

European Commission funded International Workshop "Materials resistant to extreme conditions for future energy systems" 12-14 June 2017, Kyiv - Ukraine

CORROSION ISSUES IN STEELS CONTACTING Pb-Bi EUTECTIC AT HIGH TEMPERATURES – OVERVIEW OF KIT ACTIVITY

Valentyn Tsisar, Carsten Schroer, Olaf Wedemeyer, Aleksandr Skrypnik, Jürgen Konys

INSTITUTE FOR APPLIED MATERIALS – APPLIED MATERIALS PHYSICS (IAM-WPT)

KIT - The Research University in the Helmholtz Association

Candidate liquid-metal media for Fusion and Fission reactors

- Good nuclear and thermal-physical properties
- □ High thermal efficiency
- High boiling temperatures
- □ Wide range between melting and boiling temperatures
- Low vapor pressure
- High heat transfer coefficient

Liquid Metal	Advantages	Disadvantages
Li Tm = 180*C coolant and/or breeder	 Very low induced activity Low density (0.5316 g/cm³) High tritium breeding ratio (TBR) Low tritium leakage Easiness of neutralization 	 High chemical activity to air and water MHD pressure drop; Tritium recovery;
Pb-Li Tm = 235*C coolant and/or breeder	 Low chemical activity to air and water Sufficient TBR 	 Tritium leakage; MHD pressure drop issue; Corrosion aggressiveness;
Pb Tm = 327*C Coolant	 High spallation neutron yield Low γ-radioactivity induced in Pb and Pb-Bi Low neutron moderation and capture 	 High corrosion aggressiveness Liquid Metal Embitterment (LME); Production of α-radioactive volatile 210Po
Pb-Bi Tm = 123*C coolant and/or spallation target	 Chemical Inertness with water Neutron multiplication 	from BI and Pb – hazard for the environment

Interaction between solid and liquid metals

Dissolution - basic interaction phenomenon !

- **Gamma** Fail in bond among atoms in solid metal;
- Bonding of dissolved atom with atoms of liquid metal.

Dissolution process is characterized by:

 SOLUBILITY – saturation concentration of solid metal in liquid one;

2. CONSTANT of DISSOLUTION RATE.

Dissolution rate is expressed by Nernst equation: $dCv/dt = \alpha \cdot (S / V) \cdot (C_{sat} - C_V);$

Cv – concentration of dissolved metal in liquid metal;

C_{sat} – saturation concentration of solid metal in liquid metal;

– time;

 α – constant of dissolution rate;

S - surface area of solid metal contacting with liquid metal (cm²);

V - liquid metal volume (cm³).

Kinetic equation of dissolution: $C_V = C_{sat} \cdot [1 - exp(-(\alpha \cdot S/V) \cdot t)]$ Constant of dissolution rate: $\alpha = ln [C_{sat} / C_{sat} - C_V] \cdot V / S \cdot t$

Solubility of Fe, Cr and Ni as a pure metals in liquid Li, Pb and Pb-Bi

Temperature dependence of dissolution:

log C (wt.%) = A - B / T;

T – temperature (K); A and B - constants

□ The solubility of Fe, Cr and Ni in melts (corrosion aggressiveness of liquid metals) increases in the following sequence: $Li \rightarrow Pb \rightarrow Pb$ -Bi.

Lyublinski et al., JNM 224 (1995) 288; http://www.nea.fr/html/science/reports/2007/nea6195-handbook.html.

Liquid metal corrosion - background

Karlsruhe Institute of Technology

<u>Issue !</u>

- Dissolution of Ni, Cr and Fe from the steel by liquid metal:
- Formation of week corrosion zone with ferrite structure on austenitic matrix
- Liquid metal penetrates into the ferrite

Solution !?

□ Oxidation instead of dissolution:

- Formation of continuous and protective oxide layer
- Long-term operation of scale in protective mode

Thermodynamic basis for *in-situ* addition of oxygen into liquid Pb-Bi eutectic

Free energy of formation of oxides (solid lines) and Pb-Bi[O] solutions (dashed lines)

□ Pb-Bi dissolves and transports oxygen;

Components of steels (Si, Cr, Fe...) have high affinity to oxygen than Pb or Bi.

Oxidation of steel surface instead of dissolution of steel constituents by liquid metal

- Bi-layer scale, with outer Fe₃O₄ (magnetite spinel) and inner Fe(Fe,Cr)₂O₄ spinel-type oxide layers, typically forms on the surface of steels in contact with oxygen-containing Pb and Pb-Bi melts
- Growth of scale is governed by the outward diffusion of iron cations
- □ Inward growth of Fe-Cr spinel at the oxide / steel interface could be accessed from the dissociative growth theory: vacancies generated by outward diffusion of iron cations precipitate at the oxide/steel interface forming cavities (pores) into which the oxide dissociates with evaporating oxygen providing further oxidation of steel (S. Mrowec, Corrosion Science 7 (1967) 563-578).

Activity towards successful application of liquid metal technologies

□ Principal understanding of corrosion phenomena taking place in the steel / Heavy

Liquid Metals system does not free from the experimental determination of the optimal

temperature – oxygen concentration range.

- Main aim of the corrosion tests is to determine the optimum temperature-oxygen
 concentration parameters for save and long-term operation of structural materials in
 contact with liquid Pb and Pb-Bi eutectic.
- □ The reliable quantitative data on corrosion loss based on the long-run tests performed in liquid metals with controlled oxygen concentration are still very scarce up to date.

The CORRIDA facility – a forced-convection loop made of austenitic stainless steel (1.4571) designed to expose material (steel) specimens to flowing (2 m/s) Pb-Bi eutectic (~1000 kg) with controlled oxygen concentration.

Gas/liquid oxygen-control system

Optional gas inlet

below the liquid-metal surface

Pt/air oxygen sensor λ-probe (Sensor 5) Filling-level indicators Connector (liquid metal) Gas inlet Gas outlet Steel housing Steel sheath Elektrolyte Air supply Liquid-metal outlet Liquid-metal Elektrode inlet Transformation of a difference in the chemical potential of oxygen into a difference in the Ar-carrier gas with automated air addition electrochemical potential of electrons Transmission to a voltmeter and indication as Optional humidification of the gas electric voltage Calculation of the unknown oxygen potential from Ar-H₂ for removal oxygen from the liquid Pb-Bi potential known at the the reference electrode: $log(CO_{Pb-Bi}) = -3.2837 + \frac{6949.8}{T} - 10080\frac{E}{T}$ Conversion to partial pressure, concentration of

dissolved oxygen, etc.

Oxygen-transfer device

Measured oxygen potential/concentration as a function of operating time

Conditions of corrosion tests performed for period from 2012 to 2016 years

Effective operating time of CORRIDA loop (h)

Flow velocity 2 m/s

Target oxygen concentration in Pb-Bi = 10^{-7} mass%

□ T = 550°C

excursion to 10^{-4} – 10^{-5} mass%O

t = 288; 715; 1007; 2011 h

□ T = 450°C

excursion to 10⁻⁵ mass% O

t = 500; 1007; 1925; 2015; 3749; 5015; 8766 h

□ **T** = 400°C

t = 1007; 2015; 4746; 13194 h

Austenitic steels tested in the CORRIDA loop

(Fe – Bal.)	Cr	Ni	Мо	Mn	Si	Cu	V	W	AI	Ti	С	N	Р	S	В
316L	16.73	9.97	2.05	1.81	0.67	0.23	0.07	0.02	0.018	-	0.019	0.029	0.032	0.0035	-
1.4970	15.95	15.4	1.2	1.49	0.52	0.026	0.036	< 0.005	0.023	0.44	0.1	0.009	< 0.01	0.0036	< 0.01
1.4571	17.50	12	2.0	2.0	1.0	-	-	-	-	0.70	0.08	-	0.045	0.015	-

1.4970 (15-15Ti)

- HV₃₀ = 253;
- Grain size ranged from 20 to 65 μm;
- Intersecting deformation twins.

316L

- HV₃₀ = 132;
- Grain size averaged 50 µm (G 5.5);
- Annealing twins.

1.4571 (material of CORRIDA loop)

- HV₃₀ = 245;
- Fine-grained structure with grain size averaged 15 µm (G 9.5).

F/M steels tested in the CORRIDA loop

Concentration (in mass%) of alloying elements other than Fe

(Fe – Bal.)	Cr	Мо	W	V	Nb	Та	Mn	Ni	Si	С
T91-A	9.44	0.850	<0.003	0.196	0.072	n.a.	0.588	0.100	0.272	0.075
Т91-В	8.99	0.89	0.01	0.21	0.06	n.a.	0.38	0.11	0.22	0.1025
P92	8.99	0.49	1.75	0.20	0.06	-	0.43	0.12	0.26	0.11
E911*	8.50- 9.50	0.90- 1.10	0.90- 1.10	0.18- 0.25	0.06- 0.10	-	0.30- 0.60	0.10- 0.40	0.10- 0.50	0.09- 0.13
EUROFER	8.82	0.0010	1.09	0.20	n.a	0.13	0.47	0.020	0.040	0.11

*nominal composition

Nominally 9 mass% Cr

Element besides Cr that improves oxidation resistance

- □ 10% of wall thinning for cladding tube corrosion criterion suggested for "steel / sodium" system;
- \Box Corrosion limit for 450 µm thick cladding tube made of 1.4970 steel is 45 µm;
- □ 550 and 450°C could not be a working temperatures in Pb-Bi with 10⁻⁷ mass% O;
- At 400°C, corrosion limit for 1.4970 could be reached for about 33000 h (~4 years) that is probably within an appropriate time for life-time of cladding tube made of 1.4970 (15-15 Ti) steel.

Local corrosion depending on oxygen concentration in the Pb-Bi eutectic

□ Local corrosion rate (linear law) increases with decreasing oxygen concentration at constant T = 550° C:

- 270 µm/year for 10⁻⁶ mass%O
- 560 µm/year for 10⁻⁷ mass%O

□ Incubation time for initiation of dissolution attack decreases with decreasing oxygen concentration in Pb-Bi eutectic:

- \leq 300 h for 10⁻⁷ mass%O
- \leq 2000h for 10⁻⁶ mass%O

Corrosion loss on 9%Cr F/M steels in

Flowing Pb-Bi (2 m/s), 10⁻⁷ mass% O, 400-550°C

□ In comparison to 450 or 550°C the impact of oxidation is significantly reduced at 400 °C;

□ Severe local dissolution attack, as a result of scale failure, occurs.

Example of oxide scale evolution with time Flowing Pb-Bi (2 m/s), 10⁻⁷ mass%O, 400°C

---- Initial steel / liquid Pb-Bi interface

General corrosion trend is oxidation

- Degradation of scale with time results in initiation of dissolution attack
- □ Re-healing of scale does not take place !

Dissolution attack as a result of scale failure

Developing of the scale on the surface of steels contacting Pb and Pb-Bi Magnetite Scale thickness Fe-Cr spinel

Time (h)

Oxygen concentration

Incubation

period

 Cr_2O_3

Pb-Bi Steel X=0

Corrosion loss

ALUMINUM-ALLOYED AUSTENITIC STEELS

- Improvement of oxidation resistance by means of formation of protective oxide films on the base of elements with higher affinity to oxygen (Al, Cr, Si) than Fe – one of the ways towards development of liquid-metal technologies;
- Alumina-Forming Austenitic (AFA) stainless steels with improved creep resistance (strengthening with Laves phases and carbides) and oxidation resistance due to formation of Al₂O₃ at high temperatures in gaseous media are under developing (Y. Yamamoto et al., Metall and Mat Trans A 42 (2011) 922– 931);
- Applicability of AFA steels in Pb and Pb-Bi arouses interest and requires experimental investigations.

Element	Fe-18Ni-12Cr- Al-Nb-C					
	ICP-OES					
С	0.0086					
Al	2.32					
Si	0.401					
Ti	0.0568					
V	0.0048					
Cr	11.7					
Mn	0.0887					
Fe	64.4					
Ni	18.0					
Cu	0.0031					
Nb	0.577					
Мо	1.99					
W	0.0031					

Test conditions

- Protective Al₂O₃ layer is not formed in-situ on AFA steel in Pb-Bi eutectic with 10⁻¹² mass%O;
- Spongy ferrite corrosion layer penetrated by Pb and Bi is observed.

Correlation between initial structure and solution-based corrosion attack

Corrosion appearance

- Corrosion rate via dissolution increases with increasing of cold-work level in steel
- Pre-existing active diffusion paths (grain or sub-grain boundaries and deformation slips and twins etc.) are preferential pathways for solution-based attack via selective leaching of Ni and Cr and subsequent penetration of Pb and Bi into steel matrix

Effect of structural state of steels on the corrosion response to liquid metals

Scanning Electron Microscopy based Electron Back Scatter Diffraction (SEM-EBSD) / Orientation-Imaging Microscopy (OIM).

Length of boundaries

SUMMARY

- **Corrosion phenomena in steel / liquid Pb-Bi are understandable in general**
- Application of oxygen-control system, allowing precise control of oxygen activity in Pb melts, is aimed to form protective oxide scale on the steel surface and mitigate corrosion via dissolution of steel constituents
- Reliable experimental data on corrosion of candidate steels are still scarce:
 - Oxidation of candidate steels depending on the oxygen concentration and temperature;
 - Dissolution of candidate steels depending on the oxygen concentration and temperature;
- □ Large number of required experimental data on corrosion stimulates collaboration among scientific groups around the world !

Example of severe corrosion attack on austenitic steel in Pb-Bi

Victory would go to those who could best operate at higher temperatures !