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Abstract  

Nickel aluminide (NiAl) is considered to be a promising candidate as next 

generation material for high temperature structural application owing to 

a range of attractive properties, but suffers from low ductility and fracture 

toughness at room temperature and poor creep resistance and strength at 

elevated temperatures. One of the most promising ways to improve its 

properties is by alloying binary NiAl with refractory metals such as Mo, 

Cr, V, Hf, Re etc. to produce pseudo binary eutectic alloys and further pro-

cessing of these alloys by directional solidification which results in highly 

aligned in-situ composites having superior properties compared to binary 

NiAl. The alloying element used and the processing conditions chosen for 

the directional solidification has a great impact on the final microstructure 

of the alloy, which in-turn affects the mechanical properties of the alloy 

produced. Although a great amount of research has been done with differ-

ent alloying elements and processing conditions, optimum parameter and 

conditions to achieve the best properties has not been established yet, nei-

ther is the deformation mechanisms in these alloys fully understood.  

The main aim of this thesis is to characterize the mechanical behaviour of 

directionally solidified NiAl-Cr eutectic at varying length scales in order to 

develop a mechanistic understanding of role of individual phases and in-

terfaces on the deformation process in these alloys. NiAl-Cr eutectic alloy 

directionally solidified at 20, 50 and 80 mm/h were studied in this study. 

The individual phases and the interfaces were tested by different micro-

mechanical tests to study their influence on the deformation processes.  

Microstructure examination shows that the fiber diameter and fiber spac-

ing decreases with the increasing solidification speed. Nanoindentation 

study on the overall alloy reveals that the hardness and young’s modulus 

of these alloys do not depend on the solidification speed. In-situ SEM ten-

sile tests on isolated individual Cr fibers shows that they deform plas-

tically before failure and show high strength values in the range of 1-3 

GPa. Compression tests on three different types of micro-pillars produced 
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by focused ion beam milling reveals that while with increasing solidifica-

tion speed and thus decreasing pillar diameter, the strength of each type 

of pillar increases, the matrix only (M.O.) pillars are stronger than the sin-

gle fiber (S.F.) composite pillars having the interface for similar dimen-

sions of these micro-pillars. TEM examination of the undeformed speci-

men shows that both the NiAl matrix and Cr fibers have very low disloca-

tion density. The interface between the fiber and matrix is surrounded by 

the network of <100> type dislocations due to the small lattice mismatch 

between NiAl and Cr. The deformed S.F. pillars show heavy dislocation ac-

tivity both in the fiber and the matrix. Most of these dislocations were 

found to have a <100> Burgers vector. A rule of mixture analysis based on 

the strength of Cr fiber and matrix only (M.O.) pillars predicts higher 

strength values for S.F. pillars than that observed in the experiments. 

Cross cuts across the deformed S.F. pillars shows that the two phases co-

deform upon straining without any delamination across the interface sug-

gesting a strong interface. All the observations from the different tests 

performed strongly suggest that the interface between the fiber and ma-

trix is dominating the deformation of these directionally solidified NiAl-Cr 

eutectic alloys by providing additional mobile dislocation generation sites 

at the interface. This would also explain the independence of hardness 

with respect to the solidification speed where the increase in strength of 

Cr fibers and NiAl matrix with decreasing size and spacing with increasing 

solidification speed, is counteracted by the increase in the interface area 

per unit volume leading to lower strength and higher ductility.
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Kurzzusammenfassung 

Nickelaluminide (NiAl) werden als vielversprechender Kandidat für 

Hochtemperatur-Strukturmaterialien der nächsten Generation aufgrund 

einer Reihe attraktiver Eigenschaften betrachtet. Allerdings besitzen 

diese Materialien eine geringe Duktilität und Bruchzähigkeit bei 

Raumtemperatur, sowie schlechte Kriecheigenschaften und eine geringe 

Festigkeit bei höheren Temperaturen. Eine vielversprechende Strategie 

zur Verbesserung dieser Eigenschaften stellt das Zulegieren von binärem 

NiAl mit Refraktärmetallen, wie z. Bsp. Mo, Cr, V, Hf, Re, usw. dar. Diese 

pseudo-binären Legierungen werden durch gerichtetes Erstarren produz-

iert, was zu hochausgerichteten in-situ Werkstoffverbunden mit 

verbesserten Eigenschaften im Vergleich zu binärem NiAl führt. Die Wahl 

der Legierungselemente und der Prozessbedingungen hat einen großen 

Einfluss auf das Gefüge der Legierung, was wiederum die mechanischen 

Eigenschaften beeinflusst. Obwohl der Einfluss verschiedener Legierung-

selemente, als auch unterschiedlicher Prozessbedingungen schon unter-

sucht wurden, konnten bisher weder die optimale Parameter und Bed-

ingungen bestimmt werden, noch sind die Deformations-mechanismen in 

diesen Legierungen vollständig verstanden. 

Das Hauptziel dieser Arbeit ist die Untersuchung des mechanischen 

Verhaltens eutektisch richtungserstarrter NiAl-Cr Legierungen auf unter-

schiedlichen Längenskalen um ein systematisches Verständnis der Rolle 

der einzelnen Phasen und der Grenzflächen auf die Verformungsvorgänge 

in diesen Legierungen zu erhalten. Eutektische NiAl-Cr Legierungen, die 

bei Erstarrungsgeschwindigkeiten von 20, 50 und 80 mm/h gerichtet 

hergestellt wurden, wurden in dieser Arbeit untersucht. Die einzelnen 

Phasen und Grenzflächen wurden mittels verschiedener mikromecha-

nischer Versuche getestet, um ihren Einfluss auf die Verfor-

mungsvorgänge zu bestimmen. 
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Gefügeuntersuchungen haben gezeigt, dass der Faserdurchmesser und 

abstand mit höheren Erstarrungsgeschwindigkeiten sinkt. Nanoindenta-

tionsergebnisse an den Proben haben ergeben, dass sowohl die Härte als 

auch der Elastizitätsmodul dieser Legierungen nicht von der Erstar-

rungsgeschwindigkeit abhängen. In-situ Zugversuche in einem REM an 

einzelnen Cr-Fasern haben gezeigt, dass die Fasern sich plastisch vor dem 

Versagen verformen und Festigkeiten im Bereich von 1-3 GPa erreichen. 

Druckversuche an drei unterschiedlichen Arten von Mikrosäulen 

hergestellt mittels FIB zeigen, dass mit wachsender Erstar-

rungsgeschwindigkeit und dadurch kleiner werdenden Säulendurchmes-

sern, die Festigkeit des jeweiligen Säulentyps ansteigt. Säulen, die aus der 

Matrix geschnitten wurden, sind fester als jene, die eine einzelne Faser 

und somit mehr Grenzflächen bei gleichbleibender Säulengröße beinhal-

ten. TEM Untersuchungen an den unverformten Proben haben gezeigt, 

dass sowohl die NiAl Matrix, als auch die Cr-Fasern eine sehr niedrige 

Versetzungsdichte besitzen. Die Grenzflächen zwischen Faser und Matrix 

sind von einem Netzwerk von <100> -Versetzungen aufgrund der ger-

ingen Gitterfehlpassung von NiAl und Cr, umgeben. Die formierten Säulen 

mit einer einzelnen Faser zeigen hohe Versetzungsaktivitäten sowohl in 

der Faser, als auch in der Matrix. Eine Analyse anhand einer Mischungsre-

gel basierend auf den Festigkeiten der Cr-Fasern und der reinen Matrix 

sagt höhere Festigkeiten für die Säulen mit einer einzelnen Faser voraus, 

als in den Experimenten beobachtet wurde. Querschnitte durch die de-

formierten Säulen mit einer Faser haben gezeigt, dass beide Phasen unter 

der Belastung ohne Delamination kodeformieren, was auf eine starke 

Grenzfläche hinweist. Alle Beobachtungen der unterschiedlichen Ver-

suche deuten darauf hin, dass die Grenzfläche zwischen Faser und Matrix 

das Verformungsverhalten der eutektisch richtungserstarrten NiAl-Cr Le-

gierungen dominiert, indem sie zusätzliche, bewegliche Versetzungen. 

Dies würde ebenso die unveränderte Härte bei verschiedenen Erstar-

rungs-geschwindigkeiten erklären, da dem Festigkeitszuwachs der Cr-

Fasern und der NiAl-Matrix mit abnehmender Größe und Abständen der 

Zugewinn an Grenzfläche pro Volumeneinheit entgegenwirkt, was schlie-

ßlich zu niedrigeren Festigkeiten und höherer Duktilität führt.
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1 Introduction 

1.1 High temperature structural application 

High temperature application is critical for various industries such as ma-

terials processing, production of metals and non-metals, chemical engi-

neering, transportation, energy conversion and power generations. The 

operating temperature in many of these applications are above 600 °C 

where most steels cannot be used anymore and can go as high as 4000 °C 

for rocket nozzles. Typical operating temperatures of few of these appli-

cations are shown in Figure 1.1 as a plot with respect to temperature. In 

particular for engines, the cost of fuel is a big concern and there is a con-

stant effort to increase their efficiency. Higher efficiency leads to same 

amount of work done with less fuel usage or more work done with same 

amount of fuel. The efficiency of these applications increases with increas-

ing the operating temperatures as shown in Figure 1.2 for a gas turbine 

engine, for example. As the temperature increases, the green curve shows 

that the ideal power generated by the gas turbine engine increases with 

increasing temperature (Perepezko, 2009). This increased efficiency 

leads to lower fuel consumption and lower exhaust emission, thus giving 

benefits economically as well as environmentally. But as also shown in 

Figure 1.2, the development trend of the new materials and alloys for 

these high temperature engine applications, which shows that there exist 

inefficiency losses as compared to the ideal curve. These losses tend to 

increase with increasing temperature if the same development trend is 

maintained. These losses arise mainly because the alloy used in these ap-

plications cannot withstand the high temperatures and pressure unless 

they are aided by a cooling system. Therefore, we need to develop new 

materials and alloys to close the gap arising from inefficiency losses and 

to further increase the efficiency of the high temperature applications. 
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Figure 1.1: Typical operating temperatures for few high temperature applications 
(Meetham, 1991) 

High temperature operation is associated with various challenges (Anton, 

Shah, Duhl, & Giamei, 1989; Meetham, 1991), and the material selected for 

these application typically fulfil certain criteria. The operating tempera-

ture for most materials should not exceed 0.5 Tm, the melting tempera-

ture, thus the selected material must have a high melting point. The se-

lected material must also have very good strength at higher temperature 

to withstand the stresses generated in the components. In general, some 

ductility is also required to avoid any catastrophic failure during pro-

cessing and application of these alloys. Oxidation and corrosion are a ma-

jor concern at higher temperature and it is desired to have a material with 

high oxidation and corrosion resistance to retain its properties in oxidiz-

ing atmosphere. Good oxidation resistance is also required to minimize 

the need of protective coatings which may have a negative impact on the 

efficiency of the application. The materials should have good structural 

stability and very good creep and fatigue properties as these materials are 

required to serve at high temperature and cyclic stresses for a considera-

ble long lifetime. Processing these alloys in the desired form or shape also 

induces very high stresses and it is generally done at room temperatures. 

Therefore, it is necessary to have sufficient toughness and ductility at 
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room temperature to avoid generation of micro crack during processing, 

which would otherwise lead to poor performance. Furthermore, since 

many of these applications involve the dynamic use of components, the 

specific strength and thus the density of the material becomes a very im-

portant criterion. And lastly, the cost of raw materials and processing of 

these alloys must be reasonable to ensure mass production of these com-

ponents. 

 

Figure 1.2: Variation of specific core power produced in a turbine engine, showing ideal 
performance along with development trend of turbine engines (Perepezko, 2009)  

Development of new materials which can push the limits of operation of 

these applications while satisfying the above mentioned critical and often 

contradicting criteria is a very important challenge for material scientists 

today. Materials development for these high temperature application is a 

continuous process. A number of high temperature alloys have been de-

veloped over the past decades with different properties to suit different 

applications (Meetham, 1991)(Birol, 2011; Pollock & Tin, 2006). The most 

notable are aluminium alloys, steels, iron based superalloys, cobalt based 

superalloys, nickel based superalloys and ceramics. A comparison of var-

ious alloys developed over the years with respect to the temperature ca-

pabilities of these alloys is represented in Fig.1.3.  



1.  Introduction   

4 

 

Figure 1.3: Development of alloys over the years for high temperature applications 
(Reed, 2006)  

Intermetallic compounds containing aluminium such as NiAl, TiAl, FeAl 

and others are among the promising candidates to replace the currently 

used materials in these high temperature structural applications in order 

to increase the temperature capabilities of the application. Aluminides are 

promising in terms of being high strength as well as low density alloys. 

NiAl is one of the most promising of these aluminides having a range of 

attractive properties, high strength, low density, high thermal conductiv-

ity, good oxidation resistance to name a few. NiAl also suffers from the 

typically associated drawbacks, having poor ductility and fracture tough-

ness at room temperature and low creep resistance at high temperature.  

A lot of research has been directed in the past towards elimination of these 

drawbacks of NiAl (W. Chen, Hines, & Wang, 2004; Darolia, 1991; Deevi & 

Sikka, 1996; Daniel B. Miracle & Darolia, 2000; Wang, Qian, Zhang, & 

Wang, 2011), producing single crystals, alloying with refractory metals 

and processing by novel techniques and more. Alloying NiAl with refrac-

tory metals such as Cr, Mo, V or Re to produce pseudo-binary eutectics and 

processing of these eutectics by directional solidification result in highly 
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aligned fiber-matrix composite microstructures (Bei, Pharr, & George, 

2004; Georg Frommeyer & Rablbauer, 2008; David R Johnson, 1994). 

They have been shown to improve the fracture toughness and creep re-

sistance compared to binary NiAl. Based on the alloying element and pro-

cessing conditions chosen for directional solidification in these eutectics, 

a variety of final microstructures can be produced. However, a detailed 

materials development with respect to alloying additions and processing 

condition to get the best combination of properties has not been estab-

lished yet. This is due to the fact that the role of alloying addition and the 

microstructures-property relationship has not been fully understood yet.

1.2 Outline of the thesis 

The thesis is organized in the following way. The most important litera-

ture, relevant for this project is reviewed in Chapter 2, including the 

knowledge base available for NiAl, directionally solidified eutectics, size 

effects in materials at small scale as well the different toughening ap-

proaches and their mechanisms. In Chapter 3, details of the various test 

methods used in this project are explained including the description of the 

experimental set-ups, sample preparation and testing and analysis proce-

dures. In Chapter 4, the results from the different mechanical tests per-

formed are presented. Key findings and observation from these results are 

cross-linked and discussed in order to develop a comprehensive under-

standing of the deformation mechanism in the directionally solidified eu-

tectics. And finally, in Chapter 5, the thesis is summarized and a short out-

look is given. 
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2 State of the art

2.1 Binary NiAl and its properties 

The two main aluminides in the Ni-Al system which are of significance are 

Ni3Al and binary NiAl (Fig. 2.1). Ni3Al has received a great amount of at-

tention in the past years for structural materials as a strengthening phase 

in most of the superalloys developed in recent past for high temperature 

structural application. NiAl had emerged as a promising candidate in re-

placing Ni-based and other superalloys about 30 years ago. The main rea-

son for this interest its advantages over superalloys in terms of density, 

melting temperature, oxidation and corrosion behaviour among others 

(Darolia, 1991; D. B. Miracle, 1993).  

The physical and mechanical properties of NiAl have been studied in detail 

over the years and a comprehensive review of the physical and mechani-

cal properties of NiAl is presented by (D. B. Miracle, 1993), (Noebe, 

Bowman, & Nathal, 1993) (Dey, 2003).  
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Figure 2.1: Phase diagram of binary NiAl (Ansara, Dupin, Lukas, & Sundman, 1997) 

2.1.1 Crystal structure and physical properties 

Binary NiAl exists over a range of compositions in the Al-Ni phase diagram 

from 45 to about 60 at.-% Ni (Fig. 2.1). Stoichiometric NiAl exists at Ni- 50 

Al (at. %). The crystal structure of NiAl is primitive cubic CsCl structure. 

The strukturbericht designation for this structure is B2 (Villars, Calvert, & 

Pearson, 1985), which is described as two interpenetrating cubic lattices 

where Al atoms occupy one sublattice and Ni atoms occupy the other as 

shown in Fig. 2.2. Stoichiometric NiAl congruently melts at 1911 K. The 

lattice parameter of NiAl is 0.2887nm (A. Taylor & Doyle, 1972). Since NiAl 

exists over a range of compositions, the lattice parameter varies strongly 

with respect to composition. The maximum of lattice parameter occurs at 

stoichiometric composition and goes down on either side.  
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Figure 2.2: B2 ordered unit cell of NiAl (Georg Frommeyer & Rablbauer, 2008) 

The density of NiAl decreases linearly with increasing Al concentration, 

though a change in slope of the density variation occurs at stoichiometric 

composition which has a density of 5.90 g/ cm3 (A. Taylor & Doyle, 1972). 

Stoichiometric NiAl has excellent phase stability when compared to other 

intermetallic compounds with B2 structure, because of having one of the 

largest heats of formation (Kubaschewski, 1958). It has been observed 

that significant ordering exists in NiAl upto the melting temperature. It 

has also been observed that NiAl is also very stable against radiation dam-

age (Mori, Fujita, Tendo, & Fujita, 1984), which makes it a promising can-

didate for nuclear applications. 

The elastic properties of single crystal NiAl have been found to be very 

similar to the polycrystalline values. The Young’s modulus values of NiAl 

is observed to be very sensitive to the temperature and heat treatments, 

while composition has almost no effect on the values. The Young’s modu-

lus of NiAl has been reported to be around 190 GPa (Rusović & Warlimont, 

1977)(Rusović & Warlimont, 1979). The Young’s modulus of NiAl de-
creases linearly with the increase in the temperature. Other physical prop-

erties of NiAl also depend strongly on the temperature. The list of im-

portant physical properties is tabulated in the table 2.1. 
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Table 2.1: Important Physical properties of NiAl (Dey, 2003) 

Properties NiAl 

Electrical resistivity (10-8 Ωm) 8-10 

Thermal conductivity (W/m.K) 76 

Thermal expansion coefficient (10-6/K-1) 13.2 

Lattice parameter (nm) 0.2887 

Young’s modulus (GPa) 190 

Specific heat (J/g.K) 0.64 

Melting point (K) 1911 

2.1.2 Mechanical properties 

Operative slip system 

Several studies have been performed to determine the operative slip sys-

tems in near stoichiometric single crystalline NiAl as well as polycrystal-

line NiAl both theoretically and experimentally. Some important theoret-

ical studies with respect to slip in NiAl are discussed ahead. Rachinger and 

Cottrell (Rachinger & Cottrell, 1956) made the theoretical prediction on 

the basis of ordering energy and predicted <001>{110} slip system in 

NiAl. Lautenschlager et al. (Lautenschlager, Hughes, & Brittain, 1967) an-

alysed slip modes in terms of a hard sphere model suggesting that 

<001>{110} and <001>{100} should be the primary slip system in NiAl. 
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Ball and Smallman (Ball & Smallman, 1966b) used anisotropic elasticity 

theory and predicted the operative slip system to be <100>{011}. Yoo et 

al. (Yoo, Takasugi, Hanada, & Izumi, 1990) studied NiAl system using en-

ergetic and kinetic aspect of dislocation motion and have concluded that 

the <001> slip should occur in NiAl. To conclude, all theoretical study in 

case of NiAl, regardless of technique, agree that NiAl should have a<100> 

slip vector and {011} slip plane with the possibility of slip occurring on 

{001} planes.  

Experimental observations suggest that the NiAl single crystals slip be-

haviour strongly depends on the orientation with soft orientation and 

hard orientations. All the non- [001] orientated NiAl single crystals are 

termed as soft orientation as compared to hard [001] oriented NiAl single 

crystals. A number of experimental studies and techniques have been em-

ployed to identify the slip system in both hard and soft oriented NiAl sin-

gle crystals.  

In soft orientations, for example, Pascoe and Newey (Pascoe & Newwy, 

1968) identified a <001> slip vector by slip trace analysis, Ball and Small-

man (Ball & Smallman, 1966a)(Ball & Smallman, 1966b) observed <001> 

{110} slip by TEM. Cross slip and pencil glide on {110} plane was also ob-

served. In almost all the studies, the only observed slip systems have been 

<001> {110} and <001> {100} and are independent of the employed tem-

perature of deformation. 

In case of hard-[001] orientations, the resolved shear stress reaches al-

most zero and stress required to plastically deform the specimen is sev-

eral times higher than for the soft orientations at low and intermediate 

temperatures (R. R. Bowman & Noebe, 1992). At low temperatures, the 

observed slip direction is <111> on either {123}, {112} or {-110}. From 

room temperature till ~600 K both kinking and deformation by <111> on 

{-1 -1 2} and {-110} planes have been observed. At higher temperatures, 

above 600 K deformation is observed to be the result of either <001> type 

dislocation, <011> type dislocation or a combination of climb and glide on 

both (Noebe et al., 1993). Studies on the polycrystalline NiAl with respect 
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to the slip systems (R. Bowman, Noebe, Raj, & Locci, 1992) conclude that 

the deformation of polycrystalline NiAl occurs by <001> dislocation oper-

ation.  

Ductility 

The room temperature ductility of single crystals is anisotropic and de-

pends on the orientation. The ductility of single crystalline NiAl also de-

pend on the stoichiometry, interstitial content, impurities. ‘Hard’ single 

crystal NiAl fail after only elastic elongation, while soft single crystals 

show plastic elongations up to about 2% (Lahrman, Field, & Darolia, 

1990). Inadequate dislocation sources, low dislocation mobility and low 

fracture stress are some of the factors considered to be responsible for the 

low ductility of the NiAl single crystals. The DBTT of hard single crystal is 

around 673 K while the soft single crystal become ductile at around 473 K 

(Lahrman et al., 1990).  

The room temperature ductility of polycrystalline NiAl is generally very 

limited and is dependent on the stoichiometry, grain size, texture, impuri-

ties etc. As we have already discussed about the operative slip systems in 

binary NiAl, the <001> slip direction provides for only three independent 

slip systems. This limitation has been argued as the main reason of the 

limited ductility as five independent slip systems are generally considered 

the minimum requirements for reasonable ductility (Ball & Smallman, 

1966b). The ductile to brittle transition temperature DBTT of polycrystal-

line NiAl is around 700 K, above which polycrystalline NiAl becomes very 

ductile and plastic elongations of around 40% have been observed at 873 

K (Hahn & Vedula, 1989). It is believed that both climb and glide are re-

sponsible for the increased ductility as additional slip systems have not 

been observed to operate at higher temperature.  

Strength 

The yield strength of stoichiometric polycrystalline NiAl and ‘soft’ NiAl 

single crystal is very low compared to existing Ni-based superalloys used 
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today and therefore cannot be considered to be used in high-temperature 

structural applications in an un-alloyed state. The yield strength of NiAl 

single crystal in soft and hard orientation and NiAl polycrystals are shown 

in Fig. 2.3 along with strengths of existing Ni-based superalloys. NiAl sin-

gle crystals in ‘hard’ orientation on the other hand shows reasonable 

strength values (Darolia, 1991)(Hack, Brzeski, & Darolia, 1995). The 

strengths of ‘hard’ single crystal NiAl, although being superior to ‘soft’ 

NiAl, is strongly dependent on the stoichiometry and temperature. The 

strengths drops rapidly with increasing temperature (Pascoe & Newwy, 

1968). Deviation from stoichiometric composition leads to strong incre-

ment in the strength levels. But this effect also diminishes with the in-

crease in temperatures and at around 1400K, the strength levels of stoi-

chiometric NiAl is similar to non-stoichiometric NiAl (Pascoe & Newwy, 

1968).  

Fracture properties 

The single crystal fracture toughness of NiAl depends on the crystallo-

graphic directions, specimen configuration and geometry of the notch. 

Specimens with straight notch tested in <110> orientation have KIC values 

of 4-5 MPa-m1/2 (Reuss & Vehoff, 1990) while, for <100> orientation, it is 

around 8 MPa-m1/2  (Chang, Darolia, & Lipsitt, 1992). The fracture tough-

ness of the single crystals also increases with increasing temperatures to 

about 15 MPa-m1/2 near 500 K for <110> specimens and to about 30 MPa-

m1/2 for <100> specimens. 
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Figure 2.3: Yield strength of single crystalline and polycrystalline NiAl in ‘hard’ and ‘soft’ 
orientation v/s temperature (Darolia, 1991) 

Fracture of polycrystalline NiAl is predominantly intergranular at RT 

(Hahn & Vedula, 1989), which changes to transgranular cleavage at 

around 600 K. Above 900 K, the fracture occurs by ductile fracture. The 

fracture toughness (KIC) of polycrystalline binary NiAl is ~ 4-6 MPa-m1/2 

at room temperature (Kumar, Mannan, & Viswanadham, 1992)(H. E. Cline, 

Walter, Lifshin, & Russell, 1971). The fracture toughness increases with 

increasing temperature as a result of increased crack tip plasticity at ele-

vated temperatures. The processing of NiAl also affect the fracture behav-

iour and while zone-refined NiAl shows KIC values of around 50 MPa-m1/2 

at 673 K, the values for as-cast NiAl values increase to only 10 MPa-m1/2 

(Reuss & Vehoff, 1990). 

To summarize, although having excellent physical properties, the me-

chanical properties of NiAl, especially with respect to ductility and frac-

ture toughness at room temperatures, need improvement for replacing 

Ni-based superalloys. The poor room temperature ductility and fracture 
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toughness are mainly attributed to the lack of sufficient number of inde-

pendent number of slip systems in NiAl. There has been considerable 

amount of research in the past focusing on improving the properties of 

NiAl, producing single crystals to eliminate grain boundaries, alloying 

with other elements (metals, non-metals and intermetallics), as well as 

different processing methods to produce high purity alloys (R. Bowman et 

al., 1992; Darolia, 1991; Georg Frommeyer & Rablbauer, 2008; Daniel B. 

Miracle & Darolia, 2000; Noebe et al., 1993). One of the most promising of 

these approaches is to alloy binary NiAl with refractory metals producing 

eutectic alloys, and processing of these eutectic alloys by directional so-

lidification, which is discussed in the following. 

2.2 NiAl-X directionally solidified eutectics 

Alloying with refractory metals such as Cr, Mo, Re, V to produce eutectic 

alloys have been shown to improve the toughness and creep strength from 

binary NiAl values (W. Chen et al., 2004; C. T. Liu & Horton, 1995; Pank, 

Koss, & Nathal, 1990; Rablbauer, Fischer, & Frommeyer, 2004).  

For further improvements in the properties, processing of these eutectic 

alloys by directional solidification results in in-situ composite microstruc-

tures where the phases are aligned in the growth directions (Bei & George, 

2005; Bei et al., 2004; Haenschke et al., 2010; D. R. Johnson, Chen, Oliver, 

Noebe, & Whittenberger, 1995a; Misra, Wu, Kush, & Gibala, 1998; 

Whittenberger, Raj, Locci, & Salem, 1999; Yang, 1997a). These in-situ com-

posites, in which the phases are formed simultaneously during the com-

posite fabrication, are differentiated from ex-situ composites, in which a 

second phase is produced separately and inserted into the matrix exter-

nally after the solidification of the matrix phase. 

A number of key factors must be considered in the directional solidifica-

tion of the alloys, such as alloy composition, growth velocity and under-

cooling at the solidification front. Depending on the set of parameters cho-

sen for directional solidification, different composite microstructures are 
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obtained which can either have a rod-like or lamellar morphology. Jackson 

and Hunt (Jackson & Hunt, 1966) have discussed in detail, the role of these 

factors on the growth structures of these eutectics. The details of direc-

tional solidification process is not discussed in this thesis and readers are 

referred to book “Fundamentals of solidification” (Kurz & Fisher, 1986) 

for further information. 

This study has been focused on directionally solidified NiAl-Cr eutectic al-

loy produced at different solidification velocities. Cr was selected as the 

alloying element as it is one of the lightest elements among the various 

refractory metals identified in order to improve the mechanical proper-

ties of binary NiAl. A lot of research has been conducted on the effect of 

solidification parameters of ternary NiAl-Cr eutectic. Cline and Walter 

(Walter & Cline, 1973) have investigated the effects of alloying additions 

and processing conditions and relative stabilities of these microstruc-

tures. They have shown that transition from rod-like to plate-like mor-

phology in NiAl-Cr eutectic starts with addition of 1.3% V and, at 5%, it 

completely changes to lamellar structure, while in case of tungsten addi-

tion, the transition starts at 0.7%. Similarly, replacing 0.6% Cr from NiAl-

Cr eutectic by same amount of Mo causes the formation of faceted Cr(Mo) 

rods and plates instead of non-faceted rods. Walter and Cline (Walter & 

Cline, 1970) have also investigated the effect of the solidification rate on 

the microstructure of these eutectics. They showed that for the NiAl-Cr 

eutectic the spacing between the fibers decreases with solidification 

speed as V-1/2, where V is the solidification speed. Also increasing the so-

lidification speed above 1 inch/hr results in the formation of a cellular 

structure and the number of cells increases with the solidification speed. 

The alloying additions and processing conditions, by affecting the result-

ing microstructure of the eutectics, affects the properties of the alloy. Sev-

eral studies have been performed on the mechanical properties of differ-

ent ternary and quaternary alloys of NiAl-Cr and NiAl-Cr(X), X being Mo, 

Hf, Re, V, in relation to the solidification speed, final microstructure, and 

faults in the structure. Walter and Cline (Walter & Cline, 1970) examined 
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the effect of alloying addition and solidification speed on the high temper-

ature strength of NiAl-Cr alloys and concluded that the tensile strength at 

600 °C increases greatly with decreasing the inter-fiber spacing. At higher 

temperatures of 800 °C and 1000 °C the strength first increases and then 

decreases with decreasing fiber spacing, while at 1200 °C the strength de-

creases slightly with inter-fiber spacing.  

Johnson and co-workers (D. R. Johnson, Chen, Oliver, Noebe, & 

Whittenberger, 1995b) studied the mechanical properties of NiAl-Cr and 

NiAl-(Cr, Mo) eutectic alloys with different growth velocity. They have ob-

served a fiber-matrix composite structure for NiAl-Cr and NiAl-(Cr, Mo) 

up to 0.6 % of Mo. Adding more than 0.6 % of Mo transforms the micro-

structure to a lamellar microstructure. The NiAl-Cr and NiAl-(Cr-Mo) sam-

ples both showed improved strength and creep properties compared to 

binary NiAl, although when compared to Ni-based superalloys, these al-

loys were found to be much weaker. Similarly, the fracture toughness of 

these eutectics were found to be significantly higher than binary NiAl, 20 

MPa-m1/2 for DS eutectics as compared to 6 MPa-m1/2 for the polycrystal-

line NiAl or 11 MPa-m1/2 for single crystal NiAl. The fracture morphology 

and different mechanisms responsible for the increased fracture tough-

ness in these DS eutectic alloys are discussed in detail in their publication. 

Whittenberger and co-workers (Whittenberger et al., 1999) have dis-

cussed the room temperature fracture properties of NiAl-31Cr-3Mo, 

which is directionally solidified at a range of solidification velocities from 

7.6 mm/h to 508 mm/h. The samples had a lamellar microstructure, alt-

hough it was noted that except for a solidification speed of 12.7 mm/h, all 

the samples showed cellular microstructure enclosed by intercellular re-

gions. They found that the RT fracture toughness values fall in two groups; 

at lower solidification speeds, the fracture toughness values lie around 12 

MPa-m/12 while increasing the solidification speed further resulted in 

higher fracture toughness values of around 17 MPa-m1/2. They have also 

found that the NiAl-31Cr-3Mo alloys produced with growth velocities 

higher than 25 mm/h had similar mechanical properties.  
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Suffice to say, the best suited alloying elements and corresponding solidi-

fication speeds to achieve the optimum mechanical properties in NiAl 

based directionally solidified eutectic alloys is yet to reach a consensus. As 

explained above, Walter and Cline and Johnson and co-workers among 

others, have reported significant effect of alloy composition and pro-

cessing conditions on the mechanical properties of these DS eutectics, 

while Whittenberger and co-workers report that above certain growth 

speeds the mechanical properties are nominally similar. Therefore, it be-

comes very important to systematically study these directionally solidi-

fied eutectics and efforts must be made to develop our understanding of 

deformation mechanisms of these eutectics and the role of the individual 

phases and interfaces.  

Several studies have been focused towards developing a better under-

standing of the micromechanics of deformation of these eutectics. Cline et 

al. (E. Cline, Walter, Koch, & Osika, 1971) have studied the dislocation 

structures at the interface of NiAl and Cr fibers in as prepared direction-

ally solidified NiAl-Cr eutectic. They have observed that the interface be-

tween the NiAl matrix and the Cr fiber consists of a network of interface 

dislocation which surrounds the Cr fiber along the curved interface. These 

dislocation network is believed to be formed to reduce the internal 

stresses caused during the solidification process arising due to small dif-

ference in the lattice parameters of the two phases. These dislocations 

were found to be mostly of a˂100> type edge dislocation, although some 

parts of these interface dislocation network may contain dislocation of 

other Burgers vectors. They also estimated the lattice mismatch between 

the two phases based on the measurement of the dislocation spacing in 

the network to be around 0.35 %. It must be stated that this value is based 

on the equilibrium lattice parameters and the actual value of lattice mis-

match may differ from the equilibrium values. 

Other studies focusing on studying the dislocation structures and their 

contribution to the deformation and fracture behaviour have been per-

formed. Misra and Gibala (Misra & Gibala, 2000) for example have studied 

the dislocation evolution in the deformation of NiAl-34(at. %) Cr and NiAl-
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9(at. %) Mo alloys. They examined the dislocation structures in the as pre-

pared, low deformed and high deformed alloys. The as-prepared NiAl-Cr 

eutectic alloy, show a cube on cube orientation relationship between NiAl 

matrix and Cr fibers, with growth direction <001> in both phases. The in-

terface is reported to be semi-coherent with a network of interface dislo-

cation surrounding the fiber to accommodate for the lattice mismatch. 

Very limited or no tensile ductility was observed in them and therefore, 

these samples were deformed in compression to 0.5 % strain and 2 % 

strain. The low deformed 0.5 %-sample on TEM examination revealed dis-

locations only in the NiAl matrix. These dislocations were found to be 

<100> type which are believed to be emitted from the interface between 

matrix and fiber. At higher strains, dislocations in the Cr fiber were ob-

served, although they did not observe any evidence of direct slip transfer 

across the interface.  

Recently, Kwon et al. (Kwon et al., 2015) have discussed the dislocation 

evolution and deformation mechanisms in directionally solidified NiAl-

Mo alloy. They have observed all three types of a<100> dislocations in the 

NiAl matrix in the undeformed specimens surrounding the Mo fiber, and 

the Mo fibers were predominantly dislocation free. This also corresponds 

to the observation by (Bei et al., 2007) where undeformed Mo fibers show 

very high strength values of ~9GPa, close to theoretical strength under 

compression, and were found to have very small number of dislocations 

(Phani et al., 2011). Based on the TEM observation of dislocation struc-

tures in undeformed, 4% strained and 16% strained samples, it is sug-

gested that the NiAl matrix deforms first which leads to accumulation of 

<100> type dislocations on the interface. This activates a/2<111> slip in 

the Mo fibers with increasing strains and at very high strains, the 

a/2<111> slip in the Mo fibers then triggers the <111> type dislocations 

in the NiAl matrix.
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2.3 Ductile phase toughening concept 

Noebe and co-workers (Noebe, Misra, & Gibala, 1991) have explored the 

ductile phase toughening concept for NiAl based directionally solidified 

eutectics in detail in their work and proposed mechanisms involved both 

at macro- and at microstructural level, when a ductile phase is incorpo-

rated in the brittle matrix.  

Macrostructural toughening 

When a ductile phase is introduced in a brittle matrix, the ductile phase 

interacts with a crack growing through the brittle matrix. The ductile 

phase may be in the form of isolated particles, interpenetrating networks, 

or continuous lamellae or fibers. The amount of toughening observed is 

strongly related to the volume fraction and morphology of the second 

phase. Toughening can occur by several different mechanisms, such as 

crack bridging, crack blunting and crack deflection (Fig. 2.4). 

Crack bridging (Fig. 2.4 a) helps in increasing the toughness of the brittle 

matrix by the ductile phase bridging the growing crack by requiring plas-

tic deformation behind the crack front. Thus, further opening of the crack 

requires more energy. The volume fraction of the second phase and the 

size of the individual particles of the second phase have a great effect on 

the increase in toughness that can be achieved. Toughening by a continu-

ous second phase is more powerful since the energy required for the plas-

tic deformation of the bridging phase can become quite large. Limited 

debonding further enhances the toughening of the alloy, although exten-

sive debonding is not favourable as this will lead to a reduction of the tear-

ing modulus. 
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Figure 2.4: Macrostructural toughening mechanism in a brittle matrix containing a ductile 
phase; a) crack bridging, b) crack blunting and c) crack deflection (Noebe et al., 1991) 

In crack blunting (Fig. 2.4 b), when the advancing crack tip meets the duc-

tile phase, localized plastic deformation leads to the relaxation of the 

stresses at the crack tip, delaying the propagation of the crack. Low yield 

strength of the ductile phase will maximize this effect.  

A second phase particle which has a weak bond with the matrix may lead 

to toughening by crack deflection mechanisms. As shown in Fig. 2.4 c, the 

crack redirects to a new path when it encounters a second phase which 

decreases the overall stress intensity at the interface. Crack deflection is 

the weakest of the three mechanisms. In general, more than one of these 

mechanisms can be involved in providing the toughening of the brittle  

matrix.  

Microstructural toughening 

At a microstructural level, toughening is achieved by successful transfer 

of plastic strain from the ductile phase to the brittle matrix. The process 

of strain transfer, in general, may take place either by direct transmission 

of dislocations from one phase to the other, or by nucleation of additional 

dislocations in the neighbouring phase. 

Direct transmission of dislocations across the interface boundary requires 

a dislocation reaction, in which one part of the product dislocation is 

transferred to the second phase while the other part remains in the parent 

phase. While this has been observed in single phase materials across grain 
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boundaries, it very difficult to achieve in two phase materials unless they 

have a coherent interface. Therefore, the strain transfer in the two-phase 

material is likely to take place by nucleating dislocations in the brittle 

phase.  

Fig. 2.5 represents the schematic model of the strain transfer process in a 

two phase material which is based on the work by Lee and co-workers 

(Lee, Robertson, & Birnbaum, 1990), where they have examined the slip 

transfer process across grain boundaries in single phase materials. This 

understanding can be transferred to the slip transfer process in materials 

with a second phase as well. Three criteria were identified which deter-

mines the slip system which is activated in phase 2 (brittle) by stress con-

centration in phase 1 (ductile) due to the constrained deformation of 

phase 1 (ductile). When the orientation relationship between the two 

phases is such that the angle α is minimized and interface is strong, it leads 

to the rise in the stress at the interface due to the pile up of the dislocations 

in phase 1(ductile), which results in the dislocation nucleation at the in-

terface. These dislocations which are generated at the interface, contrib-

ute to the plastic deformation of the phase 2 (brittle) matrix and thus 

providing additional ductility and toughness. 
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Figure 2.5: Schematic diagram of strain transfer process across the two phase interface 
((Lee et al., 1990)) 

2.4 Small scale mechanical testing 

As explained in the previous section, the mechanical properties of materi-

als at the micro-/nano-meter regimes may be considerably different from 

the bulk properties which are usually determined by the conventional me-

chanical testing methods. Therefore, the need to determine the properties 

and response of materials at these small scales cannot be understated. Me-

chanical testing at small scales poses considerable challenges compared 

to conventional mechanical testing owing to the small size of the samples 

involved, where at least one of the dimensions is in the micro-/nano-me-

ter regime, and lack of standardised testing. Application and measure-

ment of very small quantities of load and displacements, proper imaging 

techniques with good resolution and ability to measure the properties 

free from the environmental ‘noise’ are very important to any small scale 

mechanical testing system in order to reveal and understand the defor-

mation processes at this scale. In order to obtain clean and interpretable 

testing, several alternative testing methods have been developed in the 

recent past. Some of these developed testing methodologies, relevant to 

this study, are discussed in this section.  
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Nanoindentation 

Nanoindentation is a versatile tool for studying deformation of material at 

small scale. Conventional indentation testing consists of contacting a ma-

terial whose mechanical properties such as hardness and modulus are to 

be determined with a hard indenter tip, whose properties are known, by 

the application of a controlled load P. Nanoindentation is the extension of 

these methods on the micro and nano-scale regime where the depth of 

indentation is in nanometers rather than micrometers or millimeters. One 

of the important features of nanoindentation is the indirect measurement 

of the contact area. Due to very small size of the indents, optical methods 

to determine contact area for the hardness evaluation can lead to large 

errors in the measurements. The contact area in nanoindentation is deter-

mined by measuring the depth of indentation during loading and unload-

ing and converting this into area using the known geometry of the in-

denter (Oliver & Pharr, 1992, 2004). This involves simultaneous measure-

ment of the applied load P and the indentation depth h, down to nanome-

ter regime. Therefore, these techniques are also sometimes referred to as 

depth sensing indentation technique or instrumented indentation tech-

nique (IIT) (Fischer-Cripps, 2004). A comprehensive review of 

nanoindentation method and its application can be found in (Palacio & 

Bhushan, 2013; Schuh, 2006). A typical modern nanoindentation set up 

consists of an indenter head (for the application of load by a coil/magnet 

assembly), an optical microscope for visualization of sample surface and 

indents, and an x–y–z motorized table for positioning and transporting the 

sample between the indenter assembly and optical microscope (Fig. 2.6).  

One important feature of modern day nanoindentation testing is the use 

of the Continuous Stiffness Measurement (CSM) (Oliver & Pharr, 2004) 

which is used to measure the contact stiffness ‘S’, at each point during the 

loading. Traditionally S was determined by calculating the slope of the un-

loading cycle of a nanoindentation test. But this only enabled the users to 

calculate the stiffness at the maximum load and the amount of data used 

to determine the initial unloading stiffness was not standardized, which 

was a source of error in these measurements. CSM enables a continuous 
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measurement of the stiffness by imposing a small dynamic oscillation on 

the force signal and measuring the amplitude and phase of the corre-

sponding displacement signal by means of frequency specific amplifier. 

 

Figure 2.6: Nanoindenter G200 set up showing the indenter head, optical microscope and 
sample stage for transporting sample between indenter head and microscope 

The distinct advantages of using CSM can be summarized as: 

1. Provides continuous results as a function of depth. 

2. Calibration time is heavily reduced as there is no need of multiple 

loading. 

3. Effects of time dependent plasticity and thermal drift are reduced.  

4. It also helps in identifying the point of initial contact as the stiffness 

changes suddenly at the point of initial contact. 

Although, the most common use of nanoindentation is to determine the 

Hardness and Young’s modulus, considerable advances have been made 

in the measurement of the other parameters such as hardening exponent, 
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creep properties, residual stresses, nano tribological studies, fracture 

properties (Fischer-Cripps, 2004; Schuh, 2006). 

Due to the very small size of the samples probed during a typical 

nanoindentation study, it has proved to be apt for detection and in-depth 

study of different discrete events occurring during the deformation of the 

material, for example detection and understanding plastic yield at na-

noscale, development of dislocation network manifested in terms of pop-

in events associated with movement, multiplication and evolution of com-

plex defect structures, understanding mechanical instabilities occurring 

as burst of localized stains in amorphous materials and phase transfor-

mation under application of load (Fischer-Cripps, 2004). 

In-situ tensile testing 

Tensile testing has been the standard testing technique for bulk materials 

due to its ability to provide straightforward acquisition and interpretation 

of the important materials parameters such as yield strength and Young’s 

modulus.  Tensile testing is suitable for testing high aspect ratio quasi 1-D 

structures as it is not affected by elastic instabilities. In-situ testing of ma-

terials at small scale is an attractive technique as it allows for the obser-

vation of the underlying deformation mechanisms while monitoring the 

mechanical response, thus offering useful insights for establishing struc-

ture-property relationship.  

The major challenges for any in-situ testing can be summarised as:  

1. Fabrication of stress free and free-standing specimen 

2. Proper gripping of the specimen 

3. Accurate alignment of the specimen with the loading axis, and 

4. Generation and detection of very small forces and displacements 

Brenner in 1950s (Brenner, 1956, 1957) reported the pioneering work on 

tensile testing metallic filaments with diameters in the range of few micro-

meters using an instrumented tensile testing set-up. Qualitative stress-

strain data was obtained using the optical microscope for imaging in the 
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set-up. Since then, a variety of similar approaches has been used to char-

acterize fibers, whiskers and filaments. Throughout the following decades 

several developments have been made to incorporate instrumented ten-

sile testing into electron microscopes, which has allowed for testing of 

smaller fibers, in micro-/nano-meter regimes, which are too small for im-

aging by conventional light microscopy. Actuation and measurement of 

load and displacement are commonly achieved by piezoelectric, thermal, 

electrostatic and electromagnetic techniques. Development of Micro/ 

Nano electro mechanical systems (MEMS/ NEMS) have enabled the whole 

testing setups to be fitted inside SEM chambers and even into TEM sample 

holders (Kang, Rajagopalan, & Saif, 2010).   

Yu et al. reported the use of Atomic Force Microscope (AFM) cantilevers 

and combination of commercially available stages for manipulation of the 

specimen while piezo actuator was used for displacement application. The 

AFM cantilevers act as a force sensor simultaneously. Zhu et al. (Y. Zhu & 

Espinosa, 2005) studied the size effect on mechanical behaviour for nan-

owires in TEM, using a MEMS based set-up. Kiener et al. studied FIB pre-

pared miniature dog-bone shaped samples in-situ in TEM. A form locking 

grip was produced by FIB milling and attached to the head of a commercial 

nanoindenter for tensile testing. In-situ tensile testing using a combina-

tion of SEM and FIB (Rzepiejewska-Malyska et al., 2008) have sparked 

several studies in recent years. Gianola et al. (Gianola et al., 2011)reported 

the development of quantitative in-situ testing approach using a dual 

beam SEM/FIB system. Load application and displacement measurement 

was done by a nanomechanical transducer. Manipulation and alignment 

of the specimen was carried out by using custom build set-up capable of 

3-axis positioning stage and nano-manipulator systems. SEM images cap-

tured at regular intervals were used for strain calculation by digital image 

correlation (DIC). 

 

 



2  State of the art   

28 

Micro pillar compression 

Micro pillar compression testing was introduced by Uchic et al. in 2005 

(Uchic & Dimiduk, 2005) for evaluating the flow properties of the materi-

als using small scale specimens ranging from several micrometers to sub 

micro-meter in size. Micro pillars were prepared by Focused Ion Beam 

(FIB) milling into the bulk substrate. Thus, the substrate acts as the lower 

compression plate during the test, when the top surface of the pillar is 

compressed by a flat punch indenter tip in a nanoindenter system. A large 

amount of research has been dedicated since then following the technique 

to investigate a variety of materials at small scales. Several reviews of mi-

cro pillar compression testing, observed phenomenon and concepts ex-

plaining the observed phenomena has been published as well (Greer & De 

Hosson, 2011; Greer, Weinberger, & Cai, 2008; D. Kiener, Motz, & Dehm, 

2009; Uchic, Shade, & Dimiduk, 2009a; T. T. Zhu, Bushby, & Dunstan, 

2008).  

The majority of micro pillars are prepared by FIB milling, which is useful 

in the careful selection and control of the location and the size of the micro 

pillar prepared. Fabrication of micro pillars by FIB milling can be classi-

fied into two main processes. Annular milling is the first process where 

the ion beam is oriented normal to the sample surface. The samples fabri-

cation process is easy in this orientation and can be produced by stock 

milling patterns in a relatively short time. Single passes of low beam cur-

rents with a longer dwell time were used to remove the material from the 

rim of the pillar in steps till the desired diameter is achieved. One of the 

most important concern with the samples prepared by annular milling is 

that there is always a certain degree of taper associated with the process 

such that the diameter at the top is always smaller than the base diameter. 

This, in general, leads to the concentration of plastic deformation on the 

top of the pillars and induced a strain gradient along the pillar. Another 

concern in the annular milling is the difficulty to control the aspect ratio 

(length to diameter ratio) of the pillars. In general, the preferred taper in 

the micro pillars prepared by annular milling is within 2 to 5 degrees and 

the preferred aspect ratio is in the range of 2:1 to 3:1.  
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In lathe milling process, the sample is oriented in such a way that the angle 

between the sample surface and FIB column is minimum. The milling is 

done on the sides of the pillars along the length. After each milling step, 

the pillar is rotated few degrees and then the same process is repeated. 

The whole process is usually automated, a special fiducial mark is milled 

on the top of the pillar so that the software can take images after each 

milling step and realign the pillar automatically. The advantages of using 

this process is that it produces very smooth and taper free pillars. On the 

other hand, due to the direct exposure of sample under the ion beam and 

the requirement to take several FIB images and fiducial marks, the 

chances of Ga ion implantation in the sample are very high which can alter 

the properties measured. Also, the whole process is fairly cumbersome 

and difficult to control.

Irrespective to the two process used, a common concern over samples 

prepared by the FIB milling is the effect of irradiation damage due to high 

accelerated Ga+ ions on the mechanical properties of the materials evalu-

ated by micro pillar compression tests. The work by Greer and Nix (Greer 

& Nix, 2006; Greer, Oliver, & Nix, 2005) evaluated the effect of FIB irradi-

ation damage by comparing samples with varying degree of irradiation 

damage. Their experiments reveal that the all the samples, prepared by 

FIB milling having irradiation damage, showed similar properties, while 

electrodeposited micro samples had higher strengths than those with FIB 

damage, although both type of processes showed similar size dependent 

strengthening trends. Kiener et al. (Daniel Kiener, Motz, Schobert, Jenko, 

& Dehm, 2006) argued that the Ga+ ion contamination in the samples pre-

pared by the FIB milling can act as a barrier for dislocation motion which 

can influence the mechanical response of the material. Hütsch and Lilleod-

den (Hütsch & Lilleodden, 2014) have compared the effects of ion damage 

during the FIB milling of pillars in lathe and annular milling processes and 

found that although the lathe milling process produces better samples ge-

ometries, the amount of ion damage is much larger compared to the An-

nular milling and may affect the properties of the material under investi-

gation significantly. 
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Other methods of preparing micro pillars include microelectronic-based 

processes to create array of metal pillars (Greer & Nix, 2006) or semicon-

ductor pillars (Moser, Wasmer, Barbieri, & Michler, 2007) and selective 

etching of directionally solidified alloys (Bei et al., 2007). These studies on 

the micro pillars prepared by alternative methods not only highlight the 

effects of FIB damage on the samples, but also provide useful insight into 

the size dependence of strength observed in these tests.

2.5 Mechanical size effect 

Mechanical size effect can be described as the change in response of a ma-

terial due to the reduction in the length scale of either the internal struc-

ture of the material or the reduction in the overall dimension of the sam-

ple itself. Classical continuum models typically used to describe the mate-

rial behavior at bulk scale are size independent. However, it has been 

shown repeatedly over the last decades, that when the materials dimen-

sions are in the range of micro/ nano meter regime, the strength increases 

rapidly and conventional models are not suitable to describe the material 

behavior at these scales. The size effect in material can be classified into 

two broad categories, ‘intrinsic’ and ‘extrinsic’ size effects. Intrinsic size 

effects result due to the changes at microstructural level, while the extrin-

sic size effects arise from dimensional constraint due to small sample size 

or even small test volumes under strain. There are several comprehensive 

reviews available in the literature focusing on understanding mechanical 

size effects in metallic materials (Greer & De Hosson, 2011; T. T. Zhu et al., 

2008). The mechanisms and results discussed in the present work are fo-

cused on the confined deformation of single crystals and therefore, extrin-

sic constraints. The extrinsic size effect is discussed in detail in this sec-

tion, although a brief overview of the intrinsic size effect is presented as 

well.  
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Intrinsic size effect 

Intrinsic size effects are primarily controlled by materials processing his-

tory. Grain size, particles, solute atoms, precipitates and dislocations act 

as a microstructural constraint in the classical metallurgical concepts. In-

teraction of dislocations with these barriers lead to the length-scale de-

pendent behaviour of the materials. Particles, solute atom and dislocation 

spacing and grain size with respect to the dislocation loop diameter are 

the relevant parameters for the occurrence of the size effect in mechanical 

behaviour (Arzt, 1998). For the latter, the dependence is given in general 

by a power-law relationship: 

𝜎𝑦 =  𝜎0 + 𝑘 𝑑𝑛   (2.1) 

where, 𝜎𝑦 is the yield strength and 𝜎0 is the bulk strength, k is a constant, 

d is the grain size of the investigated material and n is the power-law co-

efficient.  

In a polycrystalline material, the interaction between the grain bounda-

ries and the defects is the main cause of the observed size effect as first 

reported by Hall (Hall, 1951) and Petch (Petch, 1953). The above relation-

ship with power-law coefficient of -0.5 is well known as ‘Hall-Petch rela-

tionship’ which describes the increase in the yield strength of a polycrys-

talline material with the decrease in grain size, as the grain boundaries in 

these polycrystalline materials act as obstacles to the dislocation motion. 

Although traditionally the increase in strength was attributed to disloca-

tion pile-up on the grain boundaries, other models namely, grain bound-

ary source model (Li, 1963), slip distance model (Chia, Jung, & Conrad, 

2005) and geometrically necessary dislocation (GND) model (Ashby, 

1970) have also been proposed to describe the size effect on strength       

(T. T. Zhu et al., 2008).  

When the grain size of the nanostructured materials are reduced in the 

range of ~40 nm, alternate plastic deformation mechanisms take over the 

traditional mechanism such as grain -boundary (GB) sliding, partial dislo-
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cation emission and adsorption at grain boundaries, since the nano-sized 

grains cannot accommodate multiple lattice dislocations (Greer & De 

Hosson, 2011). Upon further reduction of grain size to ~20 nm, a satura-

tion in strength or even an ‘inverse Hall-Petch’ relation has been observed 

due to the activation of the grain boundary assisted deformation. The de-

pendence of strength of the materials with respect to grain size is shown 

in the figure 2.7. 

 

Figure 2.7: Strength of polycrystalline materials with respect to the grain size: Hall-Petch 
relationship and transition to inverse Hall-Petch (Greer & De Hosson, 2011) 

Extrinsic size effect 

Extrinsic size effects arise due to dimensional constraint in the sample 

structures where one dimensions is very small compared to the other two, 

such as thin films and nano fibers. But, examination of pure dimensional 

constraint effects may be affected if the microstructural length scale is in 

the range or below the thickness of the structure. Therefore, to study the 

effect of dimensional constraint only, the preferred test geometries are 

single crystalline pillars and micro/nano fibers and ribbons.  
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The mechanical properties of thin films have attracted numerous studies 

and a variety of test methods have been developed in the past decades 

(Hommel, Kraft, & Arzt, 2017; O. Kraft, Hommel, & Arzt, 2000; O. Kraft & 

Volkert, 2001; Shen et al., 1998). Experiments carried out on the thin films 

on bulk substrate under mechanical and thermal loading have all revealed 

that the plastic response depends strongly on the thickness of the thin 

films with yield strength has been found to be inversely proportional to 

the film thickness. Misfit dislocation channelling theory, proposed by 

Frank and van der Merwe (Frank & van der Merwe, 1949), has been used 

to explain the increase in strength with decreasing film thickness, assum-

ing that the misfit dislocations are generated from the substrate and 

passed along the thin film channel. Plastic deformation occurs when the 

stresses are high enough to bow the dislocation loop such that it fits in the 

thin film channel.  For thin films with thickness in the micro-meter regime, 

the strain gradient plasticity theory (Hutchinson, 2000) is also used to ex-

plain the strengthening mechanism. The yield strength increase is be-

lieved to be caused by the presence of the GNDs (Ashby, 1970) which ap-

pear to accommodate the strain gradient in the thin films. Gruber et al. 

(Gruber, Solenthaler, Arzt, & Spolenak, 2008) have explored the defor-

mation of thin film under one dimensional constraint using Au thin films 

on a compliant substrate by a synchrotron-based tensile testing tech-

nique. They found that the flow stress of the films increases with the de-

creasing thickness but for films thickness below 80 nm, constant and even 

decreasing flow stresses were observed with decreasing thicknesses. The 

change in behaviour is attributed to the change in the deformation mech-

anism from perfect dislocations to partial dislocations as carrier for plas-

tic strain.  

In the past decade, there have been numerous studies, demonstrating the 

significant increase in strength associated with the reduction in the sam-

ple size for single crystals at micron- and sub-micron length scales. The 

development of instrumented test equipment

 

with highly sensitive force 

and displacement measurement and advanced imaging techniques had 

led to the wide variety of testing techniques that have been developed to 
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explore the extrinsic size effect on the properties of the materials. Several 

reviews (Greer & De Hosson, 2011; Oliver Kraft, Gruber, Mönig, & 

Weygand, 2010; Uchic, Shade, & Dimiduk, 2009b; T. T. Zhu et al., 2008) 

provide a comprehensive review of the dimensional constraints in mate-

rials and their influence on the properties of the materials. 

One of the earliest research of the properties of small scale single crystal 

was presented by Brenner (Brenner, 1956, 1957), where he showed that 

the single crystalline filaments, termed as whiskers, were able to with-

stand unprecedented levels of stresses and strains with a lot of them ap-

proaching the theoretical strengths of the material. These results firmly 

established the importance of specimen size for evaluating the strength of 

the components. These whiskers, although showing considerable scatter, 

showed sharp yield points followed by extensive glide at stresses lower 

than the yield stress. When the fractured whiskers were re-stressed, they 

showed even higher stresses, suggesting that deformation in these whisk-

ers is dominated by dislocation nucleation and followed the weakest link 

approach. Furthermore, the strength of the whiskers were also found to 

be inversely proportional to the length of the whiskers tested, which sug-

gested that the longer the specimen, the more is the probability to find a 

statistically stored dislocation which also explained the scatter in the data.  

More recently, tensile testing small whiskers was extended to nano meter 

regime when tensile tests were performed on Cu nanowires (Richter et al., 

2009), which reached even higher stresses than reported by Brenner. 

These nanowires were grown by novel synthesis techniques resulting in 

single crystalline, high aspect ratio and defect-free nanowires, confirmed 

by combination of different electron microscopy techniques. In-situ ten-

sile tests were performed on these Cu nanowires between sizes of 75 nm 

and 300 nm inside a dual beam SEM/FIB system. The thicker wires 

(>200nm) showed fracture occurred on slip planes having highest re-

solved shear stresses suggesting highly localized dislocation activity, 

while the thinner nanowires showed brittle fracture in absence of dislo-

cations. No plastic necking was observed in either case. The work by 



2.5  Mechanical size effect   

35 

         

Johanns et al. (Johanns et al., 2012)  tested high aspect ratio Mo rich single 

crystal fibers in tension and compared the mechanical behaviour with low 

aspect ratio micro pillar in compression (Bei et al., 2007). They show that 

although the smallest micro pillar in compression reach theoretical 

strength values, the fibers with similar diameters show a large scatter in 

the strength values between 1 GPa and 10 GPa. This behaviour can be ex-

plained by a weakest-link concept, which suggests that a large volume of 

the probed material will have a high probability of containing initial de-

fects, which would lead to localization of plasticity, thereby reducing the 

strength. Theoretical (Senger, Weygand, Motz, Gumbsch, & Kraft, 2011) 

and experimental (Mompiou et al., 2012) studies have been performed to 

confirm the weakest link approach. Senger et al. have shown by 3D Dis-

crete Dislocation Dynamic study that flow stresses in small samples follow 

weakest link statistics and results of simulations matches the experi-

mental observation well. Mompiou et al. have used in-situ SEM and TEM 

experiments to directly link the size effect mechanical behaviour of sub-

micron Al fibers with the initial dislocation density and distance between 

the source and the surface. 

Micro scale tensile tests on the samples produced by focussed ion beam 

(FIB) milling were performed by Kiener et al. (D. Kiener, Grosinger, Dehm, 

& Pippan, 2008) on single crystalline Cu samples of diameters varying 

from 0.5 µm to 8 µm and also with varying aspect ratios between 1:1 to 

13.5:1. Sample with high aspect ratios (>5:1) were reported to deform by 

slip in only one slip system. The presence of single slip indicated that the 

plastic deformation in these samples with higher aspect ratios is con-

trolled by a number of single dislocation sources. Each source is responsi-

ble for certain plastic deformation followed by the activation of the next 

source. Although the strengths observed were much lower than the theo-

retical strengths, a weak size effect was observed which was attributed to 

the size of the dislocation sources governing plastic deformation. In case 

of low aspect ratio samples, a strong size effect was observed with respect 

to the samples size. In addition, significant hardening was observed in 

these samples when compared to the high aspect ratio samples. This is 

explained using the dislocation pile-up theory.  
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The study by Uchic et al. (Uchic, Dimiduk, Florando, & Nix, 2004) which 

showed the influence of diameter on the mechanical response of the micro 

pillars in different materials, was the first of many micro pillar studies car-

ried out over the past decade. It has been observed that in general the 

strength of the micro pillars increases with decrease in the pillar diame-

ter, showing stochastic behaviour. This is mainly due to the individual slip 

events during deformation and is strongly dependent on the initial defect 

structure. Since then, pillar compression has been one of the most popular 

test methods to evaluate strengths for a variety of materials and a wide 

range of diameters, ranging from tens of micrometers down to few hun-

dred nanometers. In general, micro pillars show a strong size effect with 

respect to the pillar diameter with yield strengths found to scale according 

to eq. (1) with exponents between -0.5 and -1 (Reference). 

Efforts to explain the strong size effect observed in pillar compression 

tests have resulted in various mechanisms being proposed over the years. 

Generally, dislocation multiplication is  the main mechanism for strain 

hardening in metals as the increase in dislocation density leads to a hin-

drance of  the movement of mobile dislocations through the dislocation 

forest (Taylor hardening (G. I. Taylor, 1934). For the small pillars, how-

ever, it has been suggested (Greer & Nix, 2006) that the dislocations may 

run out through the surface and thus the increase in strength is related to 

dislocation starvation in the micro pillars(Greer et al., 2005). They have 

argued that for small enough sample dimensions, the mobile dislocations 

can only travel small distances and will leave the sample at the surface of 

the sample instead of interacting and multiplying. Thus, to continue the 

plastic deformation, higher stresses are required to activate less favoura-

ble dislocation sources or to nucleate new dislocations in the sample, sim-

ilar to the whiskers and nanowires. In-situ TEM study by Shan et al. (Shan, 

Mishra, Syed Asif, Warren, & Minor, 2008) provided evidence for disloca-

tion starvation mechanism, when they observed that the high dislocation 

density is reduced by application of mechanical stresses. However, Kiener 

and co-workers (D. Kiener, Motz, Schöberl, Jenko, & Dehm, 2006) have ar-

gued that the size effect  in micropillars can be attributed to some extent 
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to FIB induced damage layers, which may cause dislocation pile-ups at 

boundary layers which hinders the dislocation movement and thereby 

causing strengthening. The important role of the initial dislocation struc-

ture for the strength of micropillars was highlighted by Bei and co-work-

ers (Bei, Shim, Pharr, & George, 2008). They showed that similar to the 

study by (Mompiou et al., 2012) the amount of initial dislocation density 

greatly affects the mechanical response of the material. Investigation of 

pre-deformed pillars etched from directionally solidified NiAl-Mo eutectic 

alloy shows a transition from the bulk like behaviour at high pre-strains 

(11%) to intermittent stochastic behaviour at low pre-strains (4%) to 

high strength values approaching the theoretical strengths for unde-

formed (0%) samples. Furthermore, these results are in contrast to other 

pillar experiments as the samples sizes affects the pillar strengths much 

less than the initial dislocation density (Figure 2.8). Since the pillars were 

produced from an alternate method, they were free from Ga+ implantation 

from FIB and therefore, also highlights the importance of FIB beam dam-

age on the mechanical response of the materials.  

None of the above proposed models are capable of explaining the size ef-

fect due to the dimensional constraint solely. Different boundary condi-

tions dominate which mechanism dominates the deformation process and 

very often, various mechanisms may co-exist and interact with each other.  
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Figure 2.8: Yield strength of pillars with different prestrain levels with respect to the di-
ameter of the pillars (Bei et al., 2008) 

Size effect in BCC metals 

Plasticity in bcc metals, in general, is more complex as compared to fcc 

metals and deformation is influenced by temperature, strain rate and ori-

entation. Several studies have focused on understanding the small scale 

mechanical response of single crystalline bcc metals, many of them on Mo. 

Brinckmann et al (Brinckmann, Kim, & Greer, 2008) have performed com-

pression experiments on Mo and Au nano pillars and found that both met-

als exhibit size effects along with stochastic discrete bursts in the stress-

strain curves, although the strengthening behaviour and the fraction of 

theoretical strength reached was found to be drastically different where 

40 % of theoretical strength was achieved for Au nano pillars as compared 

to only 7% for Mo. This difference was attributed to fundamental differ-

ence in plasticity mechanisms in bcc and fcc materials, where for fcc, the 
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mobile dislocations escape the crystal at the free surface, while for bcc, a 

dislocation multiplication mechanism is discussed where a dislocation 

loop forms kinks which generate other dislocation segments (Greer et al., 

2008; Weinberger & Cai, 2008). 

Kim et al. (Kim & Greer, 2009; Kim, Jang, & Greer, 2012) have also 

reported size dependent strength of (0 0 1) oriented Mo nano pillars in 

tension and compression and showed that higher flow stresses in smaller 

samples is due to an increase in yield strength rather than the strain 

hardening or other mechanisms. They also presented TEM micrographs 

of nano pillars before and after the test revealing the formation of entan-

gled dislocation sub-structure, which supports the view of different defor-

mation mechanism in bcc as compared to fcc. Micro-compression experi-

ments on different oriented Mo pillars by Schneider et al. (Schneider, 

Kaufmann, et al., 2009; Schneider, Clark, Frick, Gruber, & Arzt, 2009) re-

vealed that the power law exponent (Eq. (1)) is dependent on the orienta-

tion, -0.22 for [001] and -0.34 for [220]. The pillars were also loaded with 

varying strain rate and the authors report a strong strain rate dependence 

for pillars in both orientations with activation volumes only marginally 

smaller than in the bulk. 

Besides Mo, Schneider et al. (Schneider, Kaufmann, et al., 2009) studied 

the compression of Mo, Ta, W and Nb where they observed that the power 

law exponent correlates with the inverse critical temperature Tc of each 

material. This may be attributed to the low mobility of screw dislocations 

below Tc. The authors also report that the strength difference among these 

materials is lowest for the minimum diameter of 200nm, implying that as 

the pillar size decreases the Peierls mechanism becomes less dominant. 

Kim et al. (Kim & Greer, 2009) also studies the same four metals under 

tension and compression. They report a strong size effect, with power law 

exponent for size dependent strength for Nb being much higher than the 

other three. They also observed significant tension-compression asym-

metry which is itself size dependent. Han et al. (Han, Bozorg-Grayeli, 

Groves, & Nix, 2010) investigated compressive properties of V nano pillars 
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and reported the power law strengthening exponent of -0.79, which is 

consistent with other small scale studies on bcc metals.

2.6 Helmholtz research school ‘IMD’ 

The development of novel alloys requires a lot of effort from different 

fields of material science to build the required knowledge base. The Helm-

holtz Research School on “Integrated materials development for novel high 

temperature alloy” or “IMD”, funded by the Helmholtz Association Ger-

many, provides such as platform for a knowledge-based and research-ori-

ented materials development.  

Directionally solidified eutectics provide a promising approach for devel-

opment of novel alloys for high temperature structural applications par-

ticularity for improving creep resistance and ductility of NiAl based alloys. 

As a starting step, the NiAl-Cr directionally solidified eutectic alloy has 

been selected since Cr has lowest density among all the refractory metals 

available for alloying with NiAl to produce directionally solidified eutec-

tics. The graduate school is structured to have eight research areas com-

prising of processing, microstructure, properties and modelling/simula-

tions which work in close collaboration with each other in order to 

strengthen the scientific basis in materials research for energy applica-

tions and related technologies, leading to an integrated materials devel-

opment effort (Fig. 2.9). The different institutes and the respective re-

search areas participating in the IMD are listed in table 2.2.  

This project belongs to research area four, RA IV, in the framework of IMD 

with the focus on multiscale mechanical characterization of directionally 

solidified eutectics in order to develop a mechanistic understanding of the 

deformation processes and toughness at room temperature. 
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Figure 2.9: Schematic diagram of the cross linking of different research areas within the 
framework of IMD 
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Table 2.2: Research areas and participating institutes of IMD 

 Research Area (RA) Participating institute 

I Thermodynamics IAM-AWP, KIT 

II Directional Solidification IAM-WK, KIT 

III Phase field simulation IAM-ZBS, KIT 

IV Multiscale mechanical testing IAM-WBM, KIT 

V Microstructure and Creep deformation 

mechanism 

IAM-AWP, KIT 

VI Load partitioning and internal damage IAM-WK, KIT 

VII Discrete dislocation dynamics IAM-ZBS, KIT 

VIII FEM simulation of thermomechanical 

behaviour 

ITM, KIT 

2.7 Open questions and aims of the study 

Despite NiAl having very attractive set of properties for high temperature 

structural application, its use in these application is inhibited by: 

i) Low ductility and fracture toughness at room temperature 

ii) Poor creep properties at elevated temperatures. 

A lot of research has been dedicated towards improvement of NiAl with 

respect to drawbacks mentioned above and has been reviewed. Direc-

tional solidification of eutectics of NiAl, alloyed with refractory metals to 

produce an in-situ composite appears to be the most promising route and 

several studies indicate significant improvements in ductility and fracture 
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toughness. The most important parameters with respect to the directional 

solidification of these eutectics are the species and amount of alloying ad-

ditions to produce the eutectic and the solidification speed for the direc-

tional solidification. Both factors, have a huge effect on the final micro-

structure of the alloy, as has been discussed previously. With carefully 

chosen alloying addition and solidification parameters, a variety of micro-

structures can be obtained such as fibers, plates or lamellae. The final mi-

crostructure then in turn affects the properties of the alloys prepared.  

The research in the past, although having reported significant improve-

ments over binary NiAl, has not obtained a consensus on the optimum al-

loying additions and processing conditions to be used for the best proper-

ties. Probably, this is due to the fact that in all the research, the alloying 

additions and processing conditions seems to be chosen randomly and a 

systematic research on these alloys has not been carried out. Further-

more, till date, though some studies have been performed exploring the 

mechanisms behind the improvement in properties such as crack bridg-

ing, crack blunting and crack deflection, a clear understanding of the de-

formation mechanisms involved in the improvement in the ductility and 

fracture toughness has not been developed.   

Another important factor in the development of understanding of the de-

formation mechanisms is that in the directionally solidified eutectics, the 

characteristic length scales which are the fiber diameter/lamellae thick-

ness, fiber/lamella spacing, are in general in the micro/nano meter re-

gime. Considering the strong mechanical size effects observed in the vari-

ety of materials when the size of the components falls in the micro/nano 

regime, it is very important to examine these materials on the relevant 

length scales to fully understand the deformation mechanisms and the 

role of individual phases and interfaces between the two phases on the 

overall mechanical properties of these eutectic alloys. Based on these in-

sights, an effort can be made to establish the optimum alloying additions 

and processing conditions in order to achieve the best possible properties. 
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Therefore, the main aims of this thesis were identified as: 

• To characterize the mechanical behaviour of directionally solidified 

NiAl-Cr eutectics, at varying length scales, addressing fiber, matrix 

and interfaces, in order to fully understand the role of these individual 

phases and interfaces on the overall mechanical properties. 

• To develop a mechanistic understanding of the role of processing con-

ditions on the mechanical properties of the directionally solidified eu-

tectics by examining the alloys processed at different solidification 

speeds. 
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3 Experimental details 

3.1 Material: NiAl-Cr directionally 

solidified  eutectic 

The material for this project was the directionally solidified eutectic alloy 

in the quasi-binary system NiAl-Cr. Chromium was selected as the alloying 

element due to its high oxidation resistance and lowest density among all 

the refractory metals identified to be alloyed with NiAl to improve its 

properties. The composition of the eutectic is well defined in the literature 

(Walter & Cline, 1970, 1973) as Ni- 33%Al- 34% Cr (at. %). The material 

with this composition is cast by arc melting into rods. These cast rods are 

then processed by directional solidification in a zone melting device to 

produce the directionally solidified alloys with a highly aligned micro-

structure (Walter & Cline, 1970)(Haenschke et al., 2010; Rablbauer et al., 

2004; Walter & Cline, 1970, 1973; Yang, 1997b). The samples were pro-

duced and directionally solidified with different solidification speeds (i.e. 

20, 50 and 80 mm/h) at Oak Ridge National Laboratory, U.S.A. The sam-

ples used in this study are termed as ORNL_xx, with xx being the solidifi-

cation speed of the samples. 

3.2 Microstructure analysis: 

3.2.1 Sample preparation 

The as received material was in the shape of rods with about 10 mm in 

diameter and several centimeters in length. Out of these rods, button 

shaped samples of about 4-5 mm were cut out by machining. In addition, 
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3-4 mm slices from the longitudinal direction of the samples were also cut 

out in order to evaluate the longitudinal section as well. The samples were 

then cold mounted using the Demotec15® powder and binder. The cold 

mounted samples were ground and polished using standard techniques 

up to 0.25 µm diamond paste to achieve a mirror like surface. After grind-

ing and polishing, the samples were then broken out of the mold and sam-

ples and transferred on the Scanning electron microscope (SEM) sample 

holders for microstructure examination using a dual beam SEM/FIB sys-

tem (Nova Nanolab 200, FEI, Hillsboro, Oregon 97124, USA). These sam-

ples on the SEM sample holders were also used for the sample fabrication 

using Focused Ion Beam (FIB) explained later in this chapter.  

3.2.2 Dual beam SEM/FIB 

Scanning electron microscopy combined with focused ion beam milling is 

one of the most important techniques used in recent years as a character-

ization and sample fabrication tool at micro and nano scale. In this work 

as well, owing to the sub-micron features, microstructure examination of 

the alloy is done by a dual beam SEM/FIB system, (Nova Nanolab 200, FEI, 

Hillsboro, Oregon 97124, USA). It consists of a SEM column along with a 

Ga+ ion column which is mounted at an angle of 52° with respect to elec-

tron column. The electron column is equipped with a thermal field emis-

sion gun, which has several acceleration voltages, ranging from 1 KV to 20 

KV. Usually an accelerating voltage of 5 KV and a beam current of 1.6 nA 

was used for microstructural examination in this study. The electron 

beam has a maximum resolution of ~1 nm.  

In FIB, Ga+ ions are emitted from the Ga+ ion source and are accelerated 

towards the sample by applying a voltage 30 KV. The Ga+ ions penetrate 

the sample and the electrons generated can then be used for imaging. The 

imaging resolution is about 7 nm but is reduced sharply when the beam 

current is increased. In addition, the focused ion beam, due to the heavy 

Ga+ ions, sputters atoms from the surface away. The rate of sputtering de-
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pends on the sample material, accelerating voltage and beam current. De-

pending on the application, the ion beam current can be chosen to be be-

tween 10 pA, for imaging and 20 nA for large milling rates. In this study, 

FIB milling has been used extensively for microstructure examination, 

and preparation of micro-pillars and micro scale double cantilever beam 

samples. A schematic diagram of a dual beam SEM/FIB is depicted in Fig. 

3.1 along with the photograph of the SEM chamber.

3.3 Nanoindentation  

Nanoindentation was used in this study to evaluate and compare the hard-

ness and Young’s modulus of directionally solidified eutectics prepared at 

different solidification speeds. The nanoindenter used in this study is a 

Nanoindenter G200 from Keysight Technologies GmbH, Böblingen, Ger-

many. A review of the basics of nanoindentation and its applications has 

already been presented in section 2.5. The testing and analysis method 

used in this study is explained in detail in this section. 
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Figure 3.1: (a) Schematic diagram of a dual beam SEM/FIB and (b) photograph of the SEM 
chamber showing the arrangement of the columns. The angle between the SEM column and 
FIB column is 52° 

A three sided pyramid Berkovich tip was used. Due to relatively small size 

of the indents, which were about 5 um wide, it was possible to use the 

same sample prepared for the microstructural examination for the 

nanoindentation study as well as the pillar fabrication process. For the 

nanoindentation study, special mounting blocks were prepared so that 

the sample on the SEM holders could be used on the nanoindenter sample 

stage without the need to transfer the sample between SEM sample holder 

and nanoindenter sample holder every time. At least 20 indents on each 

sample to get the average value of Hardness H, and Young’s modulus E. All 

the tests were carried out using the continuous stiffness measurements 

(CSM) option which means the contact stiffness of the tip with the sample 

is determined continuously throughout the measurement. 

3.3.1 Test procedure 

The test begins with the loading section where the tip is brought in the 

contact with the sample surface. The CSM option is helpful here in identi-

fying the exact point of initial contact. This is crucial for identifying the 

exact point of origin of the load-displacement curve, for which the data 

can be corrected even after the experiment. After the initial contact, the 

SEM Column
Ion Beam Column

Sample holder
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the loading for all the samples was 0.05/s. The maximum depth of inden-

tation was chosen to be 2000 nm, such that the indentation area was large 

enough that multiple fibers were deformed under the contact area, in or-

der to measure the average values for H and E, possibly close to the bulk 

properties. After the maximum depth was reached, the load at this depth 

was held constant for 10 s after which sample was unloaded to 10% of the 

maximum load, where it was again held constant for 300 s to measure the 

thermal drift in the system. Finally, the sample was completely unloaded. 

A typical load vs displacement curve obtained in such test is shown in     

Fig. 3.2. 

 

Figure 3.2: Typical load vs displacement curve obtained in a typical nanoindentation test 
to a maximum displacement of 2000 nm. 

3.3.2 Data analysis 

Using the Nanosuit® software (Keysight Technologies GmbH, Germany), 

the load vs displacement curve is obtained from the raw test data. These 

data were then analysed using the Oliver and Pharr method (Oliver & 

Pharr, 1992, 2004). The three basic quantities required for determination 

tip is then loaded till the maximum depth is reached. The strain rate for 
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of hardness and modulus are load, P, displacement, h, and contact stiff-

ness, S. The ratio of load over stiffness squared, P/S2, is a direct measura-

ble parameter which is independent of the contact area assuming the 

hardness and modulus do not vary with depth.  

𝑃

𝑆2 =
𝜋

(2𝛽)2 ∗
𝐻

𝐸2  (3.1) 

The area independence of P/S2 allows the determination of the load frame 

compliance, Cf. The total measured compliance C is composed of the load 

frame compliance, Cf, and the specimen compliance, Cs, acting as two 

springs in series. 

𝐶 =  𝐶𝑓 + 𝐶𝑠 (3.2) 

The basic principle for load frame compliance measurement is that at 

depths greater than few hundred nanometers, where the hardness and 

modulus should independent of the depth, P/S2 should be constant. Thus, 

the proper value of load frame compliance is obtained by changing the 

value of Cf for which a flat P/S2 versus h curve is obtained for larger 

depths. 

With load frame compliance and indenter area function known, hardness 

and modulus can be evaluated as: 

𝐻 =
𝑃

𝐴
 (3.3) 

𝑆 =  𝛽 ∗
2

√𝜋
𝐸𝑒𝑓𝑓√𝐴 (3.4) 

where Eeff is the effective modulus defined by 

1

𝐸𝑒𝑓𝑓
=

1−𝜗2

𝐸
+

1−𝜗𝑖
2

𝐸𝑖
  (3.5) 

Ei and E are the Young’s modulus of the indenter and specimen respec-

tively and ϑi and ϑ are the Poisson’s ratio of the indenter and the specimen 
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respectively.  When the Poisson’s ratio of the material evaluated is not 

known, the modulus is obtained by assuming the Poisson’s ratio as 0, and 

it is reported as “indentation modulus”. 

The first step is to identify the correct point of initial contact for each test. 

This is done by extracting the phase angle vs displacement curve as shown 

in Fig. 3.3, where the point of contact is identified as sharp change in the 

phase angle with respect to the displacement. In the figure, the sharp 

change in the phase angle with respect to displacement in surface is 

marked by symbol S marking the detection of surface by indenter tip. 

 

Figure 3.3: Phase angle vs displacement plot of a nanoindentation test, used to identify the 

point of initial contact of the tip with the surface S 
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Figure 3.4: Stiffness squared over load vs displacement plot obtained for nanoindentation 
tests. The frame compliance is adjusted to obtain a flat trend at large depth 

The next step is to obtain the stiffness squared over load (S2/P) vs dis-

placement curve and adjust the compliance value such that S2/P does not 

change with the depth in the later part of the test (Fig. 3.4). This approach 

is based on the assumption that at depths larger than few hundred na-

nometers, the hardness and Young’s modulus values do not change with 

depth and are free from any contribution from the machine and tip com-

pliance, as explained in section 2.5.1. Once a flat S2/P curve is obtained by 

adjusting the frame compliance Cf, H and E vs depth curves can be ob-

tained. Since, the CSM option calculates the stiffness values at every depth, 

a continuous hardness and modulus curve is obtained and although H and 

E do not change with the depth, there are always some inherent fluctua-

tions in the curve. Therefore, for all the tests, the values of H and E from a 

depth of 1200 nm to 1800 nm were averaged to get the H and E for the 

particular tests (Fig. 3.5). The values from all the tests from the same sam-

ple were then averaged to get the average value of hardness and modulus 

for that particular sample. The data for poisson’s ratio for NiAl-Cr was not 
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available in the literature. Therefore, a poisson’s ratio of 0.3, as for most 

metals, was assumed to calculate Young’s modulus. The input parameters 

used for the testing is tabulated in table 3.1.  

Table 3.1: Important input parameters used for nanoindentation testing in this study 

Input parameter Value Unit 

Strain rate 0.05 1/s 

Surface approach velocity 10 nm/s 

Frequency  45 Hz 

Surface approach distacnce 1000 nm 

Depth limit  2000 nm 
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Figure 3.5: (a) H and (b) E vs the displacement into the surface plot obtained from 
nanoindentation tests, the data from 1200 to 1800 nm was used to get the average values 
for H and E for each test. 
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3.4 SEM in-situ tensile test 

An important aspect of the mechanical characterization of the direction-

ally solidified eutectics is to characterize the individual components. To 

characterize the individual Cr fibers, the technique for testing small test 

structures developed by D. Gianola and co-workers (Gianola et al., 2011) 

was employed. The tests were carried out by Charlotte Ensslen (IAM, KIT, 

Germany). This technique in which individual fibers can be tested in-situ 

inside an SEM is very helpful not only to test sub-micron structures but it 

also allows for direct observation and recording of  the deformation pro-

cess, which helps in developing our understanding of the mechanisms in-

volved in the deformation (Gianola & Eberl, 2009; Johanns et al., 2012; 

Legros, Gianola, & Motz, 2010; Sedlmayr et al., 2012). The procedure for 

extracting individual Cr fibers from the test sample, a brief description of 

the test set-up and the test procedure is described in this section. 

3.4.1 Extraction of Cr fibers  

The first step of characterizing individual Cr fibers is to extract them from 

the as directionally solidified eutectic composites. For this, samples in the 

longitudinal sections were prepared from the samples produced at differ-

ent solidification speeds. These samples were then cold mounted in epoxy 

resin and ground and polished in a similar manner as described in the sec-

tion 3.2.1 to prepare a smooth surface free from defects and irregularities. 

After the surface preparation, the samples were subjected to chemical 

etching to remove the NiAl matrix. For this, a freshly mixed solution of 100 

ml H2O, 40 ml HCl (40% conc.) and 5gm CrO3 was prepared. The optimum 

time of etching in order to remove enough NiAl was identified by trial and 

error to be of 30 s, resulting in the removal of about 1-2 mm of NiAl into 

the surface, which was found to be enough for the extraction of individual 

Cr fibers (Fig. 3.6). These samples were then stored in the vacuum cham-

bers to prevent oxidation of the Cr fibers.  



3  Experimental details   

56 

 

Figure 3.6: SEM micrograph showing Cr fibers as obtained after chemically etching the ma-
trix 

3.4.2 In-situ test set-up 

The test setup for performing in-situ small-scale mechanical tests is de-

scribed in detail in the works of  (Gianola & Eberl, 2009; Sedlmayr, 2012). 

The test setup is similar in the concept to the one used by Rzepiejewska-

Malyska (Rzepiejewska-Malyska et al., 2008). It employs a FIB/SEM dual 

beam system which is equipped with a nanomechanical force sensor (Typ 

FT-S1000, FemtoTools AG, Buchs/ZH, Switzerland), X, Y and Z nano-posi-

tioning stages (Attocube Systems AG, Munich, Germany), a 3-axis nano-

manipulator (Kleindiek Nanotechnik GmbH, Reutlingen, Germany) to 

move, align and manipulate the fibers. An overview of test set-up is shown 

in Fig. 3.7 along with higher magnification SEM micrograph of the force 

sensor Si tip and the TEM grid.  
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Figure 3.7: (a) Overview of the in-situ test setup indicating important components and (b) 
higher magnification SEM micrograph of the TEM grid and Si tip of the force sensor along 
with nano-manipulator and Pt-GIS needle (courtesy Charlotte Ensslen) 

The dual beam SEM/FIB system is already described in section 3.2.2. The 

maximum force achievable with this transducer is 1000 µN and has the 

sensitivity of 500 µN/V. The three axis nano-manipulator is used to select 

and transfer the fibers from the specimen to the setup and place the fibers 

on the setup. The gas injection system available on the dual beam 

SEM/FIB system, was used to deposit platinum stripes to fix the ends of 

the fiber on the setup in the absence of any mechanical gripping in the 

system.  

3.4.3 Test procedure 

The first step for the in-situ test is the selection of a suitable fiber, which 

is long enough for the test, has a uniform diameter and can be easily ma-

nipulated with the nano-manipulator. After a suitable fiber is identified, 

the 3 axis nano-manipulator is carefully maneuvered to bring it close to 

the fiber. Pt deposition is then used to fix one end of the fiber on the nano-

manipulator. The fiber is then cut free from the other end by FIB milling 

and the nano-manipulator is moved to the setup where the fiber is fixed 

on the setup using combination of FIB cuts and Pt deposition. Very small 

beam currents were used for cutting the fibers and it was always ensured 

that the area of the specimen exposed to the beam was never included in 
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the gauge section of the test specimen. The process of harvesting, manip-

ulation, transfer, gripping and testing of the Cr fibers is depicted in the Fig. 

3.8. The setup of the Cr fiber for in-situ test is shown in Fig. 3.9. 

 

Figure 3.8: SEM images showing different steps involved in the harvesting, manipulation 
and testing of a nanowire/fiber in a typical in-situ tensile test (Gianola et al., 2011) 

Tensile test of the fibers were conducted at constant displacement rates 

by increasing the piezo-voltage in the actuator until fracture of the fiber 

while tracking the force signal simultaneously. All tensile tests were per-

formed with a nominal strain rate of 1x10-3/s. After fracture of a fiber, if 

one of the broken segments of the tested Cr fiber was found to be long 

enough, it was re-gripped on the set-up using the same method and tested 

again. Furthermore, fibers of different diameters from samples prepared 

at different solidification speeds were tested to examine the effect of the 

diameter on the strength and the deformation behaviour of the Cr fibers. 

During the test, SEM images were taken in regular intervals and used for 

strain calculation by digital image correlation (DIC).  
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Figure 3.9: SEM micrograph of the test set up for in-situ SEM tensile test showing a Cr fiber 
attached to a TEM grid and a force sensor by Pt. deposited grips 

3.4.4 Strain calculation by DIC 

Digital image correlation has become a standard non-contact method for 

micro- and nano-scale testing where a direct and accurate measurement 

of local displacement or strain is not possible due to small size of the setup 

and the high resolution required. This technique which is commonly ap-

plied to macroscale testing using white light microscopy for imaging, has 

been extended to micro- and nano- scale testing where images are ob-

tained by SEM or other techniques (Biery, de Graef, & Pollock, 2003; 

Richter et al., 2009; Sutton, Li, Garcia, et al., 2007; Sutton, Li, Joy, Reynolds, 

& Li, 2007).  

In this work a custom software suite, which uses MATLAB® as a calcula-

tion engine, developed by C. Eberl, D. Gianola and R. Thompson (Eberl, 
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Gianola, & Thompson, 2006) at Johns Hopkins University, Baltimore is em-

ployed for strain calculation. Natural contrast present in the Cr fibers was 

employed in these tests to track the deformation of the Cr fibers. The 

method is described in detail in the work by M. A. Sutton and co-workers 

(Sutton, Li, Garcia, et al., 2007; Sutton, Li, Joy, et al., 2007).  

DIC is a technique which relies on the intensity variation in the digital im-

ages, which can be natural or artificially introduced on the specimen sur-

face, for the strain calculation. DIC works, in general, by calculating the 

maximum correlation between the consecutive images or subset of im-

ages which are shifted relative to each other. An iterative approach is em-

ployed to maximize the correlation coefficient by using a correlation algo-

rithm provided by MATLAB®. 

Due to the small size of the fibers, general methods to introduce surface 

contrast to the fiber could not be applied as they are more suited for larger 

specimens. Single crystalline Cr fibers also do not provide enough contrast 

for accurate strain measurement using DIC. Therefore, the deposited Pt 

stripes at the ends of the fiber, used to grip the fiber, provided better con-

trast and was used in this work. Markers were placed on the Pt grips on 

both sides as shown in Fig. 3.10. The strain in the samples was evaluated 

by using the ‘1D average strain’ tool in the program, where the horizontal 

displacement, obtained by subtracting the current position of the markers 

from the initial position of the markers, is plotted versus the current posi-

tion. The ‘1D average strain’ tool gives the strain-image data. Using the 

‘strain-image’ data and ‘stress-time’ and ‘time-image’ data set acquired 

during the test, ‘stress vs strain’ data is obtained and plotted. 
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Figure 3.10: SEM micrographs of a Cr fiber (298 nm in diameter) before (a) and after (b) 
the test showing the grid on the Pt grips used to calculate the strain by DIC. 

3.5 Micro-pillar compression test 

As a major goal of this study is to characterize individual components of 

the eutectic composite. For this, micro-pillars were prepared by FIB mill-

ing in a dual beam SEM/FIB and then tested in a nanoindenter using a flat 

punch. Three types of pillars were prepared for this purpose: 

Matrix only NiAl pillars (M.O.): Single phase NiAl matrix only pillars were 

prepared by selecting the matrix volume between the Cr fibers. In order 

to prepare a pure single phase NiAl pillar without any contribution from 

the fibers, the size of the pillars were limited by the spacing between the 

fibers. Furthermore, since the fiber spacing decreases with increasing so-

lidification speed of the samples during directional solidification, the size 

of these pillars were also dependent on the samples from which they were 

prepared. Therefore, the top diameters for ORNL_20 samples were ~ 600 

nm, while for the faster solidification speed samples, the diameters for the 

ORNL_50 and ORNL_80 samples were smaller of ~400 nm and ~300 nm 

respectively. 
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Single fiber composite (S.F.) pillars: Pillars containing a single fiber sur-

rounded by the matrix was prepared to represent the composite at small 

scale and to test the interface. Similar to the M.O. pillars, the diameter of 

the pillars prepared for testing were limited by the fiber diameter and 

spacing between the fibers, which is dependent upon the solidification 

speed of the samples. Thus, the pillar diameter decreases with the samples 

for higher solidification speeds. The average top diameter of these pillars 

was 1.02 µm, 0.83 µm and 0.66 µm for ORNL_20, ORNL_50 and ORNL_80 

samples, respectively. But due to inclusion of the fiber as well as the ma-

trix surrounding the fiber, the diameters of these pillars were about twice 

as for the M.O. pillars for the same solidification speed. 

Multiple fiber composite (M.F.) pillar: Since for the single phase pillars and 

S.F. pillars, the diameter of the pillars depend upon the solidification of the 

samples and, therefore the pillars from different samples have different 

diameters and are not ideal for comparison among varying solidification 

speeds as size effect on the strength of the small scale samples becomes 

important (Oliver Kraft et al., 2010; Uchic & Dimiduk, 2005). To remove 

the above mentioned size effect and to be able to compare the strength of 

micro pillars from different solidification speed samples, pillars of 4 µm 

diameter were prepared on samples from all solidification speeds, con-

taining multiple fibers in a pillar. 

3.5.1 Micro-pillar fabrication 

The process used for micro pillar fabrication is a two-step process. First, 

a coarse structure is prepared, with a diameter of 35 µm leaving an island 

with a diameter of a few micrometers larger than the desired pillar sizes 

as shown in the Fig. 3.11. The coarse structure is prepared at high ion 

beam current to reduce the time required to mill the coarse structure 

since the aim is remove large volumes of material in the shortest possible 

time. The accuracy of this coarse cut is not a concern. Nevertheless, one 

should be careful using high ion beam currents since at high currents 
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there is a considerable increase in the spot size and lateral width of the 

beam, and the beam should be focused carefully. 

 

Figure 3.11: SEM image of the course structure for micro-pillar preparation, milled at high 
beam current to remove the excess material fast while leaving an island for fine milling 
with low beam current 

The coarse structure has following distinct advantages: 

1. It helps for locating the pillars in the nanoindenter system, where the 

magnification of the microscope is limited. 

2. It allows for imaging of the pillars during formation or after the tests. 

3. It ensures that the tip of the nanoindenter would not touch any other 

point of the sample and, thus, ensuring that the full load from the tip 

is experienced by the pillar. 

4. It reduces the chances of redepositing the sputtered material back 

onto the surface of the pillar. 

In this work, there was added difficulty to the milling because of the dif-

ference in the milling rates for the fiber and the matrix. Therefore, the 

milling parameters had to be adjusted to compensate for that. It was found 
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that a beam current of 5nA along with a higher beam dwell time produced 

good results, while going for higher beam currents gave unsatisfactory re-

sults. The coarse structures for the pillars were produced in batches of 16 

in a single FIB session, usually overnight. For the M.O. pillars and S.F. pil-

lars, the island of the course structure was 4 µm in diameter while for the 

M.F. pillars, the coarse structure was 10 µm in diameter.  

Once the coarse structures were milled, the finer milling of the pillars into 

the desired size was done using finer spot sized low beam currents. The 

annular milling process was used to prepare the micro-pillars used in this 

study, the details of which has been explained in section 2.5. For the M.O. 

pillars and S.F. pillars, a beam current of 0.1 nA with a dwell time of 2 ms 

was found to mill to the depth of about 2 µm in the material. Since the size 

of the NiAl pillars and S.F. pillars were in the range of 600 nm to about 1.2 

micrometer, a depth of about 2 µm was enough to achieve the desired pil-

lar height to diameter ratio between 2:1 and 3:1. For the larger pillars in 

the M.F. pillars, 2 passes of 0.5 nA current had to be used to achieve the 

required depth to be in the desired pillar height-to-diameter ratio. The fi-

nal prepared pillars are shown in Fig. 3.12.  
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Figure 3.12: SEM images of the final prepared micro-pillars on ORNL_20 samples, a) M.O. 
pillar consisting of NiAl matrix, b) S.F. pillars consisting of a single fiber surrounded by the 
matrix, and c) M.F. pillars with a diameter of 4 µm containing several fibers. 
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3.5.2 Compression of micro-pillars 

The micro pillars prepared by FIB milling as described above were com-

pressed in a nanoindenter G200 (Keysight Technologies GmbH, 

Böblingen, Germany) using a flat punch of 10 µm diameter. The pillar com-

pression tests were carried out in displacement control, by using a feed-

back loop from the force signal, since the G200 is inherently a load con-

trolled machine. Using the special mounting blocks mentioned in section 

3.3, which allows the sample on an SEM holder to be transferred to the 

nanoindenter, the sample containing the micro-pillar batches were loaded 

on the nanoindenter sample stage. The maximum indenter displacement 

of 25% of the pillar height was selected in order to ensure that all the pil-

lars were compressed beyond their yield stress and were plastically de-

formed. The displacement rate of the indenter head was adjusted for each 

batch of the pillars according to the height of the pillars so that the strain 

rate in the pillars corresponded to about 1 x 10-3 /s according to the rela-

tion given by:  

𝑠𝑡𝑟𝑎𝑖𝑛 𝑟𝑎𝑡𝑒: 𝜖̇ =  
𝑣

ℎ
 (3.6) 

where,  

 𝑣 = displacement rate of the indenter head 

 h = Height of the pillar  

The test starts with the slow approach of the indenter head towards the 

pillar until it encounters the top surface of the pillar, which is identified 

by the sudden change in the measured stiffness. At this point the indenter 

pushes on the pillars with the prescribed displacement rate of the in-

denter head until the maximum defined displacement is reached. At this 

maximum displacement, the maximum load is held constant for 10 sec-

onds, and then the pillar is unloaded at a rate of 100 µN/s 
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After the compression test of the pillars, all samples were examined post-

mortem using the dual beam SEM/FIB system to characterize the de-

formed pillars. A few of the deformed pillars from the S.F. pillars group 

were selected and cross cuts through the pillars were prepared to exam-

ine the deformed interface. Furthermore, a few of the deformed pillars 

were selected to prepare lamellae to be examined by TEM to characterize 

the active slip systems and to understand the dislocation evolution during 

the deformation. 

3.5.3 Analysis procedure 

The load-displacement data from the nanoindenter system obtained for 

the compression testing of the pillars were exported to Origin® software 

for the analysis. There are various ways in which the micro pillar com-

pression tests can be analysed and a comprehensive comparison of differ-

ent methods can be found in (Fei, Abraham, Chawla, & Jiang, 2012). It is 

important to use a consistent approach for the analyses of the micro pil-

lars in order to compare different samples. For this study, the load on the 

pillar was converted to stress using the top diameter of the pillars:  

σ =
P

πr𝑇
2  (3.7) 

with,  

σ = stress in the pillar,  

P = load on the pillar, and  

rT = radius of top of the pillar. 

The displacement data obtained from the nanoindentation system has 

contributions from the deformation of the indenter, the pillar and the sub-

strate. Therefore, the directly measurable ‘total displacement’ Δ𝑥𝑡𝑜𝑡𝑎𝑙  con-

sists of:
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 Δ𝑥𝑡𝑜𝑡𝑎𝑙 =  Δ𝑥𝑝𝑖𝑙𝑙𝑎𝑟 + Δ𝑥𝑖𝑛𝑑𝑒𝑛𝑡𝑒𝑟 + Δ𝑥𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒   (3.8) 

Thus:  

Δ𝑥𝑝𝑖𝑙𝑙𝑎𝑟 = Δ𝑥𝑡𝑜𝑡𝑎𝑙 − (Δ𝑥𝑖𝑛𝑑𝑒𝑛𝑡𝑒𝑟 + Δ𝑥𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒) (3.9) 

 

Therefore, according to (Fei et al., 2012) the total displacement of the pil-

lar can be calculated as: 

Δ𝑥𝑝𝑖𝑙𝑙𝑎𝑟 = Δ𝑥𝑡𝑜𝑡𝑎𝑙 − (
(1−𝜐𝑖𝑛𝑑

2 )𝑃

2∗𝐸𝑖𝑛𝑑∗𝑟𝑡𝑜𝑝
+

(1−𝜐𝑠𝑢𝑏
2 )𝑃

2∗𝐸𝑠𝑢𝑏∗𝑟𝑏𝑎𝑠𝑒
) (3.10) 

where, 

υind, sub = poisson’s ration of indenter and substrate respectively  

Eind, sub = Young’s Modulus of indenter and substrate respectively 

rtop = radius of the top of the pillar 

rbase = radius of the base of the pillar 

The strain in the pillar can then be calculated by dividing this displace-

ment by the initial height of the pillar: 

𝜖 =
Δ𝑥

ℎ𝑝𝑖𝑙𝑙𝑎𝑟
 (3.11) 

A representative stress-strain curve for one of the S.F. pillars in ORNL_20 

sample is presented in Fig. 3.13.  
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Figure 3.13: Representative engineering stress vs strain response obtained from a micro-
pillar compression test of a S.F. pillar on ORNL_20 sample 

The stress strain curve shows an elastic loading segment, followed by 

plastic deformation at about 2 GPa when the slope of the curve is chang-

ing. Since there was no sharp transition, which could be identified as the 

onset of plastic deformation, a 0.2% offset yield strength method was ap-

plied to all curves to estimate the yield strength σ0.2% of the pillars. A 

straight line parallel to the largest slope of the loading curve in the elastic 

segment was drawn. This line was then shifted by 0.2 % strain and the 

intersection to the stress-strain curve was taken as the yield strength of 

the pillar. The yield strength of all pillars of same type and size were then 

averaged for that particular sample.  
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3.6 TEM examination 

With the help of A. Krüger (IAM-AWP), a participating institute of the IMD 

graduate school, transmission electron microscopy (TEM) examinations 

of both the undeformed and deformed NiAl-Cr samples were performed. 

The undeformed samples were prepared by standard TEM preparation 

methods, dimple grinding followed by ion polishing. The TEM lamellae of 

the deformed composite pillars were prepared by FIB milling (Dual Beam 

FIB/SEM Workstation, Nova NanoLab 200, FEI Company, Hillsboro, OR, 

USA) following standard procedures. The lamellae from deformed pillars 

were prepared by D. Exner (IAM-WBM). The lamellae were prepared from 

S.F. pillars in order to observe the dislocation structure resulting from the 

deformation process. The TEM examinations were carried out with a Tec-

nai F20 (FEI Company, Hillsboro, Oregon, USA) operated at 200 KeV ac-

celeration voltage and CM30 (FEI Company, Hillsboro, Oregon, USA) op-

erated at 300 KeV.  
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4 Results and discussion 

4.1 Microstructural analysis 

The SEM examination in the transverse and longitudinal direction on the 

ORNL_20, ORNL_50, and ORNL_80 revealed a fiber-matrix microstructure 

with NiAl forming the matrix and Cr is in the form of long continuous fi-

bers. SEM images from all the samples in transverse and longitudinal di-

rectional are shown in Fig. 4.1. The fiber diameter and fiber spacing de-

creases with the increase in the solidification speed similar to that re-

ported in the literature (Rablbauer et al., 2004; Walter & Cline, 1970). An 

image manipulation software, ImageJ®, was used to calculate the fiber di-

ameter and fiber spacing, from the SEM micrographs of the transverse sec-

tion for all the samples. The fiber diameter for ORNL_20 is around 690 nm 

whereas for ORNL_80, it goes down to around 310 nm. The spacing be-

tween the fibers for ORNL_20 is around 1.2 µm which reduces to around 

500 nm for ORNL_80 samples (table 4.1).  

Examinations in the longitudinal section confirms that Cr forms long con-

tinuous fibers. The fibers are aligned parallel to the growth direction. TEM 

examination by A. Krüger (IMD, RA V) confirms the growth direction for 

both matrix and fiber is [100]. Also prominent is the existence of cellular 

structures with increase in the solidification speed. The alignment of the 

fibers at these cell boundaries is disturbed and the fibers are tilted to-

wards the boundary as shown in fig. 4.2 
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Table 4.1: Average fiber diameter and average fiber spacing for the three solidification 
speed samples. Image manipulation software ImageJ® was used to analyse the SEM micro-
graphs of the transverse section of the samples to obtain the values 

Solidification speed 

(mm/h) 

Fiber diameter 

(µm) 

Fiber spacing (µm) 

20 0.68±0.08 1.12±0.16 

50 0.51±0.08 0.70±0.03 

80 0.31±0.04 0.48±0.19 

4.2 Nanoindentation 

Nanoindentation study on the ORNL samples revealed that the elastic 

modulus of the three samples was constant and the average value was 

found to be 210-215 GPa. The elastic modulus values reported in the lit-

erature (G. Frommeyer, Rablbauer, & Schäfer, 2010) for the same compo-

sition matches very well with the results from the study. The hardness 

values for the three alloys were also found to be constant for the different 

solidification speeds and were in the range of 4.5 GPa. The values of hard-

ness and elastic modulus are tabulated in table 4.2 and also compared in 

Fig. 4.3. 
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Figure 4.1: SEM images of NiAl-Cr DS eutectic alloy in transverse direction showing matrix 
with dark contrast and fibers with light contrast, and longitudinal direction after matrix 
etching showing continuous fiber aligned in the growth direction for ORNL_20 (a, b), 
ORNL_50 (c, d), and ORNL_80 (e, f) respectively 
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Figure 4.2: SEM micrograph of transverse section of ORNL_80 samples showing the cell 
boundary where the alignment of the fibers s disturbed 

 

Table 4.2: Hardness and Young’s modulus of the three solidification speed samples. The 
values are based on about 20 individual indents and analysed as described in section 3.3. 
The errors correspond to the standard deviation 

Solidification speed 

(mm/h) 

Hardness 

(GPa) 

Young’s modulus 

(GPa) 

20 mm/h 4.59±0.01 213.8±3.0 

50 mm/h 4.45±0.09 221.6±8.3 

80 mm/h 4.65±0.16 215.3±5.4 



 

Figure 4.3: Young’s modulus and hardness vs solidification speed of the three samples, 
showing hardness and modulus being independent of the solidification speed 

The constant value of elastic modulus with respect to the solidification 

speed is expected and can be simply explained due to the same volume 

fraction of the NiAl and Cr in all the three samples as the composition is 

same for all the three alloys. But the constant values for hardness in all the 

three samples was not expected as the fiber diameter and fiber spacing is 

changing with the solidification speed. This unexpected result highlights 

the need to develop a mechanistic understanding of the deformation 

mechanisms in these alloys and motivates to characterize the different 

phases and interfaces between the two phases in order to fully understand 

their role for the deformation mechanisms. 

4.3 SEM in-situ tensile test 

Individual Cr fiber, after being extracted from the sample by selective 

chemical etching, were transferred and tested in tension as described in 

section 3.4. The initial diameter of the fiber was used to estimate the stress 
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in the fibers and the strain measurement was done by DIC. A typical 
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stress-strain curve for a fiber of diameter 298 nm, is shown in Fig. 4.4a 

along with the SEM micrographs from different stages of the test               

(Fig. 4.4 b-e). The fiber undergoes elastic elongation upon application of 

load (Fig. 4.4 b). At the peak load the SEM micrographs reveal that a layer 

was formed surrounding the fiber which fails in a brittle manner               

(Fig. 4.4 c). Until this layer failed it was not possible to observe any defor-

mation in the fibers during the in-situ tests in SEM. Soon after this outer 

layer failed, local necking in the Cr fiber occurs (Fig. 4.4 d) followed by 

final separation of the fiber (Fig. 4.4 e). 

TEM examination of one of the failed Cr fibers was performed to charac-

terize the outer layer that was formed surrounding the fiber. It was re-

vealed that this outer layer was mainly carbon (Fig. 4.5). It is believed that, 

although it is not possible to observe any deformation in the Cr fiber be-

fore fracture of the outer layer in SEM during the in-situ test, it is the local 

plastic deformation in the Cr fiber which leads to the failure of the outer 

layer, rather than the other way around. Also the load bearing capacity of 

the Cr fibers would not be much affected by this outer layer of carbon, 

since carbon, deposited inside an SEM, is much weaker than the Cr (Zhang 

et al., 2010). Nevertheless, due to this outer layer, the diameter of the Cr 

fiber measured from the SEM images may be overestimated, which will 

lead to an underestimation of the stress levels observed in the fibers. 

Therefore, it is safe to say that the stress levels observed in the Cr fibers 

reflects a lower bound value. Although it is very difficult to measure the 

thickness of this outer layer, a rough estimate leads to the layer thickness 

of ~15 nm, for a fibers of measured diameter 298 nm. Using the approach 

suggested by Gianola et al. (Gianola et al., 2011), the error in measurement 

can be estimated up to ~15 %.  

All the Cr fibers showed high strength values in the in-situ tensile tests in 

the range of 1-3 GPa. The ultimate tensile strength of the Cr fibers is plot-

ted against the fiber diameter in Fig. 4.6. Despite these high values for ten-

sile strength observed in the Cr fibers, strengths close to theoretical 

strengths as overserved for the case of Mo fibers (Johanns et al., 2012)
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were not observed. The near-theoretical strength in Mo fibers were only 

observed for the dislocation free Mo fibers, while pre-strained fibers hav-

ing higher dislocation densities showed lower strengths. The strength of 

the Cr fiber were also found to increase with decreasing fiber diameter. 

This size effect on the strength of Cr fibers having sub-micron dimensions 

can be attributed to truncation or lack of dislocation sources with decreas-

ing specimen size and as introduced in section 2.4. The high stress levels 

observed in these Cr fibers as well their dependence on the diameter of 

the fibers suggests that the un-deformed Cr fibers have a very low initial 

dislocation density as suggested for Mo fibers (Phani et al., 2011) and ob-

served for Al fibers (Mompiou et al., 2012). The plastic deformation in 

these fibers start at the site having the most favourable dislocation config-

uration and, thus, would obey weakest-link statistics and may be de-

scribed by a Weibull distribution which has also been discussed in detail 

in the work of Senger et al. (Senger et al., 2011). Furthermore, it can also 

be observed in Fig. 4.6 that the strength of the re-attached fibers were 

found to be higher than the pristine fibers. This observation also supports 

the weakest-link argument since in the re-attached fibers, the next weak-

est site will determine the strength.  
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Figure 4.4: a) Engineering stress vs strain curve of an individual Cr fiber (298 nm) ob-

tained from in-situ SEM tensile test, b) – e) SEM micrographs from different stages of the 

test marked on the stress-strain curve 
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Figure 4.5: a) SEM image of the failed Cr fiber showing a fractured outer layer. The chemi-
cal composition was examined at the site marked by the red circle and b) results of a TEM 
EDX analysis confirming that the outer layer is carbon 
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Figure 4.6: Plot of maximum stress vs fiber diameter showing the increase in the strength 
levels with decreasing diameter. Re-attached fibers show higher strength than the pristine 
fibers.  

4.4 Micro-pillar compression tests 

4.4.1 Stress-Stain response 

Typical stress-strain responses for the three pillar types from ORNL_20 

are shown in Fig. 4.7. All three pillars show high strength values with of 

M.O. pillar showing highest yield strength whereas the M.F. pillars show 

lowest strength values. After the yield both M.O. and S.F. pillars show 

hardening behaviour while it is not seen in the M.F. pillars. An instability 

is observed in the M.F. pillars following yield, which is believed to be a 

result of minor misalignment between the pillar and the flat punch. The 
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0.2 % offset yield stress and the average diameter of the pillars with re-

spect to the different sample are tabulated in table 4.3 and plotted in Fig. 

4.8. All pillars show high strength values up to 4 GPa. It can be noted that 

for the same type of pillars (M.O., S.F. or M.F. pillars) the strength of the 

pillars increases with the increasing solidification speed of the sample. 

The increase in strength of the pillars with solidification speed in the S.F. 

pillars and the M.O. pillars is attributed to the decrease in the diameter of 

the pillars. Obviously, the pillars needed to be prepared with smaller di-

ameters with increasing solidification speeds due to the reduced spacing 

between the fibers. Therefore, a size effect due to dimensional constraint 

occurs, as already discussed in section 2.4. The 0.2 % offset yield stress of 

all the M.O. pillars and S.F. pillars were plotted against their diameter and 

the two pillar groups were fitted with power law fit as shown in Fig. 4.9 to 

evaluate the scaling behaviour of these pillars. It was observed that the 

scaling behaviour of the fitted curve for S.F. pillars (b= -0.39) show weaker 

trend than for the M.O. pillars (b= -0.57). If we compare the strength of the 

two pillar groups having diameter around 600 nm, it can be seen that the 

M.O. pillars are somewhat stronger than the S.F. pillars.  

The M.F. pillars show an increase in the 0.2 % offset yield strength with 

increasing solidification speed. The average 0.2 % offset yield strength of 

the M.F. pillars for the three samples are also shown Fig. 4.9.  There is a 

weak trend that the strength increases with increasing solidification 

speed.  It can also be seen that the strengths of the M.F. pillars are lower 

than the strengths of the S.F. pillars and M.O. pillars prepared from the 

same sample, as expected due to the increase in size.  
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Figure 4.7: Representative stress vs strain plot for the three different types of pillars for 
ORNL_20 sample. M.O. pillars show highest strength values while M.F. pillars show instabil-
ity after yield. The diameters of the pillar are also indicated along with the plots. 
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Table 4.3: Average 0.2% offset yield stress and the average diameter of the three pillar 
types with respect to different samples, at least 5 µ-pillars for each condition were tested 
and the error bars correspond to the standard deviation. 

Solidification 

speed 

Matrix-only 

pillars 

Single-fiber 

pillars 

Multi-fiber 

pillars 

Diameters (µm) 

20 mm/h 0.65±0.08 1.02±0.10 4.07±0.04 

50 mm/h 0.52±0.07 0.83±0.05 4.05±0.02 

80 mm/h 0.39±0.03 0.66±0.03 4.09±0.02 

 0.2% offset yield stress (GPa) 

20 mm/h 2.51±0.28 1.77±0.22 1.61±0.05 

50 mm/h 2.74±0.52 1.98±0.41 1.71±0.01 

80 mm/h 3.33±0.36 2.29±0.42 1.94±0.30 
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Figure 4.8: 0.2% offset stress of the three pillar groups for the different samples vs the pil-
lar diameter 

 

Figure 4.9: 0.2% offset yield stress for all the pillars tested vs diameter of the pillars. The 
M.O. pillars and S.F. pillars were fitted with a two-parameter power law fit which shows 
that the S.F. pillars show a weaker trend than the M.O pillars. The yield strength of M.F. pil-
lars is also shown in the plot 
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4.4.2 Post-mortem examination 

After the compression tests, all three types of pillars from the different 

samples were examined by dual beam SEM/FIB to check for any issues 

with misalignment or instability. Examples of deformed pillars for the 

three types of pillars from ORNL_20 samples are presented in Fig. 4.10 

and compared with the undeformed pillars.  

The M.O. pillars and the S.F. pillars from all three samples deformed in a 

similar manner. A small number of non-uniformly distributed distinct slip 

steps were observed on the surface of the M.O. pillars (Fig. 4.10 b). In the 

case of the S.F. pillars, either no slip steps were observed or a large num-

ber of uniformly distributed small slip steps were seen (Fig. 4.10 d).  

Dimiduk et al. (Dimiduk, Uchic, & Parthasarathy, 2005) have seen a similar 

effect in single crystal Ni micro pillar experiments. They observed a small 

number of distinct slip steps on sub-micron pillars but a large number of 

uniformly distributed slip steps on bigger pillars. They have explained this 

observation on the basis of differences in the dislocation multiplication 

mechanisms in the samples with different sizes. For specimens having di-

ameters less than 10 µm, the dislocation multiplication process is limited, 

especially because of the dislocation leaving the free surface before mul-

tiplying. Larger specimens show bulk like behaviour with dislocation mul-

tiplication causing the plastic deformation to be carried out by multiple 

slip events. The difference between the M.O. pillars and S.F. pillars, alt-

hough quite different in size, is much less pronounced compared to Di-

miduk et al. However, essentially two different type of samples are tested, 

a single crystal in one case and a fiber-matrix composite in the other. This 

has two implications. First, in the composite S.F. pillars, a dislocation can-

not easily travel across the entire pillar since it needs to overcome or by-

pass the fiber. Second, in the S.F. pillar the interface between the matrix 

and fiber may serve as a dislocation source.  
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The post-mortem examination of the M.F. pillars revealed that all pillars 

had failed by buckling (Fig. 4.10 f). This could be related to some misalign-

ment between the indenter tip and the pillar surface. It can be also argued 

that the buckling relates to a buckling instability due to the large aspect 

ratio of the fibers testes under compression. Nevertheless, from the 

stress-strain curve of the M.F. pillars (Fig. 4.6) it is clear that the plastic 

instability occurred at higher strains beyond yielding. Therefore, the mis-

alignment should not have a significant effect on the stress values at the 

onset of yielding, as it was shown in the work by Schwaiger et al. 

(Schwaiger, Weber, Moser, Gumbsch, & Kraft, 2011).  

Cross cuts through selected deformed S.F. pillars were prepared by FIB 

milling. An SEM micrograph of one of such pillars is shown in Fig. 4.11, 

confirming the co-deformation of both the fiber and the matrix. No sign of 

any delamination or fracture at the fiber-matrix interface is observed de-

spite being heavily deformed. This strongly suggests that the interface be-

tween the fiber and matrix is in-fact very strong and that both fiber and 

the matrix are plastically deformed. 
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Figure 4.10: SEM images of the undeformed a) M.O., c) S.F., and e) M.F. pillars deformed b) 
M.O., d) S.F., and f) M.F. pillars showing distinct slip steps and non-uniform deformation in 
M.O. pillars, a more uniform distribution of slip in S.F. pillars and M.F. pillars failing by 
buckling 
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Figure 4.11: SEM micrograph of the cross cut of a deformed S.F. composite pillar showing 
co-deformed matrix and fiber with no sign of delamination or fracture at the interface be-
tween the fiber and the matrix, suggesting a strong interface 

4.5 TEM examination  

The TEM examination of the undeformed specimen in the transverse and 

the longitudinal section were carried out and the micrographs are shown 

in Fig. 4.12. The transverse section of the undeformed specimen (Fig. 4.12 

a) revealed that there were few dislocations in the NiAl matrix while the 

fibers contained only very small number of dislocations. This supports our 

argument that the high strength values of the Cr fibers, observed in the in-

situ tensile tests, relates to a very low initial dislocation density in the Cr 

fibers. Examination of the longitudinal section of the undeformed speci-

men reveals that the interface between the matrix and fiber is surrounded 

by a network of dislocations (Fig. 4.12 b). The small lattice mismatch be-

tween the NiAl and the Cr, resulting in the semi-coherent interface is re-
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sponsible for the misfit dislocation network as they reduce the coherency 

strain produced by the mismatch across the interface. These dislocation 

network has also been reported in NiAl-Cr/NiAl-Cr(Mo) composites in the 

literature (X. F. Chen, Johnson, Noebe, & Oliver, 1995; E. Cline et al., 1971; 

D. R. Johnson et al., 1995b). The lattice constants for NiAl and Cr reported 

in the literature (E. Cline et al., 1971) are 0.2887 nm and 0.2885 nm re-

spectively. The lattice mismatch between NiAl and Cr is calculated from 

the lattice constants (E. Cline et al., 1971) as 0.31%±0.02. 

The lattice mismatch can also be calculated based on the dislocation spac-

ing (E. Cline et al., 1971) from the interface dislocation network as: 

𝛿 =
𝑎𝑁𝑖𝐴𝑙

𝑑𝐼𝐷
 (4.1) 

where, 𝑑𝐼𝐷  is the average spacing between the dislocations. The disloca-

tion spacing in the undeformed NiAl-Cr specimen was measured to be ~74 

nm which results in the lattice mismatch of 0.39 % being in good agree-

ment with the values given by Walter and Cline.  

TEM examination of the lamellae prepared from the deformed composite 

S.F. pillar revealed increased dislocation activity both in the fiber and the 

matrix (Fig. 4.12 c). A Burgers vector analysis of the dislocations in these 

heavy deformed pillar lamellae were also carried out. Most of these dislo-

cations could be identified as <100> type edge dislocations. Other disloca-

tions having a mixed Burgers vector were also observed. Similar interface 

dislocation structures around the fiber in NiAl-Cr directionally solidified 

eutectics were observed previously (E. Cline et al., 1971; D. R. Johnson et 

al., 1995b); dislocations of <100> type were observed only in the NiAl ma-

trix in samples deformed to low strains (< ~0.5%) and preferentially emit-

ted from the NiAl/Cr interface.
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Figure 4.12: TEM micrographs of the undeformed specimens a) transverse section show-
ing few dislocations in the matrix and fibers being almost dislocation free, b) longitudinal 
section with Cr fiber surrounded by network of interface dislocations, and c) section of a 
deformed S.F. pillar showing higher dislocation activity in the matrix as well as fibers com-
pared to the undeformed samples.  
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4.6 Discussion 

TEM examination of the undeformed specimen of NiAl-Cr DS eutectic re-

veals that the undeformed matrix and the fiber have low initial dislocation 

density in the fiber and the matrix. Further, the interface between the NiAl 

matrix and Cr fiber is surrounded by the network of a<100> type edge 

dislocations. The high strength of the Cr fibers and NiAl matrix observed 

during the in-situ SEM tensile tests and single phase pillar compression 

tests respectively, supplements these observations. In contrast, from TEM 

examination of the deformed S.F. pillars, we observe a large number of 

dislocations, both in the matrix and the fiber, with most of these disloca-

tions identified as a<100> type.  The strength of these S.F. pillars have 

been observed to be lower than the M.O. pillars of similar dimensions. The 

Cr fibers itself deform plastically during the tensile tests. Although, for any 

given sample Cr fiber, when compared to M.O. pillars and S.F. pillars, show 

the lowest strength among the three (Fig. 4.13), a simple rule of mixture 

analysis using the strength of Cr fibers and NiAl matrix pillars to calculate 

the strength of the composite pillars predicts higher strength values than 

what was observed. FIB crosscuts across the deformed S.F. pillars further 

reveal that the two phases, NiAl matrix and Cr fibers, are able to co-deform 

under stress and delamination or fracture along the interface was not ob-

served, suggesting a very strong interface between the two phases. The 

lower strength of the composite pillars containing the interface along with 

heavy dislocation activity observed in the deformed composite pillars sug-

gest that the introduction of Cr fibers, which are ductile in the given diam-

eter range, in the brittle NiAl matrix enhances the room temperature duc-

tility and toughness following ductile phase toughening concepts as dis-

cussed in the section 2.3. 

A rule-of-mixture (ROM) analysis combining NiAl and Cr was performed 

to estimate the strength of the S.F. composite pillars from the strengths of 

the M.F. pillars and individual Cr fibers. The analysis was performed as-

suming a ratio of 0.5 for fiber-to-matrix in the cross section, since for all 
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the pillars the ratio was in the range of 0.5±0.2. The strengths were calcu-

lated for all diameters of the Cr fibers that were tested. The procedure is 

as follows: 

1. For each Cr fiber tested, the corresponding S.F. pillar diameter 

was calculated for a cross section area ratio of 0.5. Accordingly, 

the diameter of the equivalent M.O. pillar, having the same vol-

ume of NiAl, was calculated. 

2. The experimentally obtained stress vs diameter data of the M.O. 

pillars and S.F. pillars tests were fitted with a power law 𝑦 =  𝑎 ∙

𝑥𝑏  (Fig. 4.8).  

3. From the power law fits, the strength values of the M.O. pillars 

were then calculated for the diameters determined in step 1. 

4. Based on the strength 𝜎𝑁𝑖𝐴𝑙  of M.O. pillars thus obtained and the 

strength 𝜎𝐶𝑟 of the Cr fibers, the rule-of -mixture strength 𝜎𝑅𝑂𝑀 of 

the S.F. pillars was calculated following the rule-of-mixture: 

𝜎𝑅𝑂𝑀 =
𝜎𝐶𝑟 ∙𝐴𝐶𝑟+ 𝜎𝑁𝑖𝐴𝑙∙ 𝐴𝑁𝑖𝐴𝑙 

𝐴𝑐𝑜𝑚𝑝
 (4.2) 

where 𝐴𝐶𝑟, 𝐴𝑁𝑖𝐴𝑙 , 𝐴𝑐𝑜𝑚𝑝 are the cross section areas of the fiber, NiAl, and 

composite pillars, respectively. 

The calculated ROM composite pillar strengths were compared to the val-

ues determined for the S.F. pillars according to the power law fit 

(Fig. 4.14). It was found that the rule-of-mixture calculations predict a 

higher strength value for the composite pillars than observed experimen-

tally. The results are summarized in Table 4.4. 
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Figure 4.13: Stress vs diameter plot showing 0.2% offset yield stress for M.O. and S.F. pil-

lars for the three samples with respect to pillar diameter. The maximum strength of Cr fi-

ber vs fiber diameter is also shown for comparison 
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Figure 4.14: Comparison of strength of composite pillars obtained by the rule of mixture 
approach with the strength obtained by fitting the experimental data using a power law fit. 
The ROM predicts a higher strength than observed in the experiments 

Table 4.4: Comparison of the strength of single-fiber composite pillars with different fiber 
diameters calculated following a rule-of-mixtures approach and determined from a power 
law fit to the experimental data 

Cr fiber diameter (µm) 
Strength (GPa) 

Rule-of-mixture Fit to experimental data 

0.275 3.09 2.55 

0.298 2.85 2.47 

0.336 2.67 2.36 

0.368 2.42 2.27 

0.469 2.09 2.07 
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For example, a yield strength value of 3.09 GPa is predicted for a fiber di-

ameter of 275 nm, which is higher than the yield strength value of 

2.55 GPa determined from fitting the experimental data. It should also be 

noted that for the rule-of-mixture analysis, the compressive strength of 

the pillars is used with the tensile strength of Cr fibers. This may introduce 

two uncertainties. First, the tensile tests on longer fibers tend to show sys-

tematically lower strengths than the pillar tests (Johanns et al., 2012). Sec-

ond, refractory metals show an asymmetry in strengths for tension and 

compression, of the order of 20% (Duesbery & Vitek, 1998). However, if 

an increase in compressive strength values compared to tensile strength 

values is considered, the predicted values for the composite pillars from 

the rule-of-mixture calculation would be even higher.  

The difference between the strength values predicted by the ROM calcu-

lation and the experiments in figure 4.13 increases with decreasing fiber 

diameter. This can be attributed to the strong increase in the M.O. pillar 

strength for decreasing pillar diameter as seen in figure 4.8. This observa-

tion further supports the argument that the interface plays an important 

role in the deformation process of the DS eutectics, since the ROM calcu-

lation does not take into account the effect of the interface on the strength 

values of the composite pillars. It may be argued that for decreasing pillar 

diameters and fiber diameters, the interface area per unit volume in-

creases and, thus, the contribution of the interface to the overall strength 

of the pillars increases with decreasing pillar diameter. On the other hand, 

for larger pillar diameters, the interface area has a smaller effect on the 

overall strength and it can be observed that the ROM yield strength and 

the fitted experimental yield strength for the largest fiber diameter (496 

nm) show similar values. This is further supported by the fact that the 

strength of the size independent M.F pillars is comparable to the strength 

of the largest diameter S.F. pillars (Fig. 4.8).  

To explore the mechanisms behind the ductile phase toughening, Noebe 

and co-workers (Noebe et al., 1991) have discussed the role of incorpo-

rating a ductile second phase into a brittle matrix for macro- and micro-

scale toughening. At the macro-scale, this ductile second phase, which can 
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be isolated particles, interpenetrating networks, or continuous lamellae 

or fibers, helps to increase the toughness of the brittle matrix by interfer-

ing with the propagating crack. Toughening can occur by different mech-

anisms, such as crack bridging, crack deflection or crack blunting.  

At the micro-scale, toughening can be attributed to constrained defor-

mation of the ductile second phase, which may induce the generation of 

dislocations at the interface and this enabling the deformation of brittle 

matrix by either direct transmission of dislocations or nucleation of dislo-

cation in the adjacent phase. In a two phase system, the strain transfer is 

most likely to takes place by nucleation of dislocation in the adjacent 

phase. The plastic strain transfer across the interface requires an appro-

priate orientation relationship between the two phases and a strong in-

terface. The constrained deformation of the ductile phase in the brittle 

matrix, fulfilling the above mentioned requirements would then lead to 

the dislocation generation at the interface. These additional dislocation 

generated in the interface region will then contribute to the plastic defor-

mation of the brittle matrix and, thereby, increasing the toughness of the 

composite by postponing or delaying the propagation of the fracture.  

The observations from different tests carried out in this study certainly 

confirms that the criteria described by Noebe and co-workers for micro-

structural toughening for a ductile second phase in a brittle matrix is ful-

filled for NiAl-Cr directionally solidified eutectic alloys studied in this pro-

ject. The above argument strongly suggests that it is the interface in the 

NiAl-Cr directionally solidified eutectics that is controlling the defor-

mation process in these alloys. The lower strength of S.F. pillars, contain-

ing the interface region, as compared to M.O. pillars without the interface, 

having similar dimensions as the composite pillars, is also in agreement 

with this argument. This is furthermore highlighted by the rule of mixture 

analysis, where the observed strength of the composite pillars is much 

lower than the predicted one. The post mortem examination of the de-

formed pillars also strengthens the claim where we see almost all the de-

formation is limited to the top of the M.O. pillars (Fig. 4.9 b) and distinct 

slip steps due to the lack of any dislocation multiplication mechanisms. On 
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the contrary, the deformation in S.F. pillars is more uniform throughout 

the height of the pillar which can be argued to be due to dislocation gen-

eration mechanism at the interface. 

It can further be argued that the interface controlling the deformation pro-

cess in these directionally solidified eutectics is also responsible for the 

independence of hardness values with respect to the processing condi-

tions of the DS eutectics as observed in this study. The strength of the ma-

trix and the fibers increase with the increase in the solidification speed 

and decrease in the fiber diameter and fiber spacing while the interface 

area per unit volume is also increasing which would provide more sites 

for dislocation generation, counteracting the increase in the strength due 

to decreasing length scales of the fiber and the matrix confined between 

them.  

It should be mentioned that there appears to be a contradiction between 

the strength values obtained by nanoindentation and the pillar compres-

sions experiments, in terms of the trends with respect to solidification 

speeds. The strength values observed in the nanoindentation experiments 

is about 2-3 times of that observed in the pillar compression tests, what 

has been observed for many metallic materials.  

The nanoindentation experiments show a non-dependence of hardness 

with respect to the solidification speed. While, pillar compression tests for 

M.F. pillars show an increase in strength with increasing solidification 

speed samples. It should be mentioned that this trend is rather weak and 

that the error bar for the 80 mm/h is sample is fairly large. A possible ex-

planation of this trend maybe that the interaction between the dislocation 

sources during compression of higher solidification speed M.F. pillars as 

the spacing between the fibers decreases from 20 mm/h samples to 80 

mm/h samples causing increase in stress levels required to deform the 

pillars. In contrast, there is no effect of the solidification speed on the 

hardness in nanoindentation. This finding may relate to the stress state, 

which is inhomogeneous and triaxial vs homogeneous and uniaxial in the 
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micro compression test. As a result, the easier dislocation nucleation re-

lated to the higher interface density may counterbalance the more difficult 

dislocation propagation.   

The deformation mechanism in the NiAl-Mo alloys, as discussed in the 

work of Kwon et al. (Kwon et al., 2015), appears to differ from what is 

observed in this study for NiAl-Cr alloys. They have observed that in NiAl-

Mo directionally solidified eutectic alloys, the NiAl matrix deforms first 

which leads to the accumulation of <100> type dislocations at the inter-

face which triggers the <111> dislocation in the Mo fibers. The reason for 

this difference can be attributed to two main factors; 1) a misfit disloca-

tion network surrounding the Mo fibers was not observed in their study. 

2) The Mo fibers are much stronger compared to the NiAl matrix. There-

fore, it is obvious in the case of NiAl-Mo that NiAl matrix starts deforming 

first, while in case NiAl-Cr, the Cr fibers show comparable or lower 

strengths when compared to the NiAl matrix. In both cases, dislocation 

nucleation at the interface may support the plastic deformation of the eu-

tectics leading eventually to an increase in toughness. 
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5 Summary and outlook 

Directionally solidified NiAl-Cr eutectics, prepared at three different so-

lidification speed 20 mm/h, 50 mm/h, and 80 mm/h, were mechanically 

characterized using different micromechanical techniques.  A summary of 

the different experiments performed and results in this study is presented 

in this chapter along with a comprehensive summary of the interpretation 

of these results. A short outlook on future steps is also presented.  

5.1 Summary and interpretation of results 

The key observation from the different micromechanical tests conducted 

in this project can be summarized as: 

1. The microstructural examination of the samples prepared at dif-

ferent solidification speed reveals a composite microstructure 

with NiAl forming the matrix and Cr long continuous fibers. All 

the fibers are oriented along the growth direction. TEM examina-

tion by Antje Krüger (RA V, IMD graduate school) reveal that both 

matrix and fiber have a [001] growth direction. The fiber diame-

ter and spacing between the fibers is inversely related to the so-

lidification speed. Both fiber diameter and spacing between the 

fibers decrease with increasing solidification speed.  

2. Nanoindentation examination was carried out on the samples 

with varying solidification speed to evaluate Hardness and 

Young’s modulus. The experiments reveal that the hardness and 

Young’s modulus does not depend on the solidification speed of 

the directional solidification. This observation suggests that the 

deformation in these directionally solidified eutectics involving 

different phases is a complex process and individual phases and 



5  Summary and outlook   

100 

the interface must be tested in order to understand the contribu-

tion of different phases in the deformation process. 

3. The in-situ SEM tensile tests of the isolated individual Cr fibers 

revealed that the Cr fibers can be deformed plastically, at least in 

the given diameter range, and show high strength values up to 3 

GPa. A size effect on the strength of the Cr fibers was observed, 

with the maximum strength of the Cr fibers increase with the de-

creasing fiber diameter. Furthermore, some of the long enough 

broken segments were re-gripped and tested again. The re-

gripped segments show higher strength values than the pristine 

fibers of the same diameter.  

4. Micro pillar compression tests were carried out on the three dif-

ferent kind of pillars, i.e. matrix only M.O. pillars, single fiber com-

posite S.F. pillars, and size independent multiple fiber M.F. pillars 

on different solidification speed samples. The strength of the M.O. 

pillars and S.F. pillars increases with increasing solidification 

speed of the samples, due to decreasing fiber diameter and spac-

ing between the fibers as evident from the microstructure exam-

inations. The pillars show high strength values up to 4 GPa. The 

M.F. pillars prepared for all three samples show that the 0.2% 

yield strength is lowest of all the three types of pillars and in-

creases weakly with increasing solidification speed.  

Comparing the strengths of single phase NiAl micro-pillars, hav-

ing similar pillar diameter as S.F. pillars, reveals that for the same 

size the M.O. pillars are stronger than the S.F. pillars.  

5. The post mortem examination of the deformed pillars by SEM re-

veals distinct slip steps in the M.O. pillars with almost all the de-

formation concentrated at the top of the pillar. In contrast, for the 

S.F. pillars, the deformation is more uniform throughout the 

height of the pillars. The cross cut across the deformed S.F. pillars 

further reveal that both the fiber and matrix is co-deformed and 

there was no sign of delamination or fracture at the interface. Ex-

amination of multiple fiber composite M.F. pillars reveal that all 
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the pillars failed by buckling related to a plastic buckling instabil-

ity. The plastic instability occurs after yielding at around 15 % 

strain possibly due to misalignment between the indenter tip and 

sample surface or the large aspect ratio of the fibers.  

6. TEM comparisons of undeformed and deformed S.F. pillars re-

veals that in the undeformed specimen the NiAl matrix contains 

small number of dislocations, Cr fibers are essentially dislocation 

free and the interface between the matrix and the fiber is sur-

rounded by the network of <100> type interface dislocation aris-

ing due to semi-coherent interface between the two phases. On 

the other hand, the deformed pillars reveal much more disloca-

tion activity, both inside the matrix and the fiber. Most of these 

dislocations were identified as <100> type, while dislocations 

with mixed Burgers vector were also observed. 

The high strength values as well as the size effect in strength of these Cr 

fibers suggests that the Cr fibers have a very low initial dislocation den-

sity. This is also confirmed by the TEM examination where almost no dis-

locations were observed in the undeformed Cr fibers. The increase in the 

strength of the re-attached Cr fibers also supports this argument as the 

deformation in such fibers follows a weakest link approach. 

The observed size effect in all the M.O. and S.F. has been attributed to di-

mensional constraints. The distinct slip steps in the deformed M.O. pillars 

suggest that M.O. pillars have a low initial dislocation density. In contrast, 

the more uniform deformation of S.F. pillars suggests stronger dislocation 

activity which is also confirmed by the TEM examination of the deformed 

S.F. pillars. The absence of any crack or delamination at the interface in 

the cross-cut across of the deformed S.F. pillars suggests that the interface 

between the fiber and the matrix is very strong and leads to the co-defor-

mation of fiber and matrix. The lower strength of S.F. pillar, containing the 

interface, as compared to M.O. pillar, without the interface, of similar di-

ameter suggests that the interface between the NiAl and Cr fibers plays an 

important role in the deformation of NiAl-Cr eutectic. This argument is 

further supported by the rule of mixture analysis, performed to estimate 
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the strength of S.F. pillars based on the strength of Cr fiber and M.O. pillars. 

The analysis shows that the observed strength of the S.F. pillars is lower 

than it would be predicted by the rule of mixture.  

All the observations from the different micromechanical tests conducted 

in this study indicate that the interface between the Cr fiber and NiAl ma-

trix in directionally solidified NiAl-Cr eutectic, containing interface dislo-

cation network, dominates the deformation mechanism of the eutectic al-

loys by generating dislocations when the two phases are co-deformed. 

This mechanism provides additional ductility to the brittle NiAl matrix 

and possibly results in increased toughness by delaying the crack nuclea-

tion or propagation. 

5.2 Outlook 

The observations and results from different micromechanical tests per-

formed in this study indicates that the interface between the fiber and the 

matrix dominates the deformation mechanisms in NiAl-Cr directional so-

lidified eutectic alloy by generating dislocations. This should provide ad-

ditional toughness for the alloy. For a proof of principle, a study on the 

fracture behaviour of the alloy and the role of ductile Cr fibers and their 

orientation would be required. Being a first generation Ph.D. within the 

framework of IMD, the main focus of this study was to better understand 

the deformation processes in these alloys at room temperature. But NiAl-

Cr being a candidate for high temperature application, its high tempera-

ture deformation behaviour must also be studied in detail. The following 

possible approaches are suggested to achieve the above mentioned aims: 

1. To study the direct evidence of dislocation generation mechanism 

at the interface, a variant of micro-pillar compression test could 

be employed, where the tests are interrupted at a suitable in-

denter displacement such that the pillars just start to deform 

plastically, i.e. to deform the pillars partially. The lamellae from 
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these partially deformed pillars should then be examined by TEM 

to observe the dislocation evolution process.  

2. To understand the effect of the ductile fibers on the fracture be-

haviour of the DS eutectic alloys, small scale fracture samples 

could be prepared and tested in-situ in order to observe the crack 

propagation process. As a starting point, one of the fracture sam-

ples based on the double cantilever beam (DCB) design of Liu et 

al. (S. Liu et al., 2013) were prepared by FIB milling to be tested 

in-situ (Fig. 5.1). High beam current was used to mill the outer 

shape of the sample. Special mounting blocks were prepared in 

which the sample can be mounted at an angle of 52°with respect 

to the horizontal axis and by manipulating the stage tilt the sam-

ple can be oriented parallel to the ion beam, thus allowing the 

middle section and crack was milled from the side to ensure a 

good surface finish. Lower beam currents were used to mill the 

middle section of and the crack. The middle section of the sample 

is ~4 µm X 4 µm in area. Crack depth is ~ 8 µm. The µ-DCB sam-

ples after preparation by FIB milling are compressed in-situ with 

a flat punch with diameter larger than 5 µm, such that both the 

shoulders of the samples are compressed simultaneously. The 

samples presented in figure 5.1 has the crack orientation parallel 

to the growth direction of the fiber. The µ-DCB sample can also be 

prepared in different orientations such that the orientation of fi-

ber with respect to the crack can be varied in order to study the 

effect of fiber orientation on the fracture behaviour. 

3. In addition to room temperature studies carried out in this study, 

high temperature deformation behaviour of the eutectic alloys 

could also be studied at small scale to understand the effect of fi-

ber and their orientation with respect to the loading direction on 

the deformation and creep behaviour at elevated temperature. 
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Figure 5.1: µ-DCB fracture sample prepared by FIB milling, to be tested in-situ in order to 
study the crack propagation in DS eutectics with respect to the different fiber orientation. 
The sample prepared has the crack running parallel to the fiber orientation. 

4. As one of the important goals of the graduate school IMD, effort 

must be directed towards developing different alloys prepared by 

adding one or more refractory metals to NiAl-Cr eutectic and the 

effect of these alloying additions on the overall behaviour of these 

alloys should also be evaluated. 
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In this work, we have employed different micromechanical techniques on direc-
tionally solidified NiAl-Cr prepared at different solidification speeds, to under-
stand the effect of processing conditions and the role of individual phases and 
interfaces on the deformation behaviour. Nanoindentation study reveals that 
the hardness and modulus of these alloys does not depend on the solidifica-
tion speed. Individual Cr fibers tested in-situ deform plastically and show high 
strength values. Micro-pillar compression tests reveal that the single-phase pil-
lars are stronger than the composite pillars for similar dimensions. FIB crosscuts 
across deformed pillars show no delamination at the interface. TEM examina-
tion of deformed pillars show higher dislocation activity in the composite pil-
lars compared to undeformed pillars. The observations from the different tests 
performed strongly suggest that the interface between the fiber and the matrix 
dominates the deformation of directionally solidified NiAl-Cr eutectic alloys by 
providing additional mobile dislocation generation sites at the interface.
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