
Automated Inversion of Attribute Mappings in
Bidirectional Model Transformations

Max E. Kramer
Karlsruhe Institute of Technology

max.e.kramer@kit.edu

Kirill Rakhman
Green Parrot GmbH

kirill.rakhman@gmail.com

Abstract

Bidirectional model transformations create or update a target
model according to a base model and vice versa using a single
transformation specification for both directions. Triple graph gram-
mars, for example, define which model elements shall exist and how
they should reference each other without repeating information
for both directions. They can also copy values of simple-typed at-
tributes, such as enumerations, strings, or numbers. But currently
only the identity operator can be easily specified in bidirectional
transformation languages: Other attribute mappings either have
to be specified for both directions or with a special constraint
language. In this paper, we present an approach that inverts
attribute transformation expressions that can be written in a
simple Java-like syntax. We also present an initial library of 30
operator-specific inverters that result in well-behaved view-update
round-trips (GetPut) for all changes. For changes for which well-
behaved update-view round-trips (PutGet) are impossible, we
chose inversions that sustain as much information as possible. We
realized our inversion approach for a prototypical transformation
language that generates Java code. An evaluation using all 103
transformations of the ATL zoo shows that 26% of the LLOC of all
non-trivial attribute transformation expressions could be inverted
with our initial inverters. This may indicate that many transfor-
mation tasks could involve non-trivial attribute transformations
that can easily be specified and inverted with our approach.

1 Introduction and Motivation
Bidirectional model transformations [Ste08] support two transformation directions: in forward mode,
new or existing target models are created or updated according to source models, which are provided

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.
In: A. Anjorin, J. Gibbons (eds.): Proceedings of the Fifth International Workshop on Bidirectional Transformations
(Bx 2016), Eindhoven, The Netherlands, April 8, 2016, published at http://ceur-ws.org



RentalCar

travelDistance:int

ManagedVehicle

fuelCapacity:int
fuelConsumption:float

travelDistance = 100 * fuelCapacity / fuelConsumption

Figure 1: Two exemplary metamodels for cars and a simple attribute transformation expression

as input; in backward mode, source models are created or updated according to target models. The
advantage of bidirectional model transformation languages and engines is that a single transformation
specification can be executed for both directions. This can be less error-prone and less tedious than
manually specifying both transformation directions with redundant parts.

Successful approaches for bidirectional transformations, such as triple graph grammars (TGGs) [GW09],
can be used to define many but not all necessary computations in a bidirectional way: It is possible to
define bidirectionally which model elements have to be created, how complex-typed references between
them shall be established, and which values shall be assigned to simple-typed attributes of the model
elements. Bidirectional specifications of attribute assignments in TGGs are, however, currently either
restricted to identity mappings [Hil+13] or to special constraint languages [AVS12]: This means the
engines can either only copy unchanged values or process expressions that use constraints for which
forward and backward operations are provided. The relations between the attributes of model elements
that are transformed with bidirectional languages cannot always be expressed with identity mappings,
but using a separate constraint language and always defining specific constraint operations can introduce
accidental complexity.

Consider, as a running example, two metamodels that could be used to model the promotion and
management of rental cars as depicted in Figure 1: The metamodel used to promote cars for customers
has a single attribute to represent the travel distance that can be covered with a full tank. The
other metamodel, which is used to manage all vehicles internally, has two separate attributes for the
fuel capacity of the tank and for the average fuel consumption per 100 km. In a bidirectional model
transformation an attribute mapping travelDistance = 100 * fuelCapacity / fuelConsumption should
not only be used to set or update the attribute of instances of the first metamodel based on the attributes
of instances of the second metamodel but also the other way round.

With current approaches for bidirectional transformations, a transformation developer cannot easily
specify such a mapping in a bidirectional way. Either separate unidirectional operations to calculate
the attribute values in forward or backward mode have to be written. Or the mapping would have to
be expressed using constraints, e.g. divide(fuelCapacity,fuelConsumption,t1), multiply(t1, 100, t2),
and floatToInt(travelDistance,t2). In the first case the developer has to ensure manually that both
operations together fulfill round-trip properties in order not to ruin the bidirectional properties of his
transformation and he has to use explicit type casts in both directions. In the second case the developer
hast to ensure this for the atomic forward and backward operations that he has to be provide for divide,
multiply, and floatToInt. This can be avoided with a transformation language that automatically
derives transformations for both directions from attribute mappings that are expressed in a well-known
syntax using a library of expression inverters. This can be particularly important if the correctness of
bidirectional transformations has to be verified, e.g. in order to meet security requirements.

In this paper, we present two contributions: an approach for the automated inversion of attribute
mappings and an extensible library of 30 operator-specific inverters for a Java-like expression language.
These composable inverters can be used to obtain an inverse attribute assignment for a backward
transformation when given an attribute assignment of a forward transformation. The obtained inverted
expression and the original expression always fulfill the GetPut law, which demands that we obtain
identical values after a round-trip that starts in forward mode [Fos+07]. The PutGet law, which demands
identical values after a round-trip that starts in backward mode, is fulfilled whenever this is possible.



If a violation of PutGet cannot be avoided, the inverters yield backward expressions that minimize
the cases of violations and sustain as much original information as possible. The inversion approach is
not more powerful than the constraint-based programming approach of Anjorin et al. [AVS12] but the
language for attribute mappings could be easier to use because only one transformation direction has to
be specified. Our library of inverters could also be used to ship a set of constraints with already defined
forward and backward operations with this constraint-based approach of Anjorin et al.

We implemented a prototype for our approach1, which provides instant feedback to support developers
in writing invertible mappings. Invertible forward attribute transformations can be written in a language
that is based on the expression language Xbase [Eff+12] and almost identical to a subset of Java. For
every forward transformation, our prototype generates a backward transformation that takes values for
all attributes that appear in the forward transformation as input and outputs an updated value. The
inversion procedure is limited to expressions that mention a metaclass attribute at most once and we
do not present inverters that update more than one source attribute.

We evaluated how often attribute transformation expressions that are supported by our initial
inverter library appear both, on the left-hand side and the right-hand side of expressions in all 103
transformations of the ATL zoo2. 55% of the LLOC of all attribute transformation expressions including
the trivial identity operator and 26% of the LLOC of all non-trivial transformation expressions in these
transformations use operations for which we present inverters. This may indicate that not only such
unidirectional transformations but also bidirectional transformations involve many non-trivial attribute
mapping expressions that can be easily expressed and inverted with our approach. Further research is,
however, needed to investigate whether the inverters would indeed yield inverse transformations that
meet all requirements.

The rest of this paper, which is based on a thesis of one of the authors [Rak15] and complemented
by a technical report [KR16], is structured as follows: In section 2, we present the foundations of our
approach. In section 3, we discuss related work. In section 4, we introduce our inversion approach and
in section 5, we explain the individual inverters. In section 6, we discuss formal properties and an
evaluation of the applicability. In section 7, we draw some final conclusions and mention future work.

2 Background and Foundations

In this section we present the languages and laws on which our inversion approach is based.

2.1 Essential Meta Object Facility (EMOF)

The Object Management Group (OMG) developed a metamodeling language called Meta Object Facility
(MOF) (ISO 19508:2014). A subset of it is called Essential Meta Object Facility (EMOF) and defines core
concepts, such as metaclasses with properties and operations. The Ecore language is used in the Eclipse
Modeling Framework (EMF) to define metamodels. It is closely aligned with EMOF but distinguishes
complex-typed and simple-typed properties: Associations that link to metaclass instances are called
references and properties that take simple values such as enumerations, strings, or numbers are called
attributes. In order to simplify formulations, we use this terminology throughout this paper.

2.2 Round-Trip Laws for Bidirectional Transformations

There are several definitions for laws of bidirectional transformations that guarantee properties for
round-trips that combine forward and backward direction. For our inversion approach we chose the
well-known GetPut and PutGet laws that were formulated for lenses by Foster et al. [Fos+07]. For our

1The language and inverters are available as open-source: sdqweb.ipd.kit.edu/wiki/Attribute_Mapping_Inversion
2ATL Transformations Zoo: eclipse.org/atl/atlTransformations

http://sdqweb.ipd.kit.edu/wiki/Attribute_Mapping_Inversion
http://www.eclipse.org/atl/atlTransformations


special setting of attribute assignment expressions an operator op and its inverse operator op−1 fulfill
the GetPut law if the subsequent application of op (get) and op−1 (put) always yields the same value:

op−1(op(s), s) = s, for all source values s (GetPut)
Similar the operator and inverse operator fulfill the PutGet law if the subsequent application of op−1

(put) and op (get) always yields the same value:
op(op−1(t, s)) = t, for all target values t and all source values s (PutGet)

3 Related Work
The problem of inverting programs in general [Dij79] and complex attribute expressions of bidirectional
model transformations in particular [AVS12] is clearly stated in the literature. Many approaches
successfully invert such attribute transformations for special languages [Mat+07; YG07; Boh+08]. All
these approaches have very strong properties but it is not possible to express bidirectional attribute
transformations as easily as with popular unidirectional languages such as ATL or QVT-O: Numbers,
for example, cannot be encoded [Mat+07], have to be positive [YG07], or are simply not in the focus
[Boh+08]. Other approaches restrict the usage of transformed models by forbidding changes outside the
transformation engine [Xio+07].

In the introduction, we have already mentioned the approach by Anjorin et al. [AVS12] for the
inversion of attribute transformations using constraint-based programming. In contrast to our approach
a special constraint language has to be used instead of a well-known expression syntax. Furthermore,
there is no library of predefined constraint inverters: a forward and backward operation has to be
provided for each atomic constraint.

4 Mapping Inversion Approach
In this section, we first introduce our general approach for inverting attribute mapping expressions.
Then, we present our initial library of operator-specific inverters in the next section.

4.1 Overview

Our inversion approach transforms expressions according to common rules for rewriting mathematical
equations. It takes an assignment expression that involves attributes of two metaclasses as input of
the forward transformation direction and outputs an inverse assignment expression for the backward
transformation direction. Our approach assumes that instances of both metaclasses have already been
created by a transformation engine so that their attribute values can directly be manipulated by the
forward and backward transformations.

The input assignment represents an initial equation and the output assignment represents the equation
that results from solving the initial equation for the variable corresponding to the attribute that shall be
updated in a backward transformation. The output assignment is obtained by transforming the abstract
syntax tree (AST) of the input assignment: every operation node on the way down to the leaf node for
the attribute to be updated is replaced with an inverse operation and all other nodes remain unchanged.
Each operation is inverted independently using an inverter for the used operator. Only the result of the
previously inverted parent operation is passed in form of a temporary variable and the final result is the
result of the last inversion.

4.2 Mapping Expressions

The attribute mapping expressions that can be inverted with our current prototype are assignment
expressions for a metaclass of the target metamodel and a metaclass of the source metamodel of the
forward direction with the following restrictions: On the left side exactly one attribute of the target
metaclass has to be given. The right side can contain nested operations that mention at least one



attribute of the source metaclass and every of these attributes at most once. This property is called
linear [Wad88] or affine [Mat+07] and guarantees straightforward inversion. In the following we will call
the left side the target side and the right side the source side of an assignment.

If more than one attribute of the source metaclass is mentioned, one of these attributes has to be
marked as the one to be updated in the backward direction. The reason is that we currently do not
support operators that can only be inverted by updating more than one operand. Operations that
operate directly or indirectly on the attribute according to which the expression is inverted have to use
operators for which an inverter is defined. In the AST these operations correspond to nodes that are
direct or indirect parents of the attribute leaf. All other operations can use arbitrary operators as they
do not have to be inverted.

The expression of our initial car rental example travelDistance = 100 * fuelCapacity / fuelCon-

sumption is an assignment expression for the attribute travelDistance of the metaclass RentalCar of
the metamodel that acts as target in in the forward transformation direction. The source side is a
multiplication operation of a constant literal operand and a division operation that mentions the two
attributes fuelCapacity and fuelConsumption of the source metaclass ManagedVehicle. To enable an
inversion of this expression both of these source attributes could be marked as the one to be updated in
the backward direction. In our scenario, an inversion according to the fuel consumption would probably
be chosen to respond to a change of the monitored travel distance that indirectly reflects a change of
the average consumption and not of the fixed tank size.

4.3 Inversion Procedure

The inversion procedure for an attribute assignment expression consists of three steps. First, the AST
of the expression is statically checked to ensure that the assignment fulfills the above requirements in
addition to properties checked by the compiler of the transformation language. Then, a copy of the AST
is transformed: first the root and then every node on the way to the leaf for the attribute according to
which the expression is inverted. Finally, the source code for the inverted assignment is generated from
the transformed AST copy in form of a method, which returns the result of the last inversion and has a
parameter for the target attribute and for every source attribute.

It is possible to invert every operation individually because they only depend on the value of
the operands and not on the internal structure of the operands. This can be illustrated using the
expression of our car rental example travelDistance = 100 * fuelCapacity / fuelConsumption. It is
inverted in two steps to fuelCapacity / fuelConsumption = travelDistance / 100 =: tmp and then to
fuelCapacity = tmp * fuelConsumption which yields (travelDistance / 100) * fuelConsumption. The
temporary variables, which we use during the code generation in our prototype, are not necessary as
they could be inlined, but they make the generated code more readable.

4.4 Inverter Properties

In order to build well-behaved bidirectional transformations from a given forward attribute assignment
expression and the inverse expression obtained with our approach, the inverters have to fulfill the GetPut
and the PutGet laws of Foster et al. [Fos+07]. It is, however, not possible to invert every expression that
may be desired in a bidirectional transformation language in a way that always fulfills the PutGet law
if all target updates are allowed: For every operation that is not right-total (surjective) only updates to
target values that are in the image of the operation can be inverted in a way that fulfills the PutGet
law. An operation that returns the absolute value of a source value, for example, cannot be inverted
without breaking the PutGet law if the target may be updated to a negative value: no matter which
value will be put as new source, the absolute target value that we will get from it will always be positive
and therefore not identical to the negative target value after the update.



We stick to the terminology of Foster et al. and call transformations that always fulfill the GetPut
and the PutGet law well-behaved transformations. We introduce the new term best-possible behaved
transformations for transformations that fulfill the GetPut in all cases and the PutGet law for every
target change that can be inverted without breaking the PutGet law. Inverters that yield well-behaved
or best-possible behaved transformations are also called well-behaved respectively best-possible behaved
inverters. All 30 inverters that we present in this paper and realized in our initial prototype are best-
possible behaved inverters and 14 of them are even well-behaved inverters. Proofs for the well-behavedness
of our inverters are presented in a technical report [KR16]. They always have the same structure: for a
partition W,B of the set of possible target values we show that a) GetPut holds for all target values, b)
PutGet holds for all values in W , and c) for every inverter that would fulfill PutGet for a target value
in B we obtain a contradiction.

Best-possible behaved inverters have to deal with target updates for which a violation of the PutGet
law cannot be avoided. These cases are always updates to target values that are in the codomain of the
function represented by the forward operator but not in the image of this function. They can, however,
be divided into two categories: For PutGet violations of the first category some of the information of
the updated target value can be used to choose a new source value for which the new target after a
round-trip will be closer to the initially updated target value than for all other choices of source values.
For PutGet violations of the second category no choice for a new source value yields a target values
after a round-trip that is closer to the initially updated target value than for all other choices of source
values. Therefore, we call the first type of PutGet violations restrictable PutGet violations and the
second type desperate PutGet violations.

A restrictable PutGet violation occurrs, for example, if the target of the arithmetic abs operator is
changed to a negative value: the absolute value of the negative target is used to choose a new source value
that yields a target after a round-trip that has the correct absolute value but inevitably an incorrect
algebraic sign. A desparate PutGet violation occurs, for example, if the target of the trigonometric sin
operator is changed to a value that is not in the interval [−1, 1]: all choices for a new source value that
are of the form 2n± π

2 for an n ∈ N0 yield the target value ±1 after a round-trip and are as close as
possible to the initially updated target value.

In our prototype, we respond to restrictable violations with a handler that updates the source according
to a passed value that is derived from the updated target value. How the passed value is changed before
updating the source or whether a target update shall be rejected by throwing an exception can be
customized using a callback. The default implementation directly updates the source to the passed
value without any further changes and rejects no target update. For desperate PutGet violations, no
kind of exception handling would make any difference so our prototype simply updates the source to a
default value that is independent of the updated target value.

5 Inverters

In this section, we present best-possible behaved inverters for 30 common operators, which we also
realized for our prototypical language. Before we define and explain each inverse operator in detail, we
provide an overview and classification for all inverters.

5.1 Classification, Notation, and Overview

In the previous section, we have introduced the notion of well-behaved and best-possible behaved inverters
and distinguished restrictable and desperate PutGet violations. There are two further properties that
can be used to classify inverters: Operators with more than one operand can be inverted in an operand-
agnostic way if they represent a commutative function. For all other operators with more than one
operand we define an individual inverse operator for inversion according to each operand.



We write op(s1 : T1, s2 : T2) : T3 to denote an operator with the name “op”, two operands named “s1”
and “s2” of type T1 and T2, and a return type T3. An operand-agnostic inverse operator of this operator
is denoted by op−1 and opi

−1 denotes an inverse operator for inversion according to the operand with
1-based index i. All inverse operators have at least one parameter to obtain the updated target value
and may have additional parameters for the values of the operands of the operator to be inverted.

Some target-agnostic operators can be inverted in way that fulfills the GetPut law with a single
definition that holds for all possible target values. The remaining operators are inverted with separate
functions for target values with different properties.

We grouped the operator for which we define inverse operations in five categories: primitive casts,
boolean logical operators, basic and advanced arithmetic operators, and string operators. Table 1 lists
properties of the operators and their inverse operators. The 14 well-behaved inverters are those that
neither have restrictable nor desperate PutGet violations. All operators for which we present inverters
in this paper operate on single values not on collections of values and can be inverted by updating a
single source attribute. Inverters for collection operators and for operators that require updates of more
than one source attribute in backward direction are part of our future work.

Note that our inverters are just one possibility to invert a given operation. For many operations,
however, there are not many different ways to define a best-possible behaved inverter that updates
only a single source attribute. Inverters that update more than one source attribute have an important
additional degree of freedom: the difference between the old and the updated target value ∆ can now be
split in different ways on several source attributes. Such inverters for binary arithmetic operators may,
for example, apply the inverse arithmetic operation using ∆

2 to both source attributes or using ∆ to one
of both source attributes. But this paper focuses on inverters that update only a single source attribute.

The presented extensible library is restricted to inverters that update only one attribute and to an
incomplete set of common operations. But many inverters for operations that we did not address can
reuse presented inverters or can be defined in a similar way. A new inverter for a string concatenation
operator with more than two operands, for example, could easily be defined even if more than operand
shall be updated in the inverse transformation.

In the following definitions we will use a helper restrictPGV(p:T):T to encapsulate the handling of
restrictable violations of the PutGet law based on the value of the parameter p. In our prototype the
default implementation always returns the passed value, but it can be customized to react differently
depending on the value and / or operator that was inverted. For desperate violations of the PutGet law
a helper reportPGV(p:T):T updates the source to the given fixed value and reports the violation.

5.2 Primitive Casts

Type conversions and a notion of type-compatibility are necessary for some arithmetic operators.
Therefore, we start by defining inverse operators for primitive type casts. These are the only possible
casts that can appear in attribute mapping expressions. Casts of complex-typed references to metaclass
instances have to be handled separately in Ecore-based bidirectional transformation languages.

If a numeric type T2 can be converted without information loss to a numeric type T1, we call T1
wider than T2 and write T1 > T2. For our prototype we use the relation that is defined by the widening
primitive conversion int the Java language specification3: double > float > long > int > short > byte.

If a floating-point value x is equal to another floating-point value y with a relative tolerance of ε, i.e.
| x−y
max(x,y) | < ε , we call x and y ε-equal and write x ε= y. In our prototype values are ε-equal if a call to
org.apache.commons.math3.util.Precision.equalsWithRelativeTolerance using the IEEE 754 machine
epsilon 2−53 returns true, but the epsilon can be configured differently and the comparison could be
replaced with a comparison based on the units in the last place (ulp).

3Java Widening Primitive Conversion: docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.2

http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math3/util/Precision.html#equalsWithRelativeTolerance%28double,%20double,%20double%29
http://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.2


Operator to Invert Argument Types Op
era
nd
-A
gn
ost
ic

Ta
rge
t-A

gn
ost
ic

no
res
tri
cta
ble

Pu
tG
et
vio
lat
ion
s

no
de
sp
era
te
Pu
tG
et
vio
lat
ion
s

Primitive Casts

narrowing cast numeric – 3 3 3
widening cast (ex- and implicit) numeric – 7 7 3

Boolean Logical Operators

not, xor boolean – 3 3 3

Basic Arithmetic Operators

unary minus numeric – 3 3 3
addition, multiplication numeric 3 3 3 3
float division floats 7 3 3 3
int division integers 7 7 3 3

Advanced Arithmetic Operators

absolute value numeric – 7 7 3
rounding floats – 7 3 3
floor, ceil double – 7 7 3
floor modulus integers 7 7 7 7

exponentiation b:numeric,e:integers 7 7 7 3
sin, cos floats – 7 3 7

tan floats – 7 3 3
asin, acos, atan floats – 7 7 3

String Operators

parse boolean,numeric – 3 3 3
num printing numeric – 7 3 7

bool printing boolean – 7 3 3
length strings – 7 3 3
concat strings 7 7 7 3
suffix strings – 3 3 3
substring with fixed indices strings – 7 7 3
toUpperCase, toLowerCase strings – 7 7 3

Table 1: Arguments of the operators and inverter properties (– : not applicable, 7 : no, 3 : yes)



For two numeric types T1 > T2 and the narrowing primitive cast operator ncastT1,T2(source : T1) : T2
we define the inverse operator ncastT1,T2

−1(target : T2) : T1 := wcastT2,T1(target).
For two numeric types T2 > T1 and the widening primitive cast operator wcastT1,T2(source : T1) : T2

we define the inverse operator

wcastT1,T2
−1(t : T2) : T1 :=

{
ncastT2,T1(t) if wcastT1,T2(ncastT2,T1(t)) ε= t

restrictPGV(ncastT2,T1(t)) otherwise
To invert all implicit casts in expressions, which are called “widening primitive conversions” for

Java, we replace them with explicit widening casts before inverting an expression and use the inverse
operator wcast−1 as defined above. As a result, all explicit and implicit widening casts are inverted
using a narrowing cast without violating the PutGet-law whenever the target value can be cast with a
relative error smaller than ε. In all other cases a PutGet violation cannot be avoided but its effect can
be restricted by choosing the cast target value as new source value.

5.3 Boolean Logical Operators

The next group of operators with inverters consists only of the not and the xor operator, because
conjunctions and disjunctions cannot always be inverted by updating only a single source attribute: If a
target value is changed from 1 to 0 an inverter for the and operator has to update both source values
and an inverter for the or operator has to do this if both source values were 1.

Not
For the operator not(source : bool) : bool we define the trivial inverse operator not−1(target : bool) :
bool := not(target)

Xor
For the operator xor(s1 : bool, s2 : bool) : bool we define the inverse operator xor1

−1(target : bool, s2 :
bool) : bool := xor(target, s2) for inversion according to the first operand s1 and the inverse operator
xor2

−1(target : bool, s1 : bool) : bool := xor(target, s1) for inversion according to the second operand s1.

5.4 Basic Arithmetic Operators

This group of operators realizes the four basic arithmetic operations on integer and floating-point types.

Unary Minus
For all numeric types T and the operator unaryminus(source : T ) : T we define the trivial inverse
operator unaryminus−1(target : T ) : T := unaryminus(target)

Addition
For all numeric types T and the operator addition(s1 : T, s2 : T ) : T we define the inverse operator
addition−1(target : T, s : T ) : T := addition(target,unaryminus(s)).

The language of our prototype provides no subtraction operator but replaces the syntactic sugar
s1 − s2 with addition(s1, unaryminus(s2)) in order to reduce the inversion of subtraction operations to
the inversion of unary minus operations.

Multiplication
For all numeric types T and the operator multiplication(s1 : T, s2 : T ) : T we define the inverse operator
multiplication−1(target : T, s : T ) : T := xdivision(target, s) where xdivision is floatdivision if T is a
floating-point type and otherwise intdivision.

Division
For two floating-point types T1 > T2 or T1 = T2 and the operator floatdivision(s1 : T1, s2 : T2) : T1 we
define the inverse operator floatdivision1

−1(target : T1, s2 : T2) : T1 := multiplication(t, s2) for inversion



according to the dividend s1 and the inverse operator floatdivision2
−1(target : T1, s1 : T1) : T1 :=

floatdivision(s1, t) for inversion according to the divisor s2.
For two integer types T1 > T2 or T1 = T2 and the IEEE 754 round-toward-0 operator intdivision(s1 :

T1, s2 : T2) : T1 we define the inverse operator

intdivision1
−1(t : T1, s1 : T1, s2 : T2) : T1 :=

{
s1 if intdivision(s1, s2) = t

multiplication(t, s2) otherwise
for inversion according to the dividend s1, and the inverse operator

intdivision2
−1(t : T1, s1 : T1, s2 : T2) : T1 :=

{
s2 if intdivision(s1, s2) = t

intdivision(s1, t) otherwise
for inversion according to the divisor s2.

Integer division is an operator that is not left-unique (injective). Therefore, it cannot be inverted in
a way that fulfills the GetPut law without inspecting the original target value. The presented inverse
operators for intdivision avoid a violation of the GetPut law by checking whether the target was changed
to another value than the one that we would get from the source values using the original operator. If
this is the case, they return the original source value for the operand according to which the operation
is inverted in order to fulfill the GetPut law. In all other cases it does not matter which of the values
that would fulfill the GetPut law is chosen. Therefore, the common division inversion by multiplication
with the divisor respectively division by the dividend is enough.

5.5 Advanced Arithmetic Operators

To simplify the definition of inverse operators for advanced arithmetic operators, we will use a helper,
which returns the algebraic sign for uses in multiplications and is defined for numeric types T as

sign4mult(p : T ) : T :=
{

1 if p ≥ 0
−1 otherwise

Absolute Value
For a numeric type T and the absolute value operator abs(source : T ) : T we define the inverse operator

abs−1(target : T, source : T ) : T :=
{

sign4mult(source) · target if target ≥ 0
restrictPGV(sign4mult(source) · |target|) otherwise

With this inverter we can sustain the information about the absolute value of an updated target and
restrict the loss of information to the algebraic sign of it, which cannot be avoided for the abs operator.

For numeric x and y, we briefly write |x| to denote abs(x) and x · y to denote multiplication(x, y).

Round to Nearest
For a floating-point type T and the IEEE 754 round-to-nearest operator round(source : T ) : int we
define the inverse operator

round−1(target : int, source : T ) : T :=
{
source if round(source) ε= target

wcastint,T(target) otherwise

Round toward Infinity
For the IEEE 754 round-toward-−∞ operator floor(source : double) : double we define the inverse
operator

floor−1(target : double, source : double) : double :=


source if floor(source) ε= target

target if floor(target) ε= target

restrictPGV(target) otherwise



floormod dividend
−13 −6 −5 5 6 13

divisor −9 −3 −4 3 4
9 −4 −3 4 3

Table 2: Old and new operand values of the floormod operator for target updates from ±3 to ±4

For the IEEE 754 round-toward-∞ operator ceil the inverse operator ceil−1 is defined completely
analog to floor and floor−1.

Modulus

Instead of defining an inverter for the modulus operator that uses round-to-zero division, which is
denoted by a % b in Java, we present an inverter for the floor modulus operator4. It is defined as
floormod(divisor, dividend) := divisor − (floordiv(divisor, dividend) · dividend), where floordiv is the
round-toward-−∞ floor division operator and “returns the largest [...] integer value that is less than
or equal to the algebraic quotient”. This operator yields a modulus with the same sign as the divisor,
which is helpful for example for array index arithmetic.

For an integer type T and the modulus or remainder operator floormod(s1 : T, s2 : T ) : T we define
the inverse operator

floormod1
−1(t : T, s1 : T, s2 : T ) : T :=


s1 if floormod(s1, s2) = t

floordiv(s1, s2) · s2 + t if floormod(t, s2) = t

restrictPGV(t) otherwise
for inversion according to the dividend s1, and the inverse operator

floormod2
−1(t : T, s1 : T, s2 : T ) : T :=


s2 if floormod(s1, s2) = t

t+ s2 · sign4mult(t) if s1 = t

|s1 − t| · sign4mult(t) =: s′2 if floormod(s1, s
′
2) = t

reportPGV(1) otherwise
for inversion according to the divisor s2.

In the case of floormod(target, s2) = target we could also make floormod1
−1(target, s1, s2) return

simply target. For every n ∈ N0 returning n · s2 + target would fulfill PutGet. Our choice of n =
floordiv(s1, s2) preserves information about the old range of the divisor s1 before the update of the
target: For example, if the target for a divisor of 5 and a dividend of 3 is changed from 2 to 1, our
inversion of the remainder operator would update the divisor to 4 instead of 1.

In the case of s1 = target the inversion according to the divisor floormod2
−1(target, s1, s2) fulfills

PutGet if it returns target+n ·sign4mult(t) for an n ∈ NK{0}. Our choice of n = s2 preserves information
about the old value of the dividend s2 before the update of the target: For example, if the target for a
divisor of 5 and a dividend of 3 is changed from 2 to 5, our inversion of the remainder operator would
update the divisor to 8 to indicate that the divisor was 8− 5 = 3 before the update.

An example for which all four possible target changes from ±t to ±t ′ can be inverted is given in
Table 2 based on the divisor values ±9 and the dividend values ±6.

4Java floor modulus operator: docs.oracle.com/javase/8/docs/api/java/lang/Math.html#floorMod-int-int-

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#floorMod-int-int-


Exponentiation
For a numeric type T1, a floating-point type T2, and the exponentiation operator pow(b : T1, e : T2) :
double we define the inverse operator

pow1
−1(t : double, b : T1, e : T2) : T1 :=


{

sign4mult(b) · e
√
t if t ≥ 0

restrictPGV(sign4mult(b) · e
√
|t|) otherwise

if e is even

sign4mult(t) · e
√
|t|) otherwise

for inversion according to the base b, and the inverse operator

pow2
−1(t : double, b : T1, e : T2) : T2 := wcastT1,T2

−1



e if be = t

log|b|(|t|) if blog|b|(|t|) ε= t

restrictPGV(log|b|(|t|)) otherwise


for inversion according to the exponent e.
Trigonometric Operators
For the trigonometric operator sin(source : double) : double we define the inverse operator

sin−1(t : double, source : double) : double :=


source if sin(source) ε= t

asin(t) if − 1 ≤ t ≤ 1
reportPGV(sign4mult(t) · π2 ) otherwise

For the trigonometric operator cos the inverse operator cos−1 is defined completely analog to sin and
sin−1: only sign4mult(t) · π2 has to be replaced with π

2 − sign4mult(t) · π2 for cos−1. For the trigonometric
operator tan(source : double) : double we define the inverse operator

tan−1(target : double, source : double) : double :=
{
source if tan(source) ε= target

atan(target) otherwise

Inverse Trigonometric Operators
For the inverse trigonometric operator asin(double) : double we define the inverse operator

asin−1(target : double, source : double) : double :=

sin(target) if |target| ≤ π

2
restrictPGV(sin(target)) otherwise

For the inverse trigonometric operators acos and atan the inverse operators acos−1 and atan−1 are
defined analog to sin and sin−1: only |target| ≤ π

2 has to be replaced with 0 ≤ target ≤ π for acos−1.

5.6 String Operators

The last group of operators for which we define inverse operators involves character strings.
Parsing, Printing and Length
For all types T and the operator parse(source : string) : T we define the trivial inverse operator
parse−1(target : T ) : string := print(target).

For all numeric types T and the operator numprint(s : T ) : string we define the inverse operator

numprint−1(t : string, s : T ) : T :=
{

parse(t) if t represents a number of type T
reportPGV(0) otherwise

For the operator boolprint(source : bool) : string we define the inverse operator

boolprint−1(target : string, source : bool) : bool :=
{
true if target = “true′′ (case insensitive)
false otherwise

We define a helper pad(source : string, length : integer), which appends as many underscore
characters to a given string source as are needed to obtain a string with length characters. We also



define a helper to obtain prefixes that are automatically padded to a desired length using the pad helper:

prefix(source : string, end : int) : T :=
{

substring(source, 0, end) if end ≤ length(source)
pad(source, end) otherwise

It uses the substring operator with fixed indices substring(s : string, b : int, e : int), which returns e− b
subsequent characters of s including the character at index b and excluding the character at index e.
For the operator length(source : string) : int, for which we briefly write |source|, we can now define
the inverse operator

length−1(target : int, source : string) : string := prefix(source, target)

Concatenation and Substrings

For the string concatenation operator concat(s1 : string, s2 : string) : string, for which we briefly write
s1
_s2, we define the inverse operator

concat1
−1(target : string, s2 : string) : string :=

{
s′1 if target = s′1

_s2

restrictPGV(target) otherwise
for inversion according to the first operand s1, and the inverse operator

concat2
−1(target : string, s1 : string) : string :=

{
s′2 if target = s1

_s′2
restrictPGV(target) otherwise

for inversion according to the second operand s2.

We define a specialized substring operator:

suffix(s : string, b : int) : T :=
{

substring(s, b, |s|) if b < |s|
“” otherwise

where “” denotes the empty string. Its inverse operator is
suffix−1(t : string, s : string, b : int) : string := prefix(s, b)_t

We define a helper that concatenates a circumfix c and an infix i by prepending the first e characters
of the circumfix to the infix while appending the last |c| − b characters of the circumfix:

circumcat(c : string, e : int, i : string, b : int) := prefix(c, e)_i_suffix(c, b)

Now we can define an inverse operator for the substring operator with fixed indices substring(s :
string, b : int, e : int) : string using the pad and circumcat helpers:

substring−1(t : string, s : string, b : int, e : int) : string :=
circumcat(s, b, t, e) if |t| = b− e
restrictPGV(circumcat(s, b, t, e)) if |t| > b− e
restrictPGV(circumcat(s, b,pad(t, b− e), e)) otherwise

We illustrate the inversion of the substring operator with fixed indices using the example input
s =“inverse”, b = 2, and e = 6: If the target “vers” is changed to “plac” the first case applies because
|“plac”| = 4 = 6− 2 and the source is changed to “in”_“plac”_“e”. If the target is changed to “carnat”
the second case applies because |“carnat”| = 6 > 6− 2 and the source is changed to “in”_“carnat”_“e”.
If the target is changed to “di” the third case applies because |“di”| = 2 < 6−2 and the source is changed
to “in”_“di__”_“e”. Without the third case a target change to “di” would yield “indie” for which an
application of substring with b = 2 and e = 6 would not be possible because e = 6 > 5 = |“indie”|.
Therefore, we have to ensure that the source string has at least the length of the target string.



Letter Case
To invert letter case conversions we define a helper that returns the index of the first occurrence of a
pattern p in a string s or the length of s if the pattern does not occur:

firstIndex(s : string, p : string) : int := min({i ∈ N0 | substring(s, i, i+ |p|) = p} ∪ {|s|})
For the to-upper-case-conversion operator tUC(s : string) : string we define the inverse operator

tUC−1(t : string, s : string) : string :=
restrictPGV(tUC−1(tUC(t), s)) if t 6= tUC(t)
substring(s, i, i+ |t|) if |t| < |s| ∧ i := firstIndex(tUC(s), t) < |s|
tLC(prefix(t, i))_s_tLC(suffix(t, i+ |s|)) if |t| > |s| ∧ i := firstIndex(t, tUC(s)) < |t|
tLC(t) otherwise

We illustrate the inversion of the upper-case conversion operator based on the example input
s =“CamelCase”: If the target “CAMELCASE” is changed to “Cas”, the first case of the definition applies
because “Cas” 6= “CAS” = tUC(“Cas”). The inverse operator is recursively called with the new target
“CAS” and the obtained string will be used as default value during the handling of the PutGet violation.
The recursive call is identical to what happens if the target is directly changed to “CAS”: the second case
applies because |“CAS”| = 3 < 9 = |“CamelCase”| and firstIndex(tUC(“CamelCase”), “CAS”) = 5 < 9.
Therefore, “Cas” is returned. If the target is changed to “NOCAMELCASED”, the third case applies
because |“NOCAMELCASED”| = 12 > 9 and firstIndex(“NOCAMELCASED”, tUC(“CamelCase”)) =
2 < 12. Therefore, “no”_“CamelCase”_“d” is returned. If the target is changed to “DROMEDAR”,
the last case applies and “dromedar” is returned.

For the to-lower-case-conversion operator tLC the inverse tLC−1 is defined completely analog.

6 Discussion and Evaluation
In this section we briefly discuss formal properties of the presented inverters, present the results of our
evaluation of applicability, and summarize the limitations of our approach and the presented inverters.

6.1 Formal Discussion

To prove that an inverter is best-possible behaved, we have to show that GetPut holds for all new target
values and that PutGet holds for all target values for which it can hold. We present an exemplary proof
for the inverter of the abs operator. Further proofs are available in a technical report [KR16].

Let s be a source value. Then abs−1(abs(s), s) = abs−1(|s|), s) = sign4mult(s) · |s|. If s ≥ 0, this yields
1·s = s. Otherwise s < 0, which yields −1·−1·s = s. Thus the GetPut law holds for all s. Let t be a target
value such that t ≥ 0 and let s be an arbitrary source value. Then abs(abs−1(t, s)) = abs(sign4mult(s) ·t).
If s ≥ 0, this yields abs(1 · t) = abs(t) = t. Otherwise s < 0, which yields abs(−1 · t) = abs(−t) = t.
Thus the PutGet law holds for all t ≥ 0. Assume abs−1′ is an inverse operator for abs that fulfills
PutGet for a target value t such that t < 0 and a source value s. Then abs(abs−1′(t, s)) = t. This yields
|abs−1′(t, s)| = t < 0 which is a contradiction to the definition of abs because |x| ≥ 0 for all x. Because
the GetPut law holds for all s, the PutGet law holds for all t ≥ 0 and cannot hold for any inverse
operator abs−1′ and t < 0, we conclude that abs−1 is a best-possible behaved inverter.

6.2 Evaluation

In addition to unit tests for all inverters and target use cases we evaluated how often attribute
mapping expressions with operators that can be inverted with our inverters appear in available model
transformations. We categorized the operators used in all 103 transformations of the so-called ATL
Transformations Zoo2. The sum of logical lines of code (LLOC) for each operator category is shown



Category LLOC

Identity Operator 2238

Arithmetic Operators 119
Parsing or Printing 441
Other String Operators 356

Sequence Operators 1478
List Operators 1062

Table 3: Categories for operators of attribute mapping expressions of the ATL Transformation Zoo

in Table 3. The identity operator is used in 39% of all lines. The three operator categories arithmetic,
parsing or printing, and other string operators, for which we defined non-trivial inverters, make up
additional 16%. Sequence and list operators that cannot yet be inverted with our approach are used in
44% of all lines. If we exclude the trivial identity operator, we can conclude that we defined inverters
for 26% of the LLOC of all non-trivial attribute expressions.

6.3 Limitations

Currently our approach is bound to one limitation and the presented inverters to two restrictions. As
we already stated in subsection 4.2, our approach can only be used for expressions in which every source
attribute appears at most once. Furthermore, we currently only defined inverters for operators that
can be inverted by updating a single source attribute. Finally, all supported operators only operate on
single-valued attributes not on collections or sequences.

In our opinion, the restriction to linear or affine expressions is not a big limitation for realistic
applications. The restriction to operators that can be inverted with a single update limits the applicability
of our approach but it is only temporary: the conceptual framework and implementation prototype
can easily be adapted in the future to support inverters that update several source attributes. Even
defining inverters for operators on collections or sequences should not be conceptually more difficult: If
the source value collections before an update of the target collection are given, then the inversion of a
collection operator is often similar to the inversion of single-element operators. The technical realization
and static analysis e.g. of higher-order functions is, however, challenging.

7 Conclusions and Future Work

In this paper, we have presented an approach for the automated inversion of attribute mappings in
forward specifications of bidirectional transformations. It is based on an expression language with a
Java-aligned syntax and supports the inversion of mappings that assign the result of a linear compound
expression to an attribute of a metaclass. We have explained the overall inversion process based on
operator-specific inverters that can be independently composed and we have introduced a notation
for inverters that always fulfill GetPut and that fulfill PutGet for all target values where this can be
achieved: best-possible behaved inverters. Next, we have presented an initial library of 30 best-possible
behaved inverters for common logical, arithmetic, and string operators. Finally, we have discussed an
evaluation of the applicability of our approach which may indicate that many of the non-trivial attribute
mapping expressions that appear in available transformations could be inverted with our approach.

In future work, we will provide inverters for further operators. Operators that involve collections
of source attribute values and operators that can only be inverted if different source attributes are
updated, e.g. the boolean logical and operator, are our main interest.



Acknowledgments
This work was partly supported by the German Federal Ministry of Education and Research within
the framework of the project “Security for the Internet of Everything” in the Competence Center for
Applied Security Technology (KASTEL).

References
[AVS12] A. Anjorin et al. “Complex Attribute Manipulation in TGGs with Constraint-Based Pro-

gramming Techniques.” In: Proceedings of the First International Workshop on Bidirectional
Transformations (BX 2012). Vol. 49. Electronic Communications of the EASST. 2012.

[Boh+08] A. Bohannon et al. “Boomerang: Resourceful Lenses for String Data.” In: Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’08. ACM, 2008, pp. 407–419.

[Dij79] E. W. Dijkstra. “Program inversion.” In: Program Construction. Vol. 69. LNCS. Springer
Berlin Heidelberg, 1979, pp. 54–57.

[Eff+12] S. Efftinge et al. “Xbase: Implementing Domain-specific Languages for Java.” In: Pro-
ceedings of the 11th International Conference on Generative Programming and Component
Engineering. GPCE ’12. ACM, 2012, pp. 112–121.

[Fos+07] J. N. Foster et al. “Combinators for Bidirectional Tree Transformations: A Linguistic
Approach to the View-update Problem.” In: ACM Transactions on Programming Languages
and Systems (TOPLAS) 29.3 (2007).

[GW09] H. Giese and R. Wagner. “From model transformation to incremental bidirectional model
synchronization.” In: Software and Systems Modeling 8 (1 2009), pp. 21–43.

[Hil+13] S. Hildebrandt et al. “A survey of triple graph grammar tools.” In: Electronic Communications
of the EASST 57 (2013).

[KR16] M. E. Kramer and K. Rakhman. Proofs for the Automated Inversion of Attribute Mappings
in Bidirectional Model Transformations. Tech. rep. Karlsruhe Institute of Technology,
Department of Informatics, 2016.

[Mat+07] K. Matsuda et al. “Bidirectionalization Transformation Based on Automatic Derivation of
View Complement Functions.” In: Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming. ICFP ’07. ACM, 2007, pp. 47–58.

[Rak15] K. Rakhman. “Automated Inversion of Attribute Mapping Expressions for Multi-Model
Consistency.” MA thesis. Karlsruhe Institute of Technology (KIT), Germany, 2015.

[Ste08] P. Stevens. “A Landscape of Bidirectional Model Transformations.” In: Generative and
Transformational Techniques in Software Engineering II. Vol. 5235. LNCS. Springer Berlin
Heidelberg, 2008, pp. 408–424.

[Wad88] P. Wadler. “Deforestation: Transforming Programs to Eliminate Trees.” In: Theoretical
Computer Science 73.2 (1988), pp. 231–248.

[Xio+07] Y. Xiong et al. “Towards automatic model synchronization from model transformations.”
In: Proceedings of the twenty-second IEEE/ACM international conference on Automated
software engineering. ASE ’07. ACM, 2007, pp. 164–173.

[YG07] T. Yokoyama and R. Glück. “A Reversible Programming Language and Its Invertible Self-
interpreter.” In: Proceedings of the 2007 ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-based Program Manipulation. PEPM ’07. ACM, 2007, pp. 144–153.

http://dx.doi.org/10.1007/BFb0014657
http://doi.acm.org/10.1145/1232420.1232424
http://doi.acm.org/10.1145/1232420.1232424
http://books.google.com/books?vid=ISSN1619-1366
http://books.google.com/books?vid=ISSN1619-1366
http://nbn-resolving.org/urn:nbn:de:swb:90-527025
http://nbn-resolving.org/urn:nbn:de:swb:90-527025
http://dx.doi.org/10.1007/978-3-540-88643-3_10
http://dx.doi.org/10.1016/0304-3975(90)90147-A

	Introduction and Motivation
	Background and Foundations
	Essential Meta Object Facility (EMOF)
	Round-Trip Laws for Bidirectional Transformations

	Related Work
	Mapping Inversion Approach
	Overview
	Mapping Expressions
	Inversion Procedure
	Inverter Properties

	Inverters
	Classification, Notation, and Overview
	Primitive Casts
	Boolean Logical Operators
	Not
	Xor

	Basic Arithmetic Operators
	Unary Minus
	Addition
	Multiplication
	Division

	Advanced Arithmetic Operators
	Absolute Value
	Round to Nearest
	Round toward Infinity
	Modulus
	Exponentiation
	Trigonometric Operators
	Inverse Trigonometric Operators

	String Operators
	Parsing, Printing and Length
	Concatenation and Substrings
	Letter Case


	Discussion and Evaluation
	Formal Discussion
	Evaluation
	Limitations

	Conclusions and Future Work

