KIT | KIT-Bibliothek | Impressum

Joint characteristic timescales and entropy production analyses for model reduction of combustion systems

Porras, S.; Bykov, V.; Gol’dshtein, V.; Maas, U.

Abstract:
The reduction of chemical kinetics describing combustion processes remains one of the major topics in the combustion theory and its applications. Problems concerning the estimation of reaction mechanisms real dimension remain unsolved, this being a critical point in the development of reduction models. In this study, we suggest a combination of local timescale and entropy production analyses to cope with this problem. In particular, the framework of skeletal mechanism is in the focus of the study as a practical and most straightforward implementation strategy for reduced mechanisms. Hydrogen and methane/dimethyl ether reaction mechanisms are considered for illustration and validation purposes. Two skeletal mechanism versions were obtained for methane/dimethyl ether combustion system by varying the tolerance used to identify important reactions in the characteristic timescale analysis of the system. Comparisons of ignition delay times and species profiles calculated with the detailed and the reduced models are presented. The results of the application show transparently the potential of the suggested approach to be automatically impl ... mehr


Zugehörige Institution(en) am KIT Institut für Technische Thermodynamik (ITT)
Publikationstyp Zeitschriftenaufsatz
Jahr 2017
Sprache Englisch
Identifikator DOI: 10.3390/e19060264
ISSN: 1099-4300
URN: urn:nbn:de:swb:90-715295
KITopen ID: 1000071529
Erschienen in Entropy
Band 19
Heft 6
Seiten 264
Lizenz CC BY 4.0: Creative Commons Namensnennung 4.0 International
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Schlagworte time scales analysis; entropy production; mechanism reduction; methane and hydrogen combustion
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page