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Abstract In simulation studies based on many synthetic and real datasets, we
found out that subsampling has a weaker behavior in finding of the true number
of clusters K than bootstrapping (Mucha and Bartel 2014, 2015, Mucha 2016).
But why? Based on further investigations, here especially concerning the K-
means clustering with the comparison of bootstrapping and a special version
of subsampling named “Boot2Sub”, we try to answer this question. In sub-
sampling, usually a parameter H, the cardinality of the drawn subsample, has
to be pre-specified. Its specification means an additional serious problem. The
way out would be to take the bootstrap sample but discard multiple points. We
call such a special subsampling scheme “Boot2Sub”. Then, bootstrapping and
subsampling “Boot2Sub” result exactly in the same subset of drawn observa-
tions. This way allows us to make fair direct comparisons of the performance
of bootstrapping and subsampling. As a result of the assessment of applications
to generated and real datasets, the conjecture arises that multiple points play
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an important role for the validation of the true number of clusters in K-means
clustering.

1 Introduction

Cluster analysis aims to find a partition of a set of I observations C =
{1,2, . . . , I} into K non-empty clusters Ck, k = 1,2, . . . ,K. Often, the starting
point is a data matrix X = (xi j), i = 1,2, . . . , I, j = 1,2, . . . ,J of I observations
and J variables or a I× I distance matrix D = (dil). The clusters should be sta-
ble, i.e. they should be confirmed and reproduced to a high degree if the data
set is changed in a non-essential way (Hennig 2007). For example, clustering
of a randomly drawn sample should lead to similar results.

Nonparametric bootstrapping is resampling with replacement from the orig-
inal sample of size I. This very simple technique allows the estimation of the
sampling distribution of almost any statistic. An alternative well-known resam-
pling method is subsampling: draw a subsample of a smaller size H < I without
replacement. It requires the pre-specification of the parameter H which is a se-
rious drawback. For instance, bootstrapping of the adjusted Rand index (ARI,
see Hubert and Arabie 1985) assesses the stability of the original clustering by
comparison with each of B bootstrap clustering results. In this paper, always
B = 250 is used in order to be at the safe side. For the purpose of direct and
verifiable comparisons of the performance of bootstrapping and subsampling,
exactly the same subsets of drawn observations are investigated. To do so, we
take a bootstrap sample but discard multiple points. As a result, the cardinal-
ity Hb of the drawn subsample will vary around 63% of the total sample size
I. Further, here we investigate only the stability of the well-known and very
popular K-means clustering.

The proposed resampling simulation scheme is applied to synthetic datasets
(no-structure data and three class data) and to a real dataset.

2 K-means clustering and the proposed resampling scheme

The simplest Gaussian model-based clustering minimizes the well-known sum
of squares clustering criterion (Banfield and Raftery 1993) that can be formu-
lated alternatively as the criterion (Späth 1985)
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dil, (1)

that has to be minimized concerning a partition of a set of I observations
C = {1,2, . . . , I} into K non-empty clusters Ck, k = 1,2, . . . ,K, where nk is
the cardinality of the cluster Ck. Here dil is the pair-wise squared Euclidean
distance between two observations i and l:

dil = d(xi,xl) = (xi−xl)
T (xi−xl), (2)

where xi and xl are the vectors of measurements of the corresponding ob-
servations i and l. There are two well-known methods of minimizing (1), the
partitional K-means clustering which is considered in the following, and the
hierarchical Ward’s clustering method (see, for instance, Mucha 2007, Mucha
and Bartel 2014, 2015).

How to find out (A) if bootstrapping is better than subsampling, and if so,
(B) why? And, with the annoying parameter H of subsampling in mind, how to
do it? So, with a really fair comparison of the resampling techniques in mind,
let us reformulate (1) with consideration of weights of the observations mi ≥ 0,
i = 1,2, . . . , I,:

VK =
K

∑
k=1

1
Mk

∑
i∈Ck

mi ∑
l∈Ck,l>i

mldil, (3)

where Mk = ∑i∈Ck
mi denotes the weight of cluster Ck, and where, of course,

Mk > 0 has to be ensured. With the implicit understanding that usually the
standard weights mi = 1, i= 1,2, . . . , I, are used in clustering, standard weights
are not stated explicitly in (1). Standard weights in (3) mean that Mk becomes
simply the cardinality of the cluster Ck.

Bootstrapping, i.e., resampling with replacement, is nothing else than play-
ing with the standard weights (masses) of the I observations at random to gen-
erate the following “bootstrap weights”:

mb
i =

{
n if observation i is drawn n times
0 otherwise .

(4)

Here, in bootstrapping, clearly I =∑i mb
i holds. Obviously, one can compare

bootstrapping with a special subsampling scheme in a really fair way simply
by using the following “subsampling weights”:

ms
i = min(mb

i ,1). (5)
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Fig. 1 Visualization of the density of 250 resampling rates Hb/I (in percent) obtained via (5) from
the corresponding 250 bootstrap samples.

In difference to (4), this is nothing else than the well-known subsampling,
i.e., resampling taken without replacement from the original data. Here, what
is special is that we do not need to specify a parameter H < I that defines
the cardinality of the drawn subsample. Here, implicitly, the cardinality Hs of
the drawn subsample will be around 63% of the total sample size I. Figure 1
shows an example of the density of 250 subsampling rates obtained via (5).
Here the average subsampling rate (= 63.37%) is marked by the vertical bro-
ken line. Subsampling by (5) based on (4) means simply discarding multiple
observations of the corresponding bootstrap sample. At the end, the investi-
gation of stability of K-means clustering by bootstrapping and subsampling is
based exactly on the same subsample consisting of the corresponding obser-
vations with mb

i > 0 and ms
i = 1, respectively. In the following, let us name

this special subsampling scheme “Boot2Sub”. In this way, without any doubt,
a fair and objective comparison between bootstrapping and subsampling can
be realized in an easy manner.

Moreover, the stability of exactly the same original K-means clustering re-
sult is investigated by both, bootstrapping and subsampling “Boot2Sub”. That
is important to say because K-means clustering depends on the initial (usually
random) partition to start with, and it ends usually in one of many possible
local minima. This is different to hierarchical clustering where one gets usu-
ally unique (nested) partitions into K clusters K = 2,3, . . . in a parallel fashion
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(Mucha 2007). Concerning more general comparisons between bootstrapping
and subsampling with quite different values of cardinality H (H = 90%, 75%,
and 60%) in validation studies of K-means clustering, the reader is referred
to the previous publication of Mucha (2016). It comes out that the higher the
subsampling rate the poorer is the ability to find the true number of clusters.
Especially, validation with a subsampling rate of H = 90% (this corresponds in
some sense to tenfold cross-validation which is a standard validation technique
in supervised classification) performs very bad in finding the true number of
clusters.

3 Stability of K-means clustering of no-structure data

First, let us look at no-structure data as shown in Fig. 2 in order to get refer-
ence values for the adjusted Rand index R which is our favorite measure of the
assessment of stability of clustering (Hubert and Arabie 1985). There are two
well-known methods of minimizing (1) and (3), the partitional K-means clus-
tering which is considered in the following, and the hierarchical Ward’s method
(see, for instance, Mucha and Bartel 2015). Figure 2 shows a no-structure data
of I = 300 observations in R2 and a partition of K-means clustering into K = 3
clusters. Obviously, there is no structure in the two-dimensional data. It is
likely that one gets a quite different K-means clustering result when repeating
by starting with another random initial partition. And it is almost sure that K-
means clustering of a bootstrap sample of such data results in a quite different
partition. Concretely, in this case of no-structure data, the slopes (or angles) of
the border lines between the clusters will be completely different to the ones in
Fig. 2 (see also Fig. 4 concerning the zones of variation of locations of cluster
centroids).

Figure 3 shows the result of the investigation of the stability of K-means
clustering by resampling based on the ARI R. Here the average values of five
randomly generated no-structure datasets like the one of Fig. 2 are shown. A
R-value near 1 (= maximum) means most stable partition. It seems that the
K-means clustering of no-structure data is very instable because the ARI val-
ues are far from the maximum value 1. That is true for the partitions into all
considered numbers of clusters. Obviously, this is because the borderlines be-
tween the clusters vary to a high degree, see Fig. 2 and also Fig. 4 concerning
K = 3. Generally, the adjusted Rand index R seems to be an appropriate mea-
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Fig. 2 K-means clustering of 300 randomly generated points coming from a standard normal in R2.
The borders of the three clusters are lines.

Fig. 3 Investigation of the stability of K-means clustering of no-structure data by bootstrapping and
“Boot2Sub” based on the adjusted Rand index R.
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Fig. 4 Visualization of the centroids of K-means clustering of 250 bootstrap samples of the no-
structure data of Fig. 2. Here three clusters were investigated.

sure for a decision about the number of clusters because both reference lines
of the ARI-values show no trend with the number of clusters as the Rand index
does (Hubert and Arabie 1985, Rand 1971).

However, “Boot2Sub” computes clearly higher stability values R for almost
all numbers of clusters K = 2,3, . . . ,11. Obviously, it overestimates the sta-
bility in the case of no-structure data. The "baseline" or reference curve has
almost everywhere greater values than the corresponding reference curve of
bootstrapping.

Resampling methods can also be used to investigate the variations of the
cluster means (centroids, expected values). As expected in the case of the no-
structure data, the centroids of K-means clustering of the bootstrap samples
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Fig. 5 Visualization of the 250 resampling rates H/I of “Boot2Sub” in percent coming from 250
bootstrap samples. The horizontal line is the average resampling rate. The density estimation of these
rates is shown in Fig. 1

look quite instable for K = 3 in Fig. 4. All together there are 750 estimates
in the case of K = 3 clusters and 250 bootstrap samples (750 = 3 * 250). In
K-means clustering, the numbering of clusters is arbitrary. Therefore, in order
to make the visualization in Fig. 4 possible, one has find out the maximum
corresponding bootstrap cluster for each original cluster. Here the maximum
Jaccard similarity coefficient between clusters (sets) is used (Hennig 2007).

Figure 5 visualizes the resampling rates of “Boot2Sub” that vary around
the rate of approximately 63% (= 63.37%) with a corresponding variance of
approximately 3.75.

4 Validation of K-means clustering of synthetic data

Now let us come to our real interest: structured data. As above in the case of
no-structure data, several randomly generated three class datasets were investi-
gated. The three Gaussian sub-populations of cardinalities 80, 130, and 90 are
generated by pre-specification of the following different mean values (-3, 3),
(0, 0), and (3, 3), and the different standard deviations (1, 1), (0.7, 0.7), (1.2,
1.2). Fig. 6 shows the result of the investigation of the stability of K-means
clustering by resampling based on the ARI R. As usual in the case of randomly
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Fig. 6 Investigation of the stability of K-means clustering of three class data by bootstrapping and
“Boot2Sub” based on the adjusted Rand index R.

generated data, here the average values of the stability values for the different
datasets are shown. Both resampling techniques vote for the true number of
clusters. However, “Boot2Sub” rates the stability of the partitions into wrong
class numbers K 6= 3, higher than Bootstrap.

Figure 7 shows a typical bootstrap sample of such a three class data set
in detail. All in all there are 300 observations in such a bootstrap sample.
Concretely, in the bootstrap sample shown in Fig. 7, 186 observations out of
I = 300 have a mass mb

i > 0, and hence these 186 observations get the mass
ms

i = 1, i.e., here the cardinality of the drawn subsample is exactly 62%. How-
ever, there are 85 multiple observations among the 186 observations: 63 are
drawn two times, 17 three times, 4 four times, and 1 six times.

Figure 8 and Fig. 9 show nonparametric density estimates of the original
three class data set (see also Fig. 7, but here all four plots are rotated by
90◦) and the different sets coming from bootstrapping: “Boot2Sub”-sample,
bootstrap sample, and set of multiple points. Obviously, multiple points come
mainly from dense regions, and therefore they are responsible for boosting
dense regions in their importance for K-means clustering.
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Fig. 7 XY-plot of a bootstrap sample of Gaussian three class data. Here multiple points were jittered
and marked by triangles.

Fig. 8 Cuts at several levels of the bivariate nonparametric density estimate of (a) the original 300
observations of the Gaussian three class data of Fig. 7 (on the right hand side) and (b) the 186 obser-
vations of “Boot2Sub” (left).
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Fig. 9 Cuts at several levels of the bivariate nonparametric density estimate of (a) the 300 observa-
tions of bootstrapping of the Gaussian three class data (on the right hand side) and (b) the 114 (= 300
– 186) multiple observations (left).

5 K-means clustering of Swiss banknotes

Let us consider the well-known Swiss banknotes data (Flury and Riedwyl
1988). All together I = 200 Swiss banknotes are characterized by six mea-
surements. The 100 genuine bank notes are more homogeneous than the 100
forged ones (see Mucha 2016). Here the true classes are known beforehand,
and so, in addition, we are able to look alternatively also at the error rates.

Figure 10 shows the result of the investigation of the stability of K-means
clustering of the Swiss bank notes based on the ARI R. Both, bootstrapping
and “Boot2Sub” vote for the true number of clusters. However, “Boot2Sub”
again overestimates the stability of all other remaining partitions of clustering
into the wrong number of clusters.

By the way, the assessment of stability by the ARI seems to be a good
choice because the error rates shown in Fig. 11 have a quite similar behaviour
for different number of clusters.

6 Summary

First, in case of no-structure data, we found out that the reference line of ARI
R of “Boot2Sub”-subsampling shows a much higher degree of stability of K-
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Fig. 10 Swiss banknotes: Investigation of the stability of K-means clustering by bootstrapping and
“Boot2Sub” based on the adjusted Rand index R.

Fig. 11 Swiss banknotes: Error rates in percent of bootstrapping versus “Boot2Sub”.

means partitions than the bootstrapping technique. That is, it overestimates the
stability of partitions of no-structure data in comparison with bootstrapping.
At the end, we were able to find out the most likely reason why bootstrapping
outperforms subsampling. Obviously, it is because multiple points give essen-
tial additional information in bootstrapping for the investigation of stability
of K-means clustering as well as for the determination of the (true) number
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of clusters. At this time, it is a conjecture only which requires further inves-
tigations accompanied by theoretical considerations. Bootstrapping seems to
be the first and best choice. And it is as simple as possible, and there is no
additional serious problem with a parameter such as H as it is the case in sub-
sampling.

Of course, for clustering techniques that make no use of weights of observa-
tions such as the hierarchical methods Single Linkage and Complete Linkage,
the results of the investigation of stability by bootstrapping and “Boot2Sub”
are identical. That is because such methods are not affected by multiple points.

References

Banfield JD, Raftery AE (1993) Model-based gaussian and non-gaussian clus-
tering. Biometrics 49(3):803–821, DOI 10.2307/2532201, URL http:
//www.jstor.org/stable/2532201

Flury B, Riedwyl H (1998) Multivariate statistics: A practical approach. Bio-
metrical Journal 32(5):640–640, DOI 10.1002/bimj.4710320519

Hennig C (2007) Cluster-wise assessment of cluster stability. Computa-
tional Statistics & Data Analysis 52(1):258 – 271, DOI 10.1016/j.csda.
2006.11.025, URL http://www.sciencedirect.com/science/
article/pii/S0167947306004622

Hubert L, Arabie P (1985) Comparing partitions. Journal of Classification
2(1):193–218, DOI 10.1007/BF01908075

Mucha HJ (2007) On Validation of Hierarchical Clustering, Springer, Berlin,
pp 115–122. DOI 10.1007/978-3-540-70981-7_14

Mucha HJ (2016) Assessment of stability in partitional clustering using re-
sampling techniques. Archives of Data Science, Series A 1(1):21–39, DOI
10.5445/KSP/1000058747/02

Mucha HJ, Bartel HG (2014) Soft Bootstrapping in Cluster Analysis and Its
Comparison with Other Resampling Methods, Springer International Pub-
lishing, Cham, pp 97–104. DOI 10.1007/978-3-319-01595-8_11

Mucha HJ, Bartel HG (2015) Resampling Techniques in Cluster Analysis:
Is Subsampling Better Than Bootstrapping?, Springer, Berlin, pp 113–122.
DOI 10.1007/978-3-662-44983-7_10

Rand WM (1971) Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association 66(336):846–850, DOI 10.

http://www.jstor.org/stable/2532201
http://www.jstor.org/stable/2532201
http://www.sciencedirect.com/science/article/pii/S0167947306004622
http://www.sciencedirect.com/science/article/pii/S0167947306004622


14 Hans-Joachim Mucha and Hans-Georg Bartel

1080/01621459.1971.10482356, URL http://www.tandfonline.
com/doi/abs/10.1080/01621459.1971.10482356

Späth H (1986) Cluster dissection and analysis: theory, fortran pro-
grams, examples. Biometrical Journal 28(2):182–182, DOI 10.1002/bimj.
4710280207

http://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356
http://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356

	Validation of K-means Clustering: Why is Bootstrapping Better Than Subsampling?
	Introduction
	K-means clustering and the proposed resampling scheme
	Stability of K-means clustering of no-structure data
	Validation of K-means clustering of synthetic data
	K-means clustering of Swiss banknotes
	Summary
	References


