
Distributed and Decentralized Kalman Filtering for Cascaded
Fractional Order Systems
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Abstract— This paper presents a distributed Kalman filter
algorithm for cascaded systems of fractional order. Certain
conditions are introduced under which a division of a fractional
system into cascaded subsystems is possible. A functional
distribution of a large scale system and of the state estimation
algorithm leads to smaller and scalable nodes with reduced
memory and computational effort. Since each subsystem per-
forms its calculations locally, a central processing node is not
needed. All data which are required by subsequent nodes are
communicated to them unidirectionally. Also a comparison
between the Fractional Kalman Filter (FKF) and the Cascaded
Fractional Kalman Filter (CFKF) is given by an example.

I. INTRODUCTION

A. Fractional Systems

During the last decades, fractional calculus has gained
considerable attention. Some characteristics of fractional
calculus are the capability to predict the dynamical behavior
of physical systems more precisely and the possibility to
describe systems with simple models using only a few
physically motivated parameters [1], [2].

Applications of fractional calculus are approaches for the
identification of Li-ion battery parameters which avoid the
usage of integer order approximations with more parameters.
An example of a fractional order battery model is described
in [2], which is introduced using impedance measurements.
A late-lumping parameter identification method for a frac-
tional battery model is presented in [3]. In [4] a model-based
approach is derived which extends Mikusińskis operational
calculus for fractional systems in order to identify the
distribution of relaxation times of a battery cell. In [5] a
spectral parameter estimation method is presented for the
identification of a linear fractional state space system.

In control theory a fractional state space model [6] serves
as a basis for a state-feedback control. Similar to integer
order models, it is possible that not all states of a fractional
system are measurable. Since the state estimation problem in
fractional systems is more complicated than in integer order
systems, a suitable estimation method for fractional order
systems is required. For example, a fractional Kalman filter
(FKF) is developed in [7] and an adaptive H∞ observer with
a joint parameter identification method is presented in [8].
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B. Distributed and Cascaded Systems

In many applications, all calculations are performed by
a single processor. Therefore, all measurements and signals
have to be transmitted to this processor. Additionally, the
complete state vector has to be estimated in that processor,
which is computationally intensive. These properties can
cause errors in practical applications [9]. To avoid these prob-
lems, a functional decentralization and distribution procedure
can be applied where the system is divided into smaller
subsystems which communicate with each other. It achieves
modularity, reduces complexity and lowers the computational
cost in the particular subsystems.

The decentralization and distribution of the Kalman filter
has been presented, for example in [9]–[11] for integer
order systems and in [12] for fractional order systems.
However, the distribution scheme can be complicated and
laborious for some system classes, because the choice of
appropriate transformation matrices and the implementation
of an additional fusion step can be ambiguous and complex.
A decomposition of the system into cascaded subsystems
is more convenient sometimes, since the cascaded approach
does not require transformation matrices and a fusion step.
In [13] a method for a distributed Kalman filter for cascaded
systems of integer order has been presented.

The main contribution of this paper is the development
and the detailed deduction of a cascaded Kalman filter for
systems of fractional order (CFKF). Further subjects are
the extension of the approach to more than 2 subsystems
and an improvement of the algorithm compared to [13]. An
example compares the performance of the FKF with the
CFKF. Additionally, the effect of a wrong initialization of
the states is considered. In the future, we plan to apply this
procedure to large battery packs where the particular cells
are modelled using fractional systems. Further applications
could be brain studies [14] where many sensors are used to
observe the fractional-order dynamics of the brain.

II. FRACTIONAL CALCULUS

First, the Grünwald-Letnikov definition as a discrete-time
representation of a fractional derivative [15] is introduced by
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where q ∈ R+ is the order of the fractional derivative, k is
the current sample of the sequence and h is the sampling
interval. The symbol D is used to represent the fractional
derivative of a function with the lower bound 0 and the upper



bound tk. This section deals with difference equations that
use discrete sequences, and not with differential equations
based on continuous functions. Therefore, according to the
formula of the q-th order difference in (1), and also for
simplicity reasons the value of h is set to h = 1 similar
to [7]. Additionally, the term xk in (1) is isolated, resulting
in

xk = ∆qxk −
k∑
j=1

(−1)j
(
q

j

)
xk−j . (2)

Based on (2), the linear stochastic discrete fractional order
state space system [7] can be obtained, which is defined by

∆γxk = Axk−1 +Buk−1 + ωk−1 (3)

xk = ∆γxk −
k∑
j=1

(−1)jΓjxk−j (4)

yk = Cxk + νk (5)
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)
, · · · ,
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 ∆q1x1,k

...
∆qNxN,k

 (7)

where xk ∈ RN is the state vector, uk ∈ RL is the
system input, yk ∈ RM is the system output, ωk ∈ RN
is the system noise, νk ∈ RM is the output noise and
q1, . . . , qN ∈ R+ are the orders of the particular system
equations. A derivation of these equations from a continuous-
time representation, where also the sampling interval h is
considered, is given in [6]. Of course, there are alternative
descriptions for fractional systems, but these can directly be
transferred into the equations from (3) to (7).

We assume that the system is bounded-input bounded-
output stable and observable [6]. Therefore, we make use
of the observability condition from [16] which is defined
as follows. The system modelled by equations (3) to (7) is
observable in a finite time K, if the matrix

OK =

 CG0

...
CGK−1

 (8)

with

Gk =

{
IN , k = 0∑k−1
j=0 AjGk−1−j , k ≥ 1

(9)

has full rank. Note that contrary to integer order systems the
rank(OK) can increase for K ≥ N . Further information
can be found in [16].

For the exact calculation of the fractional derivative, the
initial values of the states have to be given from t = −∞ to
the current time t = tk = kh [17], [18]. So, actually the sums
in equations (1), (2) and (4) must include the values from
j = 1 to j = ∞. But since in the practical implementation
of such a filter the past values are usually unknown, we can
deal only with the data given from t = 0 on. A possible

solution proposed by [18] to handle unknown initial values
is to use Φ(t) with

|Φ(t)| < Ktq−1, K ∈ R+ (10)

as an initialization function when the system history is
unknown. Alternatively, one may neglect the initialization
function when the estimation algorithm starts while the
system is in a position of rest for a period of time, since
the free response decays towards 0 as tq−1.

We also make use of the short memory principle, which
means that we neglect values of the states that lie further in
the past. If f(t) ≤M , then the error of that function caused
by the short memory principle is bounded [6] by e(t)

e(t) ≤
MB−qL
|Γ (1− q)|

(11)

with BL being the buffer or memory length. Therefore, a
sufficient buffer length for a given error bound can always be
found. For the following sections, it can be assumed that the
buffer length is chosen sufficiently large. It should be noted
that, according to [18], the fractional system described by (3)
to (7) does not form a classical state space representation. It
is rather a pseudo state space description, because it depends
not only on the current state xk, but also on the values
of x from the past as discussed in this section. However,
for simplicity reasons, in the following sections the system
described above is named ”state space system”.

III. FRACTIONAL KALMAN FILTER

The FKF for a linear stochastic discrete-time fractional
order state space system [7] is given by

∆γx̂−k = Ax̂+
k−1 +Buk−1 (12)

x̂−k = ∆γx̂−k −
z∑
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(−1)jΓjx̂
+
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T
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T
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x̂+
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−
k ) (16)

P+
k = (I −KkC)P−k (I −KkC)T +KkRkK

T
k

= (I −KkC)P−k (17)

where z = min[k,BL] stands for the upper limit of the sum.
The FKF is usually initialized with a priori known values or

x̂+
0 = E{x0} ≈ 0, (18)

P+
0 = E{(x0 − x̂+

0 )(x0 − x̂+
0 )T } ≈ 100I (19)

when the initial values are unknown [7]. Alternatively one
can use the initialization in (10) from [18]. (∗)− describes
the a priori estimation and (∗)+ the a posteriori estimation,
P,R,Q are the covariance matrices of the estimated values,
the measurement noise and the system noise, respectively. It
is assumed that P , R and Q are symmetric, νk and ωk



are uncorrelated and with zero expected value and E{(x̂j −
xj)T (x̂k − xk)} ≈ 0 for j 6= k. It can be seen in the
equations that past estimates x̂j will not be updated when
new data uk or yk with j < k are obtained. Therefore, the
FKF shown in (12) to (19) is a suboptimal state estimation
algorithm. An algorithm which also updates and estimates
past states is presented in [19]. This procedure can also be
used for the CFKF as it is straightforward to adapt and to
implement. More Details and the proof of the FKF can be
found in [7].

IV. DISTRIBUTED STATE ESTIMATION OF
CASCADED FRACTIONAL SYSTEMS

In this section we want to introduce the Cascaded Frac-
tional Kalman Filter (CFKF) for the distributed state es-
timation of cascaded fractional systems. A distributed and
decentralized estimation scheme for fractional order systems
is presented in [12], where the dependent states of different
subsystems are merged in a fusion step. Advantages of this
approach are reduced computational cost, improved effi-
ciency, reliability and easier tuning for large scale systems.

However, the complete distribution procedure and the
process of choosing appropriate transformation matrices can
be cumbersome if the system is already in a cascaded form or
when it is possible to transform it into cascaded subsystems.
In this case the development of local cascaded estimators is
more suitable. Consider [12] for further information about
the distributed and decentralized fractional Kalman filter.

The main idea of the CFKF is that the state vectors in the
subsystems contain only local states. All other states of the
remaining subsystems that have a significant influence over
their dynamics are taken into account in a separate term of
the state equation in the estimation algorithm. Therefore, the
CFKF is also a decentralized and distributed filter.

A. Cascaded Subsystems

It is required that (A,C) of system (3) to (5) is an
observable pair using the criterion of equation (8) and can
be described as block lower triangular matrices as follows(
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)
=
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+

+

(
B1

B2

)
uk−1 +
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)
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with the division of

xk =

(
x1,k

x2,k

)
,yk =

(
y1,k

y2,k

)
,Γj = diag (Γ1,j ,Γ2,j) (23)

into two subsystems for convenience and without loss of
generality, similar to [13]. Then, the system is divided into

∆γ1x1,k = A11x1,k−1 +B1uk−1 + ω1,k−1 (24)

x1,k = ∆γ1x1,k −
z∑
j=1

(−1)jΓ1,jx1,k−j (25)

y1,k = C11x1,k + ν1,k (26)

and

∆γ2x2,k = A21x1,k−1 +A22x2,k−1 +B2uk−1 + ω2,k−1

(27)

x2,k = ∆γ2x2,k −
z∑
j=1

(−1)jΓ2,jx2,k−j (28)

y2,k = C21x1,k +C22x2,k + ν2,k (29)

in that way that both subsystems are observable. uk−1 is a
deterministic input in one or both subsystems, depending
on B. x1 is treated as an input for subsystem 2. Based
on this partition, two different local filters can be applied
separately, with the second observer using the estimations
of the first subsystem. As the local subsystems are smaller
than the global model, the aim is to design simple and
scalable observers for each subsystem. In general, the cas-
caded Kalman filter is applicable if the considered system
can be represented by a directed acyclic graph, so that each
node corresponds to an observable subsystem [13]. This is
the same case for fractional order systems, because Γi,j
with i = 1, 2 influences only local states in the particular
subsystems due to its diagonal form. As a result, there is no
need to communicate Γi,j between different subsystems.

The covariance matrices of the system and output noises
are assumed to be block diagonal [9]. Otherwise, the value
of the cross covariance between components that belong to
different subsystems will be lost

Q =

(
Q1 0
0 Q2

)
R =

(
R1 0
0 R2

)
. (30)

This assumption appears to be restrictive, but in practical
applications, the value of the cross covariances are normally
unknown and it is frequently assumed that the covariance
matrices are diagonal [13]. Moreover, the output and system
noises are assumed to be white, Gaussian, with zero mean
and that different noise processes are uncorrelated.

B. Cascaded State Estimation

In order to estimate the local states of the first subsystem,
which is given by (24) to (26), a linear Kalman filter is
applied, based only on local measurements y1,k.

Theorem 1 (Kalman Filter for Subsystem 1). The Kalman
gain, the state vector and state error covariance matrix for



subsystem 1 can be calculated using the following formulas

∆γ1 x̂−1,k = A11x̂
+
1,k−1 +B1uk−1 (31)

x̂−1,k = ∆γ1 x̂−1,k −
z∑
j=1

(−1)jΓ1,jx̂
+
1,k−j (32)

P−11,k = (A11 + Γ1,1)P+
11,k−1(A11 + Γ1,1)T+

+Q1,k−1 +

z∑
j=2

Γ1,jP
+
11,k−jΓ

T
1,j (33)

K1,k = P−11,kC
T
11

(
C11P

−
11,kC

T
11 +R1

)−1
(34)

x̂+
1,k = x̂−1,k +K1,k(y1,k −C11x̂

−
1,k) (35)

P+
11,k = (I −K1,kC11)P−11,k(I −K1,kC11)T+

+K1,kR1K
T
1,k. (36)

Proof: Applying directly the formulas of the FKF from
(12) to (17) to the equations of the first subsystem in (24)
to (26) leads to the equations of Theorem 1.

In the second subsystem (27) to (29), x1,k is an unknown
stochastic variable and has therefore to be communicated
from subsystem 1. In a distributed estimation algorithm,
sometimes only the state estimation is communicated be-
tween different nodes or subsystems, and not the state error
covariance matrix [13]. Therefore, similar to [13] two cases
can be distinguished:

Case 1: Suppose that only the state estimation of x1,k is
transmitted from preceding subsystems and consider both u
and x̂1 as deterministic inputs in subsystem 2. In this case,
the second subsystem will assume that the estimation pro-
vided by the first subsystem is correct, without randomness.
However, the obtained state error covariance matrix in this
case will not be the same as the true state error covariance
matrix for the second subsystem. Following, the formulas
of the Kalman filter for case 1 for the second subsystem is
stated in Theorem 2.

Theorem 2 (Kalman Filter for Subsystem 2: Case 1). Let x̂1

be seen as a deterministic input and apply a local Kalman
filter to the second subsystem. Then the following equations
are obtained

∆γ2 x̂−2,k = A22x̂
+
2,k−1 +A21x̂

+
1,k−1 +B2uk−1 (37)

x̂−2,k = ∆γ2 x̂−2,k −
z∑
j=1

(−1)jΓ2,jx̂
+
2,k−j (38)

P−22,k = (A22 + Γ2,1)P+
22,k−1(A22 + Γ2,1)T+

+Q2,k−1 +
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T
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22,k = (I −K2,kC22)P−22,k(I −K2,kC22)T+

+K2,kR2K
T
2,k. (42)

Proof: Applying directly the formulas of the FKF
from (12) to (17) to the equations of the second subsystem
in (27) to (29) leads to the equations of Theorem 2. The
difference is that the formulas are indexed accordingly with
their subsystem number and that x̂1 is used as a deterministic
input with a direct feedthrough on y2 in subsystem 2.

Case 2: Assume that, in addition to the state estimation,
the estimated covariance matrix P 11 is communicated be-
tween subsequent modules. In this case, x̂1 is considered as
a stochastic variable in the second subsystem, with calculated
covariance P 11. Remark that only the estimated states and
covariances will be sent from subsystem 1 to subsystem 2.
That means that all other information, such as the system
matrices and measurements of other subsystems are not
available in a particular subsystem and it is assumed that
they are 0.

Theorem 3 (Kalman Filter for Subsystem 2: Case 2). Let x̂1

be seen as a stochastic input with calculated covariance P 11

and applying a local Kalman filter to the second subsystem.
Then the following equations are obtained

∆γ2 x̂−2,k = A22x̂
+
2,k−1 +A21x̂

+
1,k−1 +B2uk−1 (43)

x̂−2,k = ∆γ2 x̂−2,k −
z∑
j=1

(−1)jΓ2,jx̂
+
2,k−j (44)

P−22,k = (A22 + Γ2,1)P+
22,k−1(A22 + Γ2,1)T+

+

z∑
j=2

Γ2,jP
+
22,k−jΓ

T
2,j +Q2,k−1+

+A21P
+
11,k−1A

T
21+

+
(

(A22 + Γ2,1)P+
21,k−1A

T
21

)
+
(

(A22 + Γ2,1)P+
21,k−1A

T
21

)T
(45)

K2,k =
(
P−22,kC

T
22

)
·

·
(
C21P

−
11,kC

T
21 +C22P

−
22,kC

T
22 +R2

)−1
(46)

P+
22,k = (K2,kC21)P−11,k(K2,kC21)T+

+ (I −K2,kC22)P−22,k(I −K2,kC22)T+

+K2,kR2K
T
2,k (47)

P+
21,k = −(K2,kC21)P−11,k (48)

x̂+
2,k = x̂−2,k +K2,k(y2,k −C21x̂

−
1,k −C22x̂

−
2,k)

(49)

This approach obtains the true state error covariance matrix
for the second subsystem.



Proof: First, we calculate P−k using (14) as follows[
P−11,k P−12,k
P−21,k P−22,k

]
=

[
A11 + Γ1,1 0
A21 A22 + Γ2,1

] [
P+

11,k−1 P+
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22,k−1

]
·
[
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21

0 AT
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]
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]
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]
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+
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+

z∑
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 Γ1,jP
+
11,k−1Γ1,j Γ1,jP

+
12,k−1

unknown︷︸︸︷
Γ2,j

Γ2,jP
+
21,k−1 Γ1,j︸︷︷︸

unknown

Γ2,jP
+
22,k−1Γ2,j

 (50)

with

Z1,1 = (A11 + Γ1,1)P+
11,k−1(AT

11 + Γ1,1),

Z1,2 = (A11 + Γ1,1)P+
11,k−1

unknown︷︸︸︷
AT

21

+ (A11 + Γ1,1)P+
12,k−1

unknown︷ ︸︸ ︷
(AT

22 + Γ2,1),

Z2,1 = (A21P
+
11,k−1 (AT

11 + Γ1,1)︸ ︷︷ ︸
unknown

)

+ (AT
22 + Γ2,1)P+

21,k−1 (AT
11 + Γ1,1)︸ ︷︷ ︸
unknown

,

Z2,2 = (A21P
+
11,k−1 + (A22 + Γ2,1)P+

21,k−1)AT
21+

+A21P
+
12,k−1(AT

22 + Γ2,1)

+ (A22 + Γ2,1)P+
22,k−1(AT

22 + Γ2,1).

Note that the parameters which are marked as ”unknown” are
set to 0 in the respective subsystem, because informations
about the system parameters of other subsystems are not
available as assumed before. Then it can be seen that P−k is
block diagonal. Also note that Γi,j = ΓTi,j∀i, j, because they
are diagonal matrices. Therefore P−11 and P−22 in (50) are
identical to (33) and (45), respectively and P−12 = P−21 = 0.
Next, the correction step of the state estimation can be proven
straightforward using (16)[
x̂+
1,k

x̂+
2,k

]
=

[
x̂−1,k
x̂−2,k

]
+Kk ·

([
ŷ1,k

ŷ2,k

]
−
[
C11 0
C21 C22

]
·
[
x̂−1,k
x̂−2,k

])
(51)

which yields (35) and (49).

Lemma 1. It also follows from (51) that Kk is blockdiag-
onal

Kk =

[
K1,k 0

0 K2,k

]
(52)

since measurements of other subsystems are not considered.

The covariance matrix of the correction step is calculated
using (18) and Lemma 1 to[
P+

11,k P+
12,k

P+
21,k P+

22,k

]
=

(
I −

[
K1,k 0

0 K2,k

] [
C11 0
C21 C22

])
·
[
P−11,k 0

0 P−22,k

]
·

·
(
I −

[
K1,k 0

0 K2,k

] [
C11 0
C21 C22

])T
+

+

[
K1,k 0

0 K2,k

] [
R1 0
0 R2

] [
KT

1,k 0

0 KT
2,k

]
=

[
W 1,1 W 1,2

W 2,1 W 2,2

]
+

[
K1,kR1K

T
1,k 0

0 K2,kR2K
T
2,k

]
(53)

with

W 1,1 = (I −K1,kC11)P−11,k(I −K1,kC11)T ,

W 1,2 = (I −K1,kC11)P−11,k

unknown︷ ︸︸ ︷
(−K2,kC21)T ,

W 2,1 = (−K2,kC21)P−11,k(I −K1,kC11︸ ︷︷ ︸
unknown

)T ,

W 2,2 = (−K2,kC21)P−11,k(−K2,kC21)T+

+ (I −K2,kC22)P−22,k(I −K2,kC22)T

which results in (36), (47) and (48). It can be seen that a value
for P+

21 can be calculated in subsystem 2, but as K is block
diagonal it has no effect on the filter step, i.e. estimation of
x̂2, because just P+

22 will be minimized. Nevertheless, it can
still be used in the prediction step for the calculation of P−22.
Although P+

12 = (P+
21)T , it cannot be used by subsystem 1,

because the missing system information K2,k and C21 are
assumed to be 0.

Finally, the Kalman gain can be computed by minimizing
the trace of the error covariance for the second subsystem.
Taking into account that matrices P and R are symmetric,
equation (54) is obtained

∂P+
22,k

∂K2,k
= 2K2,kC21P

−
11,kC

T
21 − 2P−22,kC

T
22+

+ 2K2,kC22P
−
22,kC

T
22 + 2K2,kR2 =

= 2K2,k

(
C21P

−
11,kC

T
21 +C22P

−
22,kC

T
22 +R2

)
− 2P−22,kC

T
22

!
= 0. (54)

Isolating K2,k, the previous equation results in (46).
Additionally, more consequences can be drawn from this

section as follows in Corollary 1

Corollary 1. Comparing (53) with (17) and (50) with (14),
it can be seen that the cascaded approach achieves the
same error covariance matrix as the central Kalman filter,
if and only if the subsystems are independent. That is, if
A21 = 0,C21 = 0, and R12 = 0,Q12 = 0 as assumed in
(30). Therefore, in general, the CFKF does not minimize the



global state error covariance matrix, because it produces a
systematic error and is hence suboptimal.

However, although the algorithm is not optimal, it usually
performs sufficiently, because it can be assumed that the
influence of the cross-covariances is negligible compared
to the diagonal elements. Also note that in the cascaded
Kalman filter, presented in [13], P+

21 has been neglected
unnecessarily.

Often, a distributed state estimation approach uses an
explicit fusion step [10], [12]. In contrast, the CFKF uses
an algorithm where the estimated states and covariances
of preceding subsystems are directly used in the algorithm
which makes it easier to implement.

C. Generalization
Considering more than two subsystems, one can extend

the algorithm in the sections above as shown in Corollary 2.

Corollary 2 (Generalized Kalman Filter for Subsystem i:
Case 2). Let there be more than 2 cascaded subsystems.
Then, the algorithm of Theorem 1 and Theorem 3 can be
extended to a generalized algorithm as follows

∆γi x̂−i,k = Aiix̂
+
i,k−1 +

i−1∑
l=1

Ailx̂
+
l,k−1 +Biuk−1 (55)

x̂−i,k = ∆γi x̂−i,k −
z∑
j=1

(−1)jΓi,jx̂
+
i,k−j (56)

P−ii,k = (Aii + Γi,1)P+
ii,k−1(Aii + Γi,1)T+

+

z∑
j=2

Γi,jP
+
ii,k−jΓ

T
i,j +Qi,k−1+

+

i−1∑
l=1

AilP
+
ll,k−1A

T
il+

+

(
i−1∑
l=1

(Aii + Γi,1)P+
il,k−1A

T
il

)
(57)

+

(
i−1∑
l=1

(Aii + Γi,1)P+
il,k−1A

T
il

)T
(58)

Ki,k =
(
P−ii,kC

T
ii

)
·

·

(
i−1∑
l=1

(
CilP

−
ll,kC

T
il

)
+CiiP

−
ii,kC

T
ii +Ri

)−1
(59)

P+
ii,k =

i−1∑
l=1

(Ki,kCil)P
−
ll,k(Ki,kCil)

T+

+ (I −Ki,kCii)P
−
ii,k(I −Ki,kCii)

T+

+Ki,kRiK
T
i,k (60)

P+
il,k = −(Ki,kCil)P

−
ll,k,∀l < i (61)

x̂+
i,k = x̂−i,k +Ki,k(yi,k −

i−1∑
l=1

Cilx̂
−
l,k −Ciix̂

−
i,k)

(62)

where l is the index for preceding subsystems with l < i.

The formulas of Corollary 2 can be derived, simply by
applying the cascading algorithm to all subsystems succes-
sively.

V. SIMULATION RESULTS

In this section, we provide a comparison between the
estimated states of the FKF, both cases of the CFKF and the
state values from the simulation of a fractional order system.
We consider a linear stochastic discrete fractional order state
space system defined by

A =


−0.3 0.4 0 0 0
−0.2 −0.1 0 0 0

0 0.05 −0.2 −0.1 0
0 0.1 0.1 −0.2 0
0 −0.1 0 −0.05 0.2

 , B =


0

0.1
0.1
0

0.1



C =

0 1 0 0 0
1 0 1 0 0
0 1 0 0 1

 , γ =


0.7
1.2
0.8
0.5
0.2


R = E[νkν

T
k ] = 0.001I

Q = E[ωkω
T
k ] = 0.001I

P [−BL,...,0] = 100I, x[−BL,...,0] =
[
0 0 0 0 0

]T
with the sampling period T = 1 s, the simulation time
Ts = 300 s and the buffer length BL = 300. The covariance
matrix P has large entries since the past states are unknown
and assumed to zero. Following, our aim is to divide this
system into subsystems to achieve an order reduction. One
possibility is to divide the system into three cascaded sub-
systems xc as follows

xc1 =

(
x1

x2

)
, xc2 =

(
x3

x4

)
, xc3 =

(
x5

)
(63)

with local measurements yc

yc1 = y1, yc2 = y2, yc3 = y3. (64)

The input and output signals of the described example are
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Fig. 1. Signal sequence of the input and outputs
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Fig. 3. Estimation of the states using the FKF

shown in Fig. 1 and the original state variables are given
in Fig. 2. The signal to noise ratios of the output signals
are calculated to SNR1 = 28.7 dB, SNR2 = 38.5 dB and
SNR3 = 35.9 dB for y1, y2 and y3. Since the main subject
of this simulation is a comparison between the FKF and the
CFKF, we use identical parameters. Comparing the results
of the FKF in Fig. 3 with the original variables in Fig. 2, it
can be seen that the estimation algorithm of the FKF works
accurately. Comparing the estimation errors ei = (x̂i−xi)/xi
of the FKF in Fig. 4 with case 1 of the CFKF given in Fig. 5
and with case 2 of the CFKF given in Fig. 6, it can be seen
that all three algorithms lead to similar results. The main
difference is that the CFKF converges some steps slower
to a given error level due to missing information. In most
applications, this effect does not yield problems. Further, the
Root Mean Square Error (RMSE) of all three algorithms,
averaged for 100 simulation runs is presented in Table I. It
can be seen that the RMSE of CFKF case 2 is very similar to
the FKF. As expected, the RMSE of x3, x4 and x5 of CFKF
case 1 is worse due to the missing covariance information
of preceding subsystems. In this example, subsystem 2 needs
information of subsystem 1, and subsystem 3 needs data from
both subsystems 1 and 2. Note that in other examples an all-

0 50 100 150 200 250 300

−10

0

10

20

Sample k

E
rr

or
e

of
th

e
st

at
e

es
tim

at
io

ns
in

%

e1
e2
e3
e4
e5

Fig. 4. Estimation errors of the states in percent using the FKF
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Fig. 5. Estimation errors of the states in percent using the CFKF case 1

to-all connection between all subsystems is not necessarily
needed! In this example that would be the case for A52 =
C32 = 0.

In a second example, we want to show the performance
of the filters in case of a wrong initialization of the states.
For this reason we initialize the filters with

P [−BL,...,0] = 100I, x̂[−BL,...,0] =
[
4 4 4 4 4

]T
while the simulation still starts with x[−BL,...,0] = 0. The
averaged RMSE for 100 simulation runs is given in Table II.
The estimated states of the CFKF case 2 are shown in Fig.
7. It can be seen that the filters still converge, but they need
more time to reach a given error level due to the memory
effect, as expected.

VI. CONCLUSION

This article presents a distributed Kalman filter for cas-
caded fractional order systems. If the system matrices can be
transformed into block lower triangular matrices, it is often
convenient to divide the model into cascaded subsystems.
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TABLE I
RMSE OF THE FILTERS, AVERAGED FOR 100 RUNS FOR EXAMPLE 1

x1 x2 x3 x4 x5

RMSE FKF 0.0158 0.0186 0.0157 0.0104 0.0174

RMSE CFKF1 0.0132 0.0223 0.0313 0.0073 0.0389

RMSE CFKF2 0.0132 0.0223 0.0147 0.0030 0.0245

TABLE II
RMSE OF THE FILTERS, AVERAGED FOR 100 RUNS FOR EXAMPLE 2

x1 x2 x3 x4 x5

RMSE FKF 0.2865 0.2366 0.2890 0.7851 0.2499

RMSE CFKF1 0.3813 0.2327 0.4401 0.7086 0.3270

RMSE CFKF2 0.3813 0.2327 0.3414 0.7085 0.3148
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Fig. 7. Estimation of the states using the CFKF case 2 for example 2

Such a distribution leads to small and scalable nodes which is
advantageous, especially in case of computationally intensive
models like fractional systems. Two cases for the CFKF are
distinguished, one where the estimated states are commu-

nicated as deterministic variables and one where they are
communicated as stochastic variables. A simulation example
has been given which compares both cases together with the
FKF. It could be seen that all algorithms lead to comparable
results. In a second example, it could be seen that a wrong
initialization could also be managed by the filters.

In the future, we want to implement this procedure for the
distributed state estimation of large battery systems where the
cells have been modelled using fractional impedances.
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