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Abstract

The local generation of renewable electricity through roof-mounted photovoltaic (PV) systems on buildings

in urban areas provides huge potentials for the mitigation of greenhouse gas emissions. This contribution

presents a new method to provide local decision makers with tools to assess the remaining PV potential

within their respective communities. It allows highly detailed analyses without having to rely on 3D city

models, which are often not available. This is achieved by a combination of publicly available geographical

building data and aerial images that are analyzed using image recognition and machine learning approaches.

The method also employs sophisticated algorithms for irradiance simulation and power generation that

exhibit a higher accuracy than most existing PV potential studies. The method is demonstrated with

an application to the city of Freiburg, for which a technical PV electricity generation potential of about

524 GWh/a is identified. A validation with a 3D city model shows that the correct roof azimuth can be

determined with an accuracy of about 70% and existing solar installations can be detected with an accuracy

of about 90%. This demonstrates that the method can be employed for spatially and temporally detailed

PV potential assessments in arbitrary urban areas when only public geographical building data is available

instead of exact 3D city model data. Future work will focus on methodological improvements as well as on

the integration of the method within an urban energy system modeling framework.
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1. Introduction1

There is a worldwide consensus that greenhouse2

gas emissions should be substantially reduced over3

the next few decades in order to mitigate climate4
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change (IPCC, 2015). This can only be accom-5

plished through a massive decarbonization of the6

energy system. One of the most important levers in7

this endeavor are combinations of energy efficiency8

measures and renewable energy resources in cities,9

which will have to play a crucial role in the energy10

transition (IEA, 2016).11

In order to develop local schemes and make in-12
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formed decisions for the transition to renewable en-13

ergies, policy makers need to be provided with accu-14

rate information on the potential contribution from15

each of these measures on global as well as on re-16

gional and local levels.17

The local generation of clean power through PV18

systems on building roofs, in particular, provides19

huge potentials that are usually economically vi-20

able. Compared to other available options, PV has21

higher public acceptance, partly because there is22

less competition for land or other resources.23

The assessment of the (remaining) potential for24

power generation from PV is an important field of25

study. Methods and tools that enable local decision26

makers to assess PV potentials in their respective27

communities are of vital importance for the energy28

transition. The literature review in section 2 shows,29

however, that currently there are no tools available30

that allow local decision makers to assess these po-31

tentials in high detail and accuracy without first32

having to acquire large amounts of data. With this33

contribution, the authors intend to address this is-34

sue.35

Since the requirements for detailed PV potential36

analyses usually include data that is not publicly37

available and, especially in smaller municipalities,38

can not be easily obtained, the objective of this con-39

tribution is to present a method for detailed urban40

PV potential assessment that relies solely on pub-41

licly available data and can be applied universally.42

The authors improve upon existing work as well43

as their previous publications (e.g. Mainzer et al.44

(2016)) in a number of points:45

1. high-detailed, bottom-up PV potential analy-46

sis in the absence of 3D model data47

2. discrete number of actually installable modules48

instead of just the area49

3. consideration of roof objects, e.g. chimneys and50

windows51

4. exact irradiance simulation with high temporal52

resolution (1/4 hourly)53

5. detailed, non-linear power generation model54

with consideration of temperature, module and55

inverter characteristics56

6. consideration of already installed PV modules57

The present literature on the subject is analyzed58

in section 2. In section 3, all steps of the method59

that was developed are described in detail. Sec-60

tion 4 presents results from an example application61

of the method to the city of Freiburg, Germany.62

These results are further analyzed, validated and63

discussed. In section 5, the findings are concluded.64

2. Literature review65

Several publications have already addressed the66

problem of identifying PV potentials. The main67

steps in PV potential estimation methods include68

the assessment of the available area for PV modules,69

the simulation of solar irradiance on the tilted mod-70

ule surfaces and the calculation of produced elec-71

trical power from the irradiance on these modules.72

Mart́ın-Chivelet (2016) provides an overview of dif-73

ferent methodologies that are employed for each of74

these steps. As discussed in the following section,75

various levels of detail can be achieved with differ-76

ent approaches. In addition, Freitas et al. (2015)77

also provide an overview over solar potential in the78
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urban environment with a focus on solar radiation79

models.80

For large-scale analyses, methods based on sta-81

tistical data, e.g. building databases, are commonly82

used. Schallenberg-Rodŕıguez (2013) provides a re-83

view of methods for the assessment of the available84

roof area using statistical building data and roof85

utilization factors, the calculation of monthly so-86

lar radiation values on inclined surfaces and yearly87

electricity production. The scale of assessments us-88

ing these methods is rather large, e.g. Schallenberg-89

Rodŕıguez (2013) applies them to the Canary Is-90

lands and Defaix et al. (2012) assess the PV poten-91

tial in the EU-27. Due to data availability, however,92

the detail of these approaches is limited, which re-93

sults in a low spatial and temporal resolution of the94

assessed potentials. Other approaches combine sta-95

tistical methods with geographical information sys-96

tems (GIS) to increase the spatial resolution, e.g.97

Mainzer et al. (2014) assess the PV potentials for98

Germany on a municipal level.99

If more detail and higher spatial resolutions100

are required, bottom-up methods that rely on 3D101

model data are common. For instance, Romero102

Rodŕıguez et al. (2017) use a 3D city model to cal-103

culate the total roof area and received solar irradi-104

ance for the German County district Ludwigsburg.105

Combined with factors for the share of usable roof106

area and technical efficiency as well as economic107

constraints, they are able to calculate the techni-108

cal and economic PV potential at an urban scale in109

high resolution.110

Although 3D models are becoming increasingly111

common, in most cases they are not freely avail-112

able or, especially for smaller municipalities, not113

available at all. Additionally, the heterogeneity114

of data formats is a hindrance to using them for115

arbitrary regions within the same model frame-116

work. The methods used to create 3D city mod-117

els differ, but usually either Light Detection and118

Ranging (LiDAR, e.g. Srećković et al. (2016); Brito119

et al. (2012); Nguyen and Pearce (2012); Jaku-120

biec and Reinhart (2013)) or stereophotogramme-121

try (e.g. Theodoridou et al. (2012); Jo and Otanicar122

(2011); Wittmann et al. (1997)) are used. Both123

methods can provide very detailed 3D models, but124

both also require significant investments in terms of125

money and time. Surveying flights in order to ob-126

tain the data and manual labor in order to create127

the 3D model are required. Similar methods that128

rely on 3D models are employed in commercial ap-129

plications1, which can be used to estimate the PV130

yield for single buildings. These approaches are in131

some cases very detailed, however, they do not al-132

low the assessment for larger regions and they are133

usually available only in certain regions.134

Although some of the above mentioned methods135

are very detailed, they still use many simplifications136

that could easily be improved upon. For example,137

most studies apply fixed utilization factors to con-138

sider the fact that in most cases, the available roof139

area can only partially be used for PV installations140

due to obstructions like chimneys or windows. They141

also calculate the number of modules that can be142

installed on the roof area with a simple packing fac-143

tor, instead of calculating how many PV modules144

could actually fit inside the respective roof shape.145

1One example is a cooperation of E.ON and Google, avail-

able at www.eon-solar.de.
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Examples for these simplifications can be found146

in Mart́ın-Chivelet (2016); Schallenberg-Rodŕıguez147

(2013); Defaix et al. (2012); Singh and Banerjee148

(2015); Mainzer et al. (2014); Fath et al. (2015);149

Mavromatidis et al. (2015) and others. Most pub-150

lished methods also apply very simple models to151

calculate the produced electricity from the received152

irradiance, usually by applying a fixed module effi-153

ciency and performance ratio of the system, instead154

of considering the non-linear effects of temperature,155

module type, inverter utilization etc. This is a well-156

known field of study, though, and more sophisti-157

cated algorithms are available and can easily be158

implemented, see e.g. Drews et al. (2007) for mod-159

ule temperature modeling, Huld et al. (2010) for160

module efficiency calculation and Macêdo and Zilles161

(2007) for inverter efficiencies.162

With the higher detail that improvements in163

these areas could provide, the results could be bet-164

ter employed in studies that examine the integra-165

tion of PV in the energy system. For example,166

Killinger et al. (2015) determine the optimal in-167

vestment in differently oriented PV systems in the168

context of four German regions with regard to their169

ability to match the local demand, reduce strain on170

the power grid or replace fossil power production.171

On a larger scale, Mainzer et al. (2014) analyze how172

much of the available PV potential in each German173

municipality could be exploited before electricity174

would have to be fed back into the national grid.175

The integration of PV into the distribution net-176

work infrastructure is analyzed by Srećković et al.177

(2016) in a case study for Maribor, Slovenia and by178

Wegertseder et al. (2016) for Concepción, Chile.179

Currently, there are no methods available that180

can provide PV potential assessments with a high181

spatial resolution when 3D model data is not avail-182

able. However, a number of approaches that deal183

with the problem of acquiring geographical data184

that is not (publicly) available have been published185

in the past. Taubenböck (2007) presents a method186

to estimate the height of buildings based on an187

analysis of shadow lengths in satellite images. As-188

souline et al. (2017) use machine learning (support189

vector machines) to spatially extrapolate weather190

variables, and to estimate roof characteristics based191

on training data from 42 communes in Switzerland.192

Miyazaki et al. (2016) use neural networks to auto-193

matically derive building locations from Bing Map194

aerial images.195

Bergamasco and Asinari (2011) present a196

methodology that estimates the suitability of a roof197

based on pixel colors and brightnesses. Hazelhoff198

and de With (2011) attempt to automatically de-199

tect buildings with a gable roof in rural areas. Both200

of these approaches could be used in the context of201

PV potential estimation, however, both also rely on202

very-high-resolution aerial images, which have been203

provided by local authorities in connection with a204

specific project.205

All of the reviewed approaches either lack the206

level of detail that would be required to use the207

assessed PV potentials, e.g. in energy system mod-208

els to support the creation of energy concepts, or209

they provide high detail but depend on existing 3D210

city models, which are often not available. None of211

these approaches can easily be applied in another212

region without manually acquiring additional data.213
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3. Methodology214

The approach that is used to assess the remaining215

economic potential in a given region is conducted216

within nine distinct steps, as shown in Figure 1.217

Irradiance 

profiles

15min-resolution electricity generation profiles:

Technical potential

Roof structure detection

Inclined irradiance 

profiles

Electricity yield simulation

Number and orientation of PV modules

Inclined 

irradiance 

simulation

Building 

coordinates
Aerial

images

Building footprint 

analysis

1

6

Temperature 

profiles

Electricity yields & associated costs (cost potential curves):

Economic potential

Economic assessment

Inclination estimation

Module placement

7

3

4

5

Partial roof areas extraction

8

2
(a-g)

Remaining economic potential

Detection of existing PV systems 9

Figure 1: Overview of the presented approach.

While some of these steps rely on well-known218

methods and algorithms, some novel approaches219

are also presented in this work. These approaches,220

which are described in steps 2, 4 and 9, are based221

on the assumption that humans can usually tell the222

shape, size and suitability of a roof for PV based223

on its aerial image. Using image recognition tech-224

niques, computers should be enabled to do the same225

and thus include publicly available aerial image in-226

formation in automated PV potential assessments.227

These methods allow the assessment of PV po-228

tentials solely based on publicly available data,229

while other methods that provide the same level of230

detail usually rely on commercial data (c.f. sec-231

tion 2). This implies that this method can be232

applied in any region where OpenStreetMap data,233

aerial or satellite images, as well as irradiance and234

temperature data are available.235

All steps are fully automated and implemented236

within a larger Java model framework intended for237

the analysis and optimization of urban energy sys-238

tems: the Renewable Energy and Energy Efficiency239

Analysis and System OptimizatioN (RE3ASON)240

model (McKenna et al., 2016). Figure D.12 shows241

the graphical user interface of this model for the PV242

potential assessment, which allows all relevant pa-243

rameters to be adjusted as needed for applications244

in other regions.245

In the subsections 3.1 to 3.9, each step of the246

method is described in detail. All of these steps are247

conducted for each single building in the analyzed248

region. Throughout these methods, a number of249

techno-economic assumptions are used – these are250

summarized in Appendix A, Table A.1.251

3.1. Building footprint assessment252

First of all, the sizes and exact locations of all253

buildings in the analyzed area have to be retrieved.254

This is done by querying the OpenStreetMap255

database (OpenStreetMap-Contributors, 2017) for256

paths and relations with the ’building’ tag, using257

the Overpass Turbo API2. OpenStreetMap typi-258

cally does not provide any information on the height259

or the roof shape of buildings – only the area of the260

building footprint. These building footprints are261

2See http://overpass-turbo.eu/.
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later used to calculate the sizes and orientations of262

partial roof areas.263

Additionally, the azimuth angles of the building264

outlines (i.e. the building walls) are determined as265

a basis for the angles of possible roof ridge lines, as266

these are usually parallel to the building walls. Very267

large buildings (with more than 3,000 m2 ground268

area) are assumed to be office blocks, factories or269

similar with flat roofs. For flat roofs, the steps 2270

and 3 are skipped.271

3.2. Partial roof areas extraction272

For each building, the orthographic aerial image273

covering the buildings’ (roof) area is retrieved from274

Bing Maps (Microsoft, 2016) and clipped to the cor-275

rect shape, using the building footprint. Next, a276

number of image processing algorithms are applied277

to the image in order to retrieve the roof’s ridge line278

and deduce the orientations of partial roof areas (as279

illustrated in Figure 2):280

a) A bilateral filter is applied to reduce noise281

while preserving the edges of the image.282

b) A color filter creates a black-and-white version283

of the image: For each pixel, the weighted aver-284

age intensity is calculated by adding the values285

for the red, green and blue color components,286

whereby empirically derived weights (0.75, 0,287

and 0.25 for the channels red, green and blue,288

respectively) are applied to each color.289

c) Histogram equalization is applied to the image.290

This method enhances the overall contrast of291

the image by spreading out the most frequent292

intensity values to create a more uniform distri-293

bution. This makes it easier to distinguish, e.g.294

two separate partial roof areas in cases when295

they have similar color and brightness.296

d) The Canny Edge algorithm (Canny, 1986) is297

employed to extract the edges, i.e. areas with298

significant local intensity changes, from the im-299

age. This is done by identifying and connect-300

ing local maxima of intensity gradients in the301

horizontal and vertical directions of the im-302

age. These edges usually represent noticeable303

structures like walls, chimneys, windows, or –304

what’s most interesting in this use case – the305

roof ridge.306

e) The Hough Transformation algorithm (Duda307

and Hart, 1972) is applied to detect straight308

lines in the previously found edges. In short,309

this is achieved by iterating over the parame-310

ter space of line equations in the polar coordi-311

nate system for each pixel and identifying those312

lines that most pixels lie on.313

f) These lines are further analyzed by subse-314

quently applying logical filters in order to de-315

termine which line (if any) represents the roofs’316

ridge line. This involves deleting lines that are317

very close to the building walls (e.g. drain pipes318

or parts of the building outline that do not ex-319

actly align with the aerial image) and lines that320

are not parallel to one of the buildings’ walls.321

Additionally, lines that are interrupted by, e.g.322

shadows, are merged into a single line.323

If, after applying these filters, there are still324

multiple lines left, the weighted sum of the cri-325

teria length and brightness difference are used326

to determine which line is most probably the327

correct ridge line. Here, length denotes a nor-328

malized measure of line length (with 0: no line,329
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(a) (b) (c) (d) (e) (f) (g)

(a) (b) (c) (d) (e) (f) (g)

Neue Variante: gleiche Gebäude für alle Beispielbilder

W324744606

Figure 2: Process of roof ridge line detection on the aerial image for two different buildings: (a) bilateral filtering, (b) color

filtering, (c) histogram equalization, (d) Canny Edge Detection, (e) Hough Line Transformation, (f) logical filtering, (g)

calculation of azimuth. The hue of the azimuth indicator arrow ranges from red (south) over yellow and green to blue (north).

Source: Own depiction with image data from Bing Maps (Microsoft, 2016).

1: longest line), while the brightness difference330

is calculated by splitting the image in half with331

each line and calculating the average bright-332

ness in both halves of the image – large differ-333

ences indicate partial roof areas with different334

lighting conditions (0: no brightness difference,335

1: greatest brightness difference).336

g) If the ridge line is found, it can be used to de-337

duce the partial roof areas (which face in dif-338

ferent azimuth directions) of the building.339

The selection of algorithms as well as their pa-340

rameters and the order in which they are applied341

have been determined by experimentation and re-342

fined during the validation process. Some param-343

eters are adjusted dynamically, e.g. when no ridge344

lines are found, the thresholds for the Canny and345

Hough algorithms are reduced iteratively. Most346

of the image processing algorithms are provided347

through the open computer vision library OpenCV348

(Bradski, 2000), algorithmic descriptions can be349

found, for example, in Burger and Burge (2016)3.350

3See chapter 4.5 in that book for histogram equalization,

In some cases (for about 27% of the analyzed351

buildings), no valid ridge line can be found. This352

can happen, e.g. when the contrast is too weak to353

find the ridge line, when the building is not (yet)354

captured by the aerial image, or when it has a flat355

roof and thus no ridge exists. These buildings are356

either classified into having a flat roof (see next sub-357

section) or divided into partial areas using a fall-358

back method, which splits the building in halves,359

assuming that the longest building wall is parallel360

to the roof ridge.361

3.3. Inclination estimation362

The second parameter of a roofs’ orientation is363

given by its tilt. On flat roofs, PV modules are364

usually mounted with stands, while on tilted roofs,365

they are mounted in the same angle as the roof.366

However, aerial images provide only a single per-367

spective and thus contain no information on the368

height of buildings. Since this makes it difficult369

to extract the tilt, a normal distribution function370

chapter 8 for hough transformation, chapter 16 for canny

edge detection and chapter 17 for bilateral filtering.
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about a mean of 37◦, with a standard deviation of371

15◦ is used to estimate the tilt for each roof. These372

parameters have been derived by fitting a normal373

distribution function to tilted roofs from LiDAR374

data in Baden-Wuerttemberg (c.f. Figure 3).375

If no ridge line could be identified on a roof, that376

could be due to the building having a flat roof.377

Based on the assumption that, overall, about 9%378

of buildings should have flat roofs (LUBW, 2012),379

these buildings are then classified into whether hav-380

ing a flat roof or not by a random draw.381
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Tilt angle [°]

Figure 3: Histogram of tilted roof angles for 3,002,943 build-

ings in Baden-Wuerttemberg (grey bars) and the assumed

normal distribution function (N(37; 15), black line). Source:

Own depiction based on LiDAR data from LUBW (2012).

3.4. Roof structure detection382

In most cases, only part of the roof area can be383

used for PV applications, since most roofs contain384

structures like chimneys, windows, etc. that limit385

the available area. In previous PV potential studies,386

this fact has typically been accounted for by sub-387

tracting a fixed share of the roof area. The method388

presented here uses the aerial image to identify389

these roof structures. To achieve this, methods for390

contour detection (Suzuki and Abe, 1985) and poly-391

gon approximation (Douglas and Peucker, 1973) are392

employed in order to identify possible objects on the393

partial roof areas. All identified objects that fulfill394

certain criteria (based on size and shape) are sub-395

tracted from the usable area. An example of the396

roof structure detection can be seen in Figure 4.397

Figure 4: Examples for roof structure detection. Red mark-

ers are drawn around detected structures. Source: Own de-

piction with image data from Bing Maps (Microsoft, 2016).

3.5. Module placement398

In the next step, the number of modules that399

could be fitted into the previously determined roof400

areas needs to be determined. This is done by an401

algorithm that incrementally iterates over the us-402

able area and fits as many PV modules as possible403

within each partial roof area. For slanted roofs, the404

modules are assumed to be mounted in the same405

angle as the roof itself and consequently no signif-406

icant distance has to be left between them (10 cm407

are used). The result of such a module placement408

can be seen in Figure 5.409

For flat roofs, it is assumed that mounting sys-410

tems are used to position the PV modules facing411

south, with a 30◦ tilt angle. In order to prevent412

mutual shadowing, a distance of twice the mod-413

ules’ height is kept free between adjacent rows of414

modules. These parameters provide a good trade-415

off, for middle-European latitudes, between optimal416

yield and losses due to dirt and mutual shadowing417

(Quaschning, 2013).418
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Karlsruhe, Oststadt

W97034515
W324744606

W108518455
W324744606

W118598836
W97034515

Neue Variante: Erste Version:

Figure 5: Examples for module placement, considering size,

azimuth, tilt and shape of the available roof areas, as well

as roof structures. Source: Own depiction with image data

from Bing Maps (Microsoft, 2016).

In many cases, this estimate of installable PV419

modules might be too optimistic. Not all obstacles420

on a roof can be identified from aerial images, and421

some buildings are not suited for PV installations422

due to structural constraints. Other buildings can423

not be used since they are protected as historical424

landmark buildings, which in Germany applies to425

about 3.5% of buildings (Diefenbach et al., 2010).426

Without 3D model data, it is also not possible to427

consider the effect of shading from other buildings,428

which has been shown to reduce the PV potential by429

14% to 21% (without/with consideration of obsta-430

cles on the roof respectively) in densely populated431

areas (Takebayashi et al., 2015). Shading from trees432

or the surrounding landscape could further reduce433

the potential.434

Consequently, all of these factors combined are435

accounted for by reducing the PV potential that436

has been calculated so far by 30%. Nowak (2002)437

uses a reduction factor of 40% to compensate for438

such factors, but since that method does not ex-439

plicitly consider obstacles on the roof as done here440

(see section 3.4), a somewhat smaller value seems441

to be justified.442

3.6. Irradiance simulation443

In order to calculate the electricity that could444

be generated from these modules, the amount of445

irradiance they receive has to be simulated. The446

global irradiance on tilted module planes consists447

of contributions from direct, diffuse, and reflective448

components and can be calculated by using the irra-449

diance on a horizontal plane and applying trigono-450

metric calculations.451

To calculate the sun’s position at the location of452

interest over the course of a year, the Algorithm 3453

as described by Grena (2012) is used. The calcu-454

lated position is then combined with irradiance data455

(direct and diffuse irradiance on a horizontal plane,456

provided by the Copernicus Atmosphere Monitor-457

ing Service (CAMS) European Commission (2017))458

in order to simulate the direct, diffuse and reflected459

irradiance components. Literature provides several460

approaches to doing this, the methods that were461

used in this paper are described in detail in Ap-462

pendix B.463

Since these calculations are quite resource inten-464

sive, they can not be performed for each possible465

combination of tilt and azimuth. Instead, each466

roof is classified into one of 144 discrete orientation467

classes (16 azimuth and 9 tilt classes). For each of468

these classes, the received global irradiance is cal-469

culated in 15 minute timesteps over the course of470

one year.471

3.7. Electricity yield simulation472

The electricity output from a PV system depends473

not only on the received global irradiance, but also474

on the module temperature as well as technical475
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characteristics of the modules and the power in-476

verter.477

In this work, this is considered by simulating the478

efficiency of the modules and the inverter system479

as a function of ambient temperature, irradiance480

and load factor. For the technical characteristics, a481

given module and inverter type (c.f. Appendix A,482

Table A.1) is assumed. The details of the employed483

methods are described in Appendix D.484

3.8. Economic assessment485

In the last step, an economic analysis is con-486

ducted. A good indicator for economic feasibil-487

ity is provided by the levelized costs of electric-488

ity (LCOE , in e/kWh), as defined e.g. by Branker489

et al. (2011). These can be calculated by dividing490

the total discounted costs (investment plus opera-491

tional costs) of a system over its lifetime LT by the492

total discounted energy generation over the same493

period:494

LCOE =

n · Im +

LT∑
t=0

n · Im · roc
(1 + i)t

LT∑
t=0

W0 · (1− d)t

(1 + i)t

, (1)

with W0 in kWh being the amount of electric-495

ity produced in the first year, n the number of PV496

modules, roc the operational costs share of invest-497

ment and t the year. The definitions and assump-498

tions of further parameters are given in Appendix499

A, Table A.1.500

By aggregating the possible yearly electricity501

generation and sorting by ascending LCOE , a cost-502

potential curve (CPC) can be generated from these503

calculations. An example can be seen in Figure 8.504

The economic potential can now be derived by505

defining a maximum LCOE and selecting only506

those PV installations with lower costs. However,507

when evaluating technologies only by LCOE , it508

should be mentioned that these fail to consider as-509

pects like generation profiles, flexibility and exter-510

nal effects. Additionally, the economic viability of511

PV installations is also dependent on further indi-512

vidual factors, e.g. the share of self consumption.513

3.9. Detection of existing PV systems514

The information whether a roof is already515

equipped with PV installations is readily available516

from aerial images and can easily be identified by517

human observers. In order to incorporate this in-518

formation in the PV potential assessment, however,519

this task needs to be automated. In recent years,520

deep learning and, more specifically, Convolutional521

Neural Networks (CNN) have been rapidly increas-522

ing the accuracy that can be achieved by machine523

learning algorithms in the task of image classifica-524

tion, up to a point where these have even become525

capable of outperforming humans (He et al., 2015).526

In order to exploit the power of these meth-527

ods, a CNN following the architecture proposed by528

Krizhevsky et al. (2012) has been implemented4.529

The network that was used here diverges from the530

proposed structure in a lower resolution of the in-531

put images (72x72 vs. 256x256 pixels, 3 color532

channels each) and significantly fewer result classes533

(2 vs. 1000), which enables a fast learning pro-534

cess. The network has been trained through a535

4Using the Open-Source Deep-Learning Java library

Deeplearning4j.
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supervised learning technique called backpropaga-536

tion with 2,934 manually labeled images of build-537

ing roofs (of which 80% were used for training and538

20% for validation), belonging either to the cate-539

gory ’PV ’ or ’no PV ’.540

The so-trained CNN is then used to predict for541

each analyzed building the probability that its roof542

is already equipped with a PV installation. If the543

predicted probability exceeds 90%, the associated544

roof area is considered as being already occupied545

and its potential is then subtracted from the total546

potential.547

4. Results and discussion548

The previous section has demonstrated how the549

method assesses the potential for PV installations550

in any region by analyzing the roof areas of all551

buildings and calculating the electricity that could552

be produced as well as the associated costs.553

In this section, the example application of this554

method to the city of Freiburg, Germany is demon-555

strated. After showing the aggregated results as556

well as more detailed results for individual districts557

(subsection 4.1), the findings are validated by com-558

paring the determined azimuths with 3D model559

data (subsection 4.2) and evaluating the accuracy560

of the neural network for the detection of existing561

PV systems (subsection 4.3).562

4.1. Application to Freiburg, Germany563

Due to the availability of a 3D model (Stabsstelle564

Geodatenmanagement, 2016), the city of Freiburg565

was used as an application, so that the roof pa-566

rameterization could be validated. But, since the567

method relies solely on publicly available data, it568

can be applied almost anywhere. It can be used569

to analyze individual buildings, city districts, or570

large-scale urban areas. Due to the necessary as-571

sumptions about the tilt angle distribution, the un-572

certainty for individual buildings is generally higher573

than for larger aggregation levels. There is no ab-574

solute limit to the size of the analyzed region, it is575

mainly restricted by the required computational ef-576

fort: for Freiburg, the analysis took about 30 hours577

and 80 GB of RAM5.578

Figure 6: The analyzed area of Freiburg, divided into 28

districts, with 49,573 buildings in total. Buildings are high-

lighted in gray. Source: Own depiction with map data from

OpenStreetMap-Contributors (2017).

The result from this analysis can be seen in Fig-579

ure 6 and Figure 8 (left). For the 49,573 buildings580

5A machine with 12 Intel Xeon E-1650 3.2 GHz cores

was used for the analysis. Memory demand is mainly due

to a lot of information, e.g. the exact coordinates for each

positioned PV module, being saved during the analysis to

enable graphic visualizations as well as quality checks.
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in Freiburg, a technical electricity generation poten-581

tial of 524 GWh/a was found, of which 85 GWh/a582

has been classified as already exploited. The LCOE583

for these potentials range from 9 to 29 e ct/kWh.584

It should be mentioned that, contrary to many585

other studies, roofs with suboptimal orientations586

have not been excluded from this analysis a priori587

– these are represented by those parts of the cost-588

potential-curve that exhibit the highest costs. The589

CPC could, however, be used to easily derive an590

economic potential by simply defining a maximum591

LCOE threshold.592

The results can be accessed via a graphical user593

interface that enables analyzing the city as a whole594

(Figure 6), looking into single districts (Figure 7)595

or even buildings (Figure 5).596

A closer look at the results on a district level597

reveals the added value of this method over ap-598

proaches that rely purely on statistical data. Fig-599

ure 7 highlights two of the analyzed districts which600

differ in the layout of their road network: in the dis-601

trict Mooswald (left area), most of the streets are602

laid out in a diagonal pattern. Since building foot-603

prints are often oriented in parallel to the streets,604

a large share of roofs which face in less optimal605

directions (e.g. south-west instead of direct south)606

can be expected. In Herdern, on the other hand,607

the street direction layout is quite heterogeneous,608

so the whole range of possible azimuth directions is609

expected.610

The model results confirm this: an analysis of611

the average deviation from south (of the better ori-612

ented partial area from each building, respectively)613

shows that in Herdern, the distribution is quite614

heterogeneous (mean 46◦, standard deviation 30◦).615

In Mooswald, in contrast, it is very concentrated616

(mean 45◦, standard deviation 5◦). This is also617

reflected in the resulting cost-potential curves (Fig-618

ure 8, right): for Mooswald (red) the curve is not619

as evenly distributed as for Herdern (blue) and ex-620

hibits less distinctive steps, since many azimuths621

are not present.622

This difference is caused only by different distri-623

butions of azimuth directions in the two districts,624

which was correctly identified by the approach pre-625

sented here. Hence, this example highlights why626

it is important to consider azimuth directions in627

PV potential estimations in high detail: even if the628

available roof areas might be comparable in two629

different regions, the distribution of azimuth direc-630

tions has a large impact on the yearly sum as well631

as the costs of the resulting electricity generation.632

This is similarly important for other applications,633

e.g. for regional PV power generation simulations634

(as shown in Killinger et al. (2017)).635

4.2. Evaluation of the azimuth determination636

In order to evaluate the accuracy of the parame-637

terization of roof azimuths in the model, the results638

have been compared with a 3D model of Freiburg,639

containing 191,335 partial roof areas (Figure 9).640

For the sake of this comparison, it is assumed641

that the 3D model is 100% correct, although the642

authors are aware that it actually does contain a643

number of errors which could lead to false results.644

It was generated by using the LiDAR-method with645

a limited spatial resolution. The fact that, in many646

cases, the 3D model has partitioned a roof into647

many small partial roof areas leads to certain chal-648

lenges when comparing the azimuths between both649
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Figure 7: The districts Mooswald (left area) and Herdern (right area) in Freiburg, Germany. Source: Own depiction with map

data from Bing Maps (Microsoft, 2016).

models. This results in the fact that only about half650

of the total number of buildings could be compared651

by geographically matching the roof areas.652

Figure 10 shows the result of comparing azimuths653

from the 3D model with those from the model pre-654

sented here for all 26,412 buildings that could be655

geographically matched. From the high concentra-656

tion along the line that bisects the x- and y-axis, it657

can clearly be seen that in most cases, the model658

results agree.659

Most errors occur due to a deviation of ±90◦6,660

which occurred for about 20% of the compared661

roofs. This is owed to the fact that building walls662

are usually in a right angle with each other and663

in these cases, the method chose the wrong ridge664

line which was parallel to one of the building walls.665

There is also a small cluster (about 5% of the com-666

pared roofs, not noticeable from the graphic) of er-667

rors around ±45◦. This is probably due to the al-668

6Which is equivalent to a deviation of ±270◦.

gorithm being fooled by multiple ridge lines, e.g. on669

hip roofs.670

The errors are quite symmetric, which means671

that the algorithm does not favor a deviation in a672

certain direction. This implies that it does not pro-673

duce any systematic error, which could compromise674

the results in terms of power generation noticeably,675

if present.676

The density plot illustrates that certain orienta-677

tions (namely 20◦, 110◦, 200◦and 290◦) are more678

frequent than others in Freiburg, presumably due679

to the general road patterns. This demonstrates680

the importance of the consideration of the actual681

azimuth directions, since neglecting these specific682

distributions could result in significant deviations683

in power prediction, as also shown in Killinger et al.684

(2017).685

Most of the errors that were observed can be at-686

tributed to poor image quality (e.g. outdated im-687

agery, images with low resolution or weak contrasts)688
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Figure 8: Cost-potential curve for the whole city of Freiburg (left) as well as the districts Mooswald and Herdern (both right).

Source: Own depiction.

Figure 9: An excerpt from the model data that was used

for evaluating the model. The colors indicate different roof

types, the numbers indicate the azimuth of the respective

roof areas (0 is north, 180 south, -1 refers to flat roofs).

Source: Own depiction with map data from Bing Maps Mi-

crosoft (2016) and Stabsstelle Geodatenmanagement (2016).

and when structures on the roof (e.g. windows or689

existing PV modules) have been falsely identified690

as the roof’s ridge line.691

From these validations, it can be concluded that692

the method for azimuth determination has a fail-693

ure rate (wrong ridge line chosen due to shadows,694

roof windows, building walls, or similar) of less than695

Figure 10: Density plot of the simulated azimuth from more

than 52,000 partial roofs in comparison with azimuth derived

from the 3D model.

30 %. These errors are assumed to be mainly man-696

ifested in the profile of the power predictions and697

only to a smaller extent in the yearly sum of power698

production, since the aggregation tends to balance699

out these errors.700
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4.3. Evaluation of the PV systems detection701

The neural network for PV system detection has702

been trained for about 50 iterations with the full703

dataset of 2,934 images. After this process, an ac-704

curacy7 of 90.97% could be achieved, i.e. the major-705

ity of buildings could be correctly categorized into706

having an existing PV installation or not.707

Since the training data was retrieved from only708

a limited number of geographically distinct regions709

in Germany8, the accuracy is not guaranteed to be710

the same in each application, e.g. due to variations711

in image quality, lighting conditions, etc. However,712

by manually checking excerpts from the results (see713

Figure 11), it can be confirmed that the recognition714

is correct in most cases.715

In the analysis of Freiburg, roof areas that cor-716

respond to about 85 GWh of the identified tech-717

nical potential have been classified as already ex-718

ploited. The German renewable energy plants reg-719

ister (DGS, 01.08.2014) states an installed capacity720

of 35 GWh/a in 2014 for Freiburg. The discrepancy721

can be explained by the fact that in the model, the722

whole potential of a roof area is regarded as ex-723

ploited when an existing PV system is detected,724

while in reality this is often not the case (e.g. the725

top-right building in Figure 11). From manual ex-726

aminations of over 200 sample images with existing727

PV installations, the authors conclude that in many728

cases, only about 30 to 80% of the available area is729

7Accuracy is defined as
(TruePositives+TrueNegatives)

(Positives+Negatives)
.

Other common indicators for binary classification quality are

Precision (here: 91.91%), Recall (90.96%) and the F1 Score

(91.08%).
8Aerial images from Karlsruhe, Feuchtwangen and Mies-

bach were used as training data.

actually exploited. Additionally, the image quality730

does not allow to differentiate between PV modules731

and solar thermal installations. This is correct in732

the sense that these roof areas are classified as ex-733

ploited, but not, as assumed by the model, through734

PV installations. Additionally, the aerial imagery735

is usually more recent and may show many PV sys-736

tems that have not yet been considered in the plant737

register data in 2014. Despite these uncertainties,738

the validations lead to the conclusion that the de-739

tection of existing solar installations can success-740

fully be accomplished with the proposed machine741

learning approach.742

4.4. Critical reflection and outlook743

With the method described here, the problem of744

assessing highly detailed PV potential estimations745

when no 3D data (e.g. from LiDAR) is available746

has successfully been resolved. However, quite a747

number of uncertainties and challenges remain with748

regard to input data, methodology and evaluation,749

which are discussed in this section.750

Some challenges are related to the input data751

that is used: the age as well as the quality of752

OpenStreetMap data can be quite heterogeneous,753

in some cases very high and in other cases quite754

low, incomplete or outdated. To a certain extent,755

the same applies to the aerial imagery, for which756

the resolution as well as the age can vary between757

different regions.758

Compared to approaches that rely on 3D models,759

the data this methodology uses inherently prohibits760

the consideration of shadowing from other buildings761

or the environment. This might be addressed in the762

future by using additional data sources, should they763
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Figure 11: Automated detection of existing PV systems: roofs that have been classified by the neural network into having PV

modules installed are highlighted red. Source: Own depiction with image data from Bing Maps (Microsoft, 2016).

become available.764

The method itself could also be improved in a765

number of ways. First of all, the image-based roof766

area extraction is currently only able to analyze767

simple building geometries with gable/ridge roofs.768

In cases of more complex building geometries, e.g.769

T-shaped buildings, a fallback method is applied.770

This issue is currently being addressed by an ap-771

proach using image segmentation algorithms and is772

a subject for future work.773

As compared to methods that employ 3D city774

models, this method is not able to assess the tilt of775

building roofs, as this can not easily be extracted776

from aerial imagery. The current approach is an777

estimation of tilt using an empirical distribution778

function. This could be improved in future work779

by analyzing the brightness differences between roof780

areas and correlating them with empirical training781

data (possibly also by employing a machine learn-782

ing approach). It is currently unknown, however,783

whether this approach could work reliably.784

Since this method relies purely on two dimen-785

sional data, it does currently not allow for the con-786

sideration of vertical structures for PV applications787

(often referred to as Building Integrated Photo-788

voltaics, BIPV). These options, which could be ap-789

plied to building walls or even to some of the roof790

structures discussed in section 3, step 4, could po-791

tentially further extend the overall PV potential.792

The steps in this method that rely on image793

recognition techniques are meant to approximate794

the human capabilities of evaluating the suitability795

of a roof for PV applications, based on its aerial796

image. The approach presented here is not yet on797

par with human accuracy, so parts of the method798

could possibly be improved by e.g. applying addi-799

tional filters or different algorithms.800

The presented method is currently quite resource801

intensive, which has prevented large-scale (e.g. na-802

tional) applications so far. Several improvements803

could reduce the computational effort. Memory de-804

mand could be reduced by discarding details, e.g.805

retaining only the number of installable modules806

per roof instead of their exact locations in memory.807
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Additionally, the computing time could be reduced808

by parallelization.809

Several uncertainties remain along the PV power810

production simulation chain. Gueymard (2008,811

2009) evaluates these uncertainties with respect to812

irradiance modeling for solar engineering applica-813

tions, whereas Hansen et al. (2013), Krauter et al.814

(2008), and Kreifels et al. (2016) present a sensi-815

tivity analysis along the whole simulation chain in-816

cluding both irradiance and PV power modeling.817

Despite these uncertainties, however, the methods818

used within this paper are still significantly more819

detailed than the ones employed in comparable820

studies (see section 2).821

The detection of existing PV systems can be822

fooled, e.g. when the image quality is bad. It should823

be mentioned that (qualitatively) better artificial824

neural network architectures for image classifica-825

tion than the one used here are available today826

(and have partially been tested during the devel-827

opment of this methodology). However, these tend828

to be more complex, which usually leads to an in-829

crease in memory consumption and runtime, which830

quickly becomes relevant in large-scale applications831

with thousands of buildings.832

The evaluation itself is also prone to errors. Since833

there is no proven correct data on PV potentials,834

data that is also uncertain has to be used for val-835

idation. For each deviation found, it remains un-836

clear whether it is due to an error in the method or837

the data that it was validated against. The lack of838

good data for validation, however, again highlights839

the need for methods such as the one developed in840

this work.841

When the method is applied to other regions,842

some changes to the employed parameters might843

be required. Local knowledge can be used to adjust844

the roof tilt distribution function, the mounting an-845

gle and row distances for flat roofs, as well as other846

parameters. The overall reduction factor can be ad-847

justed if it is known that many or high trees, hetero-848

geneous building heights, narrow streets or similar849

factors that limit the PV potential are present.850

Finally, the presented method does not account851

for the integration of the PV electricity into the852

local energy system. This tends to be overly opti-853

mistic, as additional costs for network upgrade and854

storage capacities might result from this integra-855

tion. More detailed economic implications from a856

system-point-of-view could be derived by employing857

the method presented here within an urban energy858

system modeling framework. This could allow not859

only the consideration of the determined LCOE for860

PV systems, but also the temporal structure of their861

electricity generation profiles and the combination862

with other renewable energies and energy efficiency863

measures. Such analyses will be part of future work864

and presented within forthcoming publications.865

5. Conclusion866

In this contribution, a new method for the assess-867

ment of rooftop PV potentials at the urban level868

has been presented. This method can be used to869

conduct PV potential analyses in high detail and in870

many regions of the world. It uses publicly avail-871

able geographical building data and aerial images in872

combination with image recognition techniques to873

derive the size and orientation of partial roof areas874

without having to rely on 3D model data.875
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Compared to existing methods for PV poten-876

tial assessment, it improves upon several shortcom-877

ings. Instead of applying roof utilization factors,878

this method calculates the discrete number of PV879

modules that could be installed on each roof, con-880

sidering the roof shape as well as objects like chim-881

neys or windows that could prevent PV installa-882

tions. The method includes an exact irradiance883

simulation with high temporal resolution as well as884

a detailed power generation model, which consid-885

ers the non-linear effects of temperature, module886

and inverter characteristics to calculate the tech-887

nical PV electricity generation potential. By relat-888

ing this to the respective investments and operating889

costs, highly detailed cost-potential-curves for arbi-890

trary urban areas can be calculated. Additionally,891

the aerial images are analyzed by a Convolutional892

Neural Network, trained to detect existing PV mod-893

ules on building roofs, which enables the model to894

account for the share of PV potential already ex-895

ploited.896

The method has then been applied to the Ger-897

man city of Freiburg for demonstration and valida-898

tion. A technical electricity generation potential of899

524 GWh/a could be identified, of which 85 GWh/a900

was classified as already exploited. The applica-901

tion has demonstrated that the method allows a902

good representation of roof azimuths that often fol-903

low distinct road patterns. The comparison with904

an existing 3D city model has shown a good agree-905

ment between the respective azimuths. Thus it can906

be concluded that the presented methodology could907

improve the quality and extent of PV potential as-908

sessments for urban areas in the absence of exten-909

sive data.910

This method can be employed in a number of use911

cases. As mentioned in section 1, PV potential esti-912

mations can provide local decision makers with crit-913

ical information, e.g., for designing energy concepts.914

Due to the use of public data, this method can be915

applied in arbitrary cities worldwide, although vari-916

ations in the OpenStreetMap building data or Bing917

imagery quality may limit its use, e.g. in some re-918

mote regions. Nonetheless, this methods enables919

even smaller municipalities that have no access to920

3D city models to get detailed information about921

their local potentials. With the high detail of re-922

sults this method offers, it can ultimately be used923

to identify the PV potential as an input for energy924

system models that rely on a high spatial and tem-925

poral resolution. The method has already been ap-926

plied in the development of an energy master plan927

for a German municipality (McKenna et al., 2016),928

where the exact assessment of the total amount as929

well as the temporal structure of possible electricity930

generation enabled an optimal integration of PV in931

the urban energy system. The method could also be932

used to determine the current and future distribu-933

tion of PV panel orientations and thus the predicted934

PV electricity generation in power distribution net-935

works, which is an important information for net-936

work operators (see Killinger et al. (2017)). The937

automated detection of existing PV systems could938

also be used for fraud detection in renewable energy939

subsidy schemes, where solar operators claim feed-940

in tariffs for installations that have not (yet) been941

built.942

Future work will focus on improving the method943

for better recognition of complex roof shapes, ex-944

ploring methods to derive the roof tilt from aerial945
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images and further validating the algorithm with946

larger sets of 3D city model data. Finally, the947

method will be employed within an urban energy948

system modeling framework in order to consider the949

optimal integration of PV into the local energy sys-950

tem.951
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Appendix A. Assumptions in the presented1238

approach1239

See Table A.1.1240

Appendix B. Transposition of irradiance1241

The global irradiance in plane of array Gc con-

sists of contributions from direct, diffuse, and re-

flective irradiance,

Gc = Bc + Dc + Rc . (B.1)

Within this section, several formulas are pre-1242

sented to transpose the direct and diffuse irradi-1243

ance on the horizontal plane into the parametrized1244

module orientation as described in Killinger et al.1245

(2016).1246

The direct irradiance in plane of array Bc can be1247

calculated from the direct irradiance on the hori-1248

zontal plane Bh by using trigonometric relations.1249

All angles are measured in radians if not otherwise1250

explicitly defined. Bc is limited to a positive range1251

and defined as1252

Bc = Bh ·
cos θ

cos θZ
· (1− y). (B.2)

Here, θ denotes the incidence angle, i.e. the angle1253

of a module’s surface normal to the position of the1254

sun.1255

θ can be expressed in terms of the tilt angle β,

zenith angle θZ and azimuth angles (αpoa, αZ) of

a module orientation and the position of the sun,

respectively,

cos θ = cos θZ · sinβ + sin θZ

· cosβ · cos (αZ − αpoa) . (B.3)
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Techno-economic assumptions

Criteria Assumptions Criteria Assumptions

Classes of tilt 9 Distance between modules 0.1 m

Classes of azimuth 16 Nominal power of modules 235 W

Flat roof share 9 % Module lifetime LT 25 a

Threshold value for footprint 3000 m2 Minimal power per area 1000 W

Average tilt of slanted roof 37◦ PV system price 1300 e/kWp

Stand. deviation of slanted roof tilt 15◦ System investment per module Im 305.50 e

Minimum surface area for PV 15 m2 Module costs share of investment 48 %

Module Technology c-Si Operat. costs roc share of investm. 1 %

Thermal coefficient m 0.036 Yearly degradation d 0.5 % a−1

Module width 0.992 m Interest rate i 5 % a−1

Module height 1.650 m Overall reduction factor 30 %

Table A.1: Techno-economic assumptions on the characteristics of new PV systems. Cost factors are based on Wirth (2016).

y accounts for the reflection losses as a function1256

of θ being measured in degrees (Yang et al., 2014):1257

y =



0, if θ ∈ [0, 30◦);

0.0006(θ − 30◦), if θ ∈ [30◦, 40◦);

0.006 + 0.0012(θ − 40◦), if θ ∈ [40◦, 50◦);

0.018 + 0.0029(θ − 50◦), if θ ∈ [50◦, 60◦);

0.047 + 0.0068(θ − 60◦), if θ ∈ [60◦, 65◦);

0.081 + 0.0098(θ − 65◦), if θ ∈ [65◦, 70◦);

0.13 + 0.0166(θ − 70◦), if θ ∈ [70◦, 75◦);

0.213 + 0.0276(θ − 75◦), if θ ∈ [75◦, 80◦);

0.351 + 0.047(θ − 80◦), if θ ∈ [80◦, 85◦);

0.586 + 0.0828(θ − 85◦), if θ ∈ [85◦, 90◦).

(B.4)

1258

In order to account for shading from various ob-1259

stacles, Gc is linearly reduced beginning for θZ =1260

73◦ and leading to a maximal reduction by 30% at1261

θZ = 90◦ (Schubert, 2012).1262

A small fraction of the incoming irradiance is re-1263

flected off the surroundings onto the module and1264

strongly depends on the albedo ρ of the module’s1265

environment. In this paper, an isotropic approach1266

is used to model the reflected irradiance Rc setting1267

ρ = 0.2 (Quaschning, 2013),1268

Rc =
ρ

2
·Gh · (1− cosβ) . (B.5)

To model the diffuse irradiance in plane of array1269

Dc, the anisotropic approach of Perez et al. (1990)1270

is used.1271

In the first step of the presented model, the sky’s1272

clearness ε needs to be calculated with1273

ε =

Dh +Bh (cos θZ)−1

Dh
+ κ · θ3Z

1 + κ · θ3Z
, (B.6)
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and a constant κ = 1.041. Furthermore the sky’s1274

brightness ∆ is defined by the air mass AM , Dh and1275

the normal extraterrestrial irradiance Io = 1367 W
m2 :1276

∆ = AM · Dh

Io
. (B.7)

The air mass AM itself is defined as presented in1277

Pickering (2002):1278

AM =
1

sin (90− θZ + 244
165+47 · (90−θZ)1.1 )

, (B.8)

with θZ being given in degrees.1279

The calculated ε can be classified into eight dif-1280

ferent classes of the sky’s clearness and determines1281

the parametrization of the coefficients F11, F12, F13,1282

F21, F22 and F23 in accordance to Table B.2.1283

F11−23 are then used together with ε and ∆ to1284

calculate the circumsolar brightening coefficients F11285

and F2 given by:1286

F1 = F11 + F12 · ∆ + F13 · θZ , (B.9)

F2 = F21 + F22 · ∆ + F23 · θZ . (B.10)

With a = max(0; cos θ) and b =1287

max(0.087; cos θZ) the diffuse irradiance in1288

plane of array Dc is defined by:1289

Dc = Dh ×
[

0.5 · ( 1 + cosβ ) · ( 1 − F1 )

+
a

b
· F1 + F2 · sinβ

]
. (B.11)

Appendix C. PV power simulation1290

The global irradiance in plane of array Gc as well1291

as the module temperature Tmod strongly define the1292

Coefficients for the transposition model of Perez et al.

ε F11 F12 F13 F21 F22 F23

[1, 1.065) -0.008 0.588 -0.062 -0.060 0.072 -0.022

[1.065, 1.23) 0.130 0.683 -0.151 -0.019 0.066 -0.029

[1.23, 1.5) 0.330 0.487 -0.221 0.055 -0.064 -0.026

[1.5, 1.95) 0.568 0.187 -0.295 0.109 -0.152 -0.014

[1.95, 2.8) 0.873 -0.392 -0.362 0.226 -0.462 0.001

[2.8, 4.5) 1.132 -1.237 -0.412 0.288 -0.823 0.056

[4.5, 6.2) 1.060 -1.600 -0.359 0.264 -1.127 0.131

[6.2,+∞) 0.678 -0.327 -0.250 0.156 -1.377 0.251

Table B.2: Coefficients which determine F1 and F2 depend-

ing on ε (Perez et al., 1990).

power generation P of a PV system. Tmod is un-1293

known but can be simulated out of the ambient1294

temperature Tamb (SoDa, 2017), Gc and a factor m1295

representing the thermal behavior of the individual1296

construction:1297

Tmod = Tamb + m ·Gc, (C.1)

Within this paper, a value of m = 0.036 is used,1298

characterizing PV systems on top of the roof with1299

a small roof-module distance of < 10 cm (Drews1300

et al., 2007). The efficiency of the modules ηmod1301

can be calculated using the coefficients k1, . . . , k61302

from Table C.3 as well as Tmod and Gc:1303

ηmod = 1 + k1 ln
Gc

Gc,STC
+ k2 ln2 Gc

Gc,STC

+

(
k3 + k4 ln

Gc
Gc,STC

+ k5 ln2 Gc
Gc,STC

)
× (Tmod − Tmod,STC)

+ k6 (Tmod − Tmod,STC)
2
. (C.2)

With STC being the Standard Test Conditions1304

and defined by:1305
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Gc,STC = 1000
W

m2
, Tmod,STC = 25◦C. (C.3)

PV module coefficients

c−Si CIS CdTe

k1 -0.017162 -0.005521 -0.103251

k2 -0.040289 -0.038492 -0.040446

k3 -0.004681 -0.003701 -0.001667

k4 0.000148 -0.000899 -0.002075

k5 0.000169 -0.001248 -0.001445

k6 0.000005 0.000001 -0.000023

Table C.3: Coefficients of the PV power model Huld et al.

(2010) for different technologies.

Since crystalline silicon cells clearly dominate1306

the German PV market (Bührke and Wengenmayr,1307

2011), solely these are used within the simulation1308

procedure. While the assumed PV modules have an1309

efficiency of 14.4% under STC, the efficiencies that1310

result from the consideration of ambient tempera-1311

ture, heating through irradiation etc. vary for each1312

timestep during the year, but are usually lower.1313

In Freiburg, the average efficiencies over the whole1314

year range between 7.8% and 10.4% (depending on1315

orientation).1316

In reality, an inverter is needed to transform the1317

direct current from the modules into alternating1318

current. Its efficiency ηinv mainly depends on the1319

utilization ρDC1320

ρDC = ηmod ·
Gc

Gc,STC
. (C.4)

Finally, ηinv can be defined by specific coefficients1321

j1 = 0.0079, j2 = 0.0411 and j3 = 0.0500 derived1322

from (Macêdo and Zilles, 2007):1323

ηinv =
ρDC − (j1 + j2ρDC + j3ρ

2
DC)

ρDC
, (C.5)

Being able to simulate the efficiency of the mod-1324

ules in (C.2) and of the inverter in (C.5), the (nor-1325

malized) power generation of a PV system can be1326

calculated:1327

P = ηmod · ηinv ·
Gc

Gc,STC
. (C.6)

In addition to that, unspecific losses such as1328

degradation, shading, dirt, etc. reduce P . In order1329

to consider these losses, P is systematically reduced1330

by 9.5 % (Lorenz et al., 2011).1331

Appendix D. Screenshot of implementation1332

See Figure D.12.1333
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Figure D.12: Graphical user interface of the developed model framework. Source: Own depiction with image data from Bing

Maps (Microsoft, 2016).
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