = Hn −∆t∂zp.
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Components of the stress tensor for calculating ui,j,k

θxx
i+ 1

2
,j,k

= −
(
ci+2,j,k−ci,j,k

2∆x

)2
+
(
ci+1,j+1,k−ci+1,j−1,k

2∆y

)2
+
(
ci+1,j,k+1−ci+1,j,k−1

2∆z

)2

θxx
i− 1

2
,j,k

= −
(
ci+1,j,k−ci−1,j,k

2∆x

)2
+
(
ci,j+1,k−ci,j−1,k

2∆y

)2
+
(
ci,j,k+1−ci,j,k−1

2∆z

)2

θyx
i,j+ 1

2
,k

= −2
[

(ci,j+1,k+ci+1,j+1,k)−(ci+1,j,k+ci,j,k)
2∆y

] [
(ci+1,j,k+ci+1,j+1,k)−(ci,j,k+ci,j+1,k)

2∆x

]
θyx
i,j− 1

2
,k

= −2
[

(ci+1,j,k+ci,j,k)−(ci+1,j−1,k+ci,j−1,k)
2∆y

] [
(ci+1,j,k+ci+1,j−1,k)−(ci,j,k+ci,j−1,k)

2∆x

]
θzx
i,j,k+ 1

2

= −2
[

(ci,j,k+1+ci+1,j,k+1)−(ci,j,k+ci+1,j,k)
2∆z

] [
(ci+1,j,k+ci+1,j,k+1)−(ci,j,k+ci,j,k+1)

2∆x

]
θzx
i,j,k− 1

2

= −2
[

(ci,j,k+ci+1,j,k)−(ci,j,k−1+ci+1,j,k−1)
2∆z

] [
(ci+1,j,k+ci+1,j,k−1)−(ci,j,k+ci,j,k−1)

2∆x

]
Components of the stress tensor for calculating vi,j,k

θxy
i+ 1

2
,j,k

= −2
[

(ci+1,j,k+ci+1,j+1,k)−(ci,j,k+ci,j+1,k)
2∆x

] [
(ci,j+1,k+ci+1,j+1,k)−(ci,j,k+ci+1,j,k)

2∆y

]
θxy
i− 1

2
,j,k

= −2
[

(ci,j+1,k+ci,j,k)−(ci−1,j+1,k+ci−1,j,k)
2∆x

] [
(ci,j+1,k+ci−1,j+1,k)−(ci,j,k+ci−1,j,k)

2∆y

]
θyy
i,j+ 1

2
,k

=
(
ci+1,j+1,k−ci−1,j+1,k

2∆x

)2
−
(
ci,j+2,k−ci,j,k

2∆y

)2
+
(
ci,j+1,k+1−ci,j+1,k−1

2∆z

)2

θyy
i,j− 1

2
,k

=
(
ci+1,j,k−ci−1,j,k

2∆x

)2
−
(
ci,j+1,k−ci,j−1,k

2∆y

)2
+
(
ci,j,k+1−ci,j,k−1

2∆z

)2

θxy
i,j,k+ 1

2

= −2
[

(ci,j,k+1+ci,j+1,k+1)−ci,j,k+ci,j+1,k)
2∆z

] [
(ci,j+1,k+ci,j+1,k+1)−(ci,j,k+ci,j,k+1)

2∆y

]
θxy
i,j,k− 1

2

= −2
[

(ci,j,k+ci,j+1,k)−(ci,j,k−1+ci,j+1,k−1)
2∆z

[ [
(ci,j+1,k−1+ci,j+1,k)−(ci,j,k−1+ci,j,k)

2∆y

]
Components of the stress tensor for calculating wi,j,k

θxz
i+ 1

2
,j,k

= −2
[

(ci+1,j,k+ci+1,j,k+1)−(ci,j,k+ci,j,k+1)
2∆x

] [
(ci,j,k+1+ci+1,j,k+1)−(ci,j,k+ci+1,j,k)

2∆z

]
θxz
i− 1

2
,j,k

= −2
[

(ci,j,k+ci,j,k+1)−(ci−1,j,k+ci−1,j,k+1)
2∆x

] [
(ci−1,j,k+1+ci,j,k+1)−(ci−1,j,k+ci,j,k)

2∆z

]
θyz
i,j+ 1

2
,k

= −2
[

(ci,j+1,k+ci,j+1,k+1)−(ci,j,k+ci,j,k+1)
2∆y

] [
(ci,j,k+1+ci,j+1,k+1)−(ci,j,k+ci,j+1,k)

2∆z

]
θyz
i,j− 1

2
,k

= −2
[

(ci,j,k+ci,j,k+1)−(ci,j−1,k+ci,j−1,k+1)
2∆y

] [
(ci,j−1,k+1+ci,j,k+1)−(ci,j−1,k+ci,j,k)

2∆z

]
θzz
i,j,k+ 1

2

=
(
ci+1,j,k+1−ci−1,j,k+1

2∆x

)2
+
(
ci,j+1,k+1−ci,j−1,k+1

2∆y

)2
−
(
ci,j,k+2−ci,j,k

2∆z

)2

θzz
i,j,k− 1

2

=
(
ci+1,j,k−ci−1,j,k

2∆x

)2
+
(
ci,j+1,k−ci,j−1,k

2∆y

)2
−
(
ci,j,k+1−ci,j,k−1

2∆z

)2

Table 3.2: Discretization for the components of capillary stress tensor.

The numerical stability for solving the Cahn-Hilliard model is ensured by a dynamic

restriction for the time step [58]2.

∆t < Υ min

{
1

2
Re

(
1

∆x2
+

1

∆y2
+

1

∆z2

)
,

∆x

|umax|
,

∆y

|vmax|
,

∆z

|wmax|

}
, (3.21)

2The stability criterion for the time step is discussed with M.S.
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where Υ is a safety factor, and umax, vmax and wmax are the maximal velocities in the

x, y and z directions, respectively.

3.4 Simulation system

1

1.1

1.2

1.3

0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
/T

m

Mole fraction of Fe

L2 L1

mL2
mL1

Miscibility gap
Spinodal line

Figure 3.4: Miscibility gap of the Fe-Sn system: the red-solid line illustrates the equi-
librium mole fraction of Fe in L1 and L2 phases and the blue-dashed line
corresponds to the spinodal line.

For the Cahn-Hilliard-Navier-Stokes model, I take the binary alloy Fe-Sn as an exemplary

system, since there are two immiscible liquids, namely the Fe-rich L1 phase and the Sn-

rich L2 phase, in the phase diagram. The Gibbs free energy density of the Fe-Sn system

is formulated as3

f(c, T ) = RgT/vm[c ln c+ (1− c) ln(1− c)] + Ω1c(1− c) + Ω2c
2(1− c)2,

where Ω1 and Ω2 are constants which are used to map the miscibility gap of the Fe-Sn

system. The thermodynamic equilibrium condition yields

µ1 := ∂cf(c, T )|c=ceqL1
= ∂cf(c, T )|c=ceqL2

=: µ2, (3.22)

f(c, T )|c=ceqL1
− µ1c

eq
L1

= f(c, T )|c=ceqL2
− µ2c

eq
L2
, (3.23)

where ceqL1
and ceqL2

denote the equilibrium mole fractions of Fe in L1 and L2 phases,

respectively. Substituting the free energy density f(c, T ) into Eqs. (3.22) and (3.23) and

solving the nonlinear system by the Newton method, we obtain the equilibrium mole

fractions of Fe in L1 and L2 phases at different temperatures, as shown by the red line

in Fig. 3.44. The dashed blue line corresponds to the spinodal line which is given by the

locus of ∂ccf = 0.

3This equation is based on a discussion with A.C.
4A.C. helped for the reconstruction of the phase diagram.



Chapter 3. Methods 34

Model II: The Allen-Cahn model
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3.5 The multi-phase Allen-Cahn model

3.5.1 The Allen-Cahn model

As proposed in Ref. [51], the free energy functional of the system is written as

F(c,φ, T ) =

∫
V

[
1

ε
ω(φ) + εa(φ,∇φ)

]
dx, (3.24)

where φ = (φ1, φ2, . . . , φN ), with N being the number phases in the considered sys-

tem. ε is a modeling parameter which is related to the interfacial width scaled by the

characteristic length.

The first term in Eq. (3.24) is a potential energy, which is formulated as

ω(φ) =
16

π2

N∑
α

∑
β>α

γαβφαφβ +
96

π2

N∑
α

∑
β>α

∑
δ>β

γαβδφαφβφδ, (3.25)

where γαβ are coefficients defining the surface energy of the α-β interface, and γαβδ is

a parameter which is used to avoid the appearance of artificial third phase along two

phase boundaries.

The second term in Eq. (3.24) represents the gradient energy that is expressed as

a(φ,∇φ) =

N∑
α

∑
β>α

γαβ|φα∇φβ − φβ∇φα|2.

The evolution of the order parameter φ is to minimize the free energy functional and

can be derived by the functional derivative

ταβε
∂φα
∂t

= − δF
δφα
− χ, α = 1, . . . , N,

where ταβ is a relaxation coefficient for the α−β interface and χ is a Lagrange multiplier

ensuring the constraint
∑N

α=1 φα = 1.

With

χ = − 1

N

N∑
α=1

δF
δφα

as well as
δ

δφα
=

∂

∂φα
−∇ · ∂

∂∇φα
,

we obtain the evolution equation for each component φα of the phase-field order param-

eter

ταβε
∂φα
∂t

= ε[∇ · a,∇φα(φ,∇φ)− a,φα(φ,∇φ)]− 1

ε
ω,φα(φ)− χ.



Chapter 3. Methods 36

3.5.2 Volume preservation technique

The Allen-Cahn model is used to corroborate the morphological stability criterion of

jets. During the evolution of the perturbed jet, the volume of the considered jet is

preserved. However, in the Allen-Cahn model, without external force, the volume of a

cylinder shrinks with time because of the curvature force σκ. To illustrate this point in

a more clear manner, we show an example. For a curved fluid-fluid interface with mean

curvature of κ in the stationary state, the pressure difference across the interface reads

∆p = σκ. This equation is known as the Young-Laplace equation, which shows a force

balance of the pressure with the curvature force. If the pressure gradient is absent in the

Allen-Cahn model, the curved liquid-liquid interface relaxes to be flat; for a sphere, the

volume decreases with time till it vanishes. To overcome this shrinking effect, a volume

preserved technique has been proposed by Nestler et al. [59].

The concept of the volume preservation technique is to add an additional bulk free

energy density into the free energy functional in Eq. (3.24) of the form

g(φ) =

A∑
α=1

χαh(φα), (3.26)

where the index A denotes the range of the volume conserved phases from α = 1, · · · , A.

For the non-conserved phases α = A+ 1, · · · , N , we set χα = 0. We note that when an

additional bulk free energy density is added, the corresponding Lagrange multiplier

Λ = − 1

N

N∑
α=1

χαh,φα(φα) (3.27)

has to be added as well. With the straightforward A equations that the volumes of

phases α = 1, · · · , A are preserved

0 =

∫
V
∂tφαdx, (3.28)

the coefficients χα can be determined accordingly. The obtained results for χα are given

in Ref. [59].

3.6 In accordance with the thermodynamical law

In this section, I demonstrate that both models satisfy the non-increasing free energy

principle
dF
dt
≤ 0.
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In the Cahn-Hilliard-Navier-Stokes model, the time derivative of the free energy func-

tional can be expressed as

dF
dt

= 〈δF/δc, dtc〉. (3.29)

For a constant mobility Λ, Eq. (3.29) is rewritten as

dF
dt

= 〈δF/δφ, Λ∇2µ〉

= 〈µ,Λ∇2µ〉

=

∫
V
µ(Λ∇2µ)dx

= µn · Λ∇µ|∂V − Λ
∫
V

(∇µ)2dx

= −Λ
∫
V

(∇µ)2dx ≤ 0,

where we have used integration by parts and no-flux boundary condition n·M∇µ|∂V = 0.

The demonstration for the non-increasing of the free energy functional in the Allen-Cahn

model is as following

dF
dt

= (δF/δφ)∂tφ = −τε(δF/δφ)2 ≤ 0.





Chapter 4

Corroboration of the

Plateau-Rayleigh criterion

In this chapter, I validate the classic Plateau-Rayleigh criterion for tiny perturbations

a� R0 using the Cahn-Hilliard-Navier-Stokes model. I show that the simulated results

for perturbations of finite amplitudes a ∈ (0, R0) significantly deviate from the Plateau-

Rayleigh criterion as well as other existing work. The main part of this chapter was

published in Ref. [60].

4.1 Simulation setup

I use a cubic simulation domain with a size of Nx×Ny ×Nz and with a uniform spatial

step. An axisymmetrically perturbed jet, R0 + a cos kz =
√

(x−Nx/2)2 + (y −Ny/2)2

is initially placed in the middle of the simulation domain, whereat R0 is fixed for all

simulations and the amplitude is a ∈ (0, R0). I set Nx = Ny = H � 2(R0 + a) to

avoid the boundary effects and use no outside flux boundary conditions in the x and

y dimensions. In the longitudinal direction, the cube has a length of Nz = λ and the

periodic boundary conditions at z = ±λ/2 model an infinite domain. The concentrations

in the L1 and L2 phases are set to be the equilibrium values at the temperature of

T/Tm = 1 given by the phase diagram shown in Fig. 3.4. The evolution of the interface

follows the Cahn-Hilliard-Navier-Stokes equation. The parameters used for simulations

are tabulated in Tab. 4.1.

39
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Parameters Descriptions Value

κc (J/m) Gradient energy coefficient 5× 10−9

∆x = ∆y = ∆z (3D) Discretization space step d0

Re Reynolds number 0.01

Ω1/(RgTm/vm) Interaction coefficient 0.345

Ω2/(RgTm/vm) Interaction coefficient 4.379

d0 (nm) Capillary length 1

η (Pas) Dynamic viscosity 1× 10−3

ρ (kg/m3) Density 1× 104

D (m2/s) Diffusion coefficient 1× 10−9

RgTm/vm (J/m3) Scaling factor of free energy 1× 109

Tm (K) Monotectic temperature 1403

c0
l1 Monotectic mole fraction of L1 0.7132

c0
l2 Monotectic mole fraction of L2 0.2868

Table 4.1: Parameters used for simulations. This table is from Ref. [60].

(a) (b) (c)

Figure 4.1: “Isosurface plots showing the morphological stabilization of the rod: (a)
tD/d20 = 8.4, (b) tD/d20 = 20.4, and (c) tD/d20 = 68.4. The geometric
parameters are λ/R0 = 5.6, a/R0 = 0.2 and H/R0 = 8.”[60]

4.2 Validation of the classic Plateau-Rayleigh criterion for

tiny perturbations

“Fig. 4.1 (a)-(c)5 show the temporal evolution of the L1 − L2 interface, starting from

a sinusoidal perturbation. Corresponding geometric parameters for the simulation are

λ/R0 = 5.6, a/R0 = 0.2 and H/R0 = 8. The difference in curvature along the interface

gives rise to a concentration gradient along the interface due to the Gibbs-Thomson

effect. The inhomogeneous interfacial concentration consequently induces the surface

flow which is driven by the capillary force ∇ · [κc(∇c)2I− 2κc∇c⊗∇c]. With time, the

convex interface contracts towards the center of the cylinder and the concave interface

bulges out, resulting in flattening of the interface.”[60]

5The figure is visualized by using the post-processing tool, which is developed by M.S.
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(a) (b) (c)

Figure 4.2: “Isosurface plots showing Marangoni instability for λ/R0 = 8 at different
times: (a) tD/d20 = 10, (b) tD/d20 = 17, and (c) tD/d20 = 20.8.”[60]

“The time evolution of the L1 −L2 interface for a longer periodic length of λ/R0 = 8 is

shown in Fig. 4.2 (a)-(c)6. The interface grows at the crest and shrinks at the trough.

Eventually, the rod breaks up and separates into isolated droplets.”[60]

“During the evolution, the L1 − L2 interface is obtained by the locus of c = 0.5. The

interface as a function of time and space can be written in the following form

r(t, z) = R0 + a exp (ωt) sin(2πz/λ)

= R0 + aωt sin(2πz/λ) + · · · , (4.1)

where ω is the growth rate which is determined by a linear fit to the curve describing the

amplitude of the interface as a function of time. Based on the linear stability description,

the relation ω = ω(λ/R0) for H/R0 = 5.6 is plotted in Fig. 4.3 (a) for three different

dimensionless numbers M = 10000, 20000 and 50000. It is observed that the critical

wavelength is at7

(λ/R0)crit = 6.2 ≈ 2π,

which is consistent with the PR criterion, Eq. (2.4). Above the ratio of (λ/R0)crit, the

cylinder breaks up into separate droplets and below the critical ratio, the cylinder is

morphologically stabilized. In the unstable region, the growth rate ω is positive and

increases with the dimensionless number M . In the stable region, the growth rate is

negative and the absolute value increases with M . This is because that the interfacial

force is proportional to M , as shown in Eq. (3.18). Thus, the interface grows or shrinks

faster for a higher value of M . Also, the critical ratio (λ/R0)critical is independent on

M . Fig. 4.3 (b) depicts the transition diagram for three different values of H/R0 with

the same value of M = 50000. The critical perturbation wavelength remains unchanged

for different values of H/R0.”[60]

6The figure is visualized by using the post-processing tool, which is developed by M.S.
7R.M. suggested to fit the curve near the critical point in Fig. 4.3 (b).
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Figure 4.3: “Stability diagram: Stability to instability transition (a) for distinct val-
ues of M at a constant ratio of H/R0 = 5.6 and (b) for different values
of H/R0 at a fixed M = 50000. The vertical dotted line distinguishes the
stable from the unstable regions.”[60]

4.3 Significant deviations of the simulation results from

the Plateau-Rayleigh criterion

In order to corroborate the mentioned criteria, Eqs. (2.4), (2.5), (2.10), and (2.21), I

perform numerical experiments, based on the volume preserved Allen-Cahn (AC) and

Cahn-Hilliard-Navier-Stokes (CHNS) models. Both approaches coincide with the second

law of thermodynamics, so that the free energy continuously decreases in time. As

mentioned in Ref. [61], the former one captures the mean curvature flow and the latter

one models the surface diffusion/convection. The differences and similarities between

the AC and CHNS models are summarized in Tab. 4.2. The simulation setup for both

approaches is as in section 4.1.

Allen-Cahn model Cahn-Hilliard-Navier-Stokes model

Free energy functional

Thermodynamical law

Evolution equations

Normal velocity

Physical mechanisms Mean curvature ow Surface di usion/convection

Phase-field model

Table 4.2: Comparison between the AC and CHNS models.
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For different amplitudes a, I vary the wavelength λ and run the corresponding simula-

tions to find out the critical wavelength λcrit
AC for the AC model and λcrit

CH for the CHNS

method. For the three-dimensional computation, the CHNS model (fourth order non-

linear partial differential equation) requires much more computational effort than the

AC model (second order non-linear partial differential equation). Due to this fact, the

number of the numerical experimental data points from the CHNS model is less than

the AC model.

The relative deviation of the simulation results from the mentioned criteria, as a function

of the normalized amplitude α := a/R0, is illustrated in Fig. 4.4. The discrepancies of

the numerical experimental results of the AC model from the classic PR criteria λcrit
1

and λcrit
2 reach as high as 40% and 60%, respectively. The corresponding maximum

deviations from the work of Carter et al. and Nayfeh are 20% and 30%, respectively.

The simulation results from the CHNS model show a similar convergence behavior as

the AC model.

∆
, 
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α
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Figure 4.4: Relative deviation of the numerical experimental results from the existing
criteria, Eqs. (2.4), (2.5), (2.10), and (2.21).

4.4 The problems for the stability criterion in literature

As mentioned, the volumes at the initial and perturbed states are not the same in the

original PR criterion. This drawback prevents it from practical applications. Although

the problem of non-consistency volume has been corrected, the amended PR criterion is

only valid for tiny perturbations a� R0.

Second and higher order stability analyses [5] show that the perturbation does not remain

harmonic with time. Thus, the evolution of the jet generally does not follow the energy
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trajectory shown in Fig. 2.4 and the results of Carter-Glaeser cannot be used to judge

the morphological stability of jets.

The result of Nichols and Mullins is as the same as the original PR criterion and ev-

idently, the volume is not conserved as well. The linear and second order stability

analyses, which are carried out by Nichols et al. [3] and Nayfeh [5], respectively, show an

improvement for the PR criterion. The problem is that the second order or even higher

n-th order stability analyses have a residual error O(αn+1) and their validity is confined

to small values of α.



Chapter 5

A generalized morphological

stability criterion for liquid jets

As shown in the previous chapter, a serious disagreement between the numerical ex-

periment results and existing criteria is observed. This significant deviation reveals an

incompleteness of the PR criterion. Motivated by the observed serious deviation as well

as the mentioned limitations of existing criteria, I aim to derive a generalized stability

criterion in the present chapter. This new criterion is obtained based on two indepen-

dent methods: (i) surface energy minimization concept and (ii) analyzing the dynamic

equations. An exemplary application of the criterion to the detachment of nanowires is

discussed. Parts of this chapter were published in Ref. [62].

5.1 A general surface energy minimization concept

I start to derive a generalized morphological stability criterion from the energy principle

that the free energy must be non-increasing in time. Nonlinear stability analyses [5, 63]

show that the initial wave does not remain harmonic with time. Generally, the temporal

change of the perturbations can be expressed in a Fourier series because of the periodicity

in the longitudinal direction. Regarding the axisymmetry of the system, all sinusoidal

contributions in the Fourier series vanish and the series is expressed as:

r(t, z) = R0(t) + a1(t) cos kz + a2(t) cos 2kz + · · · . (5.1)

In contrast to the only consideration of the leading order term a1 in the classical works [1,

2, 4], I approximate the temporal perturbation till the second order. According to the

surface integral

Ep(a1, a2) = σ

∫∫
dA = 2πσ

∫ λ/2

−λ/2
r
√

1 + (dr/dz)2dz, (5.2)

45
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we calculate the surface energy with the isotropic surface tension σ for all possible

amplitudes a1 and a2.

To properly compute the surface energy, Eq. (5.2), is the essential step for the energy

minimization concept. In the following, we show the technical details to evaluate the

integration in Eq. (5.2):

� (i) Firstly, the volumes of the unperturbed and perturbed jets must be the same.

The volume of the perturbed jet is expressed as

V =

∫ λ/2

−λ/2
πr2dz = πλ

[
R2

0(t) +
1

2

∞∑
n=1

a2
n(t)

]
. (5.3)

For the computation, we assume an unperturbed jet with uniform radius Ru, which

has a volume of πR2
uλ. In comparison with Eq. (5.3), we have

R2
u = R2

0(t) +
1

2

∞∑
n=1

a2
n(t). (5.4)

In the original work of Rayleigh, he compares the surface energy of a perturbed jet

R = R0 +a cos kz with a jet of uniform radius R0. It is noted that these two states

do not have the same volume, namely,
∫ λ/2
−λ/2 π(R0 +a cos kz)2dz = π(R2

0 + 1
2a

2)λ 6=
πR2

0λ.

� (ii) Secondly, we note that the leading order amplitude a1 ranges from 0 to R0.

With Eq. (5.4): R2
u = R2

0 + 1
2a

2
1 = a2

1 + 1
2a

2
1, we obtain an upper bound am1 =√

(2/3)Ru for a1.

� (iii) Thirdly, due to the axisymmetry, the crest of the wave perturbation re-

mains convex with time. The convexity condition is mathematically defined as

∂2R/∂z2|z=0 ≤ 0,∀t. Substituting Eq. (5.1) into the inequality, we have a2 ≥
−a1/4 =: am2 .

With the mentioned points (i)-(iii), we integrate Eq. (5.2) for all possible amplitudes

0 < a1 < am1 and a2 > −a1/4. The required parameters for the integration are the

volume V , wavelength λ, radius Ru, amplitudes am1 and am2 , and R0. For given volume V

and wavelength λ, we obtain the radius Ru, according to V = πR2
uλ, as Ru =

√
V/(πλ),

and am1 =
√

(2/3)Ru and am2 = −am1 /4. We apply the mass/volume conservation

R0 =
√
R2
u − 1

2(a2
1 + a2

2) (see Eq. (5.4)) to obtain the unknown R0.

For V = 1 and λ = 2, the difference ∆E := Ep − Eu of the surface energies for the

perturbed Ep(a1, a2) and unperturbed Eu = (2πRuλ)σ jets is plotted in Fig. 5.1. The

energy isolines (the dashed lines) of ∆E = ∆E(as1, a
2
2) crosses at the saddle point (as1, a

s
2)

(the black ball) and divide the exemplary contour plot into four quadrants: Au, As, M1

and M2. For every geometric setup in Au and As, the continuously decreasing of the
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Figure 5.1: Contour plot for the difference of the surface energy ∆E := Ep − Eu as
a function of a1 and a2 for a jet of r = R0 + a1 cos kx + a2 cos 2kx. The
volume and wavelength are set to be V = 1 and λ = 2.

free energy implies the temporal remaining of the amplitudes inside the corresponding

domains and the convergence state is a jet and a chain of spheres, respectively. The

end-state can be both for perturbations in M1 and M2, which are named as metastable

regions.

Considering the classical initial setup a2 = 0 (the horizontal dotted line), the leading

order amplitude a1 is located in the metastable domain M1 and we obtain a metastable

interval a1 ∈ [al1, a
r
1]. For a jet with the initial amplitude a1 inside this segment, the

final state is ambiguous, either a uniform-radius jet or a chain of spheres.

The energy concept assumes only non-increasing surface energy in time, but does not

consider the actual evolution. In order to determine the critical configuration more

precisely, we refer to the corresponding evolution equations for different morphological

changing mechanisms. In the considered models, the evolution equations are written in

terms of the surface velocity. Knowing the distribution of the velocities on the surface,

the resulting volume redistribution can be qualitatively estimated.

5.2 Physical mechanisms for spheroidization

A first mechanism for the spheroidization is surface diffusion/convection. When the jet

is axisymmetrically perturbed by a wave in the radial direction, the diffusion potential

is inhomogeneous along the surface due to the non-uniformity of the curvature κ. The
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diffusion potential correlates to the curvature as [65]

Φ = µ0 + σΩκ, (5.5)

where µ0 is the potential of a reference state, σ is the isotropic interfacial energy, Ω is

the atomic volume. For solid rods, the morphological change is driven by the surface

diffusion flux−∇Φ. For liquid rods, the surface flux contains two contributions: one from

the surface diffusion and the other from the convection resulting from the momentum

conservation law. In both cases, the morphological evolution is induced by the capillary

force.

A second mechanism for the spheroidization is the mean curvature flow, which is a sort of

geometric flow, and which is directly caused by the inhomogeneity of the mean curvature.

The difference and similarity between the mean curvature flow and surface diffusion are

that (i) the mean curvature flow usually does not conserve the volume, whereas the

surface diffusion behaves in a conserved manner, (ii) the dynamics paths for the surface

area minimization are different, and (iii) for nearly planar surface, the evolution equation

of the mean curvature flow reduces to the diffusion equation. In present work, we refer

to the volume preserved mean curvature flow, which is alternatively termed as surface

tension flow.

5.3 Derivation for the generalized morphological stability

criterion

The evolution equations for the processes driven by surface diffusion and mean curvature

flow are expressed as [64–66]

vn := ∂tn =

−Mκ, Mean curvature flow ,

Bs∇2
sκ, Surface diffusion/convection,

where vn is the normal velocity of the interface, M and Bs are positive constants. The

mean curvature κ is defined as κ := (κ1 + κ2)/2, where κ1 and κ2 are the principal

curvatures, and are mathematically calculated as[
Πu(e1, e1) Πu(e1, e2)

Πu(e2, e1) Πu(e2, e2)

]
=

[
κ1 0

0 κ2

]
.

Here, Πu(e1, e2) := 〈Lu(e1), e2〉 and Lu(ei) := − ∂n
∂ei

, where Lu is the Weingarten map-

ping [67], e1 and e2 are orthogonal unit vectors in the tangential space of the considered

graph S, and n is the normal vector. Further tedious calculation yields that the mean
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curvature only depends on the longitudinal variable z

κ(z) =
1

2

{
1/[R0 + a cos(2πz/λ)]

[1 + (2aπ/λ)2 sin2(2πz/λ)]1/2︸ ︷︷ ︸
radial curvatureκ1

+
a(2π/λ)2 cos(2πz/λ)

[1 + (2aπ/λ)2 sin2(2πz/λ)]3/2︸ ︷︷ ︸
longitudinal curvature κ2

}
.

For a wave perturbation, the mean curvature at the crest and trough is 1/(R0 + a) +

a(2π/λ)2 and 1/(R0 − a)− a(2π/λ)2, respectively, where ±a(2π/λ)2 are the curvatures

as in two dimensions and 1/(R0 ± a) are the contributions from the third-dimension.

The normal velocity at the crest is inward since the mean curvature at this position is a

summation of two positive values. Depending on the mean curvature at the trough, we

come across three scenarios, as shown in Fig. 5.2 and summarized in the following:

� Scenario (a): For tiny perturbations, the curvature at the trough is dominated

by the term −ak2, resulting in an outward velocity, as depicted in Fig. 5.2 (a).

Thereafter, the net volume flux appears from the crest to the trough, which finally

leads to a uniform jet.

� By increasing amplitude, the mean curvature at the trough becomes positive and

the velocity is inward, as shown in Fig. 5.2 (b). In spite of the fact that both veloc-

ities are inward, the volume flux at the crest is higher than the one at the trough,

because of different shrinkage rates vn. Thereafter, the volume redistribution leads

also to a uniform jet.

� Scenario (c): With a further increase of the amplitude, the curvature at the trough

is dominated by the radial curvature 1/(R0 − a) > 1/(R0 + a), as illustrated in

Fig. 5.2 (c), and the normal velocity at this position exceeds the one at the crest.

Thus, the trough shrinks faster than the crest, so that the net volume flux operates

from the trough to the crest, eventually giving rise to spheroidization.

Accordingly, the critical configuration for the morphological stabilization is therefore

given by the condition of vn|crest = vn|trough, or κ|crest = κ|trough, which yields the new

criterion

λcrit = 2π
√
R2

0 − a2. (5.6)

For the surface diffusion process, the critical configuration is obtained by comparing the

surface Laplace of the mean curvatures: ∇2
sκ|crest = ∇2

sκ|trough, which surprisingly gives

rise to an identical criterion, as in Eq. (5.6). The evaluation of the surface Laplacian is

provided in Appendix B.

The new criterion can be interpreted in such a way that there is either a critical wave-

length λcrit for a fixed amplitude a or a critical amplitude acrit = 2πR0

√
1− (λ/2πR0)2

for a fixed wavelength λ. In contrast to the classical PR theory, a finite water column

can separate into a string of droplets, as long as the amplitude is sufficient large.
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5.4 Comparison of the present stability criterion with ex-

isting criteria and with the simulation results

Fig. 5.3 shows the normalized critical wavelength λcrit/(2πRu) as a function of the scaled

perturbation amplitude α := a/R0. The shading region in gray color is the metastable

region arising from the energy minimum concept, which is described in section 5.1. The

upper and lower borders of the shading region correspond to al1 and αm, respectively.

The present criterion can be reformulated as

λcrit/(2πRu) =

√
1− (a/R0)2

1− 1
2(a/R0)2

, (5.7)

using the volume constraint condition, and is illustrated by the red solid line. The

simulation results from the AC and CHNS models are illustrated by the blue solid

squares and the magenta diamonds, respectively. The criteria of existing theories are

depicted by other lines/symbols.

Among all the existing theories for α ∈ [0, 1], only the result of Carter and Glaeser, the

work of Nayfeh as well as the present work obey the energy minimum principle, which is

based on the second order approximation. We emphasize that the present criterion, Eq.

(5.6) is in good agreement with each previous criterion in their corresponding validity

range. For a � R0, the present criterion reduces to the PR criteria, λcrit ≈ λcrit
1 , λcrit

2 .
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Figure 5.2: Illustration for the evolution of the rod for (a) tiny, (b) medium, and (c)
large perturbations due to mean curvature flow.
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Figure 5.3: Stability diagram: the normalized critical wavelength λcrit/(2πRu) as a
function of the scaled perturbation amplitude α := a/R0.

Furthermore, the present work is well consistent with the second order stability analysis,

λcrit − λcrit
4 = O(α3) as well as with Carter’s result, λcrit ≈ λcrit

3 for α . 0.3. For higher

values of α, existing criteria significantly deviate from the present work. Moreover, we

observe a satisfactory match between the numerical experimental results and the theory,

in sharp contrast to the dramatic deviation in Fig. 4.4.

Paying careful attention to the fact that the diameter of the spheres cannot exceed the

wavelength of the wave results in a lower geometric limit for the critical wavelength
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λcrit =
√

6Ru or λcrit/(2πRu) =
√

6/(2π), as shown by the dot-dashed line. The geo-

metric constraint lies below all the critical wavelengths in literature and thus does not

play a vital role for the morphological evolution. However, with the present criterion,

the geometric limit crosses at α′ =
√

4π2−6
4π2+3

≈ 0.88777 and we accordingly divide the

stability diagram into three regimes:

� Regime I (filled with hatched lines): 0 ≤ α ≤ 1 and λ < λcrit, the mean curvature

at the crest is greater than the one at the trough. The surface flux is from the

convex to the concave regions. The perturbed rod is morphologically stable.

� Regime II (filled with gold color): α′ ≤ α ≤ 1 and λcrit ≤ λ ≤
√

6Ru, the perturbed

rod first breaks up into separate particles due to the surface flux from the trough to

the crest. After the breakup, the interfaces of the particles overlap with each other

and the final state is a rod of uniform radius due to coalescence. The transition

from rod to sphere and again to rod has not been tabulated in literature, but is

observed in our numerical experiments, as shown in Fig. 5.4.

� Regime III (excluding I and II): 0 ≤ α ≤ 1, λ ≥ λcrit and λ ≥
√

6Ru, the rod is

morphologically unstable due to the surface flux from the trough to the crest and

the final state is a line of spheres.

Figure 5.4: Transition from a rod to non-spherical particles and again to a rod.

We note that, according to the derivation of Rayleigh [2], there is a wavelength λm =
√

2λcrit = 2
√

2πRu, where the breakup of the rods has the maximum velocity. The

derivation of this wavelength is based on the Lagrange’s method using the potential

energy of Eq. (2.6) and kinetic energy K of inviscid fluid to derive the dispersion relation

ω = ω(k) with d
dt(

∂L
∂(da/dt)) = ∂L

∂a , where L = K − E. The wavelength λm corresponds

to the growth rate ω having the maximum value. It is obvious that the calculation of

the potential energy E (the surface energy) in the work of Rayleigh is based on the

approximation of the first order term of the binomial series. Therefore the wavelength

λm has to be amended for the general case of finite amplitude, which is the objective of

a forthcoming work. The consideration of non-inviscid fluid may change the value of λm

as well.
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5.5 An application to the detachment of nanowires

“Metallic and semiconductor nanowires play essential roles in nanoelectronics, opto-

electronics, sensorics, and numerous other fields. Thermal annealing is often applied on

nanowires as a post-fabrication treatment to achieve desired physical properties. During

the thermal annealing process or even at room temperature, nanowires may fragment

into a chain of nanospheres, which prevents it from applications. Also, nanospheres

are purposely produced from nanowires in microelectronic industry where the grain size

affects the electrical resistance and is hence of significant relevance.”[62]

“As shown in Fig. 5.5 (a), the atoms of a planar interface of nanowire-environment are

regularly ordered along the interface and therefore, the chemical potentials for atoms and

vacancies are both uniformly distributed, establishing the thermodynamic equilibrium

between the nanowire and environment. While the interface is stirred by a sinusoidal

function, the potential energies along the interface of the nanowire are inhomogeneous

because of non-uniformly distributed mean curvature. With contributions from the

mean curvature, the diffusion potential energy is as shown in Eq. 5.5. For instance,

in two dimensions, the diffusion potentials at λ/4 and 3λ/4 are Φλ/4 = µ0
A + γΩ|κ|

and Φ3λ/4 = µ0
A − γΩ|κ|, respectively (see Fig. 5.5 (b)). The gradient of the diffusion

potential energy −∇Φ ∝ 2γΩ∇κ in turn induces a surface flux from λ/4 to 3λ/4, as

schematically sketched in Fig. 5.5 (c), smoothing the nanowire.”[62]

Nanowire

Environment

µ0
A

Nanowire

Environment

Φ = µ0
A + γΩ|κ|

Φ = µ0
A − γΩ|κ|

z

µ0
A

Φ
J = −∇Φ

(a)

(b)

(c)

Figure 5.5: “Schematic illustration for chemical potential distribution affected by cur-
vature: (a) The chemical potential is uniformly distributed for a planar
interface. (b) The chemical potential along the interface of the nanowire
is inhomogeneous because of perturbations. (c) A surface flux is induced
by the gradient of diffusion potential Φ.”[62]

“The distribution of the mean curvature in the longitudinal direction z is illustrated in

Fig. 5.6 (a) for different perturbation amplitudes. The corresponding geometric setting

is λ/d0 = 160 and R0/d0 = 30, where d0 is the capillary length. For small amplitudes,

e.g., a/d0 = 5, the mean curvature decreases monotonically from λ/4 to 3λ/4, as shown

by the red solid line. In this case, the potential energy Φ at λ/4 is greater than the one at
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3λ/4, since κλ/4 > κ3λ/4. The difference in the diffusion potential Φ consequently induces

a surface flux J1 from λ/4 to 3λ/4, as sketched in Fig. 5.6 (b). The subsequent effect is

that the interface contracts towards the center of the nanowire at λ/4 and bulges out at

3λ/4. The nanowire evolves till the interface becomes flat and the respective diffusion

potential Φ is uniformly distributed along the interface. This monotonic decrease of

the mean curvature from λ/4 to 3λ/4 is comparable to the situation in two-dimensions.

With an increase of the amplitude, extrema of the mean curvature occur between λ/4
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Figure 5.6: “Effect of curvature distribution on the surface flux for stirred nanowires:
(a) mean curvature as a function of the spatial variable in the longitudinal
direction for different perturbation amplitudes. (b), (c), (d), and (e)
schematic drawings of the directions of the surface fluxes for perturbations
with amplitudes a/d0 = 5, 8, 13, 18, which correspond to the red, green,
blue and magenta lines in (a), respectively.”[62]
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and 3λ/4, as illustrated by the green, blue and magenta lines in Fig. 5.6 (a). The

locations of the curvature extrema for a/d0 = 8, 13 and 18 are denoted by z1, z2 and z3,

respectively. The corresponding potential energies Φ at λ/4 and 3λ/4 are both greater

than the ones at zi, i = 1, 2, 3. Hence, two surface fluxes take place between λ/4 and

zi and between 3λ/4 and zi, as schematically depicted by J1 and J2, respectively, in

Fig. 5.6 (c), (d) and (e). It is noted that the surface flux J1 and J2 are in the opposite

direction because of the fact that κλ/4 > κzi and κ3λ/4 > κzi .”[62]

“In the cases where there are curvature extrema between λ/4 and 3λ/4, we divide the

nano-wire into two parts, which are colored by green and magenta colors in Fig. 5.7.

The connecting circle between the magenta and green regions is8

S : x2 + y2 = [R0 + a sin(2πzi/λ)]2, (5.8)

where zi is the location of the curvature extremum, as illustrated by z1, z2 and z3 in

Fig. 5.6 (a). When there is a net surface flux across the surface S from the green to the

magenta region, the perturbed nanowire becomes stable; when the net flux across the

surface S is in the opposite direction, the interface contracts towards the center of the

nanowire at 3λ/4 and eventually breaks into separated nanospheres.”[62]

Figure 5.7: “Illustration of the stability criterion: the perturbed nanowire is unstable
when there is a net surface flux from the magenta to the green region;
otherwise the nanowire is stable. The connecting surface between the
magenta and green regions is given by the circle in Eq. (5.8).”[62]

“According to the derivation by Mullins [64], the local surface current Ji, i = 1, 2 is

expressed as

J1,2 = −(DsγΩν/kT )∇sκ, (5.9)

where Ds is the surface self-diffusion coefficient, ν is the number of diffusing atoms per

unit surface area, k is the Boltzmann constant, and T is the temperature. Integrat-

ing from λ/4 to 3λ/4 yields that Jnet = −(DsγΩν/kT )[κ(z)z=3λ/4 − κ(z)z=λ/4]ez. A

straightforward physical interpretation is that the total surface flux switches its direction

when the mean curvature at 3λ/4 is greater than the one at λ/4, in contrast to the situa-

tion in two-dimensions shown in Fig. 5.5 (c). When the surface flux is from λ/4 to 3λ/4,

the barycenter of the nanowire shifts from the green to the magenta regions and the

8B.N. suggested to add Eq. (5.8) and this contribution is also shown in Fig. 5.7.
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nanowire is stabilized; when the surface flux is from 3λ/4 to λ/4, the barycenter of the

nanowire operates in the opposite direction and the nanowire becomes unstable.”[62]



Chapter 6

Underdamped capillary wave

In this chapter, I investigate the dissipation behavior of perturbations at a liquid-liquid

interface using the Cahn-Hilliard-Navier-Stokes model. It is observed that a capillary

wave is formed when the capillary force is greater than a particular value. The aim is

to numerically address the criterion for the occurrence of capillary wave. This chapter

was published in Ref. [68].

6.1 Simulation setup

“I take Fe-Sn as an exemplary system for the present study, since its phase diagram re-

veals a miscibility gap where two immiscible liquids phases, namely the Fe-rich L1 phase

and the Sn-rich L2 phase, are in chemical equilibrium. We consider a two-dimensional

finite domain with a size of Nx×Ny, where Nx and Ny denote the lengths in the horizon-

tal and vertical directions, respectively, and the spatial length is scaled by the capillary

length d0. As schematically shown in Fig. 6.1, the upper half domain is filled by the L1

phase and the rest is occupied by the L2 phase. I assume that the L1 − L2 interface

is located at y = 0. The mole fractions of Fe in the L1 and L2 phases both are set at

equilibrium values from the phase diagram.”[68]

“The simulation parameters are tabulated in Tab. 6.1. The gradient energy coefficient

is determined as follows: We set up a flat L1 − L2 interface and the two phases are in

thermodynamic equilibrium. The interfacial energy is calculated as

σ = 2κc

∫ ∞
−∞

(dc/dx)2dx.

The gradient energy coefficient is thus numerically evaluated as κc = σ/Ψ , where Ψ is a

numerical integration calculated as Ψ = 2
∫∞
−∞(dc/dx)2dx. The interfacial tension σ of

immiscible liquids is taken from Ref. [55]. The capillary length is estimated by Eq. (3.16),

as shown by Langer [69]. The diffusivity D is referred to the self-diffusion coefficient of

Fe near the melting point [70]. The densities and the viscosities of the two immiscible

57
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liquids are assumed to be the same, which are approximated by the density and viscosity

of Sn at the melting point [71]. The dimensionless number M is proportional to 1/D2.

The diffusivity D changes with temperature referring to the Stokes-Einstein equation.

A slight variation of the diffusivity by raising or decreasing the temperature results in a

change of M in magnitude, e.g., if D is 3.1623 ≈
√

10 times bigger or less, the order of

M varies. Hence, different M corresponds to distinct temperatures.”[68]
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y

Figure 6.1: “Schematic illustration for the simulation setup.”[68]

Parameters Descriptions Value

κc (J/m) Gradient energy coefficient 2× 10−9

∆x = ∆y Discretization space step d0

Re Reynolds number 0.01

d0 (nm) Capillary length 1

η (Pas) Dynamic viscosity 1× 10−3

ρ (kg/m3) Density 7× 103

D (m2/s) Diffusivity 1× 10−9

RgTm/vm (J/m3)Scaling factor of free energy

density

1× 109

Tm (K) Monotectic temperature 1403

c0
l1 Monotectic mole fraction of L1 0.7132

c0
l2 Monotectic mole fraction of L2 0.2868

Ω1/(RgTm/vm) Interaction coefficient 0.345

Ω2/(RgTm/vm) Interaction coefficient 4.379

Table 6.1: Parameters used for simulations. This table is from Ref. [68].
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6.2 Results and discussion

“Initially, a perturbation with 10× 10 grid cells is imposed at the middle of the L1−L2

planar interface. Due to the perturbation, a local curvature difference appears, which in

turn causes a concentration gradient, namely Gibbs-Thomson effect. As the Marangoni

force is proportional to the concentration gradient, a Marangoni convection occurs and

consequently drives the motion of the interface. The position of the interface is given

by the locus of c = 0.5 and evolves as a function of time. The result of the interface

position for three different Marangoni numbers is shown in Fig. 6.2, where we can see

that the perturbation directly dissipates for M = 5 × 104. The inset in Fig. 6.2 (a)

shows a magnification of the interface at the perturbation region. For higher Marangoni

numbers, i.e. M = 5×105 and M = 5×106, the interface additionally propagates along

the horizontal phase boundary resulting in an interfacial wave, as shown in Fig. 6.2 (b)

and (c).”[68]

“The evolution of the interface shown in Fig. 6.2 is until the time of 0.7. A long time

behavior of the dissipation of the disturbance is given in Fig. 6.39. At a simulation time

of 19 (the cyan line), the interface has a maximum amplitude of 1 grid cell and there is

no oscillation observed, which significantly differs from the oscillatory behaviors of the

interface in Fig. 6.2 (b) and (c). ”[68]

“Fig. 6.4 (a)10 portrays an initial state where the planar L1 −L2 interface is disturbed.

Fig. 6.4 (b) and (c) illustrates the velocity field of the convection at t = 0.2 and 0.4,

respectively, for M = 5 × 106, where the direction of the arrows denote the convective

direction for the component Fe. In the L1 phase (blue region), there are a clockwise

(left) vortex and an anti-clockwise (right) vortex. In the L2 phase (yellow region), there

are two convection vortices as well, but the left one is anti-clockwise and the right one

is clockwise. With time, the vortices propagate in the horizontal direction.”[68]

“For a planar interface, the equilibrium mole fractions of Fe in the L1 and L2 phases

follow the phase diagram. For a curved interface, the equilibrium mole fractions in both

phases shift away from the phase digram. The changed amount in each phase is defined

as ∆ci := ccurved
Fe − ceq

Fe, which is proportional to κ/mi according to the Gibbs-Thomson

law, where κ is the mean curvature and mi is the slope of the phase diagram for the phase

Li. The Marangoni force is expressed as F = ∇sσ. With the chain rule and realizing that

σ has a single dependency on the interfacial concentration at the isothermal condition,

we obtain

F ∝ σ,c∇sκ/mi. (6.1)

Fig. 6.4 (d) depicts the position of the L1 − L2 interface shown in Fig. 6.4 (c). The

curvature is negative at x2 and is almost zero at x3. This gives rise to a curvature

9In the revision process of the manuscript, F.W. discussed with M.B.S to add Fig. 6.3.
10M.S. contributed to the visualization of Fig. 6.4 (a)-(c).
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Figure 6.2: “Temporal evolution of the L1−L2 interface for three different Marangoni
numbers: M = 5× 104, 5× 105 and 5× 106. The Cahn number, which is
defined as λ/L, where λ is the width of the interface and L is the height
of the domain, is 0.18 by setting λ/d0 = 18, L/d0 = 100.”[68]

gradient from x3 to x2. With the assumption that σ,c < 0 and the fact that mL2 > 0,

the direction of the Marangoni force is from x3 to x2 in the L2 phase, generating an

anti-clockwise vortex in the L2 phase. Since κ1 > 0 and mL1 < 0, the Marangoni force

is from x3 to x1 in the L1 phase, resulting in a clockwise vortex in the L1 phase.”[68]

“During the propagation of the interfacial wave, the contour line may be written in

Fourier series as

y(x, t) =
a0

2
+

∞∑
k=1

ak(t) cos(2πkx/N) + bk(t) sin(2πkx/N), (6.2)

where the coefficients are calculated as ak(t) = 2
N

∑N
x=1 y(x, t) cos(2πkx/N)∆x, bk(t) =

2
N

∑N
x=1 y(x, t) sin(2πkx/N)∆x with N being the number of grid cells in x direction.

The amplitudes of the leading term k = 1 of the Fourier modes in Eq. (6.2) are plotted

as a function of time for different Marangoni numbers in Fig. 6.5. The diagrams in each

row of Fig. 6.5 are for different Cahn numbers. The diagram at the top corresponds to

Cn = 0.045. The profiles display an exponential decrease of the amplitude a1(t) to zero

for M = 5×103 and M = 1×104. For M = 5×104, the amplitude changes its sign twice

in the time interval [40 : 100] and finally approaches zero, which indicates the occurrence
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Figure 6.3: “Long time behavior of the dissipation of the disturbance corresponding
to Fig. 6.2 (a).”[68]

of oscillation. A further increasing of the Marangoni number to M = 1 × 105 leads to

a more pronounced oscillation. Similar phenomena are observed for other two Cahn

numbers Cn = 0.18 and 0.36, as shown by the second and last diagrams in Fig. 6.5. The

difference between the three diagrams is that the critical Marangoni number varies.”[68]

“In Fig. 6.6 (a) we discuss the effect of the Cahn number on the critical Marangoni

number as a function of the wavenumber k. The cyan, red and blue lines describe

the simulation results for Cahn number 0.36, 0.18, and 0.045, respectively. The crit-

ical Marangoni number rises as the the Cahn number increases. This is explained as

follows11: the Marangoni number is proportional to the gradient energy coefficient κc,

which defines the interfacial width of the L1 − L2 interface λ. With the definition of

the Cahn number Cn = λ/L, we reach the conclusion that the Marangoni number

quadratically increases with the Cahn number: Mc ∼ Cn2.”[68]

“On the other hand, the chemical potential µ is defined as the variational derivative

µ := δF/δc = f,c − 2κc∆c. Thus µ ∝ Cn2. Therefore, the diffusion term at the right

hand side of the Cahn-Hilliard equation becomes stronger while increasing the Cahn

number. This results in a pronounced dissipation of the perturbation. To overcome the

dissipation effect and to observe the oscillatory convection, the interfacial force has to

be increased, which can be achieved by increasing the Marangoni number. ”[68]

“As illustrated in Fig. 6.5, the oscillation period varies with the Marangoni number.

The oscillation period for k = 1 as a function of Marangoni number at different Cahn

numbers are pictured in Fig. 6.6 (b). It shows that the period of oscillation decreases

with the increase of Marangoni number. The oscillation is intrinsically driven by the

Marangoni convection. Increasing the Marangoni number results in an increase of the

frequency of the oscillation, as shown in Fig. 6.5. Since the period of the oscillation is

11This explanation benefits from the discussions with M.B.S.
12M.B.S. suggested that the Cahn number is significant for the present study.
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Figure 6.4: “The convection fields for M = 5×106 at dimensionless time of (a) 0, (b)
0.2, and (c) 0.4. L1 and L2 phases are represented by the blue and green
regions, respectively. (d) shows the L1 −L2 interface at tD/d20 = 0.4 and
schematic illustration for the direction of the convection vortex.”[68]

inversely proportional to the frequency, the frequency of the oscillation decreases with

the Marangoni number. For an interfacial wave with a wave length of, for example,

λ = 1 cm and using the parameters: D = 0.67 × 10−3 m2/s, Cn = 0.045 and d0 = 1

cm, we obtain that the typical oscillation frequencies range from 0.19 to 0.94 s−1, in

comparison to the experimental observed oscillation frequency ranging from 0.21 to 1.2

s−1 [72].”[68]
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Figure 6.5: “Fourier coefficient a1(t) as a function of time for different Marangoni
numbers. The figures at the first, second and last row correspond to
Cahn numbers Cn = 0.045, 0.18 and 0.36, respectively.”[68]

“For the lowest Cahn number Cn = 0.045 of the present work, we further increase the

Marangoni number to examine the propagation behavior of the interfacial waves. In the

first row of Fig. 6.5, the Marangoni number ranges from 5 × 103 to 1 × 105. Fig. 6.713

illustrates the temporal evolution of the leading mode of the Fourier coefficients a1 for

Marangoni numbers changing from 5×105 to 1×107. For smaller Marangoni numbers, i.e.

5×105, 2×106 and 5×106, the Fourier coefficient a1 reveals a under-damped behavior, as

shown by the red, blue and green lines. When the Marangoni number reaches 1×107, the

maximal value of the Fourier coefficient a1 increases with time, indicating the occurrence

of the oscillatory instability. Hence, the critical Marangoni number of the oscillatory

instability of leading mode is between 5×106 and 1×107. In the analysis of Reichenbach

and Linde [73], they define a critical Marangoni number above which the disturbances

can grow in an oscillatory manner. The critical Marangoni from their analysis is on the

order of 107. Also, they assume a linear distribution of concentration in the bulk phase.

With interfacial matching conditions and after dimensionless, they define a Marangoni

number as

M1 = −dσ
dc

d2
0X

Dη
, (6.3)

13This figure is based a meeting between B.N., M.S., and M.B.S.
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Figure 6.6: “(a) Critical Marangoni number as a function of wave number: the
blue, red, cyan lines correspond to the simulation results from the Cahn-
Hilliard-Navier-Stokes model for Cahn number 0.36, 0.18 and 0.045, re-
spectively. (b) The dominated oscillation period T in Eq. (6.2) as a func-
tion of the Marangoni number for three different Cahn numbers.”[68]

where X is the slope of the linear distribution function of the concentration in bulk, in

contrast to the definition of the Marangoni number in the present work

M = κc/(ρD
2). (6.4)

The Marangoni number in the work of Reichenbach & Linde is affected by the bulk
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Figure 6.7: “Oscillatory instability of the leading mode: The leading mode of the
Fourier coefficients a1 as a function time for different Marangoni num-
bers. When the Marangoni number exceeds 107, the Fourier coefficient
a1 increases with time, indicating the oscillatory instability.”[68]

concentration distribution (X), which is different from the Marangoni number defined in

the present work. The Marangoni convection in the present work is caused by the surface
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gradient of the interfacial concentration/tension due to the inhomogeneous curvature

arising from disturbances. In the work of Sternling & Scriven [74] and Reichenbach

& Linde, they assume constant fluxes of solute from one phase to the other and the

different ratios of diffusivity and viscosity result in the non-uniformity of accumulation

or dispersion of solute at the interface, which gives rise to the inhomogeneous interfacial

concentration/tension. Though the Marangoni flow in their work is also induced by the

gradient of the interfacial tension, the problem treated seems to be different from the

present work. Also, we should pay attention that the interfacial tension is only defined

on a manifold in the sense of sharp interface. Rigorously, the relevant operator for the

stress balance condition at the interface is the surface gradient operator, i.e. ∇sσ, rather

than the convectional gradient operator that is used in the analysis of Reichenbach &

Linde. These differences make it intricate to make a direct comparison of our work with

that of Reichenbach & Linde.”[68]





Chapter 7

Effect of capillary flow on motion,

coarsening and coalescence of

droplets

After the breakup of liquid jets, the resulted droplets may interact with each other,

giving rise to a non-uniform concentration gradient along the surface of the droplets.

The inhomogeneous interfacial concentration consequently results in a capillary flow,

driving the motion of the droplets.

In the first part of this chapter, I analytically study the motion of droplets in a bipolar

coordinate. In the second part, I numerically investigate the motion of two droplets

using the Cahn-Hilliard-Navier-Stokes model. As a further extension of the work for

two droplets, I investigate the effect of capillary flow on the spinodal decomposition

process where multi-droplets appear. This chapter was published in Refs. [48, 75].

67
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Part I: Analytical Study on the

motion of two droplets
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7.1 Analytical study

“In the analysis, we assume undeformable interface and the droplet is in the form of a

sphere or a nearly sphere. The capillary number C := ηUc/σ, where η is the viscosity,

Uc is the characteristic velocity and σ is the interfacial tension, measures a ratio of

the viscosity force to the interfacial tension force. It is an indicative parameter for

the degree of deformation. For C � 1, the droplet stays in the form of a sphere or a

nearly sphere [76]. The characteristic velocity Uc is evaluated by D/d0 where D is the

diffusivity and d0 is the capillary length. With D ∼ 1 × 10−9 m2/s, d0 ∼ 1 × 10−9 m,

σ ∼ 0.1 J/m2 and η ∼ 1 × 10−3 Pas, the capillary number C is about 10−4, which is

much less than 1. Based on this, we study the motion of two nearly spherical droplets

in the bipolar coordinate.”[75]

7.1.1 Bipolar coordinate

z

x

Figure 7.1: “Schematic figure for the bipolar coordinate: the surface of the left droplet
is described by % = −β, and the surface of the right droplet is denoted by
% = α.”[75]

“The relation between the bipolar coordinate (%, ϕ) and the cylindrical coordinate (z,

x) is defined by [77]

z + ix = iq cot

[
1

2
(ϕ+ i%)

]
, ϕ ∈ [−π, π], % ∈ (−∞,∞), (7.1)
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where q is a positive constant. Eq. (7.1) yields

z =
q sinh %

cosh %− cosϕ
, x =

q sinϕ

cosh %− cosϕ
. (7.2)

By eliminating ϕ in Eq. (7.2), we have the following relation

(z − q coth %)2 + x2 =

(
q

sinh %

)2

,

which defines a circle with center at (q coth %, 0) and radius q/ sinh %. For the left droplet

with radius b and the right droplet with radius a, we have

a =
q

sinhα
, b =

q

sinhβ
,

where α and β denote the surfaces of the right and left droplets in the bipolar coordinate,

respectively, as shown in Fig. 7.1. The separation distance between the two droplets is

given by

d =

(
q cothα− q

sinhα

)
−
(
− q cothβ +

q

sinhβ

)
= a(coshα− 1) + b(coshβ − 1).

Choosing a as the dimensionless factor for space, we get the new relation between the

bipolar coordinate and the cylindrical coordinate

z =
sinhα sinh %

cosh %− cosϕ
, x =

sinhα sinϕ

cosh %− cosϕ
.

The non-dimensionalized separation distance is expressed as

d = (coshα− 1) +
b

a
(coshβ − 1).

Realizing that cosh2 α = 1 + sinh2 α, we get the following relation between α in the

bipolar coordinate and the separation distance and the ratio of the radii

coshα =
(d+ 1 + r)2 + 1− r2

2(d+ 1 + r)
,

coshβ =
(d+ 1 + r)2 − 1 + r2

2r(d+ 1 + r)
,

where r = b/a. In our analysis, without loss of generality, we assume that the bigger

droplet is the one with radius b, thus r ≥ 1.”[75]
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7.1.2 Solution of the Laplace equation in the bipolar coordinate

“When the Péclet number fulfills d0Uc
D � 1, the concentration equation transfers into

the Laplace equation

∆c = 0. (7.3)

The general solution of the Laplace equation in the bipolar coordinate has been found

by Stimson & Jeffery [41, 42]

c(%, ϕ) = (cosh %− cosϕ)1/2
∞∑
n=1

(
Gn cosh(n+ 1/2)%+Hn sinh(n+ 1/2)%

)
Pn(cosϕ),

(7.4)

where Pn(cosϕ) are Legendre polynomials, and Gn and Hn are coefficients to be deter-

mined by boundary conditions.”[75]

“We employ the following boundary conditions [43, 78] for mass transfer between the

droplets and continuous phase

cosh %− cosϕ

sinhα

∂c

∂%
+ ς(c− 1) = 0, % = α,

cosh %− cosϕ

sinhα

∂c

∂%
− ς(c− 1) = 0, % = −β, (7.5)

where ς is the Sherwood number which denotes the ratio of convective to diffusive mass

transport. Substituting the general solution of the Laplace equation Eq. (7.4) into the

boundary conditions Eq. (7.5) result in the following equation (for % = α)

∞∑
n=1

(
Gn sinhα cosh(n+ 1/2)α+Hn sinhα sinh(n+ 1/2)α

)
Pn(cosϕ)

+ (coshα− cosϕ)
∞∑
n=1

(2n+ 1)

(
Gn sinh(n+ 1/2)α+Hn cosh(n+ 1/2)α

)
Pn(cosϕ)

+ 2qς

∞∑
n=1

(
Gn cosh(n+ 1/2)α+Hn sinh(n+ 1/2)α

)
Pn(cosϕ)

= 2qς
1

(coshα− cosϕ)1/2
. (7.6)

The right hand side of Eq. (7.6) can be expanded as

1

(coshα− cosϕ)1/2
=
√

2
∞∑
n=0

e−(n+1/2)αPn(cosϕ), ∀ϕ ∈ [−π, π],

which is obtained by making use of the generating function of the Legendre polynomial,

and Bonnet’s recursion formula

(2n+ 1) cosϕPn(cosϕ) = (n+ 1)Pn+1(cosϕ) + nPn−1(cosϕ).
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Comparing the coefficients of the Legendre polynomial in Eq. (7.6), we get the following

linear system for the coefficients Gn and Hn

g
(n,α)
−1 Gn−1 − g(n,α)

0 Gn + g
(n,α)
1 Gn+1 + h

(n,α)
−1 Hn−1 − h(n,α)

0 Hn + h
(n,α)
1 Hn+1 = −u(n,α),

g
(n,β)
−1 Gn−1 − g(n,β)

0 Gn + g
(n,β)
1 Gn+1 + h

(n,β)
−1 Hn−1 − h(n,β)

0 Hn + h
(n,β)
1 Hn+1 = u(n,β),

(7.7)

where the coefficients g
(n,α)
−1 , g

(n,α)
0 , g

(n,α)
1 , h

(n,α)
−1 , h

(n,α)
0 , h

(n,α)
1 , g

(n,β)
−1 , g

(n,β)
0 , g

(n,β)
1 , h

(n,β)
−1 ,

h
(n,β)
0 , h

(n,β)
1 , u(n,α) and u(n,β) are given in Appendix C.”[75]

“For two droplets with the same radius, the concentration profile is axial-symmetrical,

therefore

Hn = 0, ∀n.

Since the concentration is bounded, we get Gn → 0 and Hn → 0 as n → ∞. Thus we

truncate the linear system Eq. (7.7) by setting Gn = 0 and Hn = 0 for n > N and solve

the 2N linear equations.”[75]

“Fig. 7.2 illustrates the isolines of the concentration for two equal-sized droplets with

different spacings (The spacing is the separation distance as defined in Section 7.1.1). As

shown in Fig. 7.2 (a)-(d), an increase of the separation distance between droplets results

in a weaker interaction between the two droplets and the concentration at the surface

of each droplets is no-uniform. The inhomogeneous concentration consequently drives

the convection. The convection and the diffusion are coupled by the tangential force

balance between the surface force caused by the non-uniform interfacial concentration

and the viscosity stress due to the resistance of the fluid.”[75]

7.1.3 Stream function

“For an incompressible Stokes flow, the stream function is given by

L2
−1ψ = 0,

where L2
−1 is the axial-symmetric Stokes operator, which is expressed in the cylindrical

coordinate as

L−1 =
∂2

∂z2
− 1

z

∂

∂z
+
∂2

∂x
.
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Figure 7.2: “Analytically calculated isolines of concentration for two equal-sized
droplets with four different spacings: (a) d = 0.5, (b) d = 1, (c) d = 2
and (d) d = 4.”[75]

In the bipolar coordinate, the velocity of the fluid due to convection can be related to

the Stokes stream function as

u% =
(cosh %− cosϕ)2

q2 sinhϕ

∂ψ

∂ϕ
, (7.8)

uϕ = −(cosh %− cosϕ)2

q2 sinhϕ

∂ψ

∂%
,
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in which the Stokes stream function satisfies the following equation

Φ2
(
Φ2ψ

)
= 0, (7.9)

with Φ2 being expressed as

Φ2 =
cosh %− cosϕ

q

[
∂

∂%

(
cosh %− cosϕ

q

∂

∂%

)
+(1−cos2 ϕ)

∂

∂ cosϕ

(
cosh %− cosϕ

q

∂

∂ cosϕ

)]
.

The general solution of Eq. (7.9) in the bipolar coordinate has been found by Stimson

et al. [41]

ψ(0)(%, ϕ) = (cosh %− cosϕ)−3/2
∞∑
n=1

X(0)
n (%)C

−1/2
n+1 (cosϕ), (7.10)

ψ(α)(%, ϕ) = (cosh %− cosϕ)−3/2
∞∑
n=1

X(α)
n (%)C

−1/2
n+1 (cosϕ), (7.11)

ψ(β)(%, ϕ) = (cosh %− cosϕ)−3/2
∞∑
n=1

X(β)
n (%)C

−1/2
n+1 (cosϕ), (7.12)

where C
−1/2
n+1 (cosϕ) is the Gegenbauer polynomial, which is related to the Legendre

polynomial by

(2n+ 1)C
−1/2
n+1 (cosϕ) = Pn−1(cosϕ)− Pn−1(cosϕ), C

1/2
n+1(cosϕ) = Pn+1(cosϕ).

The coefficients in Eq. (7.10)–Eq. (7.12) read as

X(0)
n = I(0)

n cosh(n− 1/2)%+ J (0)
n sinh(n− 1/2)%

+K(0)
n cosh(n+ 3/2)%+ L(0)

n sinh(n+ 3/2)%,

X(α)
n = I(α)

n e−(n−1/2)% +K(α)
n e−(n−1/2)%,

X(β)
n = I(β)

n e(n−1/2)% +K(β)
n e(n−1/2)%,

where I
(0)
n , J

(0)
n , K

(0)
n , L

(0)
n , I

(α)
n , K

(α)
n , I

(β)
n and K

(β)
n are unknown coefficients to be

determined by boundary conditions.”[75]

“The continuity of stream function and velocity in the tangential direction yields

ψ(0) = ψ(α), % = α, (7.13)

ψ(0) = ψ(β), % = −β, (7.14)

∂ψ(0)

∂%
=
∂ψ(α)

∂%
, % = α, (7.15)

∂ψ(0)

∂%
=
∂ψ(β)

∂%
, % = −β. (7.16)
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The impenetrability at the surfaces of each droplet gives

i% · (u(0) −U(α)) = 0, % = α, (7.17)

i% · (u(0) −U(β)) = 0, % = −β, (7.18)

where i% is the unit vector in the bipolar coordinate, U(α) is the motion velocity of the

droplet α, scaled by ∂σ
∂c /ν, where ν is the dynamic viscosity of the continuous phase and

σ is the surface tension. U(α) is expressed as U(α) = U (α)iz, where iz is the unit vector

along the z axis. Eq. (7.17) and Eq. (7.18) generate a relation between U (α) and the

stream function as (see Appendix D for the full derivation)

ψ(0) = −1

2
U (α) q2 sin2 ϕ

(coshα− cosϕ)2
, (7.19)

ψ(0) = −1

2
U (β) q2 sin2 ϕ

(coshβ − cosϕ)2
. (7.20)

In the tangential direction, the force balance between the viscous stress and capillary

force in terms of concentration gradient yields

τ (0)
%ϕ − ητ (α)

%ϕ =
cosh %− cosϕ

q

∂c

∂ϕ
, % = α, (7.21)

τ (0)
%ϕ − ητ (β)

%ϕ = −cosh %− cosϕ

q

∂c

∂ϕ
, % = −β, (7.22)

where η is the ratio of viscosity between the droplet and the continuous phase and τ%ϕ

is the tangential component of the viscous stress tensor, calculated by

τ%ϕ = i% ·
[

1

2
(∇u +∇uT )

]
· iϕ

= h

[
u%,ϕ + uϕ,% − hu%

(
1

h

)
,%

− huϕ
(

1

h

)
,ϕ

]
,

where h is the scaling factor in the bipolar coordinate, which is defined as

h :=
cosh %− coshϕ

q
.
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Boundary conditions Eqs. (7.13)-(7.16) give

∞∑
n=1

X(0)
n (α)C

−1/2
n+1 (cosϕ) =

∞∑
n=1

X(α)
n (α)C

−1/2
n+1 (cosϕ) (7.23)

∞∑
n=1

X(0)
n (−β)C

−1/2
n+1 (cosϕ) =

∞∑
n=1

X(β)
n (−β)C

−1/2
n+1 (cosϕ) (7.24)

∞∑
n=1

dX
(0)
n (α)

d%
C
−1/2
n+1 (cosϕ) =

∞∑
n=1

dX
(α)
n (α)

d%
C
−1/2
n+1 (cosϕ) (7.25)

∞∑
n=1

dX
(0)
n (−β)

d%
C
−1/2
n+1 (cosϕ) =

∞∑
n=1

dX
(α)
n (−β)

d%
C
−1/2
n+1 (cosϕ), ∀ϕ ∈ [−π, π]. (7.26)

Eqs. (7.19) and (7.20) are equivalent to

∞∑
n=1

X(0)
n (α)C

−1/2
n+1 (cosϕ) = −U (α)q2 sin2 ϕ

2(coshα− cosϕ)1/2
(7.27)

∞∑
n=1

X(0)
n (−β)C

−1/2
n+1 (cosϕ) = −U (β)q2 sin2 ϕ

2(coshα− cosϕ)1/2
, ∀ϕ ∈ [−π, π] (7.28)

The force balance equations Eqs. (7.21) and (7.22) can be simplified to

∞∑
n=1

(
d2X

(0)
n (α)

d%2
− ηd

2X
(α)
n (α)

d%2

)
C
−1/2
n+1 (cosϕ) =(1− η)q2U (α)

[
coshα sin2 ϕ

4(coshα− cosϕ)3/2

− 3 sinh2 α sin2 ϕ

8(coshα− cosϕ)5/2

]
+

q2 sin2 ϕ

(coshα− cosϕ)1/2

∂c

∂ cosϕ
, (7.29)

and

∞∑
n=1

(
d2X

(0)
n (α)

d%2
− ηd

2X
(β)
n (−β)

d%2

)
C
−1/2
n+1 (cosϕ) =(1− η)q2U (β)

[
coshβ sin2 ϕ

4(coshβ − cosϕ)3/2

− 3 sinh2 β sin2 ϕ

8(coshβ − cosϕ)5/2

]
− q2 sin2 ϕ

(coshβ − cosϕ)1/2

∂c

∂ cosϕ
, ∀ϕ ∈ [−π, π].

(7.30)

The first term at the right hand side of Eq. (7.29) and Eq. (7.30) is the viscous resistance

and the second term is the capillary force in terms of the concentration gradient.”[75]
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“Using the expansion (See Appendix E for the derivation)

sin2 ϕ

2(coshα− cosϕ)1/2
=

√
2

2

∞∑
n=1

n(n+ 1)

(
e−(n−1/2)α

2n− 1
− e−(n+3/2)α

2n+ 3

)
C
−1/2
n+1 (cosϕ),

(7.31)

coshα sin2 ϕ

4(coshα− cosϕ)3/2
=

√
2

4

∞∑
n=1

n(n+ 1)

(
e−(n−1/2)α + e−(n+3/2)α

)
C
−1/2
n+1 (cosϕ),

(7.32)

3 sinh2 α sin2 ϕ

8(coshα− cosϕ)5/2
=

√
2

8

∞∑
n=1

n(n+ 1)(2n+ 1)

(
e−(n−1/2)α − e−(n+3/2)α

)
C
−1/2
n+1 (cosϕ).

(7.33)

Eq. (7.23)-Eq. (7.30) result in the following linear system

Ξnbn = q2t(α)
n + q2t(β)

n − q2U (α)v(α)
n − q2U (β)v(β)

n , (7.34)

where bn = (I
(0)
n , J

(0)
n , K

(0)
n , L

(0)
n , I

(α)
n , K

(α)
n , I

(β)
n , K

(β)
n )T . Ξn, tn and vn are

matrices given in Appendix F. It is important to note that the factor of the second term

at the right hand side of Eq. (7.29): q2 sin2 ϕ
(coshα−cosϕ)1/2

can be expanded by making use of

Eq. (7.31). As noted above, the concentration profile is obtained by solving the linear

system Eq. (7.7). In order to find the function c(α, cosϕ), we plot the concentration as

a function of coshϕ in Fig. 7.3. A quadratic polynomial is used to fit the data points

reading

c(α, cosϕ) =
1

2
a(cosϕ)2 + b cosϕ+ d.

The fitted results for coefficients a and b are listed in Tab. 7.1. A derivative with respect
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Figure 7.3: “Concentration as a function of cosϕ at % = α for different spacings.”[75]
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to cosϕ yields
∂c

∂ cosϕ
= a cosϕ+ b. (7.35)

Substituting Eq. (7.35) into Eq. (7.29) and combining the recursion relation for the

Gegenbauer polynomial, we get the matrices t
(α)
n and t

(β)
n (See Appendix G).”[75]

Parameters aα bα aβ bβ

d = 0.5, r = 1 0.157295 0.256925 0.157295 0.256925

d = 1.0, r = 1 0.103128 0.191166 0.103128 0.191166

d = 2.0, r = 1 0.0546745 0.133095 0.0546745 0.133095

d = 4.0, r = 1 0.0231863 0.0853591 0.0231863 0.0853591

d = 1.0, r = 2 0.0684062 0.194992 0.25623 0.33982

d = 1.0, r = 4 0.0441915 0.216205 0.448396 0.490051

Table 7.1: “Fitted parameter in Eq. (7.35).”[75]

“According to Refs. [41, 44], the drag force on each droplet is given by

F (α) =
2
√

2πν

q

∞∑
n=1

(I(0)
n + J (0)

n +K(0)
n + L(0)

n ),

F (β) =
2
√

2πν

q

∞∑
n=1

(I(0)
n − J (0)

n +K(0)
n − L(0)

n ).

Assuming quasi-stationary, we get

F (α) = 0, F (β) = 0. (7.36)

Combining Eqs. (7.34) and (7.36), we get the following system for the moving velocity

of two droplets

Λ+
αUα + Λ+

β Uβ = Λ+
tα + Λ+

tβ
,

Λ−αUα + Λ−β Uβ = Λ−tα + Λ−tβ , (7.37)
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Figure 7.4: “Analytically calculated stream lines for two equal-sized droplets with
different spacings: (a) d = 0.5, (b) d = 1, (c) d = 2 and (d) d = 4.”[75]

where

Λ±α =
∞∑
n=1

I(vαn ,0)
n ± J (vαn ,0)

n +K(vαn ,0)
n ± L(vαn ,0)

n ,

Λ±β =

∞∑
n=1

I(vβn,0)
n ± J (vβn,0)

n +K(vβn,0)
n ± L(vβn,0)

n ,

Λ±tα =

∞∑
n=1

I(tαn ,0)
n ± J (tαn ,0)

n +K(tαn ,0)
n ± L(tαn ,0)

n ,

Λ±tβ =
∞∑
n=1

I(tβn,0)
n ± J (tβn,0)

n +K(tβn,0)
n ± L(tβn,0)

n .
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In summary, the whole analysis reduces to three linear systems, Eqs. (7.7), (7.34) and

(7.37), where Eq. (7.7) concerns the analytical solution for the concentration, Eq. (7.34)

deals with the solution for the stream function which is based on the solution of Eq. (7.7).

The motion velocity is given by Eq. (7.37). It is important to note that Eq. (7.37) needs

to be solved first after obtaining the concentration profile, in order to get the motion

velocity. Then, the coefficients I
(0)
n , J

(0)
n , K

(0)
n , L

(0)
n , I

(α)
n , K

(α)
n , I

(β)
n , K

(β)
n in the

general solution of stream function Eqs. (7.10)-(7.12) are obtained by substituting U (α)

and U (β) into Eq. (7.34).”[75]
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Figure 7.5: “Stream lines for different ratios of the radius of the droplet: (a) r = 2,
(b) r = 4. In both cases, the spacing is 1.”[75]

“Fig. 7.4 shows the stream lines for two equal-sized droplets with spacing ranging from

0.5 to 4. It is observed that there are four convection swirls around the droplets. These

convection swirls transport the solute in the continuous phase and in the droplets, which

give rise to the non-uniform concentration along the surface of the droplet. Consequently,

the capillary force because of the gradient of the concentration drives the motion of the

droplets.”[75]

“The stream lines for different ratios of the radius of the droplet with the same spacing

are illustrated in Fig. 7.5. The size difference results in the asymmetry of the stream

lines. For r = 2, we can still observe four convection swirls around the surface of the

droplet. However, the convection swirl is not able to occur around the surface of the

smaller droplet with increasing the radius ratio to 4, as shown in Fig. 7.5 (b).”[75]

“At the end of the section of our analysis which is based on the work of Golovin et al.,

we point out some major differences between the work of us and the one from Golovin et

al.: (i) One important technique which has not been reported in the work of Golovin et
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al. is presented in the present work. Eqs. (7.29) and (7.30) are two boundary conditions

for the stream function resulting from the tangential stress balance. The left hand sides

of Eqs. (7.29) and (7.30) are in terms of Gegenbauer polynomials. To compare the coeffi-

cients of the Gegenbauer polynomials, the right hand sides of Eqs. (7.29) and (7.30) have

to be expanded in terms of Gegenbauer polynomials. Concerning the last term at the

right hand sides of Eqs. (7.29) and (7.30): q2 sin2 ϕ
(coshα−cosϕ)1/2

∂c
∂ cosϕ , the expansion of the fac-

tor q2 sin2 ϕ
(coshα−cosϕ)1/2

into Gegenbauer polynomials is given by Eq. (7.31) and Appendix E.

If we use the general solution for concentration c (Eq. (7.4)) to calculate the derivative
∂c

∂ cosϕ , we would have a multiplication of Gegenbauer polynomials with Legendre poly-

nomials, which makes it difficult to compare the coefficients of Gegenbauer polynomials

at both sides of Eqs. (7.29). To avoid this, we propose a quadratic polynomial fit to

the function c(cosϕ). The quadratic fitting and the corresponding fitting results are

shown in Fig. 7.3 and Tab. 7.1. Thus the derivative yields ∂c
∂ cosϕ = a cosϕ + b. Then

we expand the term q2 sin2 ϕ
(coshα−cosϕ)1/2

(a cosϕ + b) into Gegenbauer polynomials with the

aid of the recursion relation for Gegenbauer polynomial, which is shown in Appendix G.

(ii) In the work of Golovin et al., it is not clear how the linear systems are derived. The

detailed derivations are presented in the present work. (iii) We show the stream lines

and isolines of concentration affected by the spacing between the two droplets, which is

not analyzed in the work of Golovin et al.”[75]

7.1.4 Interpretation of the analysis

The framework of the analysis is sketched in Fig. 7.6. The aim of the analysis is to find

the analytical solutions for the Laplace equation, Eq. (7.3) and the biharmonic equation,

Eq. (7.9) in the bipolar coordinate. The solution of the Laplace equation is expressed

as a summation of the Legendre polynomials, as depicted by Eq. (7.4). Applying the

boundary conditions, Eq. (7.5), the unknown coefficients in Eq. (7.4) are determined

and we thereafter obtain the concentration distribution, as shown in Fig. 7.2.

The stream function follows the biharmonic equation, Eq. (7.9), the solution of which is

expressed as a summation of the Gegenbauer polynomials, as shown by Eqs. (7.10), (7.11)

and (7.12). In the general solutions for the stream function, the unknown coefficients

I
(0)
n , J

(0)
n , K

(0)
n , J

(0)
n , I

(α)
n , J

(α)
n , K

(α)
n , J

(α)
n , I

(β)
n , J

(β)
n , K

(β)
n , and J

(β)
n are determined

by applying the boundary conditions, Eqs. (7.13)-(7.20), which result in a linear system

for the eight unknowns, as depicted by Eq. (7.34). It is noted that the linear system,

Eq. (7.34) contains two additional unknowns, U (α) and U (β), which are obtained by

solving the equation system, Eq. (7.37).
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Laplace equation ∇2c = 0

General solution Eq. (7.4)

B.C. Eq. (7.5)

Solution c(%, ϕ)

Biharmonic equation Φ2(Φ2ψ) = 0

General solution Eqs. (7.10)-(7.12)

B.C. Eqs. (7.13)–(7.20)

Solution ψ(%, ϕ)

Coupled by Eqs. (7.21)-(7.22)

Figure 7.6: Schematic illustration for the framework of the analysis.
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Part II: Numerical Investigation
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7.2 Numerical investigation on the motion of the droplets

driven by capillary flow

7.2.1 Motion

“We place two equal-sized droplets (radius of 30 grid points) of L2 phase with a distance

above 20 grid cells apart, which is greater than the interface width. This setting ensures

that coalescence and coarsening do not take place between the droplets. The size of the

simulation domain is 300×300 grid cells. Periodic boundary conditions are implemented

both, for concentration and velocity fields.”[48]

“Due to the application of solving equations based on an explicit finite difference dis-

cretization on a rectangular mesh, there are curvature differences along the surface of

droplets after the filling of droplets into the simulation domain. We therefore use the

following equation to smoothen the interface of each droplet before starting the simula-

tion

cn = co +Dc∇2co,

where cn and co are the new and old concentrations, respectively, and Dc is a coefficient

set to be 0.05. After 20 steps smoothening, the relative curvature differences (grid effect)

along the droplets become less than 1% of the curvature of an ideal circle, such that the

curvature differences due to filling can be neglected.”[48]

“After the above precondition, we start simulations with a temperature being 5 K below

the temperature of T/Tm = 1, to make sure that the droplets maintain their size.

However, due to this setting, the droplets grow a little in size and after a transient

state reach the equilibrium with the matrix. After reaching equilibrium, these two

droplets move towards each other due to the capillary flow induced by the nonuniform

concentration along the surface of the droplets.”[48]

“The convection pattern and stream lines for two droplets 40 grid cells apart, are shown

in Fig. 7.7 (a) and (b)14, respectively. Interestingly, several swirls appear around the

interface of each droplet. As we can see from the convection direction and the stream

line, the swirls between the inter-droplet region influences the motion of the droplets

towards each other, whereas the swirls on the opposite sides of the droplets are likely to

play a negative role.”[48]

“The mass transfer along the surface of each droplet and between the two droplets are

influenced by the convection through the convective term in the concentration equation,

causing the shift in barycenter of each droplet. The velocity as a function of initial

distance between the two droplets is shown in Fig. 7.7 (c). The star, circle and square

symbols denote the simulated velocities when the dimensionless number M is 10, 100

14M.S. made contributions to the visualization of the convection field in Fig. 7.6 (a) and the streams
in Fig. 7.6 (b).
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Figure 7.7: “(a) The convection profile of the capillary flow under the condition:
d/d0 = 40, R/d0 = 30, ς = 2, at a dimensionless time of 2 × 105, (b)
the stream lines of the capillary flow corresponding to image (a). (c) the
motion velocity of droplet’s barycenter varying with distance between
droplets: the solid red line is the analytical results from section 7.1,
the dashed green line shows the result from Refs. [43, 79] according to
Eq. (7.38), and the star, circle, square symbols denote the simulation
results at different dimensionless number M .”[48]

and 1000, respectively. The solid red line is the analytical result from section 7.1 and

the dashed green line shows the result from Refs. [43, 79] according to the equation

V =
ς

2.5(ς + 1)(ς + 2)

(
d

R

)−2

. (7.38)

As denoted by symbols representing the simulation results, the effect of convection is

reduced with increasing the distance between the two droplets and becomes stronger
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while increasing the dimensionless number M . The former tendency is easy to under-

stand: The droplets with a larger distance have a comparable effect of convection at

inner- and outer-droplet region and smaller concentration difference along the surface.

While decreasing the distance between the droplets, the effect of inner swirls becomes

stronger than outer swirls, and this, subsequently, causes a dramatic enhancement of the

velocity. For comprehending the latter phenomenon, we rewrite the dimensionless num-

ber as M = (RT/vm)d2
0/(ρD

2
l ), where RT/vm is a scaling factor derived from surface

tension and capillary length. The increase of the dimensionless number from 10 to 100

or 1000 can be achieved by deceasing the diffusion coefficient to Dl/
√

10 or one order

lower, which is possible in real alloys [80]. The trending of velocity vs initial distance

between droplets, obtained from simulation, is quite similar to the one from Eq. (7.38),

which is used to predict the case when d→∞.”[48]

“However, the velocity obtained from our simulation using the capillary stress tensor is

less than that obtained from the analytical result. This may be due to the competition

between the inter-droplets swirls and the ones at the opposite sides of the droplets,

which has not been considered in the analytical model. Decreasing the distance of the

two droplets can strengthen the effect of convection, but due to the fact that we have a

finite interface width, which has not been considered in the analytical model, the droplets

are expected to undergo a coalescence process with the decrease in distance.”[48]

7.2.2 Transition from motion to coalescence

“As described in Section 7.2.1, the two distant droplets move towards each other due to

the capillary flow induced by the non-uniform curvature distribution along the surface.

The interfaces of the two droplets can overlap each other after some time, thereafter,

coalescence will be the dominant mechanism between them.”[48]

“As illustrated in Fig. 7.8 (a), we show the trace of the line with a value of 0.5, of each

droplet, when the initial distance between the two droplets is 30 grid cells. The region

between the two droplets is zoomed in Fig. 7.8 (b). The solid red, dashed blue, dotted

pink, dot dashed black and dot dot dashed green lines correspond to the simulation

time of 8760, 27760, 41760, 52760 and 55160, respectively. From the figure we can

see, the droplets almost maintain the morphology till the time 52760 during the motion

process. However, the droplets develop protrusions in the x direction (see Fig. 7.8

(b)) decreasing the distance between the droplets, which means that they go inside the

coalescing stage.”[48]

“In addition, Fig. 7.8 (c)15 shows the barycenter of the left droplet at the simulation

time of 8760, 27760, 41760, 52760 and 55160, represented by the red circle, blue square,

pink lozenge, black pentagon and green triangle, respectively.”[48]

15R.M. suggested to trace the barycenter of the droplets.
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Figure 7.8: “Transition from motion to coalescence: (a) shows the trace of the line
with a value of 0.5, of each droplets, when the initial distance between
the two droplets is 30 grid cells and M = 1000. The solid red, dashed
blue, dotted pink, dot dashed black and dot dot dashed green lines corre-
spond to the dimensionless time of 8760, 27760, 41760, 52760 and 55160,
respectively. (b) is a zoom in figure of (a). (c) shows the barycenter of
the left droplet at the dimensionless time of 8760, 27760, 41760, 52760
and 55160, represented by the red circle, blue square, pink lozenge, black
pentagon and green triangle, respectively.”[48]

7.2.3 Coalescence

“In this section, we investigate the effect of capillary convection on the coalescence

process. Initially, we put two droplets of L2 phase in contact and inside the L1 matrix,

with a distance being less than the interface width, as illustrated in Fig. 7.9 (a). The mole

fraction of Fe in the droplets and in the matrix are 0.2868 and 0.7132, respectively.”[48]

“With time, the two droplets join to reduce the total surface area, causing a con-

cave region where two droplets contact each other. This, subsequently, induces a

convection along the surface of each droplets due to the difference in the interfacial

concentration.”[48]

“We show the coalescing morphology at the initial stage in Fig. 7.9 (a) 16 . The path

of convection and stream lines at the time of 3220 for M = 10 are given in Fig. 7.9 (b)

and (c), respectively. The isolines for pressure caused by capillary flow corresponding

16Fig. 7.8 (a) and (b) are visualized by using the post-processing tool which is developed by M.S.
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Figure 7.9: “Coalescence of droplets assisted by capillary convection in monotec-
tic systems: (a) is the initial morphology for the simulation where two
droplets are 8 grid cells apart from each other, (b) shows the coalescing
morphology with the path of capillary convection at a dimensionless time
of 3220, (c) illustrates the stream line which results from capillary convec-
tion, (d) displays the isolines of pressure caused by capillary convection
corresponding to the state of (b), and (e) draws the height of the neck
varying with time in the cases of including capillary flow at different di-
mensionless numbers and not considering capillary convection, containing
the schematic figure for comprehending where we measure the height of
the neck.”[48]

to the state in (b) are plotted in Fig. 7.9 (d). We take the following route to obtain the

pressure profile. We first solve the Navier-Stokes equation with capillary tensor and then

substitute the results into the Eq. (3.12) because of the assumption of incompressible

flow, which results in a Poisson equation for the pressure. By employing SOR iteration to

solve the Poisson equation, we thus obtain the pressure profile resulting from convection.

For a detailed mathematical procedure, one may refer to Ref. [58].”[48]

“To compare the coalescing process both in the presence and absence of capillary flow,

we calculate the height of neck as a function of time, as illustrated in Fig. 7.9 (e). We

include a schematic figure inside for better understanding of where we exactly measure

the height of the neck. The dashed red, dot dashed green and dot dot dashed pink lines
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represent the cases with capillary flow for M = 10, 100 and 1000, respectively. The solid

blue line depicts the process only governed by diffusion. It shows that the interfaces of

the two droplets get in touch with each other earlier and the height of the neck evolves

faster while considering capillary flow. Moreover, the increase in dimensionless number

from 10 to 1000 substantially raises the rate of coalescence.”[48]

7.2.4 Coarsening

“Two droplets with different sizes and at a distance larger than the interface width

undergo an Oswald ripening process due to the Gibbs-Thomson effect. To capture the

effect of capillary flow on the coarsening process, we perform two sets of simulation: (a)

two droplets, one with diameter of 60 grid cells and the other of 30 grid cells, with a

distance of 30 grid cells, (b) the same as (a) except that the diameter of the smaller

droplet is 40 grid cells. During the coarsening process, the bigger droplet grows, whereas

the smaller one shrinks and tends to vanish.”[48]

“To address the effect of capillary flow, we plot the radius of the bigger droplets as a

function of time in two sets of simulation, both with and without capillary flow, as shown

in Fig. 7.10. We observe that the evolution velocity of case (a) is faster than that of

case (b). This is due to the fact that in case (a) the driving force, which is proportional

to curvature difference of the two droplets, is higher than that of case (b). Moreover,

in each case, the coarsening velocity of the two droplets is relatively unaffected, upon

incorporation of capillary flow, although increasing the dimensionless number M has a

very weak enhancement of the velocity. We therefore conclude that capillary flow has

no obvious effect on the mass transfer between the two droplets and thus coarsening

process is not likely to be influenced by capillary flow.”[48]
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Figure 7.10: “The radius of droplets as a function of time during coarsening process:
the solid red (upper) and solid brown (down) lines show the case (a)
and (b) without capillary flow, respectively, the dashed pink (upper)
and dashed green (down) lines depict the case (a) and (b) with capillary
flow at M = 100, respectively, the dotted blue (upper) and dotted orange
(down) lines illustrate the case (a) and (b) with capillary flow at M =
1000, respectively.”[48]
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7.2.5 Phase separation affected by capillary flow in Fe-50 at% Sn alloy

“In this section, phase separation influenced by capillary convection in Fe-50 at% Sn

alloy is investigated. The composition of the alloy is inside the region of the spinodal

region, where the primary liquid is unstable and in the presence of fluctuations de-

composes into two liquids differing only by concentrations. Perturbations in the form

of conserved noise are introduced to initiate spinodal decomposition. Based on these

conditions, simulations are performed under isothermal condition at a dimensionless

temperature of 0.8, corresponding to a dimensional value of 1122.4 K. The temperature

of the spinodal decomposition at this composition of Fe-50 at% Sn is 1781 K and the

monotectic temperature of the system is 1403 K.”[48]

“At the early stage of phase separation, an incipient interface forms between the two

phases and the non-uniform concentration distribution along this interface results in

convection. The concentration field together with the fluid flow profile at a simulation

time of 3175 is displayed in Fig. 7.11 (b). When the concave and convex interfaces are

near each other, i.e., a larger curvature difference, the convection becomes stronger. The

phase separation morphology without capillary flow at the same time is illustrated in

Fig. 7.11 (a). A comparison between these two morphologies reveals that the capillary

flow accelerates the evolution process of phase separation in Fe-50 at% Sn alloy. Quan-

titative analysis is given below by making a comparison between the evolution modes in

these two cases.”[48]

(a) (b)

Figure 7.11: “Phase separation morphologies in Fe-50 at% Sn alloy without capillary
flow (a), and with capillary flow (b) (M = 10) both at time tD/d20 =
3175.”[48]

“If an isotropic system is assumed, we can make a circular approximation to the square

simulation domain and use the circular averaged concentration, which is a function of

the radial distance, to evaluate the spatial periodicity in the phase separation process
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by writing the radial distribution of the concentration as

C(r) =
1

Nr

∑
R,|R|=r

(c(r)− c0) ,

where c(r) is the concentration at each radius r, Nr is the number of the points with

radius r.”[48]

“In order to identify the individual modes, distinguished by the wave numbers in recip-

rocal space, we perform a Fourier transformation of the circular averaged concentration

as

F (k) =

∫
drC(r)e−ik·r. (7.39)

The intensities of F (k) with respect to the wave number at the simulation time of
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Figure 7.12: “The effect of capillary flow on the X-ray spectra in Fe-50 at% Sn alloy:
(a) and (b) shows the intensity, calculated from Eq. (7.39), as a func-
tion of the wave number in the cases with and without capillary flow,
respectively. The dashed red, dot dashed green and dotted blue lines
are for simulation time of 425, 925 and 4925, respectively. The solid
lines correspond to the fitting curves, (c) depicts the value of the peak
of the spectra as a function of time with and without capillary flow,
represented by the dashed purple and solid pink lines, respectively.”[48]
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425, 925 and 4925 with and without capillary flow, are shown in Fig. 7.12 (a) and (b),

respectively. With time, the peak of |F (k)| shifts towards the long-wave-length direction,

which is accordance with the analytical results obtained by Langer [81]. However, if we

compare the peak of |F (k)| at the same time with and without capillary flow, we find that

the value is higher in the former case. In addition, in Fig. 7.12 (c) we plot the amplitude

of the spectra as a function of time with and without capillary flow, respectively. It shows

that capillary flow dramatically accelerates the evolution process.”[48]

7.2.6 Phase separation influenced by capillary flow in Fe-40 at% Sn

alloy

“In this section, we investigate the phase separation in hyper-monotectic Fe-40 at% Sn

alloy influenced by capillary flow. Simulation conditions are the same as that in Sec-

tion 7.2.5, initializing phase separation by using a conserved noise, which is switched off

after a short evolution. The temperature of the spinodal decomposition at this compo-

sition is 1529.9 K and the simulations are performed at a dimensionless temperature of

0.8 relating to a dimensional value of 1122.4 K.”[48]

“The morphologies resulting from spinodal decomposition at a simulation time of 2475

are shown in Fig. 7.13 (a) and (b) 17, where figure (a) refers to the case without capillary

flow and figure (b) shows the snapshot of phase separation coupled with capillary flow.

Compared with the bi-continuous microstructure resulted from the phase-separation of

Fe-50 at %Sn alloy shown in Fig. 7.11, a structure composed of droplets forms at Fe-40

at% Sn alloy. Moreover, the path of fluid flow caused by the non-uniform concentration

gradient is illustrated in Fig. 7.13 (b). Notably, when two droplets begin to coalesce, the

fluid flow around the contact point becomes much stronger than the other places. This is

due to the fact that the negative curvature occurs at the neck of two droplets during the

process of coalescence, which causes a larger difference in concentration gradient.”[48]

“Fig. 7.13 (c) shows the cube of the average radius of droplets as a function of time.

The solid red and dot dashed blue lines represent the cases with and without capillary

flow, respectively, and the dashed green and dot dot dashed pink lines correspond to

the linear fits. From the figure we conclude, without capillary flow the cube of average

radius changes linearly with time during the evolution process, as predicted by Lifshitz

and Slyozov [82] and simulation [83].”[48]

“When capillary flow is considered, the average radius of droplets is bigger than that not

considering capillary flow, and the average radius as a function of time can be divided

into three regimes: I (from simulation time 0 to 5000), the average radius increases

rapidly due to the fact that there is a large number of droplets with short distance

between each other where capillary flow has a substantial accelerating effect and this

17Fig. 7.12 (a) and(b) are visualized by using the post-processing tool, which is developed by M.S.
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Figure 7.13: “Phase separation morphologies in Fe-40 at% Sn alloy without capil-
lary flow (a), and with capillary flow (b) (M = 10), the average radius
and number of droplets varying with time are shown in (c) and (d), re-
spectively. Bar chart diagram (e) and (f) show the size distribution of
droplets at simulation time of 2475 and 9595, respectively, in comparison
with the LSW theory.”[48]

process is accordance with the simulation results in Ref. [83]18, in which they got a

R2 ∼ t relation; II (from time 5000 to 15000), the capillary flow is weakened when the

number of droplets decreases and the cube of the average radius of droplets changes

18B.N. suggested to compare the results with the work of Diepers et al. and the discussion for the
dynamic behavior in regime I is partially contributed by B.N.
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linearly with time; III (after time 15000), the number of droplets is fairly less, resulting

in a non-smooth increase in average radius with time. In addition, Fig. 7.13 (d) shows

the the number of droplets as a function of time for the cases with and without capillary

flow. From the curves in Fig. 7.13 (d), we can see that the number of droplets considering

capillary flow is less than that without capillary flow. The gap between the two curves

is mainly due to the initial accelerating effect of capillary flow on the coalescence of

droplets, which corresponds to the regime I in Fig. 7.13 (c).”[48]

“Fig. 7.13 (e) and (f) present the size distribution of droplets at the simulation time of

2475 and 9595, respectively. In each figure, the thick solid red and thick dashed green

bars represent the case without and with capillary flow, respectively. The short dashed

pink and dot dashed cyan lines represent the Gaussian fits without and with capillary

flow, respectively. The solid blue line is plotted to show the LSW size distribution

according to Ref. [82, 84] as19

g(r) =
4

9

( r
R

)2
(

3

3 + r
R

)7/3( 1.5

1.5− r
R

)11/3

exp

( r
R

r
R − 1.5

)
,

where r is the radius of droplet, and R denotes the mean radius over all droplets.

Fig. 7.13 (e) shows that capillary flow causes a broader and flatter size distribution

than that obtained without capillary flow, which is similar to the results obtained by

Tegze et al. [85]. With time, the size distribution of droplets in the two cases tends

to overlap each other, as shown in Fig. 7.13 (f). A comparison with the LSW theory

shows that the size distributions are broader with smaller amplitude for both the cases.

19R.M. suggested to compare the present results with the LSW theory.
20A.C. and R.M. suggested to compare the size distribution of droplets of equivalent statistical states

and the discussions for Fig. 7. 13 are partially contributed by A.C. and R.M.
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Figure 7.14: “The effect of capillary flow on the size distribution of droplets corre-
sponding to the equivalent statistical states.”[48]
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This is due to the fact that LSW is valid for predicting the size distribution for dilute

alloys [82, 84]. For high volume fraction regime, the size distribution broadens and the

amplitude decreases [86–88].”[48]

“Fig. 7.14 shows the effect of capillary flow on the size distribution of droplets at equiv-

alent statistical states (equal number of droplets). In the figure, we compare the size

distributions at time 9595 (without capillary flow) and at time 3975 (with capillary

flow), which are located in the linear regime in Fig. 7.13 (c). In both cases the number

of droplets is 70. It shows that the case considering capillary flow has a broader size

distribution and the peak shifts towards the larger droplet direction. Moreover, the

analytical result considering capillary flow, obtained by Ratke and Thieringer [89], is

shown in the figure by the dashed pink line. It is observed, that the size distribution of

the droplets at larger and smaller size region tends to the analytical results achieved by

Ratke et al., whereas the LSW curve fits better around the area of r/R = 1.”[48]





Chapter 8

Conclusion and outlook

8.1 Conclusion and remarks

I have shown that the morphological stability criterion for perturbed jets is addressed

by two parts:

λcrit =

2π
√
R2

0 − a2, 0 < a/R0 <
√

4π2−6
4π2+3

,√
6R2

0 + 3a2,
√

4π2−6
4π2+3

≤ a/R0 < 1.

Besides the fundamental significance, I am convinced that the present theory can serve

as a useful reference in a wide variety of practical applications. In directional solidifica-

tions [90–93], rod-shaped phases are usually formed behind the front of the solid-liquid

interface. The rod phase simultaneously breaks up into a chain of spheres and the size

of the particles affects the mechanical and electrical properties of the materials. In

nanotechnology [94–97], metallic nanowires are usually used as conductors or semicon-

ductors and the morphological stability is of crucial importance, especially at elevated

temperature where the surface diffusivity is increased. In medical science and cosmetics,

the separation of a fluid column into a line of droplets is extensively observed [98–106]

and may be predicted more accurately by the present theory.

Experimentally, the distance between the resulted droplets is likely to be the wavelength

where the maximum velocity of the detachment takes place. According to the linear

stability analysis of Rayleigh, the maximum growth rate occurs at λm =
√

2λcrit [2], as

reviewed in section 2.2.2. The derivation of the wavelength λm is based on the Lagrange’s

method using the potential energy of Eq. (2.6) and kinetic energy K of inviscid fluid.

However, the potential energy of Eq. (2.6) is based on the binomial series approximation

for tiny perturbations. Hence, the prevailing wavelength λm has to be amended for the

general case where the amplitude of the perturbation is large.

The second topic that was investigated is the capillary wave at a fluid-fluid interface.

By using a Fourier analysis, I have shown that the interfacial wave is induced by the

97
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oscillatory modes of the capillary flow. I have addressed a critical dimensionless number

M , above which the oscillatory modes are able to occur.

In the third part of the thesis, I have analytically and numerically studied the motion

of two droplets driven by capillary flow. For small capillary numbers, the interface is

assumed to be non-deformable and the motion of the droplets thus can be analyzed in

the bipolar coordinate. The stream lines from the Cahn-Hilliard-Navier-Stokes model

are qualitatively consistent with the analysis in the bipolar coordinate. The effect of

capillary flow on the coalescence as well as the coarsening processes of two droplets is

further explored. It has been found that the capillary flow has a weaker effect on the

coarsening process, whereas the speed of coalescence is significantly enhanced when the

capillary flow is considered.

Based on the investigation of the capillary effect on the interaction of two droplets, I

examine the motion of multi-droplets in the process of spinodal decomposition. I find

that the capillary flow speeds up the spinodal decomposition and the mean size of the

droplets is bigger than the case without capillary flow. Moreover, in comparison with

the LSW theory, the droplets have a broader size distribution.

8.2 Future directions

8.2.1 Irregular perturbation

As the classic work of Rayleigh, a single-wavelength perturbation r = R0 + a cos kx is

considered in the present work. In reality, perturbations are likely to be stochastically

generated and the perturbed jet can be expressed in a more general form

r = R0 +

∞∑
n=1

an cosnkx, (8.1)

where an is the Fourier coefficient of the n-th order perturbation.

Figure 8.1: Sketch of a perturbed jet.
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As sketched in Fig. 8.1, the normal velocity vn correlates to the evolution rate of the

radius ∂tr as

vn = ∂tr
√

1 + (∂xr)2 =

(
∂tR0 +

∞∑
n=1

∂tan cosnkx

)√
1 + (∂xr)2. (8.2)

Using the relationship, ds2 = dr2 + dx2 (see Fig. 8.1), the surface Laplace operator is

expressed as d2

ds2
= 1√

1+(∂xr)2
d
dx

(
1√

1+(∂xr)2
d
dx

)
and the surface Laplace of the mean

curvature reads

d2κ

ds2
=

1√
1 + (∂xr)2

∂x

(
1√

1 + (∂xr)2
∂xκ

)
. (8.3)

The evolution equation of surface diffusion is rearranged as

∂tR0 + ∂ta1 cos kx+ ∂ta2 cos 2kx+ · · · = 1

1 + (∂xr)2
∂x

(
1√

1 + (∂xr)2
∂xκ

)
. (8.4)

A future work is to analyze the above evolution equation to obtain the dynamic equations

for the coefficients an. The critical setup for the breakup can be derived by the condition

of whether the leading amplitude a1 increases or decreases with time.

8.2.2 Satellite mini droplets
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0 x1 λ/2 x2 λ

r/
d

0

x/d0

a2/a1=0.75

a2/a1=0
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Figure 8.2: Illustration for jets r = R0 + a1 cos kx+ a2 cos 2kx with different ratios of
a2/a1.

In experiments, we often observe breakups with satellite mini droplets. An illustration

for the reason of the creation of satellite mini droplets is shown in Fig. 8.2, which depicts
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jets r = R0 + a1 cos kx+ a2 cos 2kx for different ratios of a2/a1. For ratios of a2/a1 = 0

(the dashed line) and a2/a1 = −0.125 (the dot-dashed line), the surface of the jet is

monotonic from the crest to the trough and the jet tends to break up at the trough of

the wave (x = λ/2) when the surface flux is from the trough to the crest. For a positive

ratio of a2/a1 (the solid line), two additional extrema points appear at x1 and x2. If the

secondary amplitude further increases with time, the radial curvature (≈ 1/r) becomes

the dominating curvature and the mean curvatures at x1 and x2 are greater than the

values at other places. Due to the surface flux J = −∇sκ, the breakup takes place at

x1 and x2, forming a daughter droplet between the main droplet. So, the formation of

satellite mini droplets is due to an increase of the higher order term a2 in the Fourier

series. To carry out such a non-linear stability analysis to derive the dynamic equation

for a2 could be a future work.

8.2.3 Other applications of the numerical models

The multiphase Allen-Cahn model can be used for the grain growth [107] and wetting

phenomena [108] and, if coupled with the multicomponent diffusion equation, it can

be employed to study phase transformation in the solidification process, formation of

intermetallic phases, etc. An example which has been published in Ref. [109] is briefly

depicted in the following.

“Fig. 8.3 schematically illustrates the mechanism for the formation of the intermetl-

lic phase Al2Au in the Al-Au system. From the binary phase diagram of Al-Au, the

equilibrium mole fractions of Au in liquid and solid are relative high. While placing an

Al–liquid droplet on an Au–solid substrate, the composition of Au in liquid tends to

approach the equilibrium mole fraction. This is achieved by a diffusion of Au into the

Al-liquid, as schematically illustrated in Fig. 8.3 (a).”[109]

“Thereafter, the Al and Au combines with a ratio of 2, forming the intermetallic phase

Al2Au, as shown in Fig. 8.3 (b). Due to the surface energy relation: γSL > γSI +γLI, the

triple point of solid-liquid-intermetallic phase is not stable, resulting in the growth of the

intermetallic phase in the horizontal direction, as illustrated in Fig. 8.3 (c). During the

spreading of the intermetallic phase, the Au atoms constantly diffuse into the Al-liquid,

which provides the source for the later growth of the intermetallic phase in the vertical

direction.”[109]

“When the two triple points SIV (Solid-Intermetallic-Vaccum) and LIV (Liquid-Interme-

tallic-Vaccum) are established, the spreading of the intermetallic phase in the horizontal

direction stops. The intermetallic phase then grows in the vertical direction, increasing

its thickness, as illustrated in Fig. 8.3 (d). At this stage, the liquid is no longer in

contact with the solid. Since the diffusivity of Au in liquid Al is greater than the one in

solid Au, the intermetallic phase grows into the liquid droplet. The required Au for the
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L
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V

Al atoms

Au atoms

(a) Au atoms diffuse into the Al-droplet

due to the feature of the Al-Au phase

diagram.

L

S

V

I(Al2Au)

(b) Formation of the intermetallic Al2Au

phase (purple phase),

L

S

V

I

γSL > γSI + γL I

(c) Spreading of Al2Au by Au diffusion in

the Al droplet and as a result of the

surface energy relation: γSL > γSI +

γLI.
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S

V

I

(d) Growth of intermetallic phase in the

vertical direction.

Figure 8.3: “(a) Schematic illustration of a liquid droplet L (Al) on top of a substrate
S (Au) surrounded by vacuum V. (b)-(d) Formation and growth of the
intermetallic phase I (Al2Au).”[109]

growth of the intermetallic phase is provided from the stages shown in Fig. 8.3 (a), (b)

and (c).”[109]

“Fig. 8.4 shows a temporal evolution of the intermetallic phase Al2Au computed by

the phase-field model. The yellow, purple and gray regions represent Au-solid substrate,

intermetallic phase Al2Au and Al-liquid droplet, respectively. Fig. 8.4 (a) corresponds to

an initial filling where the intermetallic phase Al2Au is set as a small nucleus inside the

Al droplet. Due to the relation that γSL > γSI + γLI, the intermetallic phase propagates

along the solid-liquid interface and spreads in the horizontal direction, as shown in

Fig. 8.4 (b). When the solid-liquid interface is completely covered, the intermetallic

phase grows in the vertical direction towards the Al liquid and its thickness increases,

as depicted in Fig. 8.4 (c).”[109]
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(a) (b) (c)

Figure 8.4: “Time evolution of the intermetallic phase Al2Au from a phase-field sim-
ulation: (a) Earlier stage of the intermetallic phase Al2Au inside the
Al-droplet, (b) spreading of the intermetallic phase in the horizontal
direction, (c) growth of the intermetallic phase grows in the vertical
direction.”[109]



Appendix A

Capillary tensor

“We perform a transformation to the coordinates x and field variables c(x) as

ξµ = xµ + wµνx
ν + aµ ≡ xµ + κµ(x), (A.1)

φ(ξ) = c(x) + δc(x), (A.2)

where aµ represents a space time translation, wµν is a Lorenz transformation and antisym-

metry. ξ is the new coordinate and φ(ξ) is the new field variable after transformation.

According to Noether’s theorem [50], a specific transformation of the coordinates and

field variables does not change the action

δS =

∫
Ω′
L
(
φ(ξ), ∂′µφ(ξ)

)
dΩ′ −

∫
Ω
L (c(x), ∂µc(x)) dΩ = 0. (A.3)

For a scalar field φ(ξ) = c(x) and using dΩ′ = dΩ, we write∫
Ω′
L
(
φ(ξ), φ′,µ(ξ)

)
dΩ′ =

∫
Ω
L
(
c(x), ∂′µc(x)

)
dΩ. (A.4)

Combining with Eq. (A.1), we obtain

∂′µ =
∂xν

∂ξµ
∂ν = ∂µ − (∂µκ

ν)∂ν .

Substituting the above expression in Eq. (A.4) and expanding it, we get∫
Ω
L (c, [∂µ − (∂µκ

ν)∂ν ]c) dΩ =

∫
Ω
L (c, ∂µc) dΩ−

∫
Ω

∂L
∂(∂µc)

(∂µκ
ν)∂νcdΩ. (A.5)

The second term in Eq. (A.5) can be written as

∂L
∂(∂µc)

(∂µκ
ν)∂νc = ∂µ

(
∂L

∂(∂µc)
κν∂νc

)
− κν∂µ

(
∂L

∂(∂µc)
∂νc

)
. (A.6)
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The last term can be rewritten as by using Euler-Lagrange equation ∂L
∂c = ∂µ

∂L
∂(∂µc)

∂νL = ∂µ

(
∂L

∂(∂µc)
∂νc

)
.

Thus, Eq. (A.3) reads as when we use ∂νκ
ν = 0 due to the antisymmetry of wµν

δS = −
∫

Ω
∂µ

(
∂L

∂(∂µc)
κν∂νc− κµL

)
dΩ.

Since, the action is assumed to be invariant under the transformation in Eq. (A.1) and

Eq. (A.2) for arbitrary volumes Ω, we have a conserved current, ∂µΘµ = 0, with:

Θµ =
∂L

∂(∂µc)
κν∂νc− κµL.

By writing

Θµ
ν =

∂L
∂(∂µc)

∂νc− δµνL,

our conservation law ∂µΘµ = 0 now implies

∂µΘµ
ν = 0.

”[48]



Appendix B

Surface Laplacian evaluation

For a graph z = S(x, y) or F (x, y, z) := z − S(x, y) = 0, the norm vector is defined as

n = ∇F/|∇F | and the mean curvature is calculated according to

κ(x, y, z) = −1

2
∇ · n.

The surface gradient of the mean curvature reads

∇sκ = ∇κ− (n · ∇κ)n.

The surface Laplacian is evaluated as

∇2
sκ = Tr[∇(∇sκ)(1− n⊗ n)].

At the crest and trough of the wave, we readily have n · ∇κ = 0. The comparison of the

surface Laplacian ∇2
sκ|crest = ∇2

sκ|trough turns to the evaluation of the second derivative

of the mean curvature

0 = ∇2
sκ|crest −∇2

sκ|trough = −2ak4 − 6a3k6 +
ak2

(R0 + a)2
+

ak2

(R0 − a)2

− a2k4

(R0 + a)
+

a2k4

(R0 − a)
.

The obtained roots are as follows:

� a = 0, rejected;

� a = R0

√
1− (λ/2πR0)2, accepted;

� a = −R0

√
1− (λ/2πR0)2, rejected for negative values;

� a = ±
√

6
12π

√
λ2 + 12π2R2

0 +
√

(λ2 + 12π2R2
0)2 + 48π2R2

0, rejected for |a| > R0;

� a = ±
√

6
12π

√
λ2 + 12π2R2

0 −
√

(λ2 + 12π2R2
0)2 + 48π2R2

0, rejected for a ∈ C/R.
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The equality a = R0

√
1− (λ/2πR0)2 can be reformulated as λ = 2π

√
R2

0 − a2.



Appendix C

Coefficients

“

g
(α,n)
−1 =n sinh(n− 1/2)α,

g
(α,n)
0 =(sinhα+ 2qς) cosh(n+ 1/2)α+

(2n+ 1) coshα sinh(n+ 1/2)α,

g
(α,n)
1 =(n+ 1) sinh(n+ 3/2)α,

h
(α,n)
−1 =n cosh(n− 1/2)α,

h
(α,n)
0 =(sinhα+ 2qς) sinh(n+ 1/2)α+

(2n+ 1) coshα cosh(n+ 1/2)α,

h
(α,n)
1 =(n+ 1) cosh(n+ 3/2)α,

u(n,α)
n = 2

√
2qςe−(n+1/2)α,

u(n,β
n = 2

√
2qςe−(n+1/2)β.

g
(β,n)
−1 , g

(β,n)
0 , g

(β,n)
1 , h

(β,n)
−1 , h

(β,n)
0 and h

(β,n)
1 are obtained by replacing α with −β and

ς with −ς.”[75]
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Appendix D

Velocity and stream function

“Eq. (7.17) is equivalent to

u% = U (α)i% · ∇z = U (α) 1− coshα cosϕ

coshα− cosϕ
. (D.1)

Thus with aid of Eq. (7.8), Eq. (D.1) becomes

∂ψ(0)

∂ϕ
= U (α)q2

[
coshα sinϕ

(coshα− cosϕ)2
− sinh2 α sinϕ

(coshα− cosϕ)3

]
. (D.2)

After integration, Eq. (D.2) gives

ψ(0) = −U (α)q2

[
− coshα

(coshα− cosϕ)
+

sinh2 α

2(coshα− cosϕ)2
+ C

]
,

where C is an integration constant. By setting C = 1/2, we get Eq. (7.19). Eq. (7.20)

can be obtained by the same approach.”[75]
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Appendix E

Expansions

“The generating function of Gegenbauer polynomial is expressed as

1

(1− 2hµ+ h2)1/2
=
∞∑
n=0

hnC1/2
n (µ).

Setting h = e−α and paying attention to the properties of Gegenbauer polynomial

C
1/2
n−1(x) = −dC

−1/2
n (x)

dx
,

(1− x2)y′′ − (2α+ 1)xy′ + n(n+ 2α)y = 0,

we get

sin2 ϕ

2(coshα− cosϕ)1/2
=

√
2

2

∞∑
n=1

n(n+ 1)

(
e−(n−1/2)α

2n− 1
− e−(n+3/2)α

2n+ 3

)
C
−1/2
n+1 (cosϕ).

Differentiating with respect to µ, the generating function of Gegenbauer polynomial

yields

(1− µ2)

(1− 2hµ+ h2)3/2
=
∞∑
n=0

hn(n+ 1)(n+ 2)C
−1/2
n+2 (µ). (E.1)

Setting h = e−|%| and multiplication with cosh % gives

cosh % sin2 ϕ

4(cosh %− cosϕ)3/2
=

√
2

4

∞∑
n=1

n(n+ 1)

(
e−(n−1/2)|%| + e−(n+3/2)|%|

)
C
−1/2
n+1 (cosϕ).

and Eq. (E.1) becomes

1− µ2

(cosh %− µ)3/2
= 2
√

2
∞∑
n=0

e−(n+3/2)|%|(n+ 1)(n+ 2)C
−1/2
n+2 (µ).
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Differentiating with respect to % yields

3

2

(1− µ2) sinh %

(cosh %− µ)5/2
= 2
√

2
∞∑
n=0

(
n+

3

2

)
e−(n+3/2)|%|(n+ 1)(n+ 2)C

−1/2
n+2 (µ). (E.2)

Setting % = α and multiplication with sinhα, Eq. (E.2) becomes

3

8

(1− µ2) sinh2 α

(coshα− µ)5/2
=

1

2

√
2

∞∑
n=0

(
n+

3

2

)
sinhαe−(n+3/2)α(n+ 1)(n+ 2)C

−1/2
n+2 (µ)

=
1

2

√
2
∞∑
n=1

(
n+

1

2

)
sinhαe−(n+1/2)αn(n+ 1)C

−1/2
n+1 (µ)

=
1

8

√
2
∞∑
n=1

(
2n+ 1

)(
e−(n−1/2)α − e−(n+3/2)α

)
n(n+ 1)C

−1/2
n+1 (µ).

”[75]



Appendix F

Matrices

“

Ξn =



0 0 0 0 e−α e+
α 0 0

0 0 0 0 0 0 e−β e+
β

c−α s−α c+
α s+

α 0 0 0 0

c−β −s−β c+
β −s+

β 0 0 0 0

n−s
−
α n−c

−
α n+s

+
α n+c

+
α n−e

−
α n+e

+
α 0 0

−n−s−β n−c
−
β −n+s

+
β n+c

+
β 0 0 −n−e−β −n+e

+
β

n2
−c
−
α n2

−s
−
α n2

+c
+
α n2

+s
+
α −n2

−e
−
α −n2

+e
+
α 0 0

n2
−c
−
β −n2

−s
−
β n2

+c
+
β −n2

+s
+
β 0 0 −n2

−e
−
β −n2

+e
+
β


with n− = n− 1

2 , n+ = n+ 3
2 , c±α = coshn±α, s±α = sinhn±α, e±α = e−n±α.

t(α)
n = (0, 0, 0, 0, 0, 0, τ (α)

n , 0)T ,

t(β)
n = (0, 0, 0, 0, 0, 0, 0, −τ (β)

n )T ,

v(α)
n = (w(α), 0, w(α), 0, 0, 0, (1− η)v(α), 0)T ,

v(α)
n = (0, w(β), 0, w(β), 0, 0, 0, (1− η)v(β))T ,

where

τ (α)
n =

√
2bn(n+ 1)

[
e−(n−1/2)α

2n− 1
− e−(n+3/2)α

2n+ 3

]
+
√

2a

[
n(n− 1)e−(n−3/2)α

(2n− 1)(2n− 3)
− (n+ 1)(n+ 2)e−(n+5/2)α

(2n+ 3)(2n+ 5)

]
,

w(α) =
1√
2
n(n+ 1)

[
e−(n−1/2)α

2n− 1
− e−(n+3/2)α

2n+ 3

]
,

v(α) =
1

4
√

2
n(n+ 1)

[
(2n− 1)e−(n−1/2)α − (2n+ 3)e−(n+3/2)α

]
.

τ
(β)
n , w

(β)
n and v

(β)
n and is obtained by replacing α with β.”[75]
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Recursion

“With the aid of Eq. (7.35), the second term in Eq. (7.29) can be simplified to

q2 sin2 ϕ

(coshα− cosϕ)1/2

∂c

∂ cosϕ
= (aµ+ b)q2

√
2

∞∑
n=1

n(n+ 1)

(
e−(n−1/2)α

2n− 1
− e−(n+3/2)α

2n+ 3

)
C
−1/2
n+1 (cosϕ)

= bq2
√

2
∞∑
n=1

n(n+ 1)

(
e−(n−1/2)α

2n− 1
− e−(n+3/2)α

2n+ 3

)
C
−1/2
n+1 (cosϕ)

+ aq2
√

2
∞∑
n=1

n(n+ 1)

(
e−(n−1/2)α

2n− 1
− e−(n+3/2)α

2n+ 3

)
cosϕC

−1/2
n+1 (cosϕ).

(G.1)

Using the recursion relation

2(n+ 1/2) cosϕC
−1/2
n+1 (cosϕ) = (n+ 2)C

−1/2
n+2 (cosϕ) + (n− 1)C−1/2

n (cosϕ),

the last term at the right hand side of Eq. (G.1) becomes

aq2
√

2

∞∑
n=1

n(n+ 1)

(
e−(n−1/2)α

2n− 1
− e−(n+3/2)α

2n+ 3

)
cosϕC

−1/2
n+1 (cosϕ)

= aq2
√

2
∞∑
n=1

n(n+ 1)

2n+ 1

e−(n−1/2)α

2n− 1
C
−1/2
n+2 (cosϕ)

− aq2
√

2

∞∑
n=1

n(n+ 1)

2n+ 1

e−(n+3/2)α

2n+ 3
C−1/2
n (cosϕ)

= aq2
√

2

∞∑
n=2

n(n− 1)

2n− 1

e−(n−3/2)α

2n− 3
C
−1/2
n+1 (cosϕ)

− aq2
√

2

∞∑
n=0

(n+ 1)(n+ 2)

2n+ 3

e−(n+5/2)α

2n+ 5
C
−1/2
n+1 (cosϕ).

”[75]
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Appendix H

List of Symbols

Symbol Description Units

a Perturbation amplitude m

c Mole concentration [-]

d Separation distance m

d0 Capillary length m

f Bulk free energy density J/m3

g Free energy density J/m3

g0 Free energy density J/m3

k Wavenumber m−1

p Pressure Pa

t Time s

vm Molar volume m3/mol

A Amplitude with time m

C Capillary number [-]

D Bulk mass diffusivity m2/s

Ds Surface mass diffusivity m2/s

Ep Surface energy J

E0 Surface energy J

F Free energy functional J

G Gibbs free energy J

M Dimensionless number [-]

R0 Radius of cylinder m

R1 Principal radius of curvature m−1

R2 Principal radius of curvature m−1

Ru Average radius of cylinder m

Rg Universal gas constant JK−1mol−1

S Surface area m2
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Symbol Description Units

T Temperature K

U Velocity m/s

V Volume m3

Re Reynolds number [-]

J Flux m/s

Js Surface Flux m/s

n Normal vector [-]

t Tangential vector [-]

u Velocity m/s

L Lagrange energy density J/m3

α Ratio of amplitude to radius [-]

β Ratio of amplitude to wavelength [-]

γ Surface energy parameter J/m2

ε Interfacial width parameter m

ε Length ratio [-]

η Dynamic viscosity kgs−1m−1

θ Contact angle °

κ Mean curvature m−1

κc, κ1, κ2 Gradient energy coefficients J/m2

λ Wavelength m

λcrit Critical wavelength m

µ Chemical potential J/m3

ρ Density kg/m3

σ Surface tension J/m2

τ Relaxation coefficient J/m4

φ Order parameter [-]

ω Growth rate s−1

Ωi Interaction coefficient J/m3

Ω Atomic volume m3

Λ Mobility m5/(Js)



Appendix I

List of Abbreviations

AC Allen-Cahn

CF Capillary-Flow

CHNS Cahn-Hilliard-Navier-Stokes

LSW Lifshitz-Slyozov-Wagner

PR Plateau-Rayleigh

SOR Successive Over Relation
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