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1 Introduction

The behaviour of Green’s functions w.r.t. a shift of the renormalization scale is described

by the anomalous dimensions of the fields and parameters of the theory, which enter the

Renormalization Group Equations (RGE). For QCD the full set of four-loop renormaliza-

tion constants and anomalous dimensions was presented in [2]. The results for the four-loop

QCD β-function [3, 4] and the four-loop quark mass and field anomalous dimensions had

already been available [5–7].1

In this paper we consider a model with a non-abelian gauge group, one coupling con-

stant and a reducible fermion representation, i.e. any number of irreducible fermion repre-

sentations. The β-function for the coupling this model was computed in an earlier work [1].

Here we provide the remaining Renormalization Group (RG) functions in full dependence

on the gauge parameter ξ.

Apart from completing the set of renormalization constants and the RGE of the theory,

which is important in itself, the gauge boson and ghost propagator anomalous dimensions

serve another purpose. These quantities are essential ingredients in comparing the momen-

tum dependence of the corresponding propagators derived in non-perturbative calculations

on the lattice, with perturbative results (see e.g. [11–18]).

This paper is structured as follows: first, we will give the notation and definitions

for the model and the computed RG functions We will also repeat how the special case of

QCD plus Majorana gluinos in the adjoint representation of the gauge group can be derived

from our more general results. Then we will present analytical results for the four-loop

1Recently, the five-loop QCD β-function has been obtained for QCD colour factors [8] as well as for a

generic gauge group [9] (see, also, [10]).
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anomalous dimensions of the gauge boson, ghost and fermion field as well as the ones for

the ghost-gluon vertex, the fermion-gluon vertex and the fermion mass in Feynman gauge

for compactness. The renormalization constants and anomalous dimensions for a generic

gauge parameter ξ can be found in machine readable form as supplementary material to

this article.

2 Notation and definitions

2.1 QCD with several fermion representations

The Lagrangian of a QCD-like model extended to include several fermion representations

of the gauge group is given by

LQCD = −1

4
GaµνG

aµν − 1

2λ
(∂µA

aµ)2 + ∂µc̄
a∂µca + gsf

abc ∂µc̄
aAb µcc

+

Nrep∑
r=1

nf,r∑
q=1

{
i

2
ψ̄q,r
←→
/∂ ψq,r −mq,rψ̄q,rψq,r + gsψ̄q,r /A

a
T a,rψq,r

}
, (2.1)

with the gluon field strength tensor

Gaµν = ∂µA
a
ν − ∂νAaµ + gsf

abcAbµA
c
ν . (2.2)

The index r specifies the fermion representation and the index q the fermion flavour, ψq,r
is the corresponding fermion field and mq,r the corresponding fermion mass. The number

of fermion flavours in representation r is nf,r for any of the Nrep fermion representations.

The generators T a,r of each fermion representation r fulfill the defining anticomuting

relation of the Lie Algebra corresponding to the gauge group:[
T a,r, T b,r

]
= ifabcT c,r (2.3)

with the structure constants fabc. We have one quadratic Casimir operator CF,r for each

fermion representation, defined through

T a,rik T
a,r
kj = δijCF,r, (2.4)

and CA for the adjoint representation. The dimensions of the fermion representations are

given by dF,r and the dimension of the adjoint representation by NA. The traces of the

different representations are defined as

TF,rδ
ab = Tr

(
T a,rT b,r

)
= T a,rij T

b,r
ji . (2.5)

At four-loop level we also encounter higher order invariants in the gauge group factors

which are expressed in terms of symmetric tensors

da1a2...anR =
1

n!

∑
perm π

Tr
{
T aπ(1),RT aπ(2),R . . . T aπ(n),R

}
, (2.6)
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where R can be any fermion representation r, noted as R = {F, r}, or the adjoint repre-

sentation, R = A, where T a,Abc = −i fabc.
An important special case of this model is the QCD plus gluinos sector of a supersym-

metric theory where the gluinos are Majorana fermions in the adjoint representation of the

gauge group. Here we have Nrep = 2 and

nf,1 = nf , nf,2 =
ng̃
2
,

TF,1 = TF , TF,2 = CA,

CF,1 = CF , CF,2 = CA,

(2.7)

the factor 1
2 in front of the number of gluinos ng̃ being a result of the Majorana nature

of the gluinos (see e.g. [19]). This can be understood in the following way: it has been

shown in [20] that one can treat Majorana fermions by first drawing all possible Feynman

diagrams and choosing an arbitrary orientation (fermion flow) for each fermion line. Then

Feynman rules are applied in the same way as for Dirac spinors, especially one can use the

same propagators i
/p−m for the momentum p along the fermion flow and i

−/p−m for p against

the fermion flow. Closed fermion loops receive a factor (−1). One then applies the same

symmetry factors as for scalar or vector particles, e.g. a factor 1
2 for a loop consisting of

two propagators of Majorana particles. For this work we generate our diagrams using one

Dirac field ψ for all fermions, i.e. we produce both possible fermion flows in loops unless

they lead to the same diagram. The latter case is exactly the one where the symmetry

factor 1
2 must be applied. The first case means that the loop was double-counted which

should also be compensated by a factor 1
2 .

By adding counterterms to the Lagrangian (2.1) in order to remove all possible UV

divergences we arrive at the bare Lagrangian expressed through renormalized fields, masses

and the coupling constant:

LQCD,B = −1

4
Z

(2g)
3

(
∂µA

a
ν − ∂νAaµ

)2 − 1

2λ
(∂µA

aµ)2

− 1

2
Z

(3g)
1 gsf

abc
(
∂µA

a
ν − ∂νAaµ

)
AbµA

c
ν

− 1

4
Z

(4g)
1 g2s

(
fabcAbµA

c
ν

)2
+ Z

(2c)
3 ∂µc̄

a∂µca + Z
(ccg)
1 gsf

abc ∂µc̄
aAb µcc (2.8)

+

Nrep∑
r=1

nf,r∑
q=1

{
Z

(q,r)
2

i

2
ψ̄q,r
←→
/∂ ψq,r −mq,rZ

(q,r)
m Z

(q,r)
2 ψ̄q,rψq,r

+ gsZ
(q,r)
1 ψ̄q,r /A

a
T a,rψq,r

}
,

were we have already used the fact that Zλ = Z
(2g)
3 .

Due to the Slavnov-Taylor identities all vertex renormalization constants are connected

and can be expressed through the renormalization constant of the coupling constant and
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the renormalization constants of the fields appearing in the respective vertex:

Zgs = Z
(3g)
1

(
Z

(2g)
3

)− 3
2
, (2.9)

Zgs =

√
Z

(4g)
1

(
Z

(2g)
3

)−1
, (2.10)

Zgs = Z
(ccg)
1

(
Z

(2c)
3

√
Z

(2g)
3

)−1
, (2.11)

Zgs = Z
(q,r)
1

(
Z

(q,r)
2

√
Z

(2g)
3

)−1
. (2.12)

In the MS-scheme using regularization in D = 4− 2ε space time dimensions all renor-

malization constants have the form

Z(a, λ) = 1 +

∞∑
n=1

z(n)(a, λ)

εn
, (2.13)

where a = g2s
16π2 . From the fact that the bare parameter aB = Zaaµ

2ε (with Za = Z2
gs) does

not depend on the renormalization scale µ one finds

β(D)(a) = µ2
da

dµ2
= −εa+ β(a) , (2.14)

β(a) = a2
d

da
z(1)a (a) . (2.15)

Given a renormalization constant Z the corresponding anomalous dimension is defined as

γ(a, λ) = −µ2d logZ(a, λ)

dµ2
= a

∂z(1)(a)

∂a
:= −

∞∑
n=1

γ(n)(λ) an . (2.16)

From the definition of anomalous dimensions (2.16) it follows that

γ(a, λ) = (εa− β(a))
d logZ(a, λ)

da
− γ(2g)3 (a, λ)λ

d logZ(a, λ)

dλ
, (2.17)

where we use the fact that the evolution of any parameter (or field) — here λ — is described

by its anomalous dimension, i.e.

λB = Zλλ ⇒ µ2
d

dµ2
λ = γλλ, (2.18)

and the fact that γλ = γ
(2g)
3 . Using (2.17) one can reconstruct renormalization constants

from the corresponding anomalous dimension, a finite and usually more compact quantity,

and the β-function of the model.
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2.2 Technicalities

The 1-particle-irreducible Feynman diagrams needed for this project were generated with

QGRAF [21]. We compute Z
(2c)
3 , Z

(2g)
3 and Z

(q,r)
2 from the 1PI self-energies of the fields

Aaµ, c and ψq,r as well as Z
(ccg)
1 and Z

(q,r)
1 from the respective vertex corrections and Z

(q,r)
m

from the 1PI corrections to a Green’s function with an insertion of one operator ψ̄q,rψq,r
and an external fermion line of type (q, r). We used two different methods to calculate

these objects, first a direct four-loop calculation in Feynman gauge with massive tadpoles

and then an indirect method where four-loop objects are constructed from propagator-like

three-loop objects to derive the full dependence on the gauge parameter ξ := 1− λ.

2.2.1 Direct four-loop calculation in the Feynman gauge with massive tadpoles

For ξ = 0 (Feynman gauge) the topologies of the diagrams were identified with the C++

programs Q2E and EXP [22, 23]. In this approach all diagrams were expanded in the

external momenta in order to factor out the momentum dependence of the tree-level ver-

tex or propagator, e.g. qµqν − q2gµν for the gluon self-energy. Then the tensor integrals

were projected onto scalar integrals, using e.g. qµqν

q4
as well as gµν

q2
as projectors for the

gluon self-energy. After this we set all external momenta to zero since the UV diver-

gent part of the integral does not depend on finite external momenta. We then use the

method of introducing the same auxiliary mass parameter M2 in every propagator de-

nominator [24, 25]. Subdivergencies ∝ M2 are cancelled by an unphysical gluon mass

counterterm M2

2 δZ
(2g)

M2 AaµA
aµ restoring the correct UV divergent part of the diagrams.

This method was e.g. used in [3, 4, 26–30] and is explained in detail in [31].

For the expansions, application of projectors, evaluation of fermion traces and coun-

terterm insertions in lower loop diagrams we used FORM [32, 33]. The scalar tadpole

integrals were computed with the FORM-based package MATAD [34] up to three-loop or-

der. At four loops we use the C++ version of FIRE 5 [35, 36] in order to reduce the scalar

integrals to Master Integrals which can be found in [4]. Technical details of the reduction

are described in the previous paper [29].

2.2.2 Indirect four-loop calculation using three-loop massless propagators

The case of a generic gauge parameter ξ is certainly possible to treat in the same massive

way but calculations then require significantly more time and computer resources.2 As a

result we have chosen an alternative massless approach which reduces the evaluation of any

L-loop Z-factor to the calculation of some properly constructed set of (L−1)-loop massless

propagators [38–41]. As is well-known (starting already from L = 2 [42]) calculation of

L-loop massive vacuum diagrams is significantly more complicated and time-consuming

than the one of corresponding (L− 1)-loop massless propagators.

The approach is easily applicable for any Z-factor except for Z3 [2]. The latter problem

is certainly doable within the massless approach but requires significantly more human

efforts in resolving rather sophisticated combinatorics.3 On the other hand, one could

2Nevertheless, it has been done recently along theses lines in [37] for the case of one irreducible fermion

representation.
3Very recently the problem has been successfully solved in two radically different ways [8] and [9].
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ψ ψ̄R1

R2

R3

R4

(a)

ψ ψ̄R1

R2 R3

(b)

ψ ψ̄R1

R2

(c)

ψ ψ̄

Aa
µ

R1

R3

R2

R4

(d)

Aa
µ Ab

ν

R1

R2

R3

(e)

ca c̄b

R1

(f)

Figure 1. Four-loop diagrams contributing to the fermion self-energy (a,b,c), the fermion-gauge-

boson-vertex (d), the gluon self-energy (e) and the ghost self-energy (f). Each fermion line is initially

treated as a different representation R1, . . . , R4.

restore the full ξ-dependence of Z3 from all other renormalization constants and from the

fact that the charge renormalization constant Zg is gauge invariant [2, 37]. As Zg in QCD

with fermions transforming under arbitrary reducible representation of the gauge group

has been recently found in [1] we have proceeded in this way. For calculation of 3-loop

massless propagator we have used the FORM version of MINCER [43].

2.2.3 computation of the gauge group factors

The calculation of the gauge group factors was done with an extended version of the FORM

package COLOR [44] already used and presented in [1]. We take the following steps:

1. For the generation of the diagrams in QGRAF [21] we use one field A for the adjoint

representation (gauge boson) and one field ψ for all the fermion representations.

This has the advantage that we do not produce more Feynman diagrams than in

QCD. Each fermion line in a diagram gets a line number and is treated as a different

representation from the other fermion lines. Since we compute diagrams up to four-

loop order we need up to four different line representations R1, . . . , R4 (see figure 1)

with the generators T a,R1
ij = T1(i,j,a), T a,R2

ij = T2(i,j,a), T a,R3
ij = T3(i,j,a)

and T a,R4
ij = T4(i,j,a). Each fermion loop gets assigned a factor nf .

2. The modified version of COLOR [1, 44] then writes the generators into traces

Tr
{
T a1,R . . . T an,R

}
= TR{R}(a1,...,an), (R = R1, . . . , R4) (2.19)

which are then reduced as outlined in [44] yielding colour factors expressed through

traces TF{R}, the Casimir operators cF{R} and cA, the dimensions of the representa-

tions dF{R} and NA.

– 6 –
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3. Now we change from fermion line numbers R1, . . . , R4 to four explicit physical fermion

representations r by substituting each of the line numbers R1, . . . , R4 by the sum over

all representations r = 1, . . . , 4. An example of the substitution of {R1, . . . , R4}-
colour factors with those of the physical representaions in a one-loop diagram is

Nf*TF1→ nf,1TF,1 + nf,2TF,2 + nf,3TF,3 + nf,4TF,4. (2.20)

At higher orders this subtitution becomes much more involved.4 Diagram (a) from

figure 1 now corresponds to a sum of 44 = 256 diagrams with explicit fermion repre-

sentations. This lengthy representation of our results is needed for the renormaliza-

tion procedure, since e.g. a one loop counterterm to the gluon self-energy, computed

from a diagram with only R1, must be applied to all the fermion loops in figure 1

(a,b,d,e). This is most conveniently achieved if each fermion-loop is considered a

sum over all physical fermion representations just as it is considered a some over all

(massless) fermion flavours.5 The factors involving da1a2a3a4F,r , da1a2a3F,r , da1a2a3a4A and

da1a2a3A appear only at four-loop level and do hence not interfere with lower order

diagrams with counterterm insertions. They can be treated directly in the next step.

4. After all subdivergencies are cancelled by adding the lower-loop diagrams with coun-

terterm insertions we simplify and generalize the notation. The explicit colour factors

are collected in sums of terms built from nf,r, CF,r and TF,r over all physical repre-

sentations r, e.g.6

nf,1TF,1 →
∑

nf,iTF,i − nf,2TF,2 − nf,3TF,3 − nf,4TF,4. (2.21)

Since we used the maximum number of different fermion representations which can

appear in any diagram the result is valid for any number of fermion representa-

tions Nrep.

3 Results

In this section we give the results for the anomalous dimensions of the QCD-like model

with an arbitrary number of fermion representations as described above to four-loop level.

The number of active fermion flavours of representation i is denoted by nf,i. Apart from

the Casimir operators CA and CF,i and the trace TF,i the following invariants appear in our

4For this reason it is convenient to collect all combinations Nfx1*TF1x2*CF1x3*TF2x4*CF2x5*TF3x6*CF3x7

*TF4x8*CF4x9 in a function C(x1,...,x9). The factors C(x1,...,x7) are then substituted by the proper

combinations of nf,1, TF,1, cF,1, etc.
5Since renormalization constants in the MS-scheme do not depend on masses all fermion flavours can be

treated as massless for their computation.
6For convenience we collect nx1f,1n

x2
f,2n

x3
f,3n

x4
f,4T

y1
F,1T

y2
F,2T

y3
F,3T

y4
F,4C

z1
F,1C

z2
F,2C

z3
F,3C

z4
F,4 in a function

CR(x1,...,x4,y1,...,y4,z1...,44) which are then substituted by the proper sums of colour fac-

tors over all representations r.
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results:

d(4)
AA =

dabcdA dabcdA

NA

, d(4)
FA,i =

dabcdF,i d
abcd
A

NA

, d(4)
FF,ij =

dabcdF,i d
abcd
F,j

NA

,

d̃(4)
FA,r =

dabcdF,r d
abcd
A

dF,r
, d̃(4)

FF,ri =
dabcdF,r d

abcd
F,i

dF,r
, (3.1)

where r is fixed and i, j will be summed over all fermion representations. In this section

we give the results for λ = 1 (Feynman gauge), the general case λ = (1− ξ) can be found

as supplementary material to this article.

From the gauge boson field strength renormalization constant Z
(2g)
3 we compute the

anomalous dimension according to (2.16)(
γ
(2g)
3

)(1)
= −5

3
CA +

∑
i

4

3
nf,iTF,i, (3.2)

(
γ
(2g)
3

)(2)
= −23

4
C2
A +

∑
i

nf,iTF,i (4CF,i + 5CA) , (3.3)

(
γ
(2g)
3

)(3)
= −C3

A

(
4051

144
− 3

2
ζ3

)
+
∑
i

nf,iTF,i

[
−2C2

F,i + CACF,i

(
5

18
+ 24ζ3

)
+C2

A

(
875

18
− 18ζ3

)]
−
∑
i,j

nf,inf,jTF,iTF,j

(
44

9
CF,j +

76

9
CA

)
, (3.4)

(
γ
(2g)
3

)(4)
= −C4

A

(
252385

1944
− 1045

12
ζ3 +

111

16
ζ4 +

5125

48
ζ5

)
+ d(4)

AA

(
131

36
− 307

6
ζ3

−335

2
ζ5

)
+
∑
i

nf,i

{
TF,i

[
−46C3

F,i + CAC
2
F,i

(
10847

54
+

980

9
ζ3 − 240ζ5

)
−C2

ACF,i

(
363565

1944
− 2492

9
ζ3 + 126ζ4 − 120ζ5

)
+ C3

A

(
1404961

3888

−1285

4
ζ3 +

387

4
ζ4 + 110ζ5

)]
+ d(4)

FA,i

(
−512

9
+

1376

3
ζ3 + 120ζ5

)}
+
∑
i,j

nf,inf,j

{
TF,iTF,j

[
C2
F,j

(
304

27
+

128

9
ζ3

)
− CF,iCF,j

(
184

3
− 64ζ3

)

−CACF,j
(

15082

243
+

1168

9
ζ3 − 48ζ4

)
− C2

A

(
41273

486
− 340

9
ζ3 + 36ζ4

)]
+d(4)

FF,ij

(
704

9
− 512

3
ζ3

)}
−
∑
i,j,k

nf,inf,jnf,kTF,iTF,jTF,k

[
1232

243
CF,i + CA

(
1420

243
− 64

9
ζ3

)]
. (3.5)

From the ghost field strength renormalization constant Z
(2c)
3 we compute(

γ
(2c)
3

)(1)
= −1

2
CA, (3.6)(

γ
(2c)
3

)(2)
= −49

24
C2
A +

5

6
CA
∑
i

nf,iTF,i, (3.7)
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(
γ
(2c)
3

)(3)
= −C3

A

(
229

27
− 3

4
ζ3

)
+ CA

∑
i

nf,iTF,i

[
CF,i

(
45

4
− 12ζ3

)
+CA

(
5

216
+ 9ζ3

)]
+

35

27
CA
∑
i,j

nf,inf,jTF,iTF,j, (3.8)

(
γ
(2c)
3

)(4)
= −C4

A

(
256337

3888
+

2485

72
ζ3 −

123

32
ζ4 −

4505

96
ζ5

)
+ d(4)

AA

(
21

8
− 299

4
ζ3

+
265

4
ζ5

)
+
∑
i

nf,i

{
TF,iCA

[
−C2

F,i

(
271

12
+ 74ζ3 − 120ζ5

)
+CACF,i

(
22517

432
− 86ζ3 + 69ζ4 − 60ζ5

)
+ C2

A

(
449239

7776
+

2983

24
ζ3

−423

8
ζ4 − 55ζ5

)]
+ d(4)

FA,i (48ζ3 − 60ζ5)

}
− CA

∑
i,j

nf,inf,jTF,iTF,j

[
CF,j

(
115

27
− 40ζ3 + 24ζ4

)

+CA

(
8315

972
+

86

3
ζ3 − 18ζ4

)]
+
∑
i,j,k

nf,inf,jnf,kTF,iTF,jTF,kCA

(
166

81
− 32

9
ζ3

)
. (3.9)

From the fermion field strength renormalization constant Z
(q,r)
2 we find(

γ
(q,r)
2

)(1)
= CF,r, (3.10)(

γ
(q,r)
2

)(2)
= −3

2
C2
F,r +

17

2
CACF,r − 2CF,r

∑
i

nf,iTF,i, (3.11)

(
γ
(q,r)
2

)(3)
=

3

2
C3
F,r + CAC

2
F,r

(
−143

4
+ 12ζ3

)
+ C2

ACF,r

(
10559

144
− 15

2
ζ3

)
− CF,r

∑
i

nf,iTF,i

(
6CF,i − 9CF,r +

1301

36
CA

)
+

20

9
CF,r

∑
i,j

nf,inf,jTF,iTF,j, (3.12)

(
γ
(q,r)
2

)(4)
= −C4

F,r

(
1027

8
+ 400ζ3 − 640ζ5

)
+ CAC

3
F,r

(
5131

12
+ 848ζ3 − 1440ζ5

)
− C2

AC
2
F,r

(
23777

36
+ 214ζ3 + 66ζ4 − 790ζ5

)
+ C3

ACF,r

(
10059589

15552

−1489

24
ζ3 +

173

4
ζ4 −

1865

12
ζ5

)
− d̃(4)

FA,r (66− 190ζ3 + 170ζ5)

+
∑
i

nf,i

{
TF,iCF,r

[
3C2

F,i + CF,rCF,i (62− 48ζ3)− C2
F,r

(
119

3
+ 16ζ3

)
−CACF,i

(
2945

12
− 156ζ3 − 12ζ4

)
+ CACF,r

(
1607

9
− 112ζ3 + 24ζ4

+160ζ5)− C2
A

(
1365691

3888
+

119

3
ζ3 + 25ζ4 + 80ζ5

)]
+ 128 d̃(4)

FF,ri

}

– 9 –
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−
∑
i,j

nf,inf,jTF,iTF,jCF,r

[
92

9
CF,r − CF,j (44− 32ζ3)

−CA
(

6835

243
+

112

3
ζ3

)]
+

280

81
CF,r

∑
i,j,k

nf,inf,jnf,kTF,iTF,jTF,k (3.13)

for the anomalous dimension of a representation r fermion field.

The fermion field-gauge boson-vertex renormalization constant Z
(q,r)
1 yields(

γ
(q,r)
1

)(1)
= CF,r + CA, (3.14)(

γ
(q,r)
1

)(2)
= −3

2
C2
F,r +

17

2
CACF,r +

67

24
C2
A −

∑
i

nf,iTF,i

(
2CF,r +

5

6
CA

)
, (3.15)

(
γ
(q,r)
1

)(3)
=

3

2
C3
F,r − CAC2

F,r

(
143

4
− 12ζ3

)
+ C2

ACF,r

(
10559

144
− 15

2
ζ3

)
+ C3

A

(
10703

864
+

3

4
ζ3

)
+
∑
i

nf,iTF,i

[
− 6CF,rCF,i + 9C2

F,r

−CACF,i
(

45

4
− 12ζ3

)
− 1301

36
CACF,r − C2

A

(
205

108
+ 9ζ3

)]
+
∑
i,j

nf,inf,jTF,iTF,j

(
20

9
CF,r −

35

27
CA

)
, (3.16)

(
γ
(q,r)
1

)(4)
= −C4

F,r

(
1027

8
+ 400ζ3 − 640ζ5

)
+ CAC

3
F,r

(
5131

12
+ 848ζ3 − 1440ζ5

)
− C2

AC
2
F,r

(
23777

36
+ 214ζ3 + 66ζ4 − 790ζ5

)
+ C3

ACF,r

(
10059589

15552

−1489

24
ζ3 +

173

4
ζ4 −

1865

12
ζ5

)
+ C4

A

(
350227

3888
+

2959

72
ζ3 −

111

32
ζ4 −

5125

96
ζ5

)
− d(4)

AA

(
21

8
− 367

4
ζ3 +

335

4
ζ5

)
− d̃(4)

FA,r (66− 190ζ3 + 170ζ5)

+
∑
i

nf,i

{
TF,i

[
3CF,rC

2
F,i + C2

F,rCF,i (62− 48ζ3)− C3
F,r

(
119

3
+ 16ζ3

)
+CAC

2
F,i

(
271

12
+ 74ζ3 − 120ζ5

)
− CACF,rCF,i

(
2945

12
− 156ζ3 − 12ζ4

)
+CAC

2
F,r

(
1607

9
− 112ζ3 + 24ζ4 + 160ζ5

)
− C2

ACF,i

(
34109

432
− 102ζ3 + 63ζ4

−60ζ5)− C2
ACF,r

(
1365691

3888
+

119

3
ζ3+25ζ4+80ζ5

)
− C3

A

(
473903

7776
+

3311

24
ζ3

−387

8
ζ4 − 55ζ5

)]
+ 128 d̃(4)

FF,ri − d(4)
FA,i (48ζ3 − 60ζ5)

}
+
∑
i,j

nf,inf,jTF,iTF,j

[
CF,rCF,j (44− 32ζ3)−

92

9
C2
F,r + CACF,j

(
115

27
− 40ζ3

+24ζ4

)
+ CACF,r

(
6835

243
+

112

3
ζ3

)
+ C2

A

(
6307

972
+

94

3
ζ3 − 18ζ4

)]
+
∑
i,j,k

nf,inf,jnf,kTF,iTF,jTF,k

[
280

81
CF,r − CA

(
166

81
− 32

9
ζ3

)]
(3.17)

– 10 –
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for each representation r and the ghost-gauge boson-vertex renormalization constant Z
(ccg)
1

yields (
γ
(ccg)
1

)(1)
=

1

2
CA, (3.18)(

γ
(ccg)
1

)(2)
=

3

4
C2
A, (3.19)(

γ
(ccg)
1

)(3)
=

125

32
C3
A −

15

8
C2
A

∑
i

nf,iTF,i, (3.20)

(
γ
(ccg)
1

)(4)
= C4

A

(
46945

1944
+

79

12
ζ3 +

3

8
ζ4 −

155

24
ζ5

)
+ d(4)

AA

(
17ζ3 −

35

2
ζ5

)
−
∑
i

nf,iTF,iC
2
A

[
CF,i

(
161

6
− 16ζ3 − 6ζ4

)
+ CA

(
3083

972

+
41

3
ζ3 +

9

2
ζ4

)]
−
∑
i,j

nf,inf,jTF,iTF,jC
2
A

(
502

243
− 8

3
ζ3

)
. (3.21)

Finally, the mass anomalous dimension computed from Z
(q,r)
m is found to be(

γ(q,r)m

)(1)
= 3CF,r, (3.22)(

γ(q,r)m

)(2)
=

3

2
C2
F,r +

97

6
CACF,r −

10

3
CF,r

∑
i

nf,iTF,i, (3.23)

(
γ(q,r)m

)(3)
=

129

2
C3
F,r −

129

4
CAC

2
F,r +

11413

108
C2
ACF,r

− CF,r
∑
i

nf,iTF,i

[
CF,r + CF,i (45− 48ζ3) + CA

(
556

27
+ 48ζ3

)]
− 140

27
CF,r

∑
i,j

nf,inf,jTF,iTF,j, (3.24)

(
γ(q,r)m

)(4)
= −C4

F,r

(
1261

8
+ 336ζ3

)
+ CAC

3
F,r

(
15349

12
+ 316ζ3

)
− C2

AC
2
F,r

(
34045

36

+152ζ3 − 440ζ5

)
+ C3

ACF,r

(
70055

72
+

1418

9
ζ3 − 440ζ5

)
− d̃(4)

FA,r (32− 240ζ3)

+
∑
i

nf,i

{
TF,iCF,r

[
C2
F,i

(
271

3
+ 296ζ3 − 480ζ5

)
− CF,rCF,i (38− 48ζ3)

−C2
F,r

(
437

3
− 208ζ3

)
− CACF,i

(
13106

27
− 592ζ3 + 264ζ4 − 240ζ5

)
+CACF,r

(
1429

9
−224ζ3−160ζ5

)
−C2

A

(
65459

162
+

2684

3
ζ3−264ζ4−400ζ5

)]
+d̃(4)

FF,ri (64− 480ζ3)

}
+ CF,r

∑
i,j

nf,inf,jTF,iTF,j

[
CF,j

(
460

27
− 160ζ3 + 96ζ4

)

−52

9
CF,r + CA

(
1342

81
+ 160ζ3 − 96ζ4

)]
−
∑
i,j,k

nf,inf,jnf,kTF,iTF,jTF,kCF,r

(
664

81
− 128

9
ζ3

)
. (3.25)
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We checked that the well known relations

β(a)

a
= 2γ

(ccg)
1 (a, λ)− 2γ

(2c)
3 (a, λ)− γ(2g)3 (a, λ), (3.26)

β(a)

a
= 2γ

(q,r)
1 (a, λ)− 2γ

(q,r)
2 (a, λ)− γ(2g)3 (a, λ) (3.27)

are fulfilled with the β-function from [1]. This is also true if we include the full dependence

on the gauge parameter ξ = 1− λ in the anomalous dimensions. This dependence cancels

in the β-function. We provide renormalization constants and anomalous dimensions with

the full gauge dependence as supplementary material to this article. We compared these

fully ξ-dependent results with [37] for one fermion representation and find full agreement.

4 Conclusions

We have presented analytical results for the field anomalous dimensions γ
(2g)
3 , γ

(2c)
3 , γ

(q,r)
2 ,

the vertex anomalous dimensions γ
(ccg)
1 and γ

(q,r)
1 and the mass anomalous dimension γ

(q,r)
m

in a QCD-like model with arbitrarily many fermion representations and with the full de-

pendence on the gauge parameter ξ.
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