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Abstract 

A considerable share of greenhouse gas (GHG) emissions is caused by the energy consumption for space heating and cooling in 
residential buildings. In Germany for instance about one third of the end energy consumption is accounted to space heating and 
cooling of buildings. Consequently, efforts to increase energy efficiency and substitute non-renewable energy with renewables 
are high. To explore the technical, economic and social effects of environmental mitigation strategies in order to increase energy 
efficiency in the building stock various models are used. Many of these models have to deal with the challenges of how to estimate 
energy demand levels. Derived from the recent development in this field researchers, planners and politicians are increasingly 
relying on energy models with integrated energy performance rating for environmental policy and strategy evaluation. However, 
energy assessments suffer from the common barriers of data access and data granularity. Therefore the approaches of energy 
building stock models comprise a mixture and variety of methods and have limits, which will be addressed in this contribution. 
The goal is to show how uncertainty is considered in existing models. This contribution provides general overview and key 
takeaways from the insight into different models and methodologies on the different levels of detail of building stock models. 
© 2017 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the organizing committee iHBE 2016. 
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Many countries aim at pioneering in energy system transition and cutting greenhouse gases emission. In 
Germany the officially reported end-energy consumption reveals that the building stock is responsible for nearly 38 
% of the heating related end-energy consumption [1]. 

In order to develop such plans, systematic and comprehensible approaches are much-needed to show the efficiency 
and reduction potentials, depict development paths and disclose low hanging performance fruits. Complying with this 
demand many models for assessing buildings energy demand evolved (see Sections 3 and 5). Furthermore, the private 
and commercial interest to be informed about buildings’ energy demand and consumption is increasing steadily. This 
is especially observable in an increasing demand and integration of energy related consulting services such as the 
calculation of performance ratings for assisting tenants and owners of buildings in decision making. Consequently, 
understanding the energy consumption of buildings is a current field of interest and research. Additionally, this 
development indicates that the results of models in this field should be easily and quickly comprehensible. 

A key element which the models, studies, strategies and services have in common is the energy performance 
assessment of buildings. Depending on their scope and aim, most of the models have to deal with the challenges of 
processing data from different sources and on different levels of detail in order to receive informative and valid results. 
Therefore and in order to minimize the effects of incomplete and uncertain data, combinations of different approaches 
and techniques are utilised. 

An important issue is the quality and conclusiveness of the models’ results in supporting and informing end-users2† 

who typically are policy or decision makers. Since numerous reviews about the existence of models (see Section 3) 
have been written, this contribution does not aim at elaborating the current portfolio of building stock models. Instead, 
it focuses on how shortcomings in building stock models on different scales are dealt with. Particularly, the objective 
of this paper is to list the various methodologies of how building stock models assess the energy demand resulting 
from space heating in building stocks and especially on how results are ensured to be plausible. The results of this 
study are presented in condensed form. 

2. Objective and method 

The objective of this study is to provide an insight into how a multiplicity of building stock energy models deals 
with uncertainty in building stock models for energy related assessments. An extensive literature research on building 
stock models revealed that many models, reviews and much literature exist. The most relevant reviews of building 
stock models are presented in the next section and Table 1. In this work, an investigation of existing models was 
conducted and those which considered uncertainty explicitly were selected for further analysis (27 of 72). In this 
analysis, an uncertainty classification framework was applied on the 27 models. The main focus of this investigation 
are uncertainties which afflict the models’ results and how the modellers deal with different shortcomings. On this 
account modelling techniques and basic model descriptions are presented only briefly. In the following sections the 
comparison and analysis framework is set. 

3. Overview of reviews of building stock models 

Several authors have developed models (Tables 2,3,4) and others have written comprehensive reviews of building 
stock models for energy system modelling (Table 1). Since these reviews provide extensive insight into different 
aspects of numerous models, only the most important findings are summarised. Swan & Ugursal [3] and Kavgic et 
al. [4] addressed fundamental characteristics of building stock models in their reviews. They identified two distinct 
modelling techniques: bottom-up and top-down modelling. In few words, bottom-up models represent models which 
are based on building physics (of subsets or individual buildings of a building stock) and top-down models build 
on economic theory, aggregated and statistical data. Top-down models can be further differentiated into technolog- 

 

 

1  compared to base year: 2008 
2  Frequently, end-users were not involved in the development of these models. 
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ical or econometric models and bottom-up models into statistical or engineering-based models. Mundaca et al. [5] 
sub-classify bottom-up models into optimising, simulating, accounting and hybrid models. Several complementing 
frameworks and classifications can be found in the contributions in Table 1. Despite the body of acquired knowledge 
in the subject area of modelling technique selection for modelling energy systems, there are still many challenges 
which primarily emerge from data quality and interpretability of the results. Consequently, verification and validation 
of the models are essential requirements to ensure their functionality. These challenges are addressed here. The re- 
mainder of this paper applies a typology framework for uncertainty to the selected models and lists the methods by 
which the models deal with this challenge. 

Table 1. Publications with reviews of building stock models. 
 

Authors and reference Coverage Main focus 
Bourdic & Salat [6] 11 models City and district scale models; Classifies models on the basis of a calculation tool typology; 

Discrimination between agent based, economic, energy environment and morphological 
Crawley et al. [7] 20 programs Building energy performance simulation programs/software 
Firth et al. [8] 5 models English housing stock models; Detailed description of the Community Domestic Energy 

Model (CDEM) 
Huntington & Weyant [9] 16 models Energy models (Multi-sector) 
Kavgic et al. [4] 15 models Review of bottom-up building stock models; Comparison of five models of the United 

Kingdom 
Keirstead et al. [10] 56 studies Review of urban energy system models 
Kialashaki & Reisel [11] 309 references Regression models and artificial neural networks for the United States 
Mata et al. [12] 17 models Overview of bottom-up studies which assess energy use in building stocks 
Nakata [13] 269 references Energy-economic models (Multi-sector) 
Pfenninger et al. [14] 13 models Energy systems models 

4. Uncertainty 

Definitions and classifications of uncertainty are context dependent. Modelling of complex systems lacks unified 
or shared definitions of uncertainties and respective management methodologies to determine, investigate and handle 
these. Booth et al. [15] state that uncertainty analysis in building energy modelling has mainly been restricted to 
the level of individual buildings. Hence, they have to be synthesised for energy related building stock models. In 
dictionaries3‡ uncertainty is defined as ”the state of being uncertain; Not able to be relied on; Not known or definite”. 
Elsewhere, uncertainty is associated with absence of knowledge, imperfection, accuracy, precision, ambiguity, faulti- 
ness, inconsistency, ignorance and other analogical terms. However, tackling and handling of the named does not lend 
itself to decrease uncertainty [16]. Due to the focus of this study on buildings stock models and energy performance 
assessment which are commonly utilized for decision support this study uses the analysis framework according to the 
investigations and frameworks of Walkers et al. [17] and Booth et al. [15]. Both of them provide an overview of 
definitions of uncertainty for model-based decision support [17] and housing stock models [15]. 

Walker et al. [17] developed a conceptual uncertainty matrix framework as a tool to classify and report the different 
dimensions of uncertainty. Their general definition of uncertainty is ” [...]any departure from the unachievable ideal 
of complete determinism”. Furthermore, they suggest to discriminate between three dimensions of uncertainty: 

 The dimension of location: Where does uncertainty manifests itself in the model complex?  

According to Walker et al. [17] there are five generic locations: 

1. Context uncertainty which describes the uncertainty related to model systems’ boundaries. Consequently 

 

 
3  Example of a reference: Oxford dictionaries 
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leading to faultily problem definition or framing. 
2. Model uncertainty which comprises two sorts of uncertainty: model structure uncertainty (”wrong or 

incomplete representation”) and model technical uncertainty. Model technical uncertainties are 
associated with the technical implementation of the model in a development/programming environment. 

3. Inputs uncertainty which can be caused by the basic input. On the one hand, the so called external 
driving forces, as in scenario variable definition, and on the other system data, such as the lack of 
knowledge of the basic properties. 

4. Parameters uncertainty which describes uncertainties in constants like in universal constants, fixed 
values or values determined via calibration. 

5. Model outcomes uncertainty is sometimes called prediction error and evolves from the accumulation of 
all the uncertainties in the mentioned locations. 

 The dimension of the level of uncertainty describes the states between determinism and total ignorance. 
Walker et al. [17] suggest five levels of uncertainty with a progressive transition between them. First of all, 
there is determinism the state of being all knowing. Then, statistical uncertainties are uncertainties which are 
statistically describable or related to probabilities in the model. Thereafter, scenarios cause scenario 
uncertainty via setting not verifiable assumptions. Next to last is the recognised ignorance that describes the 
lack of understanding of funda- mental mechanism and functional relationships (can be further divided into 
reducible and irreducible ignorance). Lastly, total ignorance is the state of not knowing what is unknown. 

 The dimension of the nature of uncertainty is the distinction between the imperfection of knowledge or 
epistemic uncertainty and variability uncertainty due to the inherent variability or randomness. 

Booth et al. [15] recognise analogies between conditions in a medical field approach for identifying sources of 
uncertainty and the building stock, they transfer the approach to building stock models. Based on these analogies, 
Booth et al. [15] discuss uncertainties in building stock models and suggest a similar typology of uncertainty as 
Walker et al. [17]. They conclude four sources of uncertainty: 

I. Chance variability is a source of uncertainty which is analogue to variability uncertainty according to 
Walker et al. [17]. 

II. Heterogeneity as source of uncertainty describes the uncertainties originating from grouping of 
characteristics into subsets. 

III. Parameters uncertainty is described by Booth et al. [15] as analogue to the nature of uncertainty 
according to Walker et al. [17]. However, they subdivide parameters into theoretically measurable 
parameters and assumptions, which can be assigned to the dimension of location and level of uncertainty 
according to Walker et al. [17]. 

IV. Ignorance is the lack of knowledge to model the process and hence in accordance with Walker et al. [17] 
epistemic and context uncertainty. 

Booth et al. [15] are partially in accordance with the concept of Walker et al. [17]. As noticeable, the sources of 
uncertainty fit into the three dimensions of uncertainty. Hence, both concepts complement one another. 
Consequently, the frameworks are combinable and transferable to the subject matter of this paper. For the 
investigation, each of the inspected models are classified according to the dimensions named above. The 
classifications of the 27 models are summarised in the next sections and in Tables 2, 3, 4. 

5. Results 

The investigation of how different models account for uncertainty comprises 27 accessible building stock 
models. Each publication was scanned for how the modellers dealt with uncertainties (see Tables 2, 3, 4). The 
accessibility of the building stock models is limited and detailed information about the implementation are in many 
cases lacking or not transparent. This situation made a detailed investigation of the models infeasible. Therefore, the 



1447 Elias Naber et al.  /  Procedia Engineering   180  ( 2017 )  1443 – 1452 

models were not challenged or analysed to disclose uncertainties. Only uncertainties which are acknowledged by the 
authors/modellers themselves are considered. Accordingly, uncertainties not addressed by the authors/modellers are 
not considered. The approaches acknowledged for handling uncertainty were then classified according to Walker et 
al. [17] and Booth et al. [15]. However, it is not always possible to assign them unambiguously to a certain 
dimension or class due to smooth or blurred transition and interpretation. The results are structured in the following 
order: At first the results for the single building energy models are presented (Section 5.1 and Table 2), followed by 
the results of the regional district and city scale models (Section 5.2 and Table 3) and lastly the results for the 
national level are presented (Section 5.3 and Table 4). 

5.1. Individual building energy performance assessment 

In this subsection, approaches and models which aid decision makers and users in assessing individual buildings 
are presented (Table 2). For calculating the energy demand for space heating and cooling standardised energy 
calculation formulas are commonly used on this individual building level (e.g. in Germany DIN V 4701-10/DIN 
V4108-6, DIN V 18599, DIN EN ISO 13790, DIN EN 15625). These standardised methods have specific data 
requirements. Hence, on-site inspection of the respective building are prevalent in order to ensure data availability 
for these models. Several of the considered models combine optimisation and simulation which encompasses model 
structure uncer- tainty. Therefore and despite being based on standards, some of the scanned contributions 
acknowledge uncertainty at the location of model outcomes uncertainty (by testing model outcomes). This 
uncertainty forms the accumulated uncertainty and indicates a general error. As summarised in Table 2, the 
prevalent methodology to deal with this uncertainty is comparative and analytical testing (e.g. [18]) and to conduct 
empirical studies. For easing data re- quirements, some models assist assessment through presets, building or 
building elements archetypes and typologies, which cause uncertainties in the locations of inputs and parameters 
uncertainties, at the level of statistical uncertainty and at the level of the nature of variability uncertainty. 

Table 2. Models for individual building assessment. 
 

Name/Author 
and reference 

Model type Audience/Scope 
application 

of Country Acknowledged uncer- 
tainty (according to [17]) 

Uncertainty handling 

EnergyPlus [18] Simulation model Building energy simu- United States Model outcomes and Comparative analysis 
  lation tool  model structure  
Hasan et al. [19] Optimisation and Tool for building de- Finland Model outcomes Comparative analysis 

 simulation model signers    
Jin   &   Overend Optimisation and Whole-life value United King- Model outcomes Empirical studies 
[20] simulation model based  facade  design dom   

  and optimisation tool    
Kunze [21] Optimisation and Decision support Germany Inputs Sensitivity analysis 

 simulation model model    for    owners    
  regarding building    
  retrofit    
Nielsen [22] Optimisation and Early   design   stage Denmark Model outcomes Comparative analysis 

 simulation model support tool for    
  building design    
TELKA [23] Simulation model Methodology for Sweden Model outcomes Empirical  studies;   com- 

  interactive  investiga-   parative analysis 
  tions of the building    
  energy performance    
Peippo et al. [24] Optimisation and Integration of a non- Finland Inputs,  model  outcomes, Comparative analysis 

 simulation model linear optimisation  context (outlook: definition   of 
  scheme   in   building   distributions    for    input 
  modelling   parameters and sensitivity 
     analysis) 
TRNSYS [25] Simulation model Building energy simu- Germany Model structure and tech- Comparative analysis 

  lation tool  nical model  

5.2. District or municipality level building stock energy performance assessment 
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District, municipal or city building stock models form the intermediate/local level between individual buildings 
and the national building stock. These models can comprise individual building blocks with few buildings or entire 
cites with thousands of buildings. Therefore, the audience of these models are typically urban planners, developers, 
local policy makers and similar. Most of the models in this field work with simplified thermal simulation engines or 
are archetype-based. Most of the models considered here are bottom-up simulation models. In the next paragraph 
one hybrid model [26] is outlined. In Table 3 the classification results of district building stock models with a focus 
on energy are summarised. 

Due to the different models’ scopes, system boundaries are set more heterogeneously than in models of 
individual building models, so that in some cases multi-sector considerations are included and user behaviour is 
considered (e.g. [27,28]). This handicaps comparative analysis with reference systems and with other models. The 
prevalent methodology to handle uncertainty is comparative and analytical testing and to conduct empirical studies 
(cf. Table 3). A current development in district level building stock modelling is the utilisation of geographic 
information systems and 3-dimensional city models in order to improve system data. This can substantially decrease 
uncertainty of building stock data and improve model quality. For example, the CityGML development promises 
individual building level energy performance assessment for entire building stocks (e.g. Nouvel et al. use CityGML 
models in an hybrid approach [26]). Additionally it promotes developing common standards. 

Table 3. Models for district or municipality building stock assessment. 
 

Name/Author 
and reference 

Model type Audience/Scope of 
application 

Country Acknowledged uncer- 
tainty (according to [17]) 

Uncertainty handling 

CitySim [27,28] Bottom-up  engi- Decision support tool Switzerland Inputs (driving force and Probability modelling 
 neering model for urban energy plan-  system data) (Markov); Empirical 
  ners   studies (outlook) 
District-ECA Bottom-up  engi- Early planning stages Germany Model outcomes Empirical  studies;   com- 
[29] neering model decision  support  for   parative analysis 

  urban planners, hous-    
  ing companies, devel-    
  opers and local politi-    
  cal decision makers    
Heeren et al. [30] Bottom-up  engi- Assessment   method- Switzerland Model outcomes Comparative analysis and 

 neering model ology  in  form  of  a   calibration 
  life cycle-based build-    
  ing stock model    
Mattinen [31]  Bottom-up model Calculation and visu- Finland System data Sensitivity    and    Monte 

   alization approach for   Carlo analysis 
   energy use and green-    
   house  gas  emissions    
   from residential stock    
   in a case district    
EQ-Tool [32]  Bottom-up model Excel based tool Germany System data Empirical   studies   (out- 

   for    calculation    of   look) 
   efficiency    potentials    
   in the residential    
   building stock and the    
   transportation sector    
Mastrucci  et al. Bottom-up statis- A GIS-based statisti- Netherlands Model outcomes Bootstrapping (statistics) 
[33]  tical model cal  downscaling  ap-    

   proach  for  assessing    
   the  residential  build-    
   ing stock    

5.3. National level building stock energy performance assessment 

National level building stock models are the least granular and primarily utilised for environmental policy assess- 
ment and greenhouse gas emissions prediction. Additionally, they have simulation time horizons of 30 and more 
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years (e.g. [34,35]). The audience are mainly policy makers. The field of national level building stock modelling is 
the most heterogeneous regarding modelling approaches and handling uncertainties. Furthermore, the construction of 
many scenarios in these models is very common. Similar to district and city models they utilise simplified thermal 
simulation but have extra modules for considering socio-demographic dynamics. In this field a change from rather  

Table 4. Models for national building stock assessment. 

Name/Author 
and reference 

Model type Audience/Scope of application Country Acknowledged uncer- 
tainty (according to [17]) 

Uncertainty handling 

AWOHM [34] Bottom-up sim- Approach for national level en- Germany Inputs  (System  data  and Comparative analysis, 
 ulation model vironmental policy design for  driving  forces),   parame- Monte Carlo simulation, 
  the residential sector  ters, model outcomes, sce- parameter calibration 
    nario and sensitivity analysis 
Aydinalp   et   al. Bottom-up sim- Neural network based energy Canada Model outcomes Comparative analysis 
[37–40] ulation model consumption model for the res-    

  idential sector    
Bauermann Bottom-up sim- Approach for national level en- Germany Inputs   (driving   forces); Comparative analysis 
[41,42] ulation model vironmental policy design for  model outcomes  

BEAM2 [43] 
 

Bottom-up   ac- 
the residential sector 
Approach for national level en- 

 
Germany 

 
Model outcomes 

 
Comparative analysis 

 counting model vironmental policy design for   and calibration 
  the residential sector    
CDEM [8] Bottom-up Exploration of potential routes Great Inputs (System data) Local sensitivity  analy- 

 model to    reduce    carbon    dioxide Britain  sis (uncertainty quantifi- 
  (CO2) of the existing English   cation approach) 
  housing stock    
Charlier & Risch Bottom-up Approach for national level en- France Model outcomes, inputs Sensitivity analysis 
[44] model vironmental policy design for    

  the residential sector    
Mata et al. [12] Bottom-up Energy,  carbon,  and cost as- Sweden Model structure and out- Comparative   validation 

 model sessments of building stocks  comes and empirical studies 
Fung [45] Bottom-up sim- Framework   to   develop   an Canada Model outcomes Sensitivity and compara- 

 ulation model end-use  energy  consumption   tive analysis 
  and   greenhouse   gas   emis-    
  sions model for the Canadian    
  housing stock    
Zhou et al. [46] Hybrid model buildings  energy  model  with United Inputs (System data; driv- Calibration 

  U.S. state-level representation, States ing forces) and model out-  
  nested in an integrated assess-  comes  
  ment framework of the Global    
  Change   Assessment   Model    
  (GCAM)    
Henkel [47] Bottom-up Simulation model of the stock Germany Model   structure,   inputs Monte carlo simulation 

 model development  of  heating  ap-  (Driving forces)  
  pliances in Germany and the    
  household   decision   making    
  concerning the heating system    
Invert [35,36] Bottom-up sim- Approach for national level en- Austria Inputs, parameters, model Calibration,   sensitivity, 

 ulation model vironmental policy design for and   Ger- outcomes comparative analysis 
  the building sector many   
Kialashaki & Bottom-up Neutral/artificial networks; United Model structure Empirical  studies  (out- 
Reisel [11] model Energy-demand models to pre- States  look) 

  dict the future energy demand    
  in the residential sector    
Kost [48] Bottom-up Simulates the development of Switzerland Model outcomes Comparative analysis 

 model the  building  stock  including    
  renovation,    demolition   and    
  construction. Quantifies en-    
  ergy  demand  for  space  and    
  water  heating  and  associated    
  CO2 emissions    

 



1450   Elias Naber et al.  /  Procedia Engineering   180  ( 2017 )  1443 – 1452 

static models to agent-based models is noticeable and an increase in endogenous computation of many parameters and 
driving forces can be seen (e.g. [34–36]). Firth et al. [8] state that most UK models ignore the issue of uncertainty. 
This can also be observed for other models. A justification can be found in the scope of models which simulate very 
large building stocks (e.g. about 20 million dwellings [34]) where statistical uncertainty and system data is assumed 
to level out on the national level. In general, modellers focus on scenario and inputs uncertainty such as related to 
exogenous parameter setting and driving forces. In Table 4 findings from the considered national level models are 
summarised. 

For validating model outcomes, the prevalent methodologies are comparative analyses. The modellers mostly 
rely on national energy consumption data for this type of analysis. In order to minimise parameters uncertainties, 
calibration is the preferred method. In the case of scenario uncertainty, a few studies conduct sensitivity analyses 
and in AWOHM [34] a Monte Carlo simulation is integrated in the model structure. Furthermore, uncertainty is 
subject of the discussions of the screened contributions, for example system boundaries are discussed as they 
particularly frame and weight many interrelations and dependencies (which cause context uncertainties). 

6. Conclusion and outlook 

In this contribution handling uncertainty in building stock modelling is presented. It is shown that the commonly 
applied methods are sensitivity analysis, comparative analysis and empirical studies. In some of the reviewed works, 
models’ uncertainty and sensitivity are handled together. Also, the process of model validation is combined with 
han- dling uncertainty. Most of these approaches handle uncertainty with aiming at improving model outcomes 
stability and quality. Sensitivity analyses are typically used to provide an understanding of model behaviour and 
indicate un- certainties. Based on this analysis, model testing and calibration can be conducted. However, this does 
solely provides insight in the model outcomes’ confidence level and does not decrease uncertainties directly. 
Empirical studies are often conducted to ensure better understanding and to reduce epistemic uncertainty. Most of 
the individual models provide a validated core simulation engine (often ensured by standardised testing). 
Nevertheless, the uncertainty han- dling while operating the models are commonly allocated to the models’ users. 
District and national models focus more on inputs and outcomes uncertainty. Besides conducting empirical studies, 
only a few modellers try to reduce uncertainty itself, as e.g. done by Stengel [34]. In the national level model 
AWOHM by Stengel [34], a Monte Carlo simulation is integrated in order to reduce uncertainty in the compilation 
of the initial building stock inventory. In AWOHM the initial building stock is derived from detailed micro census 
data for Germany (2006). By integrating the Monte Carlo simulation the system data uncertainty propagation in the 
model itself is reduced. Many of the listed models belong to the type of bottom-up engineering models which do not 
consider the behaviour of building users. Occupants’ or users’ behaviour has high influence on energy consumption 
and forms a substantial uncertainty which is not considered comprehensively yet. 

Regardless of the various techniques which can be applied for uncertainty handling, empirical studies are the 
most accentuated one. Almost all screened models stress the importance of access to more detailed and specific data. 
All models need a great amount of data such as comprehensive and detailed building stock and census data. 
Generally speaking, most of the bottom-up models (in particular the national models) combine different sources of 
data which introduces additional uncertainties into the models. The respective effort in aggregating and pre-
processing data is high and complex. The same applies to post-processing or validation of the simulation or scenario 
results. Additionally, many of the datasets are collected for multiple purposes and not for the sole purpose of energy 
modelling which increases the urge to include a strategy to handle uncertainty when processing these data sets, 
making assumptions and setting system boundaries and parameters. The huge interest in the field of energy 
efficiency leads to a more targeted data aggregation and shared databases, as valuable data is increasingly 
administered and made accessible. This provides additional options to handle uncertainty. 

This study gives a condensed overview of uncertainty handling in building stock models. But the assessment is 
restricted to the modellers contribution due to the limited transparency. In future works, the models could be 
assessed by evaluating the different uncertainty handling approaches in detail and include additional building stock 
models. 
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