A model for the identification and optimal planning of emission reduction measures in urban energy systems

Kai Mainzer, Russell McKenna, Wolf Fichtner

Urban Transitions Global Summit 2016, Shanghai, 08.09.2016
Agenda

- Introduction
 - Motivation
 - Related work

- Method
 - Data acquisition: Demand structure; PV, Wind & Biomass potentials
 - Optimization of the urban energy system

- Results
 - Detailed scenario results
 - Scenario comparison

- Conclusion and outlook
Cities declare emission reduction targets & climate protection plans, e.g. Covenant of Mayors Initiative: **need for energy concepts**

Local renewable energy & efficiency potentials exist, but their exact extent, optimal combinations and contribution towards reaching overarching goals are mostly unknown: **cities need decision support**

Investment decisions are long term and capital intensive; interdependencies between technologies: **complexity of the problem**

⇒ **Mathematical models can provide decision support for urban planning**
Introduction

Related work

Requirements for model development:

- Analysis & Optimization of urban energy systems
- Unit commitment and investment planning
- Determination of potentials for renewable energies and energy efficiency
- Technologies on supply and demand side
- Transferability of the method

Several models, for a review see e.g. [Keirstead 2012]
- deeco [Bruckner 1996]; URBS [Richter 2004]
- iPlan [Winkelmüller 2006]; EnyCity [Gerbracht 2009]
- KomMod [Eggers 2015]
- Regionenmodell [Steinert 2015]
- Many potential studies, for a review see [Angelis-Dimakis 2011]

⇒ Existing models can not be used, since the required input data is not available in other regions
Method

Analysis of demand structure (1/2)

Infrastructure: Availability of power-, gas- and district heating grids

Electricity demand simulation based on appliance ownership and user activity profiles
Method
Analysis of demand structure (2/2)

Buildings: Creation of a typology, based on sizes and age distribution

Heat demand mapping based on building types and technology configurations

Geodata: OpenStreetMap
Method
PV potential estimation

- Data gathering
 - Building footprints
 - Satellite images
- Determination of roof orientations through line detection algorithms
- Detection of roof structures like chimneys, roof windows, etc.
- Algorithm iterates stepwise over usable areas, places as many modules as possible
- Simulation of irradiation, energy yield & costs calculation

Geodata: OpenStreetMap, Satellite images: Bing Maps
more details in: [Mainzer 2016]
Method
Wind potential estimation

- Determination of available area considering landuse, topography
- Choice of turbines based on wind frequency distribution & characteristics
Method

Biomass potential estimation

- Landuse (forests, farmland, …) => Determination of suitable areas
- Calculation of optimal conversion path: biogas plant, biomass-CHP, …
- Determination of optimal biomass plant location by minimization of transport distances, considering also distances to settlements, direction of wind (to minimize odor)
Method

Optimization of the urban energy system

- Techno-economical parameters
 - Technological availability
 - Investment, import, fix & variable costs
 - ...

- System boundary: municipality

- 2015 → 2020 → ... → 2050
 - 8 model years,
 - 72 time slices

- Energy & resource import
 - Coal, gas, biomass, ...

- Electricity

- Infrastructure
 - Power distribution network
 - District heating network

- Energy conversion technologies, e.g. heat pump, halogen lighting

- Energy service demand
 - Room comfort
 - Lighting
 - Appliances

- Energy conversion technologies, e.g. biomass plant

- Local renewable energy potential
 - Area availability
 - Climate
 - Global irradiance
 - Ambient heat
Method

Optimization of the urban energy system

- **Methodology**: Mixed-integer linear programming (MILP), implemented in GAMS

- **Objective function(s)**: minimize...
 - ...Total discounted system cost
 - ...CO_2 emissions
 - ...Energy import

- **Constraints**
 - energy balance
 - maximum energy flows
 - land use & available potentials
 - emission restrictions
 - cost restrictions
 - ...

\[
\min \sum_{m,y \in \text{YEARS}} \alpha_{my} \cdot N_{my} \cdot \left(\text{ImportFlowsCosts}_{my} + \text{TransmissionGridCosts}_{my} + \text{IntermediaryFlowsCosts}_{my} + \text{UnitsInvestmentAnnuities}_{my} + \text{UnitsFixCosts}_{my} + \text{ProcessActivitiesVarCosts}_{my} + \text{EmissionsCosts}_{my} + \text{LandUseCosts}_{my} + \text{LocalSourcingCosts}_{my} \right)\]
Results

Detailed scenario results

- Optimal choice & combination of technologies
 - heating systems
 - building insulation
 - appliances…

- Optimal degree of renewable energy utilization

- Development of costs, emissions, energy import and primary energy consumption for different scenarios
Results
Scenario comparison

- 3 extreme scenarios: what is possible in terms of emissions, costs, etc.
- With values derived from these extreme scenarios, trade-off scenarios can be found
- This can also be used to increase the level of autarky cost-effectively

⇒ Trade-offs: e.g. significant emission reduction can be achieved with only minor additional costs
Conclusion and outlook

- Mathematical models can provide **decision support for urban planning**
- Energy system models need to provide **automated methods for data acquisition** in order to be transferrable to other cities
- The presented model provides these methods and thus enables urban planners to **find optimal pathways for reaching their specific targets**

Application to case study demonstrates its use and possible results:
- In cost-minimization scenario, targets may not be reached
- Further scenario comparisons can reveal **advantageous trade-off scenarios**

Further work:
- Additional scenarios (especially price development)
- Implementation of sensitivity analysis
- Application and validation with more (international) case studies
Literature & Related Publications

- Killinger, S.; Mainzer, K.; et al. (2015): A regional optimisation of renewable energy supply from wind and photovoltaics with respect to three key energy-political objectives. In Energy. DOI: 10.1016/j.energy.2015.03.050.
Thank you very much for your attention

contact: Kai Mainzer
kai.mainzer@kit.edu

Karlsruhe Institute of Technology (KIT)
Institute for Industrial Production (IIP)
Chair of Energy Economics