

2nd International Workshop on Near-Wall Reactive Flows 01.-02. June 2017, Darmstadt

Phase-field Simulation of Droplet Wetting and Impact Phenomena

X. Cai¹, V. Fink², R. Bernard³, A. Stroh², Y. Wu¹, H. Marschall⁴, O. Deutschmann^{1,5}, B. Frohnapfel², M. Wörner⁵

¹ Karlsruhe Institute of Technology ² Karlsruhe Institute of Technology ³ University of Stuttgart ⁴ Technische Universität Darmstadt ⁵ Karlsruhe Institute of Technology

Institute for Chemical Technology and Polymer Chemistry **Institute of Fluid Mechanics Institute of Aerospace Thermodynamics** Mathematical Modeling and Analysis, Dep. of Mathematics Institute of Catalysis Research and Technology

Motivation and goal

- Urea solution spray-wall-interaction in exhaust gas tailpipe
- Simulation of individual droplet wetting and impact on wall

Simulation of liquid film formation on wall

Numerical method and code

Phase-field method

- An interface-capturing method where interface is treated as being of certain thickness (also called "diffuse-interface method")
- Especially suited for moving contact line problem

phaseFieldFoam

- A novel OpenFOAM solver implementing a Cahn-Hilliard based phase-field method coupled with Navier-Stokes equations
- Developed by the authors (Marschall and Cai)

Droplet deposition on homogeneous and chemically-patterned surface

Normalized base radius over time

Experiment Zosel 1993 Simulation $Pe_{\kappa} = 200$ —

Simulation $Pe_{\nu} = 1000$

0.1

Scanning Electron Microscope Léopoldès et al. Langmuir 2003

t [S]

10

Droplet impact on smooth and micro-structured surface

diameter of water droplet = 2 mm, impact velocity = 0.62 m/s, smooth surface with $\theta_{e} = 100^{\circ}$

diameter of water droplet = 2 mm, impact velocity = 0.62 m/s, micro-structured surface with θ_{e} = 100°

