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Abstract We propose a method for selecting a portfolio of algorithms opti-
mizing multiple criteria. We select a portfolio of limited size and at the same
time good quality from a possibly large pool of algorithms. Our method also
helps to decide which algorithm to use for each trade-off between conflicting
objectives. Many algorithms depend on a number of parameters and, therefore,
require problem-specific tuning for a suitable performance. In multi-objective
tuning, different parameter settings of one algorithm will lead to different trade-
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offs between the conflicting objectives. Hence, discrete approximations of the
corresponding Pareto front resulting from different parameter settings of each
algorithm must be compared. Our technique is applied post-hoc to these ap-
proximations. It discards algorithms that contribute only insignificantly to the
overall Pareto front and delivers simple and interpretable decision rules which
algorithm to choose based on the desired trade-off. The new method is applied
to the selection of approximative support vector machine solvers, where the
objectives are high accuracy and short training time. The analysis hints at drop-
ping several solvers completely and yields insights into the specific strengths
of the remaining solvers.

1 Introduction

In a world of ever-growing science, new algorithms are frequently published.
But how to decide which algorithm to use for solving a given problem? While
it is relatively straightforward to choose an algorithm with respect to a single
performance measure, this is much harder if multiple contradicting measures
must be considered. Moreover, most algorithms have parameters that must
be tuned to reach top performance. To understand which algorithm can reach
which trade-offs, an offline analysis on representative test problems can be
performed. But given such performance data, or possibly multiple replications
thereof, how to decide which algorithm is the best one for a specific trade-off?
In most cases there will be no single algorithm dominating the complete Pareto
front. Instead a portfolio of optimal algorithms must be selected along with a
concise decision rule. Our main question can be formulated as follows:

Choose a portfolio of algorithms as small as possible, with a median Pareto
front as close to the median Pareto front of all algorithms as possible. Which
algorithms should be selected for the portfolio, and which of them should be
used for which trade-off?

To our best knowledge there is no method that gives a systematic answer
to this question. In this paper we try to fill this gap. We consider a restricted
setting, namely the analysis of multiple algorithms applied to a single problem
instance. In a case study, we apply multiple support vector machine (SVM)
solvers to the problem of quickly learning an accurate predictive model for a
specific supervised learning problem.
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Our question is closely related to the area of algorithm selection (Hutter et al,
2011), where the goal is to make an online recommendation of an algorithm
from a portfolio based on features of the problem instance. In contrast, in
our offline analysis we aim to understand and to analyse the typical trade-offs
the different algorithms can reach on typical data sets. Although the possible
trade-offs are very likely to be blurred by data-dependent effects, there might
be some patterns that can be observed along multiple data sets. For example,
algorithm A may be preferable on most data sets, if just one of the objectives is
considered. Hence, it could be suggested to use algorithm A on new data sets if
minimization of this objective is important. We do not aim at giving concrete
instructions, but rather want to give thumb rules which algorithms could be
preferable in which situation.

Our method is motivated by the need to select SVM solvers that realize
different trade-offs between accuracy and training time. We are interested in
identifying certain characteristics of the different SVM solvers, e.g., being par-
ticularly suitable for slow, high-accuracy solutions or rather for reaching rea-
sonable accuracy quickly.

The paper is organized as follows. In Sect. 2 we give a short introduction
to multi-objective optimization. We present our new method in Sect. 3, which
is applied in Sect. 4 to the selection of support vector machine solvers. We
conclude in Sect. 5 with a short summary.

2 Multi-Objective Optimization

In this paper we are dealing with multi-objective optimization (MOO)1, i.e.,
the optimization of multiple objectives f1, . . . , fm : X → R (to be minimized,
w.l.o.g.) or equivalently a vector-valued objective function f = ( f1, . . . , fm) :
X →Rm, where X denotes the set of feasible decision vectors. In general the
objectives are contradicting, and we are interested in the best achievable trade-
offs. For a minimization problem, a solution x is said to dominate a solution x′
(x� x′) if

∀i : fi(x)≤ fi(x′) ∧ ∃i : fi(x)< fi(x′) .

This relation defines a partial order on X and is therefore adequate to define
an optimality criterion: A solution x is Pareto optimal if it is a minimal element,

1 see e.g. Ehrgott (2013) for an introduction into multi-objective optimization
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i.e., if @x′ ∈X : x′ � x. The set X ∗ = {x ∈X |x is Pareto optimal} is the
Pareto set, Y ∗ = f(X ∗) is the Pareto front. The task of MOO algorithms is the
approximation of this sets. We denote such approximations with X̂ ∗ and Ŷ ∗.
Moreover we say that x is dominated by a set S if ∃x′ ∈S : x′ � x.

One important task in multi-objective optimization is to rate the goodness of
an optimization result Ŷ ∗. While this is easy in single objective optimization
it is unclear how to compare different Pareto fronts, especially when they are
incomparable w.r.t. dominance. Since many optimizers are stochastic it is not
sufficient to compare single Pareto fronts, but multiple fronts from multiple
replications must be considered. In MOO two main approaches do exist:

Performance Indicators: A unary performance indicator assigns a perfor-
mance score to a Pareto front. This makes arbitrary fronts directly comparable.
Multiple independent Pareto fronts simply result in a vector of independent per-
formance measures that can be compared with well known statistical methods.
A binary indicator assigns a score to a pair of sets (Pareto fronts). The sign
of this value indicates which front it considers superior. If one of the fronts is
the “true” (optimal) front then the indicator value is called optimality gap. An
overview over existing performance indicators is found in Zitzler et al (2003).
One disadvantage of performance indicators for our application is that the re-
duction to a single number necessarily loses a lot of information.

Empirical Attainment Function: A different approach was described by
Grunert da Fonseca et al (2001). Instead of mapping Ŷ ∗ to a single number the
idea is to look at the multivariate distribution of Ŷ ∗ itself, which is captured
by the attainment function aŶ ∗ : Rm→ [0,1], z 7→ P(Ŷ ∗ � z), where P is the
probability function. For |Ŷ ∗| = 1 it is equivalent to the multivariate cumu-
lative distribution function. The attainment function can be estimated via the
empirical attainment function (eaf)

an(z) =
1
n

n

∑
i=1

I
(
{Ŷ ∗

i � z}
)
,

where Ŷ ∗
1 , . . . , Ŷ ∗

n denote the Pareto fronts of n independent optimization runs
and I is the indicator function. For q ∈ [0,1], the q-eaf (lower q-quantile) of an

is the Pareto optimal subset of the topological closure of the set

a−1
n

([
argmin

q′∈{an(z)|z∈Rm}
(|q′−q|),1

])
.

For example, with q= 50% it describes the median performance of an optimizer.
The set has a simple interpretation: for n→ ∞ an objective vector z dominates
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the 50%-eaf if and only if it was dominated in strictly less than 50% of all
optimization runs.

3 Multi-objective selection of algorithm portfolios

We consider the following situation: The performance of a set of k algorithms
A = {A1, . . . ,Ak} shall be compared on a single test problem with respect to m
possibly contradicting performance measures, and the best algorithm for each
trade-off shall be identified. Here we focus on the common case m = 2. Each
algorithm has its own set of parameters, the tuning of which is specific to the
problem at hand as well as to the desired trade-off between the objectives.

We assume that multi-objective parameter tuning has been performed in ad-
vance for each algorithm separately on the test problem, resulting in a Pareto
front of optimal trade-offs. Usually there is stochasticity in the tuning process
(stochastic optimization) and/or in the performance assessment (e.g., variations
in runtime measurements). We assume further that each tuning has been re-
peated n > 1 times, resulting in n independent Pareto fronts for each algorithm.
From these we can compute the empirical attainment function, and in particular
the median front (50%-eaf). In the following we aim to optimize the median
front. However, the median can easily be replaced with another quantile.

An algorithm selection method aims to pick a suitable algorithm A j ∈ A .
The ideal selector picks an algorithm exactly where its performance is not
dominated by any other algorithm – hence its (median) front is composed of
non-dominated parts of the (median) fronts of the individual algorithms. We
refer to the resulting front as the common front of the selector. The goal of
multi-objective algorithm selection is to approximate the ideal common front,
which consists of the non-dominated subset of the union of the (median) fronts.

In the sequel we propose such a selection method. It takes the k · n Pareto
fronts (n repetitions for k algorithms) as input, and it outputs a rule that makes
transparent selection decisions among a small set of top-performing algorithms.

Our method is divided into three steps: In the first step we reduce the com-
putational burden of the following steps by removing all dominated algorithms.
In the second step we apply well known MOO methods to select the best subset
out of the remaining algorithms. In the last step we decide which algorithm to
use in which part of the common Pareto front.
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Step 1: Remove dominated algorithms. The complete removal of dominated
algorithms has many benefits: It reduces the computational complexity of sub-
sequent processing steps, it simplifies the resulting selection rule, and an algo-
rithm can be removed from the software.

If the front of an algorithm A j is completely dominated by the common front
then, intuitively, it does not contribute at all to the common Pareto front and can
thus be dropped. With multiple repetitions the situation is more complicated
since the median front can be dominated while single fronts contain Pareto
optimal sections. We cope with this situation by dropping algorithms whose
fronts are dominated in at least η out of n repetitions.

Step 2: Select the best algorithm portfolio. In order to obtain interpretable
results we pursue the goal of finding a small subset of algorithms of the best
possible quality. This is in itself a bi-objective problem, where we aim to mini-
mize the size of the subset and to maximize its quality. To assess the quality of
a subset of algorithms we resort to standard MOO techniques based on quality
indicators: We minimize the gap between the Pareto front generated by the
subset and the full set of algorithms, measured by a binary quality indicator.
Any binary indicator (or the binary version of an unary indicator) can be used,
a popular choice is the dominated hypervolume (also called S-metric). In accor-
dance with our goal to optimize median performance this calculation is based
on the 50%-eaf. Because both the optimization results and the 50%-eaf are just
sets of points, we can use the latter ones as input to the performance indicator.

Our goal of finding a small subset S of algorithms from A with the best
possible quality, translates into the two objectives low cardinality fc(S ) and
high quality fq(S ). To pick a single point (corresponding to an algorithm
subset S ⊂A ) from the resulting Pareto front we use a standard scalarization
approach, namely minimization of the augmented Tschebyscheff norm

uw = max
{

wc fc(S ),wq fq(S )
}
+ρ

(
wc fc(S )+wq fq(S )

)
, (1)

where w = (wc,wq) ∈ [0,1], wc +wq = 1 is a predefined weight vector and ρ

a small constant (0.05 in our experiments). The best subset is then defined by
S ∗ = argmin

{
uw(S )

∣∣ /0 6= S ⊂A
}

.
Step 3: Obtain a concise decision rule. The goal of this step is to obtain a

simple and interpretable rule for the selection of an algorithm.
At first glance the situation is trivial: The common front is defined by a

finite set of points, each point belongs to one algorithm, and each algorithm
covers single points or connected segments of the common front, with gaps
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Algorithm 1 Offline Multi-objective Algorithm Selection
Require: Data D (the Pareto fronts), Hyperparameters η , ib, w, cp

0) Normalize data D to [0, 1]
1) Remove algorithms that are dominated in more than η replications
2) Select the best subset of algorithms with respect to the optimality gap calculated via the binary
performance indicator ib based on the 50%-eaf and the number of used algorithms. The best subset
S ∗ is defined by S ∗ = argmin

A ∈( /0 6=S⊂A )

uw(S ).

3) Calculate the nondominated 50%-eaf front of all remaining algorithms. Learn a pruned decision
tree with parameter cp to calculate split points between algorithms.
return The common reduced Pareto front

in between. The simplest proceeding is to take the common front as-is and to
make the decision with a nearest-neighbor rule. However, in areas where there
is no clearly dominant algorithm the nearest-neighbor rule may be fragmented
and hard to interpret. We aim to capture the essence of the nearest neighbor rule
with a simple (hence interpretable) decision rule. For this purpose we apply a
standard classifier, here a pruned decision tree (Breiman et al, 1984):

As we assume a bi-objective problem, we know that for non-dominated
points the value of the second objective will decrease while the value of the
first one increases. Hence, the solutions of the Pareto front can be indexed with
regard to one of the objectives and it is sufficient to train the decision tree
based on only one of them. Afterwards the tree is pruned using the complexity
parameter cp. Doing so controls the number of switches between algorithms
on the front. In order to produce comparable results over multiple data sets the
objectives are normalized to the interval [0,1] before calculating the tree.

Our method has four hyperparameters: the number of non-dominated fronts
η in step 1, the choice of the binary multi-objective performance indicator ib,
the weight vector w of the scalarization function in step 2, and the complexity
control parameter cp for tree pruning in step 3. All of them are easy to under-
stand and allow to adjust the method to specific desires. A summary of the
complete method is given in Algorithm 1. An implementation in R including
some example data is available online (Horn, 2015).

4 Application: Approximative SVM solver

Support Vector Machines (SVM) are a state-of-the-art method for classification,
combining excellent performance on many problems with a sound mathemat-
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SVM solver description parameters

LLSVM (Zhang et al, 2012) Low Rank Approximation matrix rank
LASVM (Bordes et al, 2005) Online SMO ε (accuracy), #epochs
BVM (Tsang et al, 2007) Enclosing Ball ε (accuracy)
CVM (Tsang et al, 2005) Enclosing Ball ε (accuracy)
LIBSVM (Chang and Lin, 2011) SMO, the exact solver ε (accuracy)
SVMperf (Joachims and Yu, 2009) Cutting Plane ε (accuracy), #cutting planes

Table 1 SVM solvers with parameters that were subject to tuning.

ical foundation (Cortes and Vapnik, 1995). While an SVM by itself is only
able to perform linear classification, the use of the so called kernel trick en-
ables SVMs to model non-linear decision boundaries. We focus on the popular
Gaussian Radial Basis Function (RBF) Kernel. To reach sensible results the pa-
rameters of the SVM, namely the regularization parameter C and the bandwidth
of the RBF Kernel γ , must be tuned to the problem (data set) at hand.

The major limitation of kernelized SVMs is the training time. Standard
solvers like LIBSVM (Chang and Lin, 2011) are known to scale at least quadrat-
ically with the data size (Bottou and Lin, 2007). Many approximation methods
have been developed to mitigate this problem. The main idea is to sacrifice a
bit of accuracy for a significantly shorter training time. Different approximate
solvers realize different trade offs of the two contradicting objectives predic-
tion accuracy and training time. We applied a logarithmic transformation to
the training time, since only its order of magnitude is relevant.

We chose six different implementations that cover a diverse set of different
approximation techniques, see Table 1. In addition to the hyperparameters C
and γ every solver has its own set of approximation parameters – changing
these parameters should lead to different trade-offs between training time and
accuracy. In this situation a practitioner needs to know which solver is able to
realize which trade-off, respectively, which solvers are the best ones.

For each of the six solvers we obtained Pareto fronts by optimizing the
parameters C and γ as well as the algorithm-specific approximation parameters.
For every evaluation of a parameter configuration an SVM must be trained on a
large benchmark problem which is a time-consuming process. For an efficient
optimization we applied the model-based multi-objective optimizer ParEGO
(Knowles, 2006). To utilize parallel computation on our super computer we
used the multi-point extension of ParEGO proposed in Horn et al (2015).

Due to space constraints we cannot give all details of the study here. An
exhaustive explanation considering a single replication of each optimization
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Fig. 1 Pareto fronts of 10 independent optimizations on a binarized version of the MNIST dataset
for 6 SVM solvers. Optimization was performed with ParEGO using a budget of 220 SVM trainings.

can be found in Horn et al (2016a). Complete results of ten replications on four
selected data sets are available in our R-Package. For these results, 6 solvers ×
10 replications× 4 data sets× 220 iterations = 52800 SVMs had to be trained,
resulting in a sequential computation time of nearly four years.

Figure 1 displays the resulting Pareto fronts for the MNIST data set (Chang
and Lin, 2011). Some solvers perform clearly better than others. For example,
LLSVM is nearly completely dominated. However, based on these plots it is not
feasible to pick an optimal portfolio of solvers only through visual inspection.

The 50%-eaf displayed in Fig. 2 provides much clearer insights. It becomes
apparent that LLSVM does not affect the common Pareto front, and that SVM-
perf holds the lion’s share of its lower part. But it is still hard to distinguish be-
tween the four remaining solvers: LASVM reaches the best error values, while
LIBSVM is only slightly behind. Both BVM and CVM fill the gap towards
SVMperf, but they are highly redundant and certainly not both of them are
needed for a good approximation of the common front. A more sophisticated
method is needed to decide which subset of solvers is essential for obtaining
(near) optimal trade-offs. Therefore we apply the method proposed in Sect. 3.
We discuss the results for the MNIST data set in detail and briefly summarize
results across further data sets towards the end of this section.
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Fig. 2 50%-eaf of the data from Fig. 1.

We configure the algorithm as follows. We set η = n
2 = 5 which is consis-

tent with considering median fronts. With the weight vector w = (0.05,0.95)
we give far more weight to the objective of minimizing the optimality gap
(measured by the hypervolume indicator with reference point (1.1,1.1), with
objective values normalized to the range [0,1]) than to selecting a small set of
algorithms. This rather conservative setting tends to keep an algorithm in the
portfolio in case of doubt. The pruning parameter of the decision tree is set
to cp = 0.1, so as to detect only relevant partitionings of the common Pareto
front.

Step 1: Remove dominated algorithms. Only LLSVM was removed in this
step since it produces non-dominated points only in a single repetition. This is
in line with the 50%-eaf data.

Step 2: Select the best algorithm portfolio. Figure 3 illustrates the selection
of the algorithm portfolio. It visualizes the quality of all 31 = 25−1 non-empty
subsets of algorithms w.r.t. minimization of the optimality gap measured in
terms of dominated hypervolume and the number of algorithms. Due to the
discrete nature of the second criterion we have one best (non-dominated) subset
for each number of algorithms. For example, SVMperf is the best choice for a
“portfolio” of size one, and allowing a second algorithm we would add LASVM.
The final portfolio is selected from these candidates. The contour lines in Fig. 3
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Fig. 3 Selection of the algorithm portfolio, as described in Sect. 3, step 2. Each black dot represents
a subset of algorithms, consisting of the algorithms indicated by the color-coded squares to its right.
The scalarization function is indicated with contour lines. The black dot marked with a cross-hair
minimizes the scalarization function and hence represents the chosen portfolio.

indicate scalarized performance, from which it is easy to see that the portfolio
consisting of LASVM, BVM, and SVMperf is the best one.

Step 3: Obtain a concise decision rule. From Fig. 2 this step seems trivial
since at first glance the three algorithms LASVM, BVM and SVMperf seem
to contribute to the common Pareto front from left to right in the given order.
However, at a closer look the fronts of BVM and SVMperf have three inter-
section points. In between the intersection points the performance difference
is minimal, hence switching forth and back between algorithms is undesirable.
Figure 4 (MNIST & Hypervolume) visualizes the partitioning of the common
Pareto front as proposed by the decision tree. Through pruning it reduces the
three split points to only one.

The figure also shows the final result of our method. SVMperf covers the
lower half the common Pareto front, which was expected already from Fig. 1.
In the upper part our method decided to exploit the top-accuracy of LASVM
and to use BVM to smoothen the transition between the other two solvers.

It turns out that this result depends on the quality measure. When replacing
the hypervolume with the R2 indicator or the ε indicator then in one case
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Fig. 4 The final common Pareto fronts for several examples. In the top row results on the MNIST
dataset using different performance indicators are shown, in the bottom row results on three more
datasets using the hypervolume indicator. The grey line denotes the 50%-eaf front of a portfolio using
all six algorithms and can be used to measure the loss of the usage of the smaller subset.

LIBSVM is selected instead of LASVM, and in the other case BVM was used
for high-accuracy SVM and neither LIBSVM nor LASVM were selected.

Results for a single data set are not sufficient for judging the overall value of
SVM solvers in a portfolio. Figure 4 does also show the final results on three
more datasets. Here we see a pretty consistent result - the fronts are made of
two out of the three solvers LIBSVM, SVMperf and LLSVM. LIBSVM stands
for high accuracy, LLSVM for very fast training and SVMperf for good trade-
offs between those two specialized solvers. Complete results for those three
datasets can be found in the example section of our R package on github.

5 Conclusion

Offline algorithm selection is relatively easy for single objectives, but gets more
complicated for multiple ones. Instead of comparing single performance values,
the performances of random sets (the Pareto fronts) must be compared. Also, in
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general the best performing algorithm depends on the chosen trade-off, hence
different algorithms must be selected in different parts of the Pareto front.

In this paper we have presented an approach for handling multiple objectives.
Our method is based on the median empirical attainment function aggregating
multiple observations of each Pareto front. By removing uninteresting and
redundant algorithms we obtain a small subset of algorithms of the best possible
quality that form a single common Pareto front. We obtain an interpretable
selection rule in the form of a pruned decision tree.

As an example we applied our method to the selection of SVM solvers. We
analyzed in detail how our method excluded dispensable solvers and divided
the common Pareto front into distinct parts for the remaining solvers.

Although the results are very promising, our method is tuned for this applica-
tion. Hence, we proposed a test case generator in Horn et al (2016b) and tested
our method in some artificial data situations. In future work it will be tested in
more real-world application domains. Furthermore, we aim to generalize the
method so that multiple data sets can be analyzed at the same time. We will
also work on how to link between a single point on the common Pareto front
and the parameter setting of the corresponding algorithm.
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