Creep Behavior of Austenitic Steel 316L in Low Oxygen-Containing Pb-Bi Eutectic at 450-550°C

Mariya Yurechko-Hussy, Carsten Schroer, Aleksandr Skrypnik, Olaf Wedemeyer and Juergen Konys
Austenitic 316L steel in nuclear power plants

- Construct pipes, vessels and in-vessel components in lead-cooled fast reactor, MYRRHA ADS system (heat exchanger, vessel, diafragm, core barrel)

- Corrosion impact the wall thickness in LBE (load-bearing capability) and effect of elevated temperatures on mechanical properties

- No industrial experience of lead alloy-cooled technology (the lead-cooled fast reactor – LFR). But many concepts worldwide. Mechanical properties (incl. creep) were considerably studied in air, while information about effect of HLM (Pb, LBE) on creep is still limited.

- Goal of the current work: To evaluate impact of lead alloys at 450-550°C on mechanical behaviour and to determine links between creep resistance and microstructural evolutions.
Creep-rupture tests in oxygen-controlled heavy liquid metal

Continuous control of oxygen concentration in HLM
- Oxygen activity close to the specimen with air/Pt O₂-sensor
- λ-probes in gas -inlet and -outlet
- Automatic introducing of gas with variable pO₂ (Ar, Ar/H₂ and synthetic air)

Conditions:
- Stagnant Pb or LBE (900 ml)
- T_max = 650°C
- c₀^{max} = c_{HLM}^{saturation}
- c₀^{min} = 10^{-13} mass%

CRISLA Facility:
- 5 capsules for HLM
- 3 capsules for air (gas)
Tested material: austenitic 316L steel

<table>
<thead>
<tr>
<th>316L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
</tr>
<tr>
<td>bal</td>
</tr>
</tbody>
</table>

Lamellae texture enriched in Cr, slightly in Mo and depleted in Fe, Ni in comparison with the average composition of 316L
Tests on 316L austenitic steel

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBE, $c_0 = 10^{-7} - 10^{-10}$ mass%, 550 °C/ 300 MPa</td>
<td>$t_R = 1,060$ h</td>
</tr>
<tr>
<td>LBE, $c_0 = 10^{-6}$ mass%, 550 °C/ 300 MPa</td>
<td>$t_R = 182$ h, 231 h, 365 h</td>
</tr>
<tr>
<td>Air, 550 °C/ 300 MPa</td>
<td>Stopped before rupture, $t_R > 1,150$ h</td>
</tr>
<tr>
<td>LBE, $c_0 = 10^{-8} - 10^{-9}$ mass%, 500 °C/ 325 MPa</td>
<td>$t_R = 5,025$ h</td>
</tr>
<tr>
<td>Air: 500 °C / 325 MPa</td>
<td>Test still running, $t_R > 9,015$ h</td>
</tr>
<tr>
<td>LBE, $c_0 = 10^{-8} - 10^{-9}$ mass%, 450 °C/ 375 MPa</td>
<td>Test still running, $t_R > 3,795$ h</td>
</tr>
<tr>
<td>Air, 450 °C/ 375 MPa</td>
<td>Test still running, $t_R > 2,425$ h</td>
</tr>
</tbody>
</table>
Creep-to-rupture in LBE at 450-550°C

The higher T, the shorter secondary creep zone and t_R
Creep-to-rupture at 550°C and 300 MPa

- $\dot{\varepsilon}_s$ up to one order higher in LBE than in air.
- The transition time from secondary to tertiary zone $t_{2,3}$ determines t_R: t_R is shorter in LBE than in air even if $\dot{\varepsilon}_s$ in LBE similar to that in air.
- $c_o = 10^{-6}$ mass% shows no improvement in comparison to lower c_o.

$\varepsilon = 3.19 \times 10^{-2} \text{ (%×h}^{-1})$

$\varepsilon = 1.38 \times 10^{-2} \text{ (%×h}^{-1})$

$\varepsilon = 1.64 \times 10^{-3} \text{ (%×h}^{-1})$

$\varepsilon = 1.7 \times 10^{-3} \text{ (%×h}^{-1})$
Creep-to-rupture at 500°C and 325 MPa

- $\dot{\epsilon}_s$ is one order higher in LBE than in air
- $t_{2,3}$ is smaller in LBE than in air → shortage of t_R in LBE in comparison to air

Strain (%) vs. Time (h)

LBE: $c_s = 10^4 - 10^5$ mass%

$\dot{\epsilon}_s = 3.1 \times 10^{-4}$ (\%×h$^{-1}$)

$\dot{\epsilon}_s = 2.4 \times 10^{-5}$ (\%×h$^{-1}$)
Creep(-to-rupture) at 450°C and 375 MPa

\[\varepsilon_s = 1.1 \times 10^{-6} \% \times h^{-1} \]

\[\varepsilon_s = 3.5 \times 10^{-5} \% \times h^{-1} \]

- \(\varepsilon_s \) is one order higher in LBE than in air
Structural study of 316L tested in LBE

- 316L after LBE for 365h at 550°C, $c_0=10^{-6}$ mass% and 300 MPa as a sample

Typical image of the surface with a ferrite zone

- Steel feature of 316L in LBE under stress: The closer to rupture surface, the thicker the ferrite zone
- (Almost) No ferrite close to screw thread

Corrosion extending inwardly the steel without ferrite zone (exception)
Structural study of 316L tested in LBE

- 316L after LBE for 365h at 550°C, c_o=10^{-6} mass% and 300 MPa as a sample

Typical image of the surface with a ferrite zone

- Oxides can form in LBE close to the steel surface and in the ferrite zone filled with Pb-Bi

Oxides at steel/ferrite interface (exception) and in the ferrite zone

- Steel
- Pb-Bi in Ferrite
- LBE
- Ferrite
- No ferrite

(Fe_{a}Cr_{b})_{2}O_{3}
(Fe_{x}Cr_{y})_{2}O_{3}
Structural study of 316L tested in LBE at 550°C

Stagnant LBE, $c_o=10^{-6}$ mass%, 365 h and 300 MPa

Flowing LBE, $c_o=10^{-7}$ mass%; 2,011 h and 0 MPa (CORRIDA)

Pit-type corrosion damages as a result of selective leaching of the steel elements [V.Tsisar, C.Schroer, KIT]

Diverged cracks propagated in ferrite zone towards the steel and filled with Pb-Bi is a feature of 316L under stress in LBE

Cracks in ferrite zone filled with Pb-Bi
Structural study of 316L tested in LBE

- Ductile rupture mode
- Transformation of austenite into ferrite due to selective-leaching steel elements into LBE at 500-550°C independently on c_0 ($\leq 10^{-6}$ mass%)
- The austenite-to-ferrite transformation is characterised with a shortage of t_R in comparison to air.
- Cracks found not only in ferrite but also in the steel. Therefore rupture topography can contain from one up to multiple rupture planes.

Ductile-dimple rupture mode at RT in air [Structural Alloys for Power Plants, ed. by A. Shirzadi & S. Jackson, 2014]
Structural study of 316L tested in LBE

<table>
<thead>
<tr>
<th>T / °C</th>
<th>Enviroment</th>
<th>Co, mass% / tR, h</th>
<th>Strain / %</th>
<th>Reduction of area / %</th>
<th>Thickness of ferrite / μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>550</td>
<td>LBE</td>
<td>10^{-6} / 231</td>
<td>14-22</td>
<td>32</td>
<td>0-86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10^{-6} / 365</td>
<td></td>
<td></td>
<td>0-37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10^{-7-10^{-10}} / 1,059</td>
<td></td>
<td></td>
<td>0-326</td>
</tr>
<tr>
<td></td>
<td>air¹</td>
<td>1,025</td>
<td>3</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>500</td>
<td>LBE</td>
<td>10^{-8-10^{-9}} / 5,025</td>
<td>12</td>
<td>43</td>
<td>93-200</td>
</tr>
<tr>
<td></td>
<td>air²</td>
<td>after 7,729</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RT</td>
<td>air</td>
<td>50-70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ - stopped; ² - running

- Strain at rupture at 500-550°C in LBE is significantly less than at RT. Reduction of area increases in LBE with lowering of T. But ductile-dimple rupture mode of austenitic 316L steel is remains in LBE at 500-550°C.
- Ferrite zone at lower T, c₀ and longer tᵣ is more regular distributed and it is thicker than at c₀=10^{-6} mass% (at 550°C)
316L tested in LBE

Conclusion:

- 316L austenitic steel degrades stronger in LBE than in air at 500 and 550°C due to selective leaching of the steel elements leading to:

 (i) austenite-to-ferrite transformation at steel/liquid metal interface and

 (ii) penetration of liquid metal into ferrite and cracks formed into the ferrite and propagated further into the steel

- $c_o=10^{-6}$ mass% (at 550°C) does not decrease LBE effect in comparison to lower c_o.

Acknowledgment:

The autors are very thankfull to Int. Project MatISSE, 7th Grant Agreement No. 604862. Special thaks are going to PhD V. Tsisar for fruitful discussions and providing the results for corrosion of 316L in flowing LBE in CORRIDA loop.
Functionality check of Pt/O-sensor

- Pt/O-Sensor after creep-to-rupture test with 316L in LBE at 550°C, \(c_o = 10^{-6} \text{ mass\%} \), \(t_R = 365 \text{ h} \)

- Oxygen sensor output (V)

- Volume flow (Nccm/min)

- Concentration of solved oxygen (mass\%)

- Time (h)

- Temperature (°C)

- Activation stage

- \(\lambda \) probe

- Liquid metal