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Abstract

The tensorial curvature measures are tensor-valued generalizations of the curvature measures
of convex bodies. On convex polytopes, there exist further generalizations some of which
also have continuous extensions to arbitrary convex bodies. The global tensorial curvature
measures are the well-known Minkowski tensors, which are tensor-valued generalizations of
the intrinsic volumes of convex bodies.
We prove two complete sets of integral geometric formulae, so called kinematic and

Crofton formulae, for the (generalized) tensorial curvature measures. The kinematic
formulae express the integral mean of the (generalized) tensorial curvature measures of
the intersection of two given convex bodies (resp. polytopes), one of which is uniformly
moved by a proper rigid motion, in terms of linear combinations of the (generalized)
tensorial curvature measures of the given convex bodies (resp. polytopes). The Crofton
formulae express the integral mean of the (generalized) tensorial curvature measures of
the intersection of a given convex body (resp. polytope) with a uniformly moved affine
subspace in terms of linear combinations of (generalized) tensorial curvature measures
of the given convex body (resp. polytope). In the proof of the kinematic formulae, we
proceed in a more direct way than in the classical proof of the principal kinematic formula
for curvature measures, which uses the connection to the Crofton formula, to determine
the involved constants explicitly. However, we apply this aforementioned connection to
prove the Crofton formulae for the (generalized) tensorial curvature measures.
By globalization of these integral geometric formulae, we derive two complete sets

of corresponding integral geometric formulae for the Minkowski tensors. Non-trivial
adjustments of the above methods to the case of SO(n)-covariant tensorial curvature
measures (which are versions of the tensorial curvature measures with slightly different
covariance properties and only occur in dimensions two and three), yield the corresponding
integral formulae for them as well. From a different approach we finally obtain Crofton
formulae for the tensorial curvature measures which are defined with respect to the uniformly
moved affine subspace as the ambient space (and for their global versions).
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CHAPTER 1

Introduction

In the third of his famous twenty-three mathematical problems, which David Hilbert
presented at the International Congress of Mathematicians in 1900 in Paris (see [40]), he
raised the question if any polyhedron (in three-dimensional Euclidean space) can always
be dissected into finitely many polyhedra which yield reassembled any given polyhedron
of the same volume as the first. Contrarily to the well-studied equivalent for polygons
(in two-dimensional Euclidean space), Hilbert conjectured the answer to be negative in
general (referring to a correspondence between Gauß and Gerling; see [31, p. 240ff]). This
was confirmed by Max Dehn in the same year, by introduction and application of the so
called Dehn invariant (see [24]), which can be seen as the first important example of a
real valuation (which is not a measure) on convex polytopes, and therefore, as the starting
point of valuation theory, one facet of which form the tensorial curvature measures, the
crucial objects of investigation in this thesis.

A mapping ϕ defined on the set Kn of convex bodies (non-empty, compact, convex sets)
in Euclidean space Rn which takes values in an abelian group is called a valuation (or
additive) if

ϕ(K) + ϕ(K ′) = ϕ(K ∪K ′) + ϕ(K ∩K ′)

whenever K,K ′,K ∪K ′ ∈ Kn. This concept of additivity weakens the countable additivity,
which basically defines a measure and is therefore essential in various fields all over
mathematics. However, the theory of valuations is likewise remarkably fruitful, to a
great extent due to the investigations of the algebraic structure of valuations in recent
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years, which led to deep new insights into integral geometry (for an overview thereof, see
[4, 10, 30]).

Some of the most important classical valuations (and the first step towards introducing
the tensorial curvature measures) are the intrinsic volumes Vj : Kn → R, for j ∈ {0, . . . , n},
which occur as the coefficients of the monomials in the Steiner formula

Hn(K + εBn) =
n∑
j=0

κn−j Vj(K) εn−j , (1.1)

for a convex body K ∈ Kn and ε ≥ 0. As usual in this context, + denotes the Minkowski
addition in Rn, Bn is the Euclidean unit ball in Rn of n-dimensional volume κn, and Hn

is the n-dimensional Hausdorff measure. The basic properties of the intrinsic volumes,
isometry invariance, additivity and continuity (with respect to the Hausdorff metric),
which are derived from corresponding properties of the volume functional, are crucial
in characterizing them. More precisely, Hadwiger’s characterization theorem states that
V0, . . . , Vn form a basis of the vector space of continuous and isometry invariant real-valued
valuations on Kn (see Hadwiger’s original works [36, 37, 38] or Klain’s new and shorter
proof in [59], reproduced in [60, Theorem 9.1.1] and [83, Theorem 6.4.14]). This key result
for intrinsic volumes is one of the fundamental tools in convex integral geometry, which
will be explained later in this chapter in more detail.

A far reaching generalization of the intrinsic volumes is obtained by their localization as
measures, associated with convex bodies, such that the intrinsic volumes are just the total
measures. Specifically, this leads to the support measures which are weakly continuous,
locally defined and motion equivariant valuations on convex bodies with values in the space
of finite measures on Borel subsets of Rn × Sn−1, where Sn−1 denotes the Euclidean unit
sphere in Rn. In the spirit of Hadwiger’s characterization theorem, Glasauer characterized
the support measures using these properties, where the additivity is not required (see [32]).
The support measures are determined by a local version of the Steiner formula (1.1), and
thus they provide a natural example of a localization of the intrinsic volumes. Their
marginal measures on Borel subsets of Sn−1 are called area measures, and the ones on
Borel subsets of Rn are called curvature measures, both of which admit characterizations of
Hadwiger type via suitable properties (including additivity) as well, proved by Schneider
(see [79, 80]).

Already in the early seventies of the last century, Schneider, and Hadwiger and Schneider
analyzed vector-valued versions of the intrinsic volumes, so called quermassvectors (curvature
centroids), in terms of characterizations and integral geometry (see [39, 77, 78]). More
recently, in 1997 McMullen extended this framework and initiated a study of tensor-valued
generalizations of the (scalar) intrinsic volumes and the vector-valued quermassvectors (see
[68]). This naturally raised the question for an analogue of Hadwiger’s characterization
theorem for basic additive, tensor-valued mappings on the space of convex bodies. As
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shown by Alesker in [2, 3], and further studied in [52], there exist natural tensor-valued
functions, the Minkowski tensors, which generalize the intrinsic volumes and span the
vector space of tensor-valued, continuous valuations on the space of convex bodies which
are also isometry covariant. Although the basic Minkowski tensors span the corresponding
vector space of tensor-valued valuations, they satisfy non-trivial linear relationships and
hence are not a basis.
The next natural step is to combine local and tensor-valued extensions of the classical

intrinsic volumes. This setting has recently been studied by Schneider (see [82]) and
further analyzed by Hug and Schneider in their works on tensorial support measures, or
local Minkowski tensors (see [47, 48, 49]). As their names suggest, these valuations can
be seen as tensor-valued generalizations of the support measures. On the other hand,
they can be considered as localizations of the (global) Minkowski tensors. Inspired by the
characterization results obtained in [82, 47, 48, 49, 74], we consider tensor-valued curvature
measures, the tensorial curvature measures, and their generalizations, some of which only
occur for polytopes. Even though a general characterization of the tensorial curvature
measures is still an open problem (see however [74] for results in the smooth setting),
we prove their linear independence in this thesis, which is a crucial result in view of the
upcoming integral formulae.

Minkowski tensors, tensorial curvature measures, and general local tensor valuations are
useful morphological characteristics that allow to describe the geometry of complex spatial
structure and are particularly well suited for developing structure-property relationships
for tensor-valued or orientation-dependent physical properties; see [69, 86, 87] for surveys
and Klatt’s PhD thesis [61] for an in-depth analysis of various aspects (including random
fields and percolation) of the interplay between physics and Minkowski tensors. These
applications cover a wide spectrum ranging from nuclear physics [91], granular matter
[57, 101, 76, 67], density functional theory [100], physics of complex plasmas [20], to
physics of materials science [73]. Characterization and classification theorems for tensor
valuations, uniqueness and reconstruction results [42, 64, 63, 62], which are accompanied
by numerical algorithms [86, 87, 45, 21], stereological estimation procedures [65, 66], and
integral geometric formulae, as considered in the present work, form the foundation for
these and many other applications.

After the brief motivation of the tensorial curvature measures in the preceding paragraphs,
we now turn to the integral geometric formulae, in which the former are applied in this thesis.
The classical integral geometry goes back to a series of lectures held by Wilhelm Blaschke
in Hamburg, in the 1930s (collected in [19]). He initiated investigations of problems in the
field of convex and differential geometry, which arise from problems in classical geometric
probability, but are nevertheless of geometric interest, independent of their stochastic
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applications. In particular, intersection formulae are key results in integral geometry, in
which specific geometric quantities of the intersection of moving geometric objects are
averaged with respect to invariant measures. For a classical approach to this topic see [75],
for more recent developments see [85, Chap. 5] and [83, Chap. 4.4].

The two best known and most fundamental classical intersection formulae are the principal
kinematic formula and the classical Crofton formula, which treat the intrinsic volume of
the intersection of a convex body with another geometric object (in the principal kinematic
formula this is a second convex body, in the Crofton formula this is an affine subspace)
which is uniformly moved by a proper rigid motion. More precisely, the principal kinematic
formula (see [83, (4.52)]) states, for two convex bodies K,K ′ ∈ Kn and j ∈ {0, . . . , n}, that

∫
Gn
Vj(K ∩ gK ′)µ(dg) =

n∑
k=j

αnjk Vk(K)Vn−k+j(K ′), (1.2)

where Gn denotes the group of proper rigid motions of Rn, µ is the motion invariant Haar
measure on Gn, normalized in the usual way (see [85, p. 586]), and the constant

αnjk =
Γ
(
k+1

2

)
Γ
(
n−k+j+1

2

)
Γ
(
j+1

2

)
Γ
(
n+1

2

) (1.3)

is expressed in terms of specific values of the Gamma function. Furthermore, for a convex
body K ∈ Kn and k ∈ {0, . . . , n}, j ∈ {0, . . . , k}, the classical Crofton formula (see [83,
(4.59)]), the name of which originates from works of the Irish mathematician Morgan W.
Crofton on integral geometry in R2 in the late 19th century (see [23]), states that∫

A(n,k)
Vj(K ∩ E)µk(dE) = αnjk Vn−k+j(K), (1.4)

where A(n, k) is the affine Grassmannian of k-flats in Rn, on which µk denotes the motion
invariant Haar measure, normalized as in [85, p. 588], and αnjk is again defined as in (1.3).
Both of these formulae can be proved by applying Hadwiger’s characterization theorem,
which yields a representation of the integrals in (1.2) and in (1.4) in terms of intrinsic
volumes of the involved convex bodies. For the classical Crofton formula, the occurring
coefficients of this representation are then determined by computation of the formula for
suitable convex bodies. These further yield the coefficients in the principal kinematic
formula, using the connection via Hadwiger’s general integral geometric theorem (see [85,
Theorem 5.1.2]).

It is natural to extend these integral formulae by applying the corresponding integrations
to the functionals introduced above which generalize the intrinsic volumes. We briefly
summarize various aspects of the progress concerning these extensions, which has been
made during the past decades. In 1959, Federer (see [27, Theorem 6.11]) proved kinematic
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formulae for the curvature measures, even in the more general setting of sets with positive
reach, which contain the classical kinematic formula as a very special case. More recently,
kinematic formulae for support measures on convex bodies have been established by Glasauer
in 1997 (see [32, Theorem 3.1]). These formulae are based on a special set operation on
support elements of the involved convex bodies, which limits their usefulness for the present
purpose, as explained in [33]. As mentioned above, Schneider and Hadwiger developed
integral formulae for the vector-valued quermassvectors, early in the nineteen-seventies (see
[39, 77, 78]). For a proof of a tensor-valued version of the integral formulae, an application
of Alesker’s characterization theorem for Minkowski tensors does not seem to be promising,
due to the fact that the Minkowski tensors are not linearly independent and because of the
inherent difficulty of evaluating them explicitly for sufficiently many examples. Nevertheless,
major progress has been made in various works by different methods. Integral geometric
Crofton formulae for general Minkowski tensors have been obtained in [51]. A specific
case has been further studied and applied to problems in stereology in [65], for various
extensions see [93]. A quite general study of various kinds of integral geometric formulae
for translation invariant tensor valuations is carried out in [15], where also corresponding
algebraic structures are explicitly determined. An approach to Crofton and thus kinematic
formulae for translation invariant tensor valuations via integral geometric formulae for
area measures (which are of independent interest) follows from [33] and [89]. Despite all
these efforts and substantial progress, a complete set of kinematic and Crofton formulae
for general Minkowski tensors has not been found so far. The current state of the art is
described in several contributions of the lecture notes [58].

In the joint works with Daniel Hug [53, 55], we established two complete sets of kinematic
and Crofton formulae for the tensorial curvature measures (and their generalizations),
which had not been considered in the literature before. By globalization of these integral
geometric formulae, we further derive two complete sets of the corresponding integral
formulae for the Minkowski tensors. Following the approach of [48, 49], we introduce the
SO(n)-covariant tensorial curvature measures, which are versions of the tensorial curvature
measures with slightly different covariance properties (and only occur in dimensions two
and three). By non-trivial adjustments of the above methods to their case, we obtain
integral geometric formulae for these tensorial valuations as well. A completely different
approach, which is based on the techniques in [51], finally yields Crofton formulae for
the tensorial curvature measures defined in the uniform affine subspace as the ambient
space (and for their global versions), which is published in the joint work with Daniel Hug
[54] (containing generalizations of [99]). The results listed in the present paragraph are
the outcome of my research during the last two and a half years. Their placement in the
structure of this thesis is provided in the last part of this chapter.
In the present thesis, we explore generalizations of integral geometric formulae to ten-

sorial measure-valued valuations. Various other directions have been taken in extending
the classical framework of integral geometry. Kinematic formulae for support functions
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have been studied by Weil in [96], by Goodey and Weil in [34], and by Schneider in [81].
Furthermore, there is recent related work on mean section bodies and Minkowski valuations
by Schuster (see [88]), Goodey and Weil (see [35]), and Schuster and Wannerer (see [89]); a
Crofton formula for Hessian measures of convex functions has been established and applied
in [22]. Instead of changing the functionals involved in the integral geometric formulae,
it is also natural and in fact required by applications in stochastic geometry to explore
formulae where the integration is extended over subgroups of the motion group. The
extremal cases are translative and rotational integral geometry, where the subgroup is Rn

and O(n), respectively. The former is described in detail in [85, Chap. 6.4], recent progress
for scalar- and measure-valued valuations and further references are provided in [97, 98, 46],
applications to stochastic geometry are given in [43, 41, 44], where translative integral
formulae for tensor-valued measures are established and applied. Rotational Crofton
formulae for tensor valuations have recently been developed further by Auneau et al. in
[8, 7] and Svane and Vedel Jensen in [93] (see also the literature cited there), applications to
stereological estimation and bio-imaging are treated and discussed in [71, 103, 56]. Various
other groups of isometries, also in Riemannian isotropic spaces, have been studied in recent
years. Major progress has been made, for instance, in Hermitian integral geometry (in
curved spaces), where the interplay between global and local results turned out to be
crucial (see [13, 14, 28, 29, 95, 94, 92] and the survey [11]), but various other group actions
have been studied successfully as well (see [5, 9, 10, 12, 16, 17, 18, 26]).

The thesis is structured as follows. In Chapter 2, we fix our notation and terminology,
and provide a brief introduction to the basic concepts and definitions required in this thesis.
Chapter 3 is intended to motivate and define different tensor-valued generalizations of the
curvature measures, which is done in Section 3.1. Moreover, in Section 3.2, we recall the
definition of the Minkowski tensors and the required background concerning these.
In Chapter 4, we establish a complete set of kinematic formulae for the generalized

tensorial curvature measures on polytopes and for their non-vanishing extensions to convex
bodies (see Section 4.1). The constants involved in these formulae are surprisingly simple
(when compared to the previous results from the literature) and can be expressed as a
concise product of Gamma functions. Although some information about tensorial kinematic
formulae can be gained from abstract characterization results (as developed in [82, 47]),
we believe that explicit results cannot be obtained by such an approach, at least not in a
simple way. In contrast, in the proof (provided in Section 4.4), our argument starts as a
tensor-valued version of the proof of the kinematic formula for curvature measures (see [83,
Theorem 4.4.2]). But instead of first deriving Crofton formulae to obtain the coefficients
of the appearing functionals, we have to proceed in a direct way. In fact, the explicit
derivation of the constants in related Crofton formulae via the template method does not
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seem to be feasible. The main technical part of the present argument, which requires the
calculation of rotational averages over Grassmannians and the rotation group (prepared in
Section 4.2), is new even in the scalar setting. Therefore, we also provide the proof of the
(scalar) principal kinematic formula for curvature measures, as an instructive preparation
for the general (tensorial) proof in Section 4.3.

In Chapter 5, we provide a complete set of Crofton formulae for (generalized) tensorial
curvature measures as a straightforward consequence of the kinematic formulae, and relate
them to results in Chapter 8 (see Section 5.1). This complements the particular results for
tensorial curvature measures in [93]. The current approach is basically an application of
the kinematic formulae for (generalized) tensorial curvature measures derived in Chapter 4.
The connection between local kinematic and local Crofton formulae is well-known for the
(scalar) curvature measures. In that setting, it is used to determine the coefficients in the
kinematic formula for curvature measures. In the tensorial framework however, we apply
this relation reversely to derive the explicit Crofton formulae (see Section 5.2).
Since the tensorial curvature measures are local versions of the Minkowski tensors, it

is rather straightforward to derive the corresponding sets of integral geometric formulae
for Minkowski tensors as well. This is the subject of Chapter 6; see Section 6.1 for the
kinematic formulae and Section 6.2 for the Crofton formulae. These results extend some of
the integral formulae for translation invariant Minkowski tensors obtained by Bernig and
Hug in [15] and significantly simplify the coefficients of the Crofton formulae proved in [51].
We prove the integral formulae by globalization of the corresponding ones for tensorial
curvature measures (see Section 6.3). The total generalized tensorial curvature measures,
which naturally occur in that approach, are the only challenging part of the proof. They
can, however, be treated using a relation due to McMullen (see [68]).
Chapter 7 is devoted to the study of integral formulae for versions of the tensorial

curvature measures with weakened covariance properties. More precisely, in dimension
two and three there exist tensorial generalizations of the curvature measures which are
covariant under proper rotations but not under orientation reversing rotations (see Section
3.1.4). We establish kinematic and Crofton formulae for these and for their global versions
(in case they do not vanish); see Sections 7.1 and 7.2. The proofs are based on the ideas in
the previous chapters. Nevertheless, at some point we have to deviate from the general
approach, which is explained in detail in the proofs.

Finally, in Chapter 8, we derive Crofton formulae for tensorial curvature measures which
are defined with respect to the uniformly moved affine subspace as the ambient space
(intrinsic viewpoint); see Section 8.1. The approach of the proofs combines main ideas
of the previous works [51] and [47] and also links it to [15] (see Section 8.2). From the
general local results, we deduce further various special consequences for the total measures
(obtained by globalization), the Minkowski tensors. For the latter, we restrict ourselves to
the translation invariant case, which simplifies the involved constants. In a second step, we
demonstrate how the arguments can be extended to the case where the curvature measures
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are considered in Rn (extrinsic viewpoint), even though these are basically special cases of
the formulae in Chapter 5. In the case of the results for the extrinsic tensorial Crofton
formulae, the connection to the approach in [15] via the methods of algebraic integral
geometry is used and deepened (see Section 8.3).
As a matter of completeness, we recall several auxiliary integral geometric formulae

known from the literature, which are required during this thesis, in Appendix A. Finally in
Appendix B, we state and prove some explicit expressions for sums of Gamma functions
and binomial coefficients. The proofs of these results are based on relations found with
Zeilberger’s algorithm (see [70]).



CHAPTER 2

Preliminaries

In this chapter, we set up the notation and terminology, and review several basic mathe-
matical facts.
We work in the n-dimensional Euclidean space Rn, n ≥ 2, equipped with its usual

topology generated by the standard scalar product 〈· , ·〉 and the corresponding Euclidean
norm ‖ · ‖. For a topological space X, we denote the Borel σ-algebra on X by B(X). We
write Hj , j ∈ {0, . . . , n}, for the j-dimensional Hausdorff measure on B(Rn). The unit ball
in Rn centered at the origin is denoted by Bn, its boundary (the unit sphere) is denoted
by Sn−1, and the product space Rn × Sn−1 is denoted by Σn. We further write κn for the
volume of the unit ball and ωn for its surface area, that is,

κn = Hn(Bn) = π
n
2

Γ(n2 + 1) , ωn = Hn−1(Sn−1) = nκn = 2π
n
2

Γ(n2 ) ,

where Γ denotes the Gamma function, which is briefly introduced with some important
properties in the end of this chapter.

For a set A ⊂ Rn, we denote the affine, linear, and positive hull by affA, linA and posA,
respectively. The dimension of A is defined as the dimension of the affine hull of A, and
denoted by dimA. The interior, closure and boundary of A are respectively denoted by
intA, clA and bdA. We further write relintA (resp. relbdA) for the relative interior
(resp. relative boundary) of A, which is the interior (resp. boundary) of A relative to its
affine hull as the ambient space. We define the Minkowski sum of A and a set B ⊂ Rn

by A + B := {a + b : a ∈ A, b ∈ B}, and shortly write A + x := A + {x}, where x ∈ Rn.
We denote the indicator function of A by 1A : Rn → R, which is defined by 1A(x) := 1 if
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x ∈ A and by 1A(x) := 0 if x 6∈ A. Similarly, for an assertion P , we set 1{P} = 1 if P is
true and 1{P} = 0 if P is false.
The rotation group (or orthogonal group) on Rn, consisting of all distance preserving

linear mappings from Rn onto itself, is denoted by O(n), and the proper rotation group
on Rn, which is the subgroup of O(n) consisting of orientation preserving rotations, is
denoted by SO(n). We write ν for the Haar probability measure on both of these topological
groups. By Gn, we denote the (rigid) motion group on Rn, consisting of all distance and
orientation preserving affine maps from Rn onto itself. Between Gn and Rn × SO(n), there
is a bijection. In fact, we can write every rigid motion g ∈ Gn as the unique composition
of a proper rotation ϑ ∈ SO(n) and a translation tx : Rn → Rn (which is defined by
tx(y) := y + x, for y ∈ Rn), that is, g = tx ◦ ϑ. We write µ for the Haar measure on Gn,
normalized as in [85, p. 586], that is,

µ(·) =
∫

SO(n)

∫
Rn
1{tx ◦ ϑ ∈ · }Hn(dx) ν(dϑ).

By G(n, k) (resp. A(n, k)), for k ∈ {0, . . . , n}, we denote the Grassmannian (resp. affine
Grassmannian) of k-dimensional linear (resp. affine) subspaces of Rn. We write νk for the
rotation invariant Haar probability measure on G(n, k), and µk for the motion invariant
Haar measure on A(n, k), normalized as in [85, p. 588], that is, for a fixed (but arbitrary)
linear subspace L ∈ G(n, k),

µk(·) =
∫

SO(n)

∫
L⊥

1{ϑ(L+ t) ∈ ·}Hn−k(dt) ν(dϑ). (2.1)

The directional space of an affine k-flat E ∈ A(n, k) is denoted by E0 ∈ G(n, k), its
orthogonal complement by E⊥ ∈ G(n, n− k), and the translate of E by a vector t ∈ Rn

is denoted by Et := E + t. For k ∈ {0, . . . , n} and F ∈ G(n, k), we denote the group of
rotations of Rn mapping F (and hence also F⊥) into itself by SO(F ) (which is the same as
SO(F⊥)) and write νF for the Haar probability measure on SO(F ). For l ∈ {0, . . . , n}, we
set

G(F, l) :=

{L ∈ G(n, l) : L ⊂ F}, if l ≤ k,

{L ∈ G(n, l) : L ⊃ F}, if l > k.

Then G(F, l) is a homogeneous SO(F )-space. Hence, there exists a unique Haar probability
measure νFl on G(F, l), which is SO(F ) invariant. An introduction to invariant measures
and group operations as needed here is provided in [85, Chap. 13], where, however, SO(F )
is defined in a slightly different way.
The orthogonal projection of a vector x ∈ Rn to a linear subspace L of Rn is denoted

by pL(x), and its direction is denoted by πL(x) := pL(x)/‖pL(x)‖ ∈ Sn−1 for x /∈ L⊥. For
two linear subspaces L,L′ of Rn, the subspace determinant [L,L′] is defined as follows (see
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[85, Sect. 14.1]). If dimL+ dimL′ ≥ n, one extends an orthonormal basis of L ∩ L′ (the
empty set if L ∩ L′ = {0}) to an orthonormal basis of L and to one of L′. Then [L,L′]
is the volume of the parallelepiped spanned by all these vectors. If dimL + dimL′ < n,
we define [L,L′] := [L⊥, L′⊥]. Consequently, if L = {0} or L = Rn, then [L,L′] = 1, and
[L,L′] = 0 if and only if L and L′ are not in general position. For two sets F, F ′ ⊂ Rn (in
this thesis F, F ′ will often be faces of polytopes), we define [F, F ′] := [F 0, (F ′)0], where F 0

is the direction space of the affine hull of F .
In this paragraph we introduce the required notation from convex geometry, which

can be found in detail in [83]. We call a non-empty, convex and compact subset of Rn a
convex body, and denote the set of all convex bodies in Rn by Kn. For an arbitrary set
A ⊂ Rn, the convex hull of A is denoted by convA. We call the convex hull of finitely
many points a polytope, and denote the set of all non-empty polytopes in Rn by Pn. For
a convex body K ∈ Kn, we call K ∩ E a support set of K, where E ∈ A(n, n − 1) is a
hyperplane (that is an (n− 1)-dimensional subset of Rn), whenever (K ∩E) ⊂ relbdK. A
j-dimensional support set, j ∈ {0, . . . , n− 1}, of a polytope P ∈ Pn is called a j-face or
simply a face (and the polytope itself is its only n-face, if it is n-dimensional). In particular,
a dimP − 1-face is referred to as facet. We further denote the set of j-faces of P by Fj(P ).
For a convex body K ∈ Kn and a point x ∈ Rn, we denote the metric projection of x onto
K by p(K,x), which is the unique nearest point of x in K. We further set the unit vector
u(K,x) := (x− p(K,x))/‖x− p(K,x)‖ ∈ Sn−1 to be the direction of the vector pointing
from the metric projection p(K,x) to x ∈ Rn \ K, which we call an outer unit normal
vector of K at p(K,x). A pair (x, u) ∈ Rn × Sn−1 is a support element of K if x ∈ bdK
and u is an outer unit normal vector of K at x, and the set of all support elements of K is
denoted by NorK ⊂ Rn × Sn−1. The normal cone of a convex body K ∈ Kn at a point
x ∈ K is defined as

N(K,x) := {u ∈ Rn : x = p(K,x+ u)}.

We set the normal cone of a polytope P ∈ Pn at a face F ∈ Fj(P ), j ∈ {0, . . . , n}, of P to
be N(P, F ) := N(P, x), where x ∈ relintF can be chosen arbitrarily.
The algebra of symmetric tensors over Rn is denoted by T (the underlying Rn will be

clear from the context), the vector space of symmetric tensors of rank p ∈ N0 is denoted
by Tp (with T0 = R). In T there are no non-zero zero divisors. Identifying Rn with its
dual space via the given scalar product, we interpret a symmetric tensor of rank p as a
symmetric p-linear map from (Rn)p to R. The symmetric tensor product of k ∈ N tensors
Ti ∈ Tpi over Rn, where pi ∈ N0, i ∈ {1, . . . , k}, is denoted by T1 · · ·Tk ∈ Tp1+···+pk , and
(with q0 := 0, qi := p1 + · · ·+ pi, i ∈ {1, . . . , k}) defined as

T1 · · ·Tk(x1, . . . , xqk) := 1
qk!

∑
σ∈S(qk)

k∏
i=0

Ti(xσ(qi−1+1), . . . , xσ(qi)),
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for x1, . . . , xqk ∈ Rn, where S(qk) is the symmetric group of permutations of the set
{1, . . . , qk}. (For the sake of clarity, we deviate here from the standard notation T1�· · ·�Tk
for the symmetric tensor product.) For q ∈ N0 and a tensor T ∈ T, we write T q for the
q-fold tensor product of T (with T 0 := 1). The symmetric tensor product is not only
commutative, but the algebra of symmetric tensors satisfies a binomial theorem; that is,

(T + S)k =
k∑
j=0

(
k

j

)
T jSk−j , T, S ∈ Tp, p ∈ N0.

A special tensor is the metric tensor Q ∈ T2, which is defined by

Q(x, y) := 〈x, y〉, x, y ∈ Rn.

For an affine k-flat E ⊂ Rn, k ∈ {0, . . . , n}, the metric tensor Q(E) associated with E

is defined by Q(E)(x, y) := 〈pE0(x), pE0(y)〉, for x, y ∈ Rn. Obviously, we observe that
Q = Q(E) +Q(E⊥) and even more generally Q(E+F ) = Q(E) +Q(F ), whenever F ⊂ E⊥

is a second flat orthogonal to E. If F ⊂ Rn is a k-dimensional convex body (in this thesis
F will often be the face of a polytope), then we again write Q(F ) for the metric tensor
Q(affF ) = Q((affF )0) associated with the affine subspace affF spanned by F .
In the coefficients of the kinematic formula and in the proof of our main theorem, the

classical Gamma function is involved. It can be defined via the Gaussian product formula

Γ(z) := lim
a→∞

aza!
z(z + 1) · · · (z + a)

for all z ∈ C \ {0,−1, . . .} (see [6, (2.7)]). For c ∈ R \Z and m ∈ N0, this definition implies
that

Γ(−c+m)
Γ(−c) = (−1)m Γ(c+ 1)

Γ(c−m+ 1) . (2.2)

The Gamma function has simple poles at the non-positive integers. The right side of
relation (2.2) provides a continuation of the left side at c ∈ N0, where Γ(c−m+ 1)−1 = 0
for c < m.

Another in this work repeatedly used relation concerning the Gamma function is Legen-
dre’s duplication formula, which states that

Γ(c) Γ(c+ 1
2) = 21−2c√π Γ(2c)

for c > 0 (see [6, (3.11)]).



CHAPTER 3

Tensorial Valuations on Convex Bodies and
Polytopes

In this chapter, we introduce the geometric mappings which form the backbone of this
work, the (generalized) tensorial curvature measures (see Section 3.1). As their names
suggest, they extend the curvature measures of a convex body to tensor-valued measures
(and contain the latter as scalar special cases). The curvature measures on convex bodies
are additive, isometry invariant, locally defined and weakly continuous. They can even
be characterized by these properties (see [80]). We show that the (generalized) tensorial
curvature measures satisfy tensor-valued equivalents of these characteristic properties of
the scalar curvature measures. However, there does not exist a tensor-valued counterpart
of this characterization result so far (see nonetheless [74] for results in the smooth setting).
Corresponding versions of these characteristics have been extensively studied by Schneider
in [82], and Hug and Schneider in [47] for tensorial support measures, so called local
Minkowski tensors. Weakening the isometry covariance property, leads to interesting new
mappings in dimensions two and three (see Saienko’s PhD thesis [74], and the works by Hug
and Schneider [48, 49]). We transfer these mappings to the setting of tensorial curvature
measures.

The tensorial curvature measures are local versions of the Minkowski tensors, for which
we therefore also consider integral formulae in this thesis (mainly in Chapter 6 and in
Chapter 8). In Section 3.2, we consequently recall the definitions of the latter. The
Minkowski tensors have been studied first by McMullen (see [68]) and characterized shortly
after by Alesker (see [2, 3]). We recall Alesker’s characterization theorem and a relation,
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which is due to McMullen, between the Minkowski tensors and the (generalized) tensorial
curvature measures. This relation is a usefull tool to derive integral formulae for Minkowski
tensors from the corresponding ones for tensorial curvature measures.

3.1. The (Generalized) Tensorial Curvature Measures

The tensorial curvature measures are tensor-valued generalizations of the curvature measures.
Therefore, in order to define them we start by introducing the support measures on convex
bodies (which are measures on B(Rn × Sn−1)), the marginal measures on B(Rn) of which
are the curvature measures.

For a convex body K ∈ Kn, ε > 0 and a Borel set η ⊂ Σn (we recall that Σn = Rn×Sn−1),

Mε(K, η) :=
{
x ∈

(
K + εBn) \K : (p(K,x), u(K,x)) ∈ η

}
is a local parallel set of K which satisfies the local Steiner formula

Hn(Mε(K, η)) =
n−1∑
j=0

κn−jΛj(K, η)εn−j , ε ≥ 0. (3.1)

This relation determines the support measures Λ0(K, ·), . . . ,Λn−1(K, ·) ofK, which are finite
Borel measures on B(Σn). Obviously, a comparison of (3.1) and the Steiner formula (1.1)
yields

Vj(K) = Λj(K,Σn). (3.2)

In other words, the intrinsic volumes are the total support measures. As mentioned before,
the curvature measures of a convex body are the marginal measures on B(Rn) of the
support measures. Hence for K ∈ Kn and j ∈ {0, . . . , n− 1}, they are defined as

φj(K, ·) := Λj(K, · × Sn−1). (3.3)

Additionally, we define the nth curvature measure as φn(K, ·) := Hn(K ∩ ·). For further
information on support measures, curvature measures and intrinsic volumes we refer to [83,
Chap. 4.2].

3.1.1. The Tensorial Curvature Measures on Convex Bodies

The tensorial curvature measures are tensor-valued versions of the scalar curvature measures,
obtained via generalization of relation (3.3). That is, for a convex body K ∈ Kn, a Borel
set β ∈ B(Rn), and r, s ∈ N0, they are given by

φr,s,0j (K,β) := cr,s,0n,j

∫
β×Sn−1

xrus Λj(K,d(x, u)), (3.4)
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for j ∈ {0, . . . , n− 1}, where
cr,s,0n,j := 1

r!s!
ωn−j
ωn−j+s

.

As in the scalar case, we extend this definition by further defining

φr,0,0n (K,β) := cr,0,0n,n

∫
K∩β

xrHn(dx),

where cr,0,0n,n := 1
r! . For the sake of convenience, we moreover set φr,s,0j := 0 for j /∈ {0, . . . , n}

or r /∈ N0 or s /∈ N0 or j = n and s 6= 0. Furthermore, we observe that, for K ∈ Kn,
r = s = 0, and j ∈ {0, . . . , n}, the scalar-valued tensorial curvature measures φ0,0,0

j (K, ·)
are simply the curvature measures φj(K, ·).

3.1.2. The Generalized Tensorial Curvature Measures on Polytopes

There exist generalizations of the tensorial curvature measures (some of which are exclusively
defined on polytopes), which are as well of substantial interest in the context of tensor-
valued curvature measures. Their significance is shown later in this chapter, as we prove
that they are essentially linearly independent, which will be important for the representation
of the integral formulae in the upcoming chapters. The most obvious way to introduce
these generalizations uses a different, more intuitive interpretation of the support measures
for polytopes.

The jth support measure Λj(P, ·), j ∈ {0, . . . , n− 1}, of a polytope P ∈ Pn is explicitly
given by

Λj(P, η) = 1
ωn−j

∑
F∈Fj(P )

∫
F

∫
N(P,F )∩Sn−1

1η(x, u)Hn−j−1(du)Hj(dx), (3.5)

for η ∈ B(Σn).
Using representation (3.5), we can generalize the definition of the tensorial curvature

measures in the following way. For a polytope P ∈ Pn, we define the generalized tensorial
curvature measure

φr,s,lj (P, ·), j ∈ {0, . . . , n− 1}, r, s, l ∈ N0,

as the Borel measure on B(Rn) which is given by

φr,s,lj (P, β) := cr,s,ln,j

1
ωn−j

∑
F∈Fj(P )

Q(F )l
∫
F∩β

xrHj(dx)
∫
N(P,F )∩Sn−1

usHn−j−1(du),

for β ∈ B(Rn), where

cr,s,ln,j := 1
r!s!

ωn−j
ωn−j+s

ωj+2l
ωj

if j 6= 0, cr,s,0n,0 := 1
r!s!

ωn
ωn+s

, and cr,s,ln,0 := 1 for l ≥ 1.
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As the coefficients cr,s,0n,j of the tensorial curvature measures (defined in Section 3.1.1) match
the just defined coefficients cr,s,ln,j for l = 0, the tensorial curvature measures for polytopes
are simply generalized tensorial curvature measures without the additional weight of powers
of the metric tensor on the faces of the given polytope, meaning l = 0. We note that if
j = 0 and l ≥ 1, then we have φr,s,l0 ≡ 0, as in that case Q(F ) = 0 for all F ∈ F0(P ). In all
other cases the factor 1/ωn−j in the definition of φr,s,lj (P, β) and the factor ωn−j involved
in the constant cr,s,ln,j cancel.
In a similar way, we extend the tensorial curvature measures φr,0,0n , which can even

be done on Kn. For a general convex body K ∈ Kn, we define the generalized tensorial
curvature measure

φr,0,ln (K, ·), r, l ∈ N0,

as the Borel measure on B(Rn) which is given by

φr,0,ln (K,β) := cr,0,ln,n Q
l
∫
K∩β

xrHn(dx),

for β ∈ B(Rn), where cr,0,ln,n := 1
r!
ωn+2l
ωn

. We observe that the generalized tensorial curvature
measures φr,0,ln are basically renormalized tensorial curvature measures φr,0,0n multiplied
with powers of the metric tensor, which therefore seem to be superfluous. However, they
turn out to be quite useful in order to simplify the integral formulae in the upcoming
chapters.

There exist further relations among some of the generalized tensorial curvature measures.
In fact, we observe that the normal cone of a given polytope at each (n − 1)-face is
one-dimensional. Hence, the integrations on the normal cones in the definition of φr,s,ln−1,
r, s, l ∈ N0, can be combined with the metric tensors on the corresponding faces. We state
the resulting relations in the following lemma.

Lemma 3.1. Let r, s, l ∈ N0. Then

φr,s,ln−1 =
l∑

m=0
(−1)m

(
l

m

)
(s+ 2m)!

s!
ωs+2m+1
ωs+1

ωn+2l−1
ωn−1

Ql−mφr,s+2m,0
n−1 .

Lemma 3.1 is simply a “marginal version” of the analog result for generalized tensorial
support measures by Hug and Schneider (see [47, Lemma 3.4]). The generalized tensorial
curvature measures are the marginal measures on B(Rn) of the latter, which we introduce
in the following section. Therefore, we do not need to provide the proof of Lemma 3.1 here,
as we basically obtain the assertion from [47, Lemma 3.4] by going over to the marginal
measures (and renormalizing).
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3.1.3. Properties of the (Generalized) Tensorial Curvature Measures

The systematic investigation of local tensorial valuations on convex bodies (and polytopes)
has been initiated by Schneider in 2013 (see [82]) and further deepened by Hug and
Schneider (see [47, 50]) in their works on generalized local Minkowski tensors. In this thesis
we prefer to call them generalized tensorial support measures, as the original name is slightly
imprecise. For a polytope (or in some cases, for a convex body), these are tensor-valued
measures on B(Σn), the marginal measures on B(Rn) of which are the generalized tensorial
curvature measures. We recall the relevant definitions and results from the just mentioned
works, in order to put the generalized tensorial curvature measures into their natural
context and to emphasize some of their properties.
For η ∈ Σn, t ∈ Rn and ϑ ∈ SO(n), we set η + t := {(x + t, u) : (x, u) ∈ η} and

ϑη := {(ϑx, ϑu) : (x, u) ∈ η}. For p ∈ N0, let T̃p(Pn) denote the vector space of all
mappings Γ̃ : Pn × B(Σn)→ Tp such that

(SM1) Γ̃(P, ·) is a Tp-valued measure on B(Σn), for each P ∈ Pn;

(SM2) Γ̃ is isometry covariant, that is, translation covariant of degree r ∈ N0 in the
sense that, for all P ∈ Pn, η ∈ B(Σn), and t ∈ Rn,

Γ̃(P + t, η + t) =
r∑
i=0

Γ̃i(P, η) t
i

i! ,

with Γ̃i(P, η) ∈ Tp−i, and rotation covariant in the sense that, for all P ∈ Pn,
η ∈ B(Σn), and ϑ ∈ O(n),

Γ̃(ϑP, ϑη) = ϑΓ̃(P, η);

(SM3) Γ̃ is locally defined, that is, for all η ∈ B(Σn) and P, P ′ ∈ Pn which satisfy
η ∩NorP = η ∩NorP ′, we have Γ̃(P, η) = Γ̃(P ′, η).

For a polytope P ∈ Pn, the generalized tensorial support measure

φ̃r,s,lj (P, ·), j ∈ {0, . . . , n− 1}, r, s, l ∈ N0,

is the Borel measure on B(Σn) which is defined by

φ̃r,s,lj (P, η) := cr,s,ln,j

1
ωn−j

∑
F∈Fj(P )

Q(F )l
∫
F

∫
N(P,F )∩Sn−1

1η(x, u)xrusHj(dx)Hn−j−1(du),

for η ∈ B(Σn). We note that the name of the generalized tensorial support measures is
perfectly justified, as their definition is a tensor-valued generalization of representation (3.5).

It was shown in [82, 47] (where a different notation and normalization was used) that the
mappings Qmφ̃r,s,lj , where m, r, s, l ∈ N0 satisfy 2m+r+s+2l = p, where j ∈ {0, . . . , n−1},
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and where l = 0 if j ∈ {0, n−1}, form a basis of T̃p(Pn). This fundamental characterization
theorem highlights the importance of the generalized tensorial support measures. In
particular, since the mappings P 7→ Qmφ̃r,s,lj (P, ·), P ∈ Pn, are additive (as further shown
in [47]), all mappings in T̃p(Pn) are valuations.

Noting that

φr,s,lj (P, β) = φ̃r,s,lj (P, β × Sn−1), j ∈ {0, . . . , n− 1}, r, s, l ∈ N0,

for P ∈ Pn and β ∈ B(Rn), it is clear that the mappings

φr,s,lj : Pn × B(Rn)→ Tp, (P, β) 7→ φr,s,lj (P, β),

where p = r+ s+ 2l, have similar properties as the generalized local Minkowski tensors. In
order to show these, let Tp(Pn) denote the vector space of all mappings Γ : Pn×B(Rn)→ Tp,
p ∈ N0, such that

(CM1) Γ(P, ·) is a Tp-valued measure on B(Rn), for each P ∈ Pn;

(CM2) Γ is isometry covariant, that is, translation covariant of degree r ∈ N0 in the
sense that, for all P ∈ Pn, β ∈ B(Rn), and t ∈ Rn,

Γ(P + t, β + t) =
r∑
i=0

Γi(P, β) t
i

i! ,

where Γi(P, β) ∈ Tp−i, and rotation covariant in the sense that

Γ(ϑP, ϑβ) = ϑΓ(P, β),

for all P ∈ Pn, β ∈ B(Rn), and ϑ ∈ O(n);

(CM3) Γ is locally defined, that is, if β ⊂ Rn is open and P, P ′ ∈ Pn are such that
P ∩ β = P ′ ∩ β, then Γ(P, γ) = Γ(P ′, γ) for all Borel sets γ ⊂ β;

(CM4) P 7→ Γ(P, ·), P ∈ Pn, is additive (a valuation), that is, we have

Γ(P ∪ P ′, ·) + Γ(P ∩ P ′, ·) = Γ(P, ·) + Γ(P ′, ·),

for P, P ′ ∈ P(Rn) with P ∪ P ′ ∈ P(Rn).

In (CM2), we moreover call Γ translation invariant if it is translation covariant of degree 0.
Furthermore, we note that the notion of what we called “locally defined” in (CM3) is
common in this context, though different from the definition in (SM3) for mappings
Γ̃ : Pn × B(Σn)→ Tp (see [83, Sect. 4.2]).

Since the generalized tensorial curvature measures are the marginal measures on B(Rn)
of the generalized tensorial support measures, we obtain the following theorem.
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Theorem 3.2. For j ∈ {0, . . . , n− 1}, r, s, l ∈ N0, where p = r + s+ 2l, we have

φr,s,lj ∈ Tp(Pn).

Moreover, the degree of translation covariance is r, with (φr,s,lj )i = φr−i,s,lj , i ∈ {0, . . . , r}.

Theorem 3.2 implies that the only translation invariant generalized tensorial curvature
measures are φ0,s,l

j .
In this work, we sometimes refer to the (generalized) tensorial curvature measures a bit

sloppily as valuations or as measures, even though they are maps which are valuations in
the first component and measures in the second.

Proof. The properties (CM1), (CM2) and (CM4) immediately follow from the corresponding
properties (SM1), (SM2) and the additivity of the generalized tensorial support measures,
by going over to the marginal measure, that is, by setting η = β × Sn−1, where β ∈ B(Rn).

As (CM3) differs slightly from (SM3), we prove directly that φr,s,lj is locally defined (in
the sense of (CM3)). Let β ⊂ Rn be open and P, P ′ ∈ Pn be such that P ∩ β = P ′ ∩ β. It
is clear that dimP = dimP ′ =: k if P ∩ β 6= ∅ (and else we do not have to show anything).
In fact, as β is open, we have dimP = dim(P ∩ β) = dim(P ′ ∩ β) = dimP ′. Moreover,
for every face F ∈ Fj(P ) of P with F ∩ β 6= ∅, there exists a unique face F ′ ∈ Fj(P ′)
of P ′, such that F ′ ∩ β = F ∩ β (and vice versa). We even have N(P ′, F ′) = N(P, F ).
More precisely, as β is open, there exists a unique facet G′ ∈ Fk−1(P ′) of P ′ with F ′ ⊂ G′

for every facet G ∈ Fk−1(P ) of P with F ⊂ G, such that G′ ∩ β = G ∩ β 6= ∅. Since
N(P, F ) is determined by the outer normal vectors of all facets of P in which F lies (see
[83, Lemma 2.4.9]), the normal cones of P at F and of P ′ at F ′ coincide. Therefore, we
obtain

φr,s,lj (P, γ) = cr,s,ln,j

1
ωn−j

∑
F∈Fj(P ):F∩β 6=∅︸ ︷︷ ︸

=F ′∈Fj(P ′):F ′∩β 6=∅

Q(F )︸ ︷︷ ︸
=Q(F ′)

l
∫
F∩γ︸︷︷︸

=F ′∩γ

xrHj(dx)

×
∫
N(P,F )︸ ︷︷ ︸

=N(P ′,F ′)

∩Sn−1
usHn−j−1(du)

= φr,s,lj (P ′, γ),

for γ ∈ B(Rn) with γ ⊂ β. Hence, φr,s,lj is locally defined.

It has been shown by Hug and Schneider in [47] that the generalized tensorial support
measure φ̃r,s,lj has a continuous extension to Kn which preserves all other properties if
and only if l ∈ {0, 1} (or if j = n − 1 and l ∈ N0, due to [47, Lemma 3.4], which is the
analogon of Lemma 3.1 for generalized tensorial support measures). In fact, they even
proved a characterization theorem for these extensions (see [47, Theorem 2.3]). These
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can be represented with suitable differential forms which are defined on the sphere bundle
of Rn and evaluated on the normal cycle. This is the reason why they are called smooth
(for more details, see for example [74] and [47]). A characterization theorem for smooth
tensor-valued curvature measures has recently been found by Saienko [74].
For l = 0, the extension of the generalized tensorial support measures φ̃r,s,0j , which are

also called tensorial support measures, can be easily expressed via the jth support measure
(analogously to the definition of the tensorial curvature measures; see (3.4)). For l = 1, Hug
and Schneider found an explicit description of the extension of the generalized tensorial
support measures φ̃r,s,1j , j ∈ {0, . . . , n − 2}, in [47], which instantly yields the extension
of the corresponding generalized tensorial curvature measures, by globalization of the
Sn−1-coordinate. However, as the construction itself is neither instructive for nor required
in this thesis we do not state it here, but refer to [47, Section 4] for the explicit description.
For the continuous extensions of the generalized tensorial curvature measures φr,s,lj ,

l ∈ {0, 1}, we deduce the properties (CM1), (CM2), (CM3), (CM4) (where Pn is replaced
by Kn) from the corresponding extensions of the generalized tensorial support measures.
Furthermore, for l ∈ {0, 1}, we conclude that

(CM5) φr,s,lj is weakly continuous, that is, for each sequence (Ki)i∈N of convex bodies
in Kn converging to a convex body K ∈ Kn, the relation

lim
i→∞

∫
Rn
f(x)φr,s,lj (Ki,dx) =

∫
Rn
f(x)φr,s,lj (K,dx)

holds for all continuous functions f : Rn → R.

We note that also the generalized tensorial curvature measures φr,0,ln (defined on Kn) satisfy
all these properties.
It is an open problem whether the vector space Tp(Pn) is (analogously to T̃p(Pn))

spanned by the mappings Qmφr,s,lj , where m, r, s, l ∈ N0 satisfy 2m+ r + s+ 2l = p, where
j ∈ {0, . . . , n−1}, and where l = 0 if j ∈ {0, n−1}, or where j = n and s = l = 0. However,
the linear independence of these mappings can be shown in a similar way as it is done for
local Minkowski tensors in [47, Theorem 3.1]. We state this in the following theorem.

Theorem 3.3. For p ∈ N0, the tensorial measure valued valuations

Qmφr,s,lj : Pn × B(Rn)→ Tp

with m, r, s, l ∈ N0 and j ∈ {0, . . . , n}, where 2m + 2l + r + s = p, but with l = 0 if
j ∈ {0, n− 1} and with s = l = 0 if j = n, are linearly independent.

In Theorem 3.3, it is obvious that we have to require l = 0 if j = 0 (recall that φr,s,l0 ≡ 0
for l > 0), and l = 0 if j = n (recall that φr,0,ln is basically a renormalization of the
valuation Qlφr,0,0n ). Furthermore, Lemma 3.1 shows that the valuations φr,s,ln−1 are linearly
dependent. Thus, we require l = 0 if j = n− 1.
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Proof. Suppose that

∑
j,m,r,s,l

2m+2l+r+s=p

a
(0)
j,m,r,s,lQ

mφr,s,lj = 0 (3.6)

holds for some a(0)
j,m,r,s,l ∈ R, where a(0)

0,m,r,s,l = a
(0)
n−1,m,r,s,l = 0 if l 6= 0 and a

(0)
n,m,r,s,l = 0

if s 6= 0 or l 6= 0. In the proof we will replace the constants a(0)
j,m,r,s,l by new constants

a
(1)
j,m,r,s,l without keeping track of the precise relations, since it will be sufficient to know

that a(0)
j,m,r,s,l = 0 if and only if a(1)

j,m,r,s,l = 0.
For a fixed j ∈ {0, . . . , n}, let P ∈ Pn with intP 6= ∅, F ∈ Fj(P ), and β ∈ B(relintF ).

Then, if j < n we obtain for the generalized tensorial curvature measures

φr,s,lj (P, β) = cn,j,r,s,l
∑

G∈Fj(P )
Q(G)l

∫
G∩β

xrHj(dx)
∫
N(P,G)∩Sn−1

usHn−j−1(du)

= cn,j,r,s,lQ(F )l
∫
β
xrHj(dx)

∫
N(P,F )∩Sn−1

usHn−j−1(du),

where cn,j,r,s,l > 0 is a constant, and φr,s,lk (P, β) = 0 for k 6= j. Moreover, we have

φr,0,0n (P, β) = 1
r!

∫
β
xrHn(dx).

Hence, from (3.6) it follows that

∑
m,r,s,l

2m+2l+r+s=p

a
(1)
j,m,r,s,lQ

mQ(F )l
∫
β
xrHj(dx)

∫
N(P,F )∩Sn−1

usHn−j−1(du) = 0,

where for j = n the spherical integral is omitted (also in the following).
We may assume that

∫
β x

rHj(dx) 6= 0 (otherwise, we consider a translate of P and β).
If we repeat the above calculations with multiples of P and β, a comparison of the degrees
of homogeneity yields, for every r ∈ N0, that∑

m,s,l
2m+2l+s=p−r

a
(1)
j,m,r,s,lQ

mQ(F )l
∫
β
xrHj(dx)

∫
N(P,F )∩Sn−1

usHn−j−1(du) = 0.

Hence, due to the lack of zero divisors in the tensor algebra T, we obtain

∑
m,s,l

2m+2l+s=p−r

a
(1)
j,m,r,s,lQ

mQ(F )l
∫
N(P,F )∩Sn−1

usHn−j−1(du) = 0. (3.7)

This shows that, in the case of j = n (where the spherical integral with respect to u is
omitted), we have a(1)

n,m,r,s,l = 0 also for s = l = 0. Hence, in the following we may assume
that j < n.
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Let L ∈ G(n, j), j < n, and u0 ∈ L⊥ ∩ Sn−1. For j ≤ n − 2, let u0, u1, . . . , un−j−1

be an orthonormal basis of L⊥. In this case, we define the (pointed) polyhedral cone
C(u0, τ) := pos{u0 ± τ u1, . . . , u0 ± τ un−j−1} ⊂ L⊥ for τ ∈ (0, 1). Then, for any v ∈
C(u0, τ) ∩ Sn−1, we have 〈v, u0〉 ≥ 1/

√
1 + τ2, and therefore ‖u0 − v‖ ≤

√
2τ . In fact,

any v ∈ C(u0, τ) ∩ Sn−1 can be written as v = x
‖x‖ , where x ∈ conv{v±1 , . . . , v

±
n−j−1} with

v±i = u0±τui
‖u0±τui‖ = u0±τui√

1+τ2 ∈ Sn−1, i ∈ {1, . . . , n− j − 1}. Thus we have x =
∑
λεiv

ε
i , where

we sum over all i ∈ {1, . . . , n − j − 1} and all ε ∈ {+,−}, with
∑
λεi = 1 and λεi ≥ 0,

i ∈ {1, . . . , n− j − 1}, ε ∈ {+,−}. This yields

〈v, u0〉 = 1
‖x‖
〈
∑

λεiv
ε
i , u0〉 = 1√

1 + τ2‖x‖
∑

λεi ≥
1√

1 + τ2
,

as ‖x‖ ≤
∑
λεi‖vεi‖ = 1. This proves the assertion. For j = n − 1 we simply put

C(u0, τ) := pos{u0}.
Let C(u0, τ)◦ denote the polar cone of C(u0, τ). Then P := C(u0, τ)◦ ∩ [−1, 1]n ∈ Pn

and F := L ∩ [−1, 1]n ∈ Fj(P ) satisfy N(P, F ) = N(P, 0) = C(u0, τ). With these choices,
(3.7) turns into

∑
m,s,l

2m+2l+s=p−r

a
(1)
j,m,r,s,lQ

mQ(L)l
∫
C(u0,τ)∩Sn−1

usHn−j−1(du) = 0. (3.8)

Dividing (3.8) by Hn−j−1(C(u0, τ) ∩ Sn−1) and passing to the limit as τ → 0, we get

∑
m,s,l

2m+2l+s=p−r

a
(1)
j,m,r,s,lQ

mQ(L)lus0 = 0

for any u0 ∈ L⊥ ∩ Sn−1. Here we use that∣∣∣∣∣Hn−j−1(C(u0, τ) ∩ Sn−1)−1
∫
C(u0,τ)∩Sn−1

usHn−j−1(du)− us0

∣∣∣∣∣
≤ max{|us − us0| : u ∈ C(u0, τ) ∩ Sn−1} → 0

as τ → 0.
The rest of the proof follows similarly as in the proof of [47, Theorem 3.1].

Finally in this section, we confirm the measurability of certain maps concerning the
(generalized) tensorial curvature measures, which we need for the integral formulae in the
next chapters. Obviously, the measurability of the map K 7→ φr,s,0j (K, ·), K ∈ Kn, is clear
from the definition (3.4) and the measurability of K 7→ Λj(K, ·). In [47], it is shown that
the map K 7→ φ̃r,s,1j (K, η), K ∈ Kn, is measurable for all η ∈ B(Σn). As the generalized
tensorial curvature measures are the marginal measures on B(Rn) of the generalized tensorial
support measures, this immediately yields that the map K 7→ φr,s,1j (K,β), K ∈ Kn, is
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measurable for all β ∈ B(Rn). The measurability of the map φr,s,lj (·, β) on Pn follows from
the next (more general) lemma for generalized tensorial support measures.

Lemma 3.4. For j ∈ {0, . . . , n− 1}, r, s, l ∈ N0, and η ∈ B(Σn), the mapping

Pn 3 P 7→ φ̃r,s,lj (P, η)

is measurable.

Lemma 3.4 already implies that P 7→ φr,s,lj (P, β), P ∈ Pn, is measurable for all β ∈ B(Rn)
(by setting η = β × Sn−1).

Proof. For the proof, it is sufficient to consider the case where r = s = 0 and η = β×ω with
Borel sets β ∈ B(Rn) and ω ∈ B(Sn−1). In fact, a basic monotone class argument (see [25,
Theorem 4.4.2]) then yields the assertion. For a locally compact Hausdorff space E with a
countable base, let F(E) denote the system of closed subsets of E. With the Fell topology,
F(E) becomes a compact Hausdorff space with a countable base and F ′(E) := F(E) \ {∅}
is a locally compact subspace. Then Kn and Pn are measurable subsets of F(Rn) and the
subspace topology on these subsets coincides with the topology induced by the Hausdorff
metric (see [85, Theorem 12.3.4]). Further, let N(E) denote the set of counting measures
on B(E). On N(E) we write N (E) for the σ-algebra generated by the evaluation maps
η 7→ η(A), where A ∈ B(E). We refer to [85, Chapter 3.1 and Chapter 12.2] for details on
these topics.

In the proof of [85, Lemma 10.1.2] it is shown that the map Pn → F(F ′(Rn)), P 7→ Fk(P ),
is measurable. By [85, Lemma 3.1.4] it follows then that the map Pn → Pn × N(F ′(Rn)),
P 7→ (P, ηFk(P )) is also measurable, where ηFk(P ) is the simple counting measure with
support Fk(P ). Further, if g : Pn ×F ′(Rn)→ [0,∞] is measurable, then the map

Pn × N(F ′(Rn))→ [0,∞], (P, η) 7→
∫
g(P, F ) η(dF ),

is measurable. Thus, to prove the assertion of the lemma, it is sufficient to show that, for
all β ∈ B(Rn) and ω ∈ B(Sn−1), the map g defined by

g(P, F ) := 1{F ∈ Fk(P )}(Q(F )l)i1...i2l H
k(F ∩ β)Hn−1−k(N(P, F ) ∩ ω),

for (P, F ) ∈ Pn×F ′(Rn), is measurable, where the definition is to be understood in the sense
that g(P, F ) := 0 if F /∈ Fk(P ) and where (Q(F )l)i1...i2l is the coordinate of the tensor Q(F )l

with respect to some basis of T2l. We note that (affF )0 =
⋃
{λ(F − s(F )) : λ ∈ N}, where

s(K) ∈ relint(K) is the Steiner point of a convex body K ∈ Kn (see [83, p. 50]). Since the
maps Pn → F(F ′(Rn)), P 7→ Fk(P ), and s : Kn → Rn are measurable, the measurability
of the mapping (P, F ) 7→ 1{F ∈ Fk(P )}(Q(F )l)i1...i2l is implied by Theorems 12.2.3, 12.2.7
and 12.3.1 in [85]. Moreover, it follows that Mk := {(P, F ) ∈ Pn ×F ′(Rn) : F ∈ Fk(P )} is
measurable.
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Next we show that the map Mk → F ′(Rn), (P, F ) 7→ N(P, F ) ∩ Sn−1, is measurable.
For this, we observe that s(F ) ∈ relint(F ) implies that N(P, F ) = N(P, s(F )). Since
M := {(P, x) ∈ Pn × Rn : x ∈ P} is a measurable subset of Pn × Rn, and s : Kn → Rn is
measurable, it is sufficient to show that the map T : M → F ′(Rn), (P, x) 7→ N(P, x)∩Sn−1,
is measurable. To see this, let C ⊂ Rn be compact. It is sufficient to prove that the
set MC := {(P, x) ∈ M : T (P, x) ∩ C = ∅} is open in M . Aiming at a contradiction,
we assume that there are (Pi, xi) ∈ M \MC , for i ∈ N, with (Pi, xi) → (P, x) ∈ MC as
i → ∞. Then there are ui ∈ N(Pi, xi) ∩ Sn−1 ∩ C for i ∈ N. By compactness, there is a
subsequence uij , j ∈ N, which converges to u ∈ Sn−1 ∩ C. For a convex body K ∈ Kn, a
point x ∈ K, and v ∈ Rn we have v ∈ N(K,x) if and only if 〈v, x〉 = h(K, v), where h(K, v)
is the support function h(K, ·) of K evaluated at v (for details see [83, Section 1.7.1]). By
assumption, we have 〈uij , xij 〉 = h(Pij , uij ) for j ∈ N. Since the support function depends
continuously on (K, v), it follows that 〈u, x〉 = h(P, u), and thus u ∈ N(P, x). This yields
u ∈ N(P, x) ∩ Sn−1 ∩ C 6= ∅, that is, (P, x) /∈MC , a contradiction.
The measurability of the map g now follows by applying twice [102, Corollary 2.1.4],

since the indicator function ensures that both of the Hausdorff measures Hk(F ∩ ·) and
Hn−k−1(N(P, F ) ∩ Sn−1 ∩ ·) are locally finite.

3.1.4. The SO(n)-Covariant Tensorial Curvature Measures

The characterization of the (generalized) tensorial support measures on polytopes and on
convex bodies via their properties (SM1), (SM2), (SM3) in [82, 47] raises the interesting
question for further classification results (potentially involving new mappings) with other
properties. A natural idea is to consider proper rotation covariance instead of rotation
covariance in (SM2), that is, replacing the rotation group O(n) by its subgroup, the proper
rotation group SO(n). Subsequent to their previous works on local Minkowski tensors, Hug
and Schneider proved characterization theorems for polytopes [48] and for convex bodies
[49] in this slightly varied setting. Interestingly, these classifications do not require any new
mappings in dimensions n > 3. Only for n = 2, 3, there appear further mappings which
are covariant under SO(n), but not under O(n). The same discovery was already made by
Saienko under different continuity and smoothness assumptions (see [74]). In this section,
we introduce the marginal measures on B(Rn) of these additional mappings.

We start in the two-dimensional Euclidean space R2. For a convex body K ∈ K2, we
define the SO(2)-covariant tensorial curvature measure

φ̆r,sj (K, ·), j ∈ {0, 1}, r, s ∈ N0,

as the Borel measure on B(R2) which is given by

φ̆r,sj (K,β) := ω2−j

∫
β×S1

xruus Λj(K,d(x, u))
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for β ∈ B(R2). Here, u ∈ S1 denotes the unique unit vector for which (u, u) is a positively
oriented orthonormal basis of R2, for u ∈ S1; that is, u = ρ̆u for the rotation

ρ̆ :=
(

0 −1
1 0

)
∈ SO(2).

For a polytope P ∈ P2, we can once more use the alternative representation of the support
measures for polytopes (3.5), to obtain

φ̆r,sj (P, β) =
∑

F∈Fj(P )

∫
F∩β

xrHj(dx)
∫
N(P,F )∩S1

uusH1−j(du),

for β ∈ B(R2) and j ∈ {0, 1}, r, s ∈ N0.
Since the φ̆r,sj occur in dimension two, they admit other, more intuitive representations

for polytopes. If the polytope P ∈ P2 is of full dimension (that is dimP = 2), then there
exists a unique outer unit normal vector uF ∈ S1, for every facet F ∈ F1(P ), meaning that
N(P, F ) ∩ S1 = {uF }. Hence, we have

φ̆r,s1 (P, β) =
∑

F∈F1(P )
uFu

s
F

∫
F∩β

xrH1(dx),

for r, s ∈ N0 and β ∈ B(R2). On the other hand, if dimP = 1 (in that case P ∈ K2 is
even a convex body), then F1(P ) = {P}, and there exists a unit vector uP ∈ S1 such that
N(P, P ) ∩ S1 = {±uP }. Thus, we can rewrite

φ̆r,s1 (P, β) =
(
uPu

s
P − uP (−uP )s

) ∫
P∩β

xrH1(dx)

= 1{s odd} 2uPusP
∫
P∩β

xrH1(dx),

for r, s ∈ N0 and β ∈ B(R2). Lastly, there exists a unique vector xF ∈ R2, for every 0-face
F ∈ F0(P ) of a polytope P ∈ P2, such that F = {xF }. Therefore, we have

φ̆r,s0 (P, β) =
∑

F∈F0(P )
xrF

∫
N(P,F )∩S1

uusH1(du),

for r, s ∈ N0 and β ∈ B(R2).
In R3, we at first introduce tensor-valued SO(3)-covariant (yet not O(3)-covariant)

generalizations of the curvature measures operating on the 1-faces of polytopes, some of
which can then be continuously extended to the convex bodies. Therefore, let P ∈ P3 be
a polytope. We can choose a unit vector vF ∈ F 0 ∩ S2 in the directional space of every
one-dimensional face F ∈ F1(P ). Then, for β ∈ B(R3) and r, s, l ∈ N0, the SO(3)-covariant
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tensorial curvature measures are given by

φ̆r,s,l(P, β) :=
∑

F∈F1(P )
vF Q(F )l

∫
F∩β

xrH1(dx)
∫
N(P,F )∩S2

(vF × u)usH1(du),

where (a × b) ∈ R3 denotes the vector product of the two vectors a, b ∈ R3. Here in
particular, we have that (vF × u) ∈ S2 extends the orthogonal unit vectors vF , u ∈ S2

to a positively oriented orthonormal basis (vF , u, vF × u). Hence, the definition of φ̆r,s,l

is independent of the choice of vF ∈ F 0 ∩ S2. In fact, if we choose −vF instead, then
(−vF )× u = −(vF × u), and therefore, the definition stays unchanged, as the two newly
appearing negative signs cancel each other.

Since the metric tensor on a one-dimensional face F ∈ F1(P ) of a polytope P ∈ P3 can
be written as Q(F ) = v2

F , with the unit vector vF ∈ F 0 ∩ S2, we obtain the alternative
representation

φ̆r,s,l(P, β) =
∑

F∈F1(P )
v2l+1
F

∫
F∩β

xrH1(dx)
∫
N(P,F )∩S2

(vF × u)usH1(du),

for r, s, l ∈ N0 and β ∈ B(R3).
The SO(3)-covariant tensorial curvature measures φ̆r,s,l(P, ·), P ∈ P3, are the marginal

measures on B(R3) of the mappings introduced by Hug and Schneider in [82]. It has been
shown by the same authors that only the ones with l = 0 admit a continuous extension
to the convex bodies (for details see [47, Section 3]). This extension can be transferred
by globalization of the S2-coordinate. Therefore, the SO(3)-covariant tensorial curvature
measures φ̆r,s,0, r, s ∈ N0, can be continuously extended to the convex bodies.

As the SO(n)-covariant (that is, SO(2)- and SO(3)-covariant) tensorial curvature measures
are the marginal measures of the corresponding mappings introduced and characterized by
Hug and Schneider, we can deduce some of their properties as we did in Section 3.1.3 for the
(generalized) tensorial curvature measures. That is, they satisfy (CM1), (CM2) (in which
O(n) has to be replaced by SO(n)), (CM3), (CM4) and (CM5) (for the ones defined on Kn).
Remarkably, even though the SO(n)-covariant tensorial curvature measures are not O(n)-
covariant, they satisfy some kind of covariance under orientation reversing rotations. That
is, for ϑ2 ∈ O(2) \ SO(2) (resp. ϑ3 ∈ O(3) \ SO(3)), we deduce from the O(n)-invariance of
the support measures and ϑ2u = −ϑ2u (resp. (ϑ3vF )× (ϑ3u) = −ϑ3(vF × u)) that

φ̆r,sj (ϑ2K,ϑ2β2) = −ϑ2 φ̆
r,s
j (K,β2), resp. φ̆r,s,l(ϑ3P, ϑ3β3) = −ϑ3 φ̆

r,s,l(P, β3),

for K ∈ K2, β2 ∈ B(R2) (resp. P ∈ P3, β3 ∈ B(R3)).
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3.1.5. The Intrinsic (Generalized) Tensorial Curvature Measures

For a lower dimensional convex body which is contained in an affine subspace of Rn, we can
consider (generalized) tensorial curvature measures defined inside of the surrounding affine
subspace. In this section, we define those valuations and call them intrinsic (generalized)
tensorial curvature measures. Throughout this work, we sometimes refer to the original
(generalized) tensorial curvature measures as extrinsic (generalized) tensorial curvature
measures, when we want to clearly distinguish between them and their intrinsic versions.

Let j, k ∈ N0 with j < k ≤ n, and Kn 3 K ⊂ E ∈ A(n, k) be a convex body which
is lying in an affine subspace E of Rn. Then we denote the jth support measure of K
defined with respect to E as the ambient space by Λ(E)

j (K, ·), which is a Borel measure on
B(Rn × (E0 ∩ Sn−1)), concentrated on Σn

E := E × (E0 ∩ Sn−1). Then, for β ∈ B(Rn), and
r, s ∈ N0, the intrinsic tensorial curvature measures are given by

φr,s,0j,E (K,β) := cr,s,0k,j

∫
β×(E0∩Sn−1)

xrus Λ(E)
j (K,d(x, u)).

For j = k, we extend this as in the extrinsic case (but here directly for the generalized
tensorial curvature measures) by defining

φr,0,lk,E (K,β) := cr,0,lk,k Q
l
∫
K∩β

xrHk(dx),

for l ∈ N0.
Next, let j, k ∈ N0 with j < k ≤ n, and Pn 3 P ⊂ E ∈ A(n, k) be a polytope contained

in an affine subspace of Rn. Then, for β ∈ B(Rn), and r, s, l ∈ N0, the intrinsic generalized
tensorial curvature measures are given by

φr,s,lj,E (P, β) := cr,s,lk,j

1
ωk−j

∑
F∈Fj(P )

Q(F )l
∫
F∩β

xrHj(dx)
∫
NE(P,F )∩Sn−1

usHk−j−1(du),

where NE(P, F ) := N(P, F ) ∩ E0 denotes the normal cone of P at the face F , taken with
respect to the linear subspace E0. Of course, the intrinsic generalized tensorial curvature
measures φr,s,lj,E can again be continuously extended to Kn, for l = 0, 1.
The intrinsic and extrinsic (generalized) tensorial curvature measures satisfy relations

among each other. That is, we can express the extrinsic (generalized) tensorial curvature
measures as a linear combination of intrinsic (generalized) tensorial curvature measures
(and vice versa). These relations have been proved by McMullen (see [68, Theorem
5.1]) for the total tensorial curvature measures, the Minkowski tensors (introduced and
further studied in Section 3.2). A generalization of these results to tensorial curvature
measures by Schuster can be found in [90, Korollar 2.2.2]. In the following lemma, we state
these relations extended to generalized tensorial curvature measures without proof, as one
proceeds analogously to the proofs of the just mentioned results.
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Lemma 3.5. Let j, k ∈ N0 with j < k ≤ n, and Pn 3 P ⊂ E ∈ A(n, k). Then we have,
for β ∈ B(Rn) and r, s, l ∈ N0,

φr,s,lj (P, β) =
b s2 c∑
m=0

1
(4π)mm! Q(E⊥)mφr,s−2m,l

j,E (P, β).

The same holds if P is replaced by a convex body K ∈ Kn, for l = 0, 1.

3.2. The Minkowski Tensors

In the same way as the tensorial curvature measures generalize the (scalar) curvature
measures, the Minkowski tensors are tensor-valued generalizations of the real-valued intrinsic
volumes. They were the first tensor-valued valuations which were considered systematically.
In 1997, McMullen introduced and further analyzed the Minkowski tensors (see [68]). This
lead to a broad investigation in the newly established field of tensorial valuation and
integration theory (part of which are the local tensorial valuations of Section 3.1 and the
integral formulae in the following chapters). In this section, we recall their definitions and
most important properties.

3.2.1. The Extrinsic Minkowski Tensors

As seen in equation (3.2), the intrinsic volumes are the total support measures. A tensor-
valued generalization of this relation yields the Minkowski tensors. For K ∈ Kn and
j, r, s ∈ N0 with j < n, they are defined by

Φr,s
j (K) := cr,s,0n,j

∫
Σn
xrus Λj(K,d(x, u)),

and
Φr,0
n (K) := cr,0,0n,n

∫
K
xrHn(dx).

As a matter of convenience, we again set Φr,s
j := 0 for j /∈ {0, . . . , n} or r /∈ N0 or s /∈ N0

or j = n and s 6= 0.
Analogously to relations (3.2) and (3.3), we observe that the Minkowski tensors are the

total tensorial curvature measures (due to their similar normalization). In other words, we
have

Φr,s
j = φr,s,0j (·,Rn),

for j, r, s ∈ N0 with j ≤ n.
Obviously, the Minkowski tensors inherit some of the properties of the tensorial curvature

measures (and therefore of the tensorial support measures). More precisely, for j, r, s ∈ N0

with j ≤ n, we have that
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(MT1) Φr,s
j is isometry covariant, that is, translation covariant of degree r in the sense

that
Φr,s
j (K + t) =

r∑
i=0

Φr−i,s
j (K) t

i

i! ,

for all K ∈ Kn, and t ∈ Rn, and rotation covariant in the sense that

Φr,s
j (ϑK) = ϑΦr,s

j (K),

for all K ∈ Kn, and ϑ ∈ O(n);

(MT2) Φr,s
j is continuous with respect to the Hausdorff metric;

(MT3) Φr,s
j is additive (a valuation).

As pointed out before, McMullen initiated the investigation of the Minkowski tensors
in 1997. In particular, he raised the question if the Minkowski tensors span the vector
space of isometry covariant and continuous valuations on Kn. This was positively answered
by Alesker, who proved a tensor-valued characterization theorem for Minkowski tensors
(see [2, 3]), as had been done by Hadwiger for intrinsic volumes.

Moreover, Alesker showed in [3, Theorem 4.1] that weakening the rotation covariance
in (MT1) to proper rotation covariance (i.e. replacing the orthogonal group O(n) by its
subgroup, the special orthogonal group SO(n)) in the characterization does not yield more
tensorial valuations than the Minkowski tensors in dimensions n ≥ 3. But in dimension
n = 2 there occur further SO(2)-covariant Minkowski tensors, which are not O(2)-covariant.
For a convex body K ∈ K2, r, s ∈ N0 and j ∈ {0, 1}, these are defined by

Φ̆r,s
j (K) := ω2−j

∫
Σ2
xruus Λj(K,d(x, u)).

Obviously, these SO(2)-covariant Minkowski tensors are the total SO(2)-covariant tensorial
curvature measures. The SO(3)-covariant tensorial curvature measures, in contrast, do not
have a non-vanishing globalized counterpart. This follows either by Alesker’s characteriza-
tion theorem (see [3, Theorem 4.1]) or can be calculated in a direct way, as was done by
Hug and Schneider in [49, Proposition 2].

The SO(2)-covariant Minkowski tensors satisfy several relations, which have been stated
and proved by Hug and Schneider (see [49, Theorem 6]). As we apply some of them in the
integral formulae in Chapter 7, we recall them here and refer to [49] for the proof. They
read

Φ̆r,0
1 = 0, Φ̆0,s

0 = 0, for r, s ∈ N0, (3.9)

rΦ̆r−1,s
1 + sΦ̆r,s−1

0 = 0, for r, s ∈ N0.
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3.2.2. The Intrinsic Minkowski Tensors

Apparently, there exist intrinsic versions of the Minkowski tensors. That is, for j, k ∈ N0

with j < k ≤ n, and a convex body Kn 3 K ⊂ E ∈ A(n, k) contained in an affine subspace
of Rn, the intrinsic Minkowski tensors are given by

Φr,s
j,E(K) := cr,s,0k,j

∫
ΣnE

xrus Λj(K,d(x, u))

and
Φr,0
n,E(K) := cr,0,0k,k

∫
K
xrHk(dx);

in all other cases, Φr,s
j,E is defined as the zero function. Of course, the intrinsic Minkowski

tensors are the total intrinsic tensorial curvature measures.
Globalizing the results in Lemma 3.5 (which is basically the original statement by

McMullen [68, Theorem 5.1]) yields a representation of the extrinsic Minkowski tensors in
terms of in intrinsic Minkowski tensors.

3.2.3. McMullen’s Lemma

As pointed out in Section 3.1, there exist more tensor-valued generalizations of the curvature
measures for convex bodies than the “obviously appearing” tensorial curvature measures.
The generalized tensorial curvature measures φr,s,1j also admit a continuous extension to the
convex bodies. In the upcoming (local) integral formulae, we will observe that these are not
only a theoretical construct, but they appear naturally in the representation of kinematic
and Crofton integrals of tensorial curvature measures for convex bodies. Since we aim to
obtain integral formulae for Minkowski tensors by globalization of the corresponding local
formulae, the valuations φr,s,1j (·,Rn) likewise occur. Although the generalized tensorial
curvature measures have no global counterpart, in the same way as the Minkowski tensors
are essentially the total tensorial curvature measures, Alesker’s characterization theorem
shows that these are representable in terms of Minkowski tensors. The exact form of
this representation has already been proved by McMullen (see [68, p. 269]). As it is an
important tool in the upcoming proofs, we recall it in this section.
In order to represent the argument more clearly, we define (in the sense of McMullen)

for a polytope P ∈ Pn with k-dimensional face F ∈ Fk(P ), where k ∈ {0, . . . , n},

Υr(F ) := 1
r!

∫
F
xrHk(dx), r ∈ N0,

Θs(P, F ) := 1
s!

1
ωn−k+s

∫
N(P,F )∩Sn−1

usHn−k−1(du), s ∈ N0.

If r, s /∈ N0, then we set Υr(F ) := 0 and Θs(P, F ) := 0.
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We confirm the following relation

Φr,s
k (P ) =

∑
F∈Fk(P )

Υr(F )Θs(P, F ),

using the just defined mappings. This is a tensor-valued generalization of a well-known
representation for intrinsic volumes (see [83, eq. (4.23)]). Furthermore, we obtain

φr,s−2,1
k (P,Rn) = 2π

k

∑
F∈Fk(P )

Q(F )Υr(F )Θs−2(P, F ).

Next, we state McMullen’s lemma.

Lemma 3.6 (McMullen). Let P ∈ Pn be a polytope, r, s ∈ N0 and k ∈ {0, . . . , n}. Then

2πsΦr,s
k (P ) =

∑
F∈Fk(P )

Q(F⊥)Υr(F )Θs−2(P, F )

+
∑

G∈Fk+1(P )
Q(G)Υr−1(G)Θs−1(P,G).

For r = 0, the second sum on the right side of the formula in Lemma 3.6 vanishes. If
furthermore s = 1, the lemma simply states that

Φ0,1
k ≡ 0,

for k ∈ {0, . . . , n}. We note that Lemma 3.6 is essentially a global result which is derived
by applying a version of the divergence theorem (for more details see [68, p. 269]).
Moreover, we can deduce a representation of the total generalized tensorial curvature

measures φr,s−2,1
k (P,Rn) in terms of Minkowski tensors from Lemma 3.6.

Lemma 3.7. Let K ∈ Kn be a convex body, r, s ∈ N0 and k ∈ {0, . . . , n}. Then

φr,s−2,1
k (K,Rn) = 2π

k

r∑
p=0

(
QΦr−p,s+p−2

k+p (K)− 2π(s+ p) Φr−p,s+p
k+p (K)

)
. (3.10)

In fact, the summation with respect to p on the right-hand side of the representation in
Lemma 3.7 goes up to min{r, n− k}.

Proof. We start the proof for a polytope P ∈ Pn. Then we conclude from Lemma 3.6

k
2πφ

r,s−2,1
k (P,Rn) =

∑
F∈Fk(P )

Q(F )Υr(F )Θs−2(P, F )

= QΦr,s−2
k (P )− 2πsΦr,s

k (P ) +
∑

G∈Fk+1(P )
Q(G)Υr−1(G)Θs−1(P,G)

= QΦr,s−2
k (P )− 2πsΦr,s

k (P ) + φr−1,s−1,1
k+1 (P,Rn),
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where we have φr−1,s−1,1
k+1 (·,Rn) ≡ 0 if r = 0 (or if k = n). Now a recursive application of

Lemma 3.6 to the newly arising total generalized tensorial curvature measures of gradually
decreasing degree of translation covariance yields

k
2πφ

r,s−2,1
k (P,Rn) = QΦr,s−2

k (P ) +QΦr−1,s−1
k+1 (P )− 2πsΦr,s

k (P )− 2π(s+ 1) Φr−1,s+1
k+1 (P )

+
∑

G∈Fk+1(P )
Q(G)Υr−2(G)Θs(P,G)

=
r∑
p=0

(
QΦr−p,s+p−2

k+p (P )− 2π(s+ p) Φr−p,s+p
k+p (P )

)
.

Since the valuations on both sides of this relation are continuous, we obtain the assertion
for a general convex body K ∈ Kn by approximation.

Another interesting consequence from Lemma 3.6 is the following lemma, which has been
proved by McMullen (see [68, Theorem 5.3]).

Lemma 3.8. Let k, r ∈ N0. Then

2π
∑
s∈N0

sΦr−s,s
k−r+s = Q

∑
s∈N0

Φr−s,s−2
k−r+s .

In fact, the summation with respect to s on the left-hand side of the relation in Lemma 3.8
starts at max{r − k, 0} and goes up to min{r, n − k + r}; the one on the right starts at
max{r − k, 2} and goes up to min{r, n− k + r}. For the proof of Lemma 3.8, we sum the
relation obtained in Lemma 3.6 over s, while keeping r + s and k + r constant. Then, we
combine the metric tensors Q(F⊥) + Q(F ) = Q and obtain the assertion for polytopes.
The rest follows by approximation.

Even though the Minkowski tensors span the vector space of isometry covariant and
continuous valuations on Kn, the relations in Lemma 3.8 show, that they do not form a
basis thereof. However, Hug, Schneider and Schuster proved that these are essentially all
linear dependences among the Minkowski tensors [52].



CHAPTER 4

Kinematic Formulae

In this chapter, we establish a complete set of explicit kinematic formulae for the generalized
tensorial curvature measures φr,s,lj of polytopes. In other words, for P, P ′ ∈ Pn and
β, β′ ∈ B(Rn), we express the integral mean value∫

Gn
φr,s,lj (P ∩ gP ′, β ∩ gβ′)µ(dg) (4.1)

in terms of the generalized tensorial curvature measures of P and P ′, evaluated at β and
β′, respectively (see Section 4.1). In fact, the precise result shows that only a selection
of these measures is needed. Furthermore, for l = 0, 1, the tensorial measures φr,s,lj can
be continuously extended to mappings defined on Kn × B(Rn), and therefore in these two
cases we also consider integral means of the form∫

Gn
φr,s,lj (K ∩ gK ′, β ∩ gβ′)µ(dg), (4.2)

for K,K ′ ∈ Kn and β, β′ ∈ B(Rn). Although the formulae for convex bodies are a
straightforward consequence of the ones for polytopes, it came as a surprise that the general
formulae simplify for l ∈ {0, 1} so that only tensorial curvature measures are involved
which admit a continuous extension.

We note that, since the generalized tensorial curvature measures depend additively on
the underlying convex body (resp. polytope), all integral formulae in this chapter remain
true if the occurring convex bodies (resp. polytopes) are replaced by finite unions of convex
bodies (resp. polytopes).
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Our proof of these kinematic formulae proceeds more directly than the classical proof of
the kinematic formula for curvature measures (see [83, Theorem 4.4.2]). In the latter one
first expresses the kinematic integral in terms of curvature measures with some coefficients,
which are then determined by application of the Crofton formula for curvature measures to
specifically chosen convex bodies. Here we start as in the classical proof by first treating
the translative part of the kinematic integral, but then find a direct way to compute its
rotational part. As the scalar version of this proof gives a new direct proof for the scalar
kinematic formula, we first provide this in Section 4.3 as an instructive introduction of the
general tensorial proof in Section 4.4. The integral geometric machinery which we require
for those proofs is introduced in Section 4.2 (or recalled from the literature in Appendix A).

Remark. The results in this chapter have already been submitted. To a great extent
the present chapter contains direct quotes from the publication Kinematic Formulae for
Tensorial Curvature Measures, a joint work with Daniel Hug, submitted in 2016 (see [53]).

4.1. The Results of Chapter 4

In this section, we state the formulae for the kinematic integrals for generalized tensorial
curvature measures on polytopes (4.1) and on convex bodies (4.2).

4.1.1. Generalized Tensorial Curvature Measures on Polytopes

At first, we give the intersectional formula concerning the integrals (4.1).

Theorem 4.1. For P, P ′ ∈ Pn, β, β′ ∈ B(Rn), j, l, r, s ∈ N0 with j ≤ n, and l = 0 if
j = 0, ∫

Gn
φr,s,lj (P ∩ gP ′, β ∩ gβ′)µ(dg)

=
n∑
k=j

b s2 c∑
m=0

m∑
i=0

cs,l,i,mn,j,k Qm−iφr,s−2m,l+i
k (P, β)φn−k+j(P ′, β′), (4.3)

where

cs,l,i,mn,j,k := (−1)i

(4π)mm!

(m
i

)
πi

(i+ l − 2)!
(l − 2)!

Γ(n−k+j+1
2 )Γ(k+1

2 )
Γ(n+1

2 )Γ( j+1
2 )

×
Γ(k2 + 1)
Γ( j2 + 1)

Γ( j+s2 −m+ 1)
Γ(k+s

2 + 1)
Γ(k−j2 +m)

Γ(k−j2 )
.

Several remarkable facts concerning the coefficients cs,l,i,mn,j,k should be observed. First,
the ratio (i+ l − 2)!/(l − 2)! has to be interpreted in terms of Gamma functions and
relation (2.2), for l ∈ {0, 1}, as further described in the two theorems in Section 4.1.2.
Second, the coefficients are indeed independent of the tensorial parameter (and degree



4.1. The Results of Chapter 4 35

of translation covariance) r and depend only on l through the ratio (i+ l − 2)!/(l − 2)!.
Moreover, only tensors φr,s−2m,p

k (P, β) with p ≥ l show up on the right side of the kinematic
formula. Using Legendre’s duplication formula, we could shorten the given expressions
for the coefficients cs,l,i,mn,j,k even further. However, the present form has the advantage of
exhibiting that the factors in the second line cancel each other if s = 0 (and hence also
m = i = 0). Furthermore, in contrast to the classical kinematic formula, the coefficients
are signed. We shall see below that for l ∈ {0, 1} all coefficients are non-negative.

In Theorem 4.1, we can simplify the coefficient cs,l,i,mn,j,k for k ∈ {j, n} and j ≤ n− 1 such
that only one generalized tensorial curvature measure remains. From (2.2) it follows that

cs,l,i,mn,j,j = 1{i = m = 0}.

Furthermore, since φr,s,ln vanishes for s 6= 0 and the measures Q
s
2−iφr,0,l+in , i ∈ {0, . . . , s2},

can be combined, we can redefine

cs,l,i,mn,j,n := 1{s even,m = i = s
2}

1
(2π)s( s2)!

Γ(n−j+s2 )
Γ(n−j2 )

;

for more details see (4.6) and (4.9) in the proof of Theorem 4.1.
It should also be observed that the generalized tensorial curvature measures φr,s−2m,l+i

n−1
can be expressed in terms of the tensorial curvature measures (multiplied with suitable
powers of the metric tensor) Qm′φr,s

′,0
n−1 , where m′, s′ ∈ N0 and 2m′ + s′ = s+ 2l. We do

not pursue this here, since the resulting coefficients do not simplify nicely; see, however,
Chapter 5, where this is done for some specific Crofton formulae.
Theorem 4.1 states an equality for measures, hence the case r = 0 of the theorem

immediately implies the general case. In fact, algebraic induction and the inversion
invariance of µ yield the following extension of Theorem 4.1.

Corollary 4.2. Let P, P ′ ∈ Pn, j, l, r, s ∈ N0 with j ≤ n, and l = 0 if j = 0. Let f, h be
tensor-valued continuous functions on Rn. Then∫

Gn

∫
Rn
f(x)h(gx)φr,s,lj (P ∩ g−1P ′,dx)µ(dg)

=
n∑
k=j

b s2 c∑
m=0

m∑
i=0

cs,l,i,mn,j,k Qm−i
∫
Rn
f(x)φr,s−2m,l+i

k (P,dx)
∫
Rn
h(y)φn−k+j(P ′,dy).

In particular, we could choose h(y) = yr̄, y ∈ Rn, for r̄ ∈ N0. We state and prove
Theorem 4.1 in the present form, since this does not change the argument and globalization
yields corresponding results for general Minkowski tensors (see Chapter 6).
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4.1.2. (Generalized) Tensorial Curvature Measures on Convex Bodies

The cases l = 0, 1 in Theorem 4.1 are of special interest, since we can formulate the
kinematic formulae for general convex bodies in these cases.

Theorem 4.3. For K,K ′ ∈ Kn, β, β′ ∈ B(Rn) and j, r, s ∈ N0 with 1 ≤ j ≤ n,∫
Gn
φr,s,1j (K ∩ gK ′, β ∩ gβ′)µ(dg)

=
n∑
k=j

b s2 c∑
m=0

cs,1,0,mn,j,k Qmφr,s−2m,1
k (K,β)φn−k+j(K ′, β′),

where

cs,1,0,mn,j,k = 1
(4π)mm!

Γ(n−k+j+1
2 )Γ(k+1

2 )
Γ(n+1

2 )Γ( j+1
2 )

Γ(k2 + 1)
Γ( j2 + 1)

Γ( j+s2 −m+ 1)
Γ(k+s

2 + 1)
Γ(k−j2 +m)

Γ(k−j2 )
.

Proof. We apply (2.2) to obtain

(i− 1)!
(−1)! = Γ(i)

Γ(0) = 1{i = 0}.

Then, Theorem 4.1 yields the assertion in the polytopal case. For a convex body, we
conclude the formula by approximating it by polytopes, since the valuations φr,s−2m,1

k have
weakly continuous extensions to Kn (and the same is true for the curvature measures).

Theorem 4.4. For K,K ′ ∈ Kn, β, β′ ∈ B(Rn) and j, r, s ∈ N0 with j ≤ n,∫
Gn
φr,s,0j (K ∩ gK ′, β ∩ gβ′)µ(dg)

=
n∑
k=j

b s2 c∑
m=0

1∑
i=0

cs,0,i,mn,j,k Qm−iφr,s−2m,i
k (K,β)φn−k+j(K ′, β′),

where

cs,0,i,mn,j,k = 1
(4π)mm!

(m
i

)
πi

Γ(n−k+j+1
2 )Γ(k+1

2 )
Γ(n+1

2 )Γ( j+1
2 )

Γ(k2 + 1)
Γ( j2 + 1)

Γ( j+s2 −m+ 1)
Γ(k+s

2 + 1)
Γ(k−j2 +m)

Γ(k−j2 )
.

Proof. We apply (2.2) to obtain

(i− 2)!
(−2)! = Γ(i− 1)

Γ(−1) = (−1)i 1
Γ(2− i) = 1{i = 0} − 1{i = 1}.

Then, Theorem 4.1 yields the assertion in the polytopal case. For a convex body, we
conclude the formula by approximating it by polytopes, since for i ∈ {0, 1} the valuations
φr,s−2m,i
k have weakly continuous extensions to Kn. Finally, we note that cs,0,1,0n,j,k = 0.
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It is crucial that the right sides of the formulae in Theorem 4.3 and Theorem 4.4 only
involve the tensorial curvature measures φr,s,0k and φr,s,1k , which are the ones with weakly
continuous extensions to Kn, and not φr,s,ik with i > 1.

4.2. Some Auxiliary Results

Before we start with the proof of the kinematic formulae, we establish several auxiliary
integral geometric results in this section. Some of these require facts from the literature
which we, for the sake of completeness, provide in Appendix A. As a rule, these results hold
for n ≥ 1. If not stated otherwise, the case n = 1 (or even n = 0) can be checked directly.

From Lemma A.4 we deduce the first integral formula, which will be applied in the proofs
of Lemma 4.6 and Proposition 4.9.

Lemma 4.5. Let i, j, k ∈ N0 with 0 ≤ k ≤ n. Then

∫
G(n,k)

Q(L)iQ(L⊥)j νk(dL) =
Γ(n2 )Γ(k2 + i)Γ(n−k2 + j)
Γ(n2 + i+ j)Γ(k2 )Γ(n−k2 )

Qi+j .

Proof. The cases where k ∈ {0, n} can be checked easily by distinguishing whether i, j = 0
or not. Hence we can assume that 1 ≤ k ≤ n−1. Let I denote the integral we are interested
in. By expansion of Q(L⊥)j = (Q−Q(L))j and Lemma A.4 we obtain

I =
j∑
l=0

(−1)l
(
j

l

)
Qj−l

∫
G(n,k)

Q(L)i+l νk(dL)

=
Γ(n2 )
Γ(k2 )

j∑
l=0

(−1)l
(
j

l

)
Γ(k2 + i+ l)
Γ(n2 + i+ l) Q

i+j .

Then relation (B.1′) yields the assertion.

The next lemma will be used in the proof of Theorem 4.1, in one of the boundary cases
which are approached in Section 4.4.2.

Lemma 4.6. Let j, l, s ∈ N0 with j < n, L ∈ G(n, j) and u ∈ L⊥ ∩ Sn−1. Then

∫
SO(n)

Q(ϑL)l(ϑu)s ν(dϑ) =
Γ(n2 )Γ( j2 + l)Γ( s+1

2 )
√
πΓ(n+s

2 + l)Γ( j2)
Ql+

s
2 ,

if s is even. The same relation holds if the integration is extended over O(n). If s is odd
and n ≥ 2 (or n = 1 and the integration is extended over O(1)), then the integral vanishes.

Proof. The case n = 1, j = 0 is checked directly by distinguishing l = 0 or l 6= 0. Hence let
n ≥ 2. Let I denote the integral we are interested in. Due to symmetry, I = 0 if s is odd.
Therefore, let s be even. Let ρ ∈ SO(L⊥). Then, by the right invariance of ν, it follows
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that

I =
∫

SO(n)
Q(ϑρL)l(ϑρu)s ν(dϑ)

=
∫

SO(n)
Q(ϑL)l(ϑρu)s ν(dϑ).

Now we integrate over all such rotations ρ ∈ SO(L⊥) and then apply Fubini’s theorem in
order to obtain

I =
∫

SO(L⊥)

∫
SO(n)

Q(ϑL)l(ϑρu)s ν(dϑ) νL⊥(dρ)

=
∫

SO(n)
Q(ϑL)l ϑ

∫
SO(L⊥)

(ρu)s νL⊥(dρ) ν(dϑ).

Lemma A.3, applied in L⊥ with dim(L⊥) ≥ 1, yields∫
SO(L⊥)

(ρu)s νL⊥(dρ) = 1
ωn−j

∫
Sn−1∩L⊥

vsHn−j−1(dv) = 2 ωn−j+s
ωs+1ωn−j

Q(L⊥)
s
2 ,

and hence we get

I = 2 ωn−j+s
ωs+1ωn−j

∫
SO(n)

Q(ϑL)lQ(ϑL⊥)
s
2 ν(dϑ)

= 2 ωn−j+s
ωs+1ωn−j

∫
G(n,j)

Q(U)lQ(U⊥)
s
2 νj(dU).

From Lemma 4.5 we conclude that

I = 2 ωn−j+s
ωs+1ωn−j

Γ(n2 )Γ( j2 + l)Γ(n−j+s2 )
Γ(n+s

2 + l)Γ( j2)Γ(n−j2 )
Ql+

s
2 ,

and thus we obtain the assertion.

The following lemma is one of the tools which are required to treat the rotational part
of the kinematic integral which is discussed in Section 4.4.3.

Lemma 4.7. Let u, v ∈ Sn−1, i, t ∈ N0 and n ≥ 1. Then

∫
SO(n)

(ρv)i〈u, ρv〉t ν(dρ) =
Γ(n2 )Γ(t+ 1)
2t
√
πΓ(n+i+t

2 )

b i2 c∑
x=( i−t2 )+

(
i

2x

)
Γ(x+ 1

2)
Γ( t−i2 + x+ 1)

ui−2xQx,

if i+ t is even. The same relation holds if the integration is extended over O(n). If i+ t is
odd and n ≥ 2 (or n = 1 and the integration is extended over O(1)), then the integral on
the left side vanishes.

Proof. First, we assume that n ≥ 2. Let I denote the integral we are interested in. By
symmetry, it follows I = 0 if i+ t is odd. Thus, in the following we assume that i+ t is
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even. Applying the transformation

f : [−1, 1]× (Sn−1 ∩ u⊥)→ Sn−1, (z, w) 7→ zu+
√

1− z2w,

with Jacobian J f(z, w) =
√

1− z2n−3 to the integral I, we get

I = 1
ωn

∫
Sn−1

vi〈u, v〉tHn−1(dv)

= 1
ωn

∫ 1

−1

∫
Sn−1∩u⊥

(
1− z2

)n−3
2
(
zu+

√
1− z2w

)i 〈
u, zu+

√
1− z2w

〉t
Hn−2(dw) dz.

Binomial expansion of (zu+
√

1− z2w)i yields

I = 1
ωn

i∑
m=0

(
i

m

)
ui−m

∫ 1

−1
zt+i−m

(
1− z2

)n+m−3
2 dz︸ ︷︷ ︸

=1{m even}B( t+i−m+1
2 ,n+m−1

2 )

∫
Sn−1∩u⊥

wmHn−2(dw)︸ ︷︷ ︸
=:I′

,

where B(·, ·) denotes the Beta function. However, we rewrite it by applying its connection
to the Gamma function (see equation (2.13) in [6]). From Lemma A.3, we obtain

I ′ = 1{m even}2ωn+m−1
ωm+1

Q(u⊥)
m
2 ,

and thus

I =
b i2 c∑
m=0

(
i

2m

)
Γ( t+i+1

2 −m)Γ(n−1
2 +m)

Γ(n+i+t
2 )

2ωn+2m−1
ωnω2m+1

ui−2mQ(u⊥)m

=
Γ(n2 )

πΓ(n+i+t
2 )

b i2 c∑
m=0

(
i

2m

)
Γ(m+ 1

2)Γ( t+i+1
2 −m)ui−2mQ(u⊥)m.

Since Q(u⊥) = Q− u2, binomial expansion yields

Q(u⊥)m =
m∑
x=0

(−1)m+x
(
m

x

)
u2m−2xQx.

The fourfold application of Legendre’s duplication formula to the occurring binomial
coefficients and Gamma functions gives(

i

2m

)(
m

x

)
Γ(m+ 1

2) =
(
i

2x

)
Γ(x+ 1

2) 1
(m− x)!

Γ( i+1
2 − x)Γ( i2 − x+ 1)

Γ( i+1
2 −m)Γ( i2 −m+ 1)

=
(
i

2x

)
Γ(x+ 1

2)
(
b i2c − x
m− x

)
Γ(b i+1

2 c − x+ 1
2)

Γ(b i+1
2 c −m+ 1

2)
,
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and thus we obtain by a change of the order of summation

I =
Γ(n2 )

πΓ(n+i+t
2 )

b i2 c∑
x=0

(
i

2x

)
Γ(x+ 1

2)Γ(b i+1
2 c − x+ 1

2)ui−2xQx

×
b i2 c∑
m=x

(−1)m+x
(
b i2c − x
m− x

)
Γ( t+i+1

2 −m)
Γ(b i+1

2 c −m+ 1
2)
.

We denote the sum with respect to m by S1. An index shift by x, applied to S1, yields

S1 =
b i2 c−x∑
m=0

(−1)m
(
b i2c − x
m

)
Γ( t+i+1

2 − x−m)
Γ(b i+1

2 c − x−m+ 1
2)
.

Now we conclude from relation (B.1′) that

S1 = (−1)b
i
2 c−x

b i2 c−x∑
m=0

(−1)m
(
b i2c − x
m

)
Γ( t+i+1

2 − b i2c+m)
Γ(b i+1

2 c − b
i
2c+m+ 1

2)

= (−1)b
i
2 c−x

Γ( t+i+1
2 − b i2c)Γ(

=i︷ ︸︸ ︷
b i+1

2 c+ b i2c−
t+i+1

2 − x+ 1
2)

Γ(b i+1
2 c − x+ 1

2)Γ(b i+1
2 c −

t+i+1
2 + 1

2)

=

=(−1)2i=1︷ ︸︸ ︷
(−1)i+b

i+1
2 c+b

i
2 c

=Γ( t+1
2 )Γ( t2 +1)︷ ︸︸ ︷

Γ( t+i+1
2 − b i2c)Γ( t+i+1

2 − b i+1
2 c+ 1

2)
Γ(b i+1

2 c − x+ 1
2)Γ( t−i2 + x+ 1)

,

where we used (2.2) with c = t+i+1
2 − b i+1

2 c −
1
2 ∈ N0 and m = i − b i+1

2 c − x ∈ N0. We
notice that S1 = 0 if x < i−t

2 . Thus we obtain the assertion by another application of
Legendre’s duplication formula.

It remains to confirm the assertion if n = 1 and i+ t is even (all other assertions are easy
to check). In this case, u = ±v and therefore the left-hand side of the asserted equation
equals (±1)tvi. Using first Legendre’s duplication formula repeatedly, then relation (B.1),
and finally again Legendre’s duplication formula, we see that the right-hand side equals

Γ(t+ 1)
2tΓ(1+i+t

2 )

b i2 c∑
x=0

(
i

2x

)
Γ(x+ 1

2)
Γ( t−i2 + x+ 1)

(±1)ivi

=
√
πΓ(t+ 1)

2tΓ(1+i+t
2 )

Γ(b i+1
2 c+ 1

2)
b i2 c∑
x=0

(
b i2c
x

)
1

Γ( t−i2 + 1 + x)Γ(b i+1
2 c+ 1

2 − x)
(±1)ivi

=
√
πΓ(t+ 1)

2tΓ(1+i+t
2 )

Γ(b i+1
2 c+ 1

2 + t−i
2 + 1 + b i2c − 1)

Γ( t−i2 + 1 + b i2c)Γ( t−i2 + b i+1
2 c+ 1

2)
(±1)ivi

= (±1)ivi,

which confirms the assertion.
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The next lemma is an integral transformation formula which we require in the proof of
Proposition 4.9.

Lemma 4.8. Let j, k, n ∈ N0 with j + k ≤ n, n ≥ 1, and U ∈ G(n, j). Then, for any
integrable function f : G(U, j + k)→ R,∫

G(U⊥,k)
f(U + L) νU⊥k (dL) =

∫
G(U,j+k)

f(L) νUj+k(dL).

Proof. We consider the map H : G(U⊥, k) → G(U, j + k), L 7→ U + L, which is in fact
well-defined, since dim(U ∩ L) = 0 and hence dim(L + U) = j + k for all L ∈ G(U⊥, k).
It is sufficient to show that H(νU⊥k ) = νUj+k, where H(νU⊥k ) denotes the image measure of
νU
⊥

k under H.
Since H(νU⊥k ) and νUj+k are probability measures, and νUj+k is SO(U⊥) invariant by

definition, we only need to show that H(νU⊥k ) is SO(U⊥) invariant. To verify this, we
choose A ∈ B

(
G(U, j + k)

)
and ϑ ∈ SO(U⊥). Then we obtain

H(νU⊥k )(ϑA) = νU
⊥

k

(
{L ∈ G(U⊥, k) : U + L ∈ ϑA}

)
= νU

⊥
k

(
{L ∈ G(U⊥, k) : ϑ−1U + ϑ−1L ∈ A}

)
.

The SO(U⊥) invariance of νU⊥k yields

H(νU⊥k )(ϑA) = νU
⊥

k

(
{L ∈ G(U⊥, k) : U + L ∈ A}

)
= H(νU⊥k )(A),

which completes the argument.

The following proposition, which is a generalization of Lemma A.5 in the case a = 2,
is one of the most important ingredients in the calculation of the rotational part of the
kinematic integral which is stated in Section 4.4.3. Its proof uses several of the lemmas
provided above.

Proposition 4.9. Let F ∈ G(n, k) with 0 ≤ j ≤ k ≤ n and m, l ∈ N0. Then∫
G(n,n−k+j)

[F,L]2Q(L)mQ(F ∩ L)l νn−k+j(dL)

= (n− k + j)!k!
n!j!

Γ(n2 + 1)Γ( j2 + l)Γ(k2 )
Γ(n2 +m+ 1)Γ( j2)Γ(k−j2 )Γ(n−k+j

2 + 1)

×
m∑
i=0

(
m

i

)
(l + i− 2)!

(l − 2)!
Γ(k−j2 + i)Γ(n−k+j

2 +m− i+ 1)
Γ(k2 + l + i)

Qm−iQ(F )l+i.

For l ≤ 1, we interpret the factor (l+i−2)!
(l−2)! in Proposition 4.9 as stated in (2.2) and

discussed in Section 4.1. Moreover, the factor Γ(l + j/2)/Γ(j/2) vanishes if j = 0, l 6= 0
and cancels, that is, equals one if j = l = 0.
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Proof. Let I denote the integral in which we are interested. If j = k, all summands on the
right side of the asserted equation are zero except for i = 0. Thus it is easy to confirm the
assertion. Now assume that 0 ≤ j < k ≤ n, hence n ≥ 1. If j = l = 0, then the assertion
follows as a special case of Lemma A.5. If j = 0, l 6= 0 then both sides of the asserted
equation vanish.
In the following, we consider the remaining cases where 0 < j < k. Then Lemma A.1

yields

I = dn,j,k

∫
G(F,j)

∫
G(U,n−k+j)

[F,L]j+2Q(L)mQ(F ∩ L)l νUn−k+j(dL) νFj (dU).

For fixed U ∈ G(F, j), we have dim(F ∩ L) = j = dimU for νUn−k+j-almost all L ∈
G(U, n− k + j) and U ⊂ F ∩ L, hence U = F ∩ L, and therefore

I = dn,j,k

∫
G(F,j)

Q(U)l
∫

G(U,n−k+j)
[F,L]j+2Q(L)m νUn−k+j(dL) νFj (dU).

An application of Lemma 4.8 shows that

I = dn,j,k

∫
G(F,j)

Q(U)l
∫

G(U⊥,n−k)
[F,U + L]j+2Q(U + L)m νU⊥n−k(dL) νFj (dU).

As U ⊂ F and L ⊂ U⊥, we have

[F,U + L] = [F ∩ U⊥, L](U⊥)

and

Q(U + L)m =
(
Q(U) +Q(L)

)m =
m∑
α=0

(
m

α

)
Q(L)αQ(U)m−α.

Thus we obtain

I = dn,j,k

m∑
α=0

(
m

α

)∫
G(F,j)

Q(U)l+m−α

×
∫

G(U⊥,n−k)

(
[F ∩ U⊥, L](U⊥)

)j+2
Q(L)α νU⊥n−k(dL) νFj (dU).

We observe that dim(U⊥) = n− j > n− k ≥ 0, hence dim(U⊥) ≥ 1. Therefore Lemma A.5
can be used to see that the integral with respect to L can be expressed as

en−j,n−k,k−j,j+2
Γ(n2 + 1)

Γ(n−k+j
2 + 1)Γ(n2 + 1 + α)

α∑
β=0

(−1)β
(
α

β

)

×
Γ(n−k+j

2 + 1 + α− β)Γ(k−j2 + β)Γ( j2 + 2)Γ(k−j2 )
Γ(k−j2 )Γ( j2 + 2− β)Γ(k−j2 + β)

Q(U⊥)α−βQ(F ∩ U⊥)β,
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and thus

I = dn,j,k en−j,n−k,k−j,j+2
Γ(n2 + 1)

Γ(n−k+j
2 + 1)

×
m∑
α=0

α∑
β=0

(−1)β
(
m

α

)(
α

β

)
Γ(n−k+j

2 + 1 + α− β)Γ( j2 + 2)
Γ(n2 + 1 + α)Γ( j2 + 2− β)

×
∫

G(F,j)
Q(U)l+m−αQ(U⊥)α−βQ(F ∩ U⊥)β νFj (dU).

Observing cancellations and using Legendre’s duplication formula several times, we get

dn,j,k en−j,n−k,k−j,j+2 = (n− k + j)!k!
n!j! .

Expanding Q(U⊥)α−β = (Q−Q(U))α−β, we obtain

I = (n− k + j)!k!
n!j!

Γ(n2 + 1)Γ( j2 + 2)
Γ(n−k+j

2 + 1)

m∑
α=0

α∑
β=0

α−β∑
i=0

(−1)α+i
(
m

α

)(
α

β

)(
α− β
i

)

×
Γ(n−k+j

2 + 1 + α− β)
Γ(n2 + 1 + α)Γ( j2 + 2− β)

Qi
∫

G(F,j)
Q(U)l+m−β−iQ(F ∩ U⊥)β νFj (dU).

Lemma 4.5, applied in F , yields

I = (n− k + j)!k!
n!j!

Γ(n2 + 1)Γ(k2 )Γ( j2 + 2)
Γ(n−k+j

2 + 1)Γ( j2)Γ(k−j2 )

m∑
α=0

α∑
β=0

α−β∑
i=0

(−1)α+i
(
m

α

)(
α

β

)(
α− β
i

)

×
Γ(n−k+j

2 + 1 + α− β)
Γ(n2 + 1 + α)

Γ( j2 + l +m− β − i)Γ(k−j2 + β)
Γ(k2 + l +m− i)Γ( j2 + 2− β)

QiQ(F )l+m−i.

Using the relation (
m

α

)(
α

β

)(
α− β
i

)
=
(
m

i

)(
m− i
β

)(
m− i− β
α− i− β

)

and by a change of the order of summation, we conclude that

I = (n− k + j)!k!
n!j!

Γ(n2 + 1)Γ(k2 )Γ( j2 + 2)
Γ(n−k+j

2 + 1)Γ( j2)Γ(k−j2 )

m∑
i=0

(
m

i

)
QiQ(F )l+m−i

× 1
Γ(k2 + l +m− i)

m−i∑
β=0

(
m− i
β

)
Γ( j2 + l +m− β − i)Γ(k−j2 + β)

Γ( j2 + 2− β)

×
m∑

α=i+β
(−1)α+i

(
m− i− β
α− i− β

)
Γ(n−k+j

2 + 1 + α− β)
Γ(n2 + 1 + α) .
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For the sum with respect to α, we obtain from relation (B.1′)

m−i−β∑
α=0

(−1)α+β
(
m− i− β

α

)
Γ(n−k+j

2 + i+ 1 + α)
Γ(n2 + i+ β + 1 + α)

= (−1)β
Γ(n−k+j

2 + i+ 1)Γ(k−j2 +m− i)
Γ(n2 +m+ 1)Γ(k−j2 + β)

.

Next, for the resulting sum with respect to β, we obtain again from relation (B.1′)

m−i∑
β=0

(−1)m+i+β
(
m− i
β

)
Γ( j2 + l + β)

Γ( j2 + 2−m+ i+ β)
= (−1)m+i Γ( j2 + l)Γ(2− l)

Γ( j2 + 2)Γ(2− l −m+ i)

=
Γ( j2 + l)Γ(l +m− i− 1)

Γ( j2 + 2)Γ(l − 1)
,

where we used j > 0 in the first step and (2.2) in the second (and distinguished the cases
l = 0, l = 1, l ≥ 2). Thus we get

I = (n− k + j)!k!
n!j!

Γ(n2 + 1)Γ( j2 + l)Γ(k2 )
Γ(n2 +m+ 1)Γ( j2)Γ(k−j2 )Γ(n−k+j

2 + 1)

×
m∑
i=0

(
m

i

)
(l + i− 2)!

(l − 2)!
Γ(k−j2 + i)Γ(n−k+j

2 +m− i+ 1)
Γ(k2 + l + i)

Qm−iQ(F )l+i,

where we reversed the order of summation.

4.3. A Direct Proof of the Classical Kinematic Formula

In this section, we provide a proof of the classical kinematic formula for curvature measures.
It is a scalar-valued version of the proof of Theorem 4.1, which is given in Section 4.4.
This course of action is chosen for two reasons. On the one hand, it is a new and the first
direct proof of this famous classical result, and therefore, an interesting result by itself. On
the other hand, it is a special case of the general proof. Hence, providing it first, already
gives an impression of the integral geometric ideas which are used again in a more involved
setting in the following section.
First, we recall the classical kinematic formula for support measures (see [83, Theo-

rem 4.4.2]) in the following theorem.

Theorem 4.10. For K,K ′ ∈ Kn, β, β′ ∈ B(Rn) and j ∈ {0, . . . , n},

∫
Gn
φj(K ∩ gK ′, β ∩ gβ′)µ(dg) =

n∑
k=j

αnjk φk(K,β)φn−k+j(K ′, β′),

where the coefficient αnjk is defined as in equation (1.3).
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The classical proof of Theorem 4.10 starts by expressing the kinematic integral as a
linear combination of curvature measures of the given convex bodies, with undetermined
coefficients though. These coefficients are then obtained by making use of the connection
to the classical Crofton formula, which is proved by calculating the Crofton integral for
specific choices of the given convex body. Here, in contrast, we determine the coefficients
of the appearing curvature measures directly, by transforming the rotational part of the
kinematic integral and then using an integral geometric formula known from the tensorial
calculations by Hug, Schneider and Schuster (see [51, Lemma 4.4]).

We start as in the classical proof, and only prove the assertion for polytopes P, P ′ ∈ Pn.
The general case can then be obtained by approximation (see for example the classical proof
in [83, p. 243f]). We denote the kinematic integral by I and decompose the integration
with respect to g to get

I =
∫

SO(n)

∫
Rn
φj(P ∩ (ϑP ′ + t), β ∩ (ϑβ′ + t))Hn(dt) ν(dϑ).

Now we apply Theorem 4.4.3 in [83] to determine the translative integral

I = 1
ωn−j

n−1∑
k=j+1

∑
F∈Fk(P )

∑
F ′∈Fn−k+j(P ′)

Hn−k+j(F ′ ∩ β′)Hk(F ∩ β)

×
∫

SO(n)
[F, ϑF ′]Hn−j−1

(
(N(P, F ) + ϑN(P ′, F ′)) ∩ Sn−1

)
ν(dϑ)

+ φj(P, β)φn(P ′, β′) + φn(P, β)φj(P ′, β′), (4.4)

where we see that the boundary cases k = j, n are already treated. In the proof of the
tensor-valued case, this is done in two steps, the examination of the translative integration
in Section 4.4.1 and the determination of the boundary cases in Section 4.4.2.
So far, we have proceeded as in the classical proof. But now we deviate from it and

calculate the value of the rotational part of the kinematic integration directly. In the
general case this is done in Section 4.4.3.

In the following, we denote by C(ω) := {λx ∈ Rn : x ∈ ω, λ > 0} the cone spanned by a
set ω ⊂ Sn−1. For j ≥ n− 1, we note that the summation with respect to k is empty and
thus in those two cases the assertion is proved. Hence, we assume j < n− 1. In order to
determine the remaining rotational integration in (4.4), we define the map

J : B(F⊥ ∩ Sn−1)× B(F ′⊥ ∩ Sn−1)→ R

by

J(ω, ω′) :=
∫

SO(n)
[F, ϑF ′]Hn−j−1

(
(C(ω) + ϑC(ω′)) ∩ Sn−1

)
ν(dϑ).
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The Hausdorff measure can be rewritten as integration which we transform and obtain

J(ω, ω′) = 2
Γ(n−j2 )

∫
SO(n)

[F, ϑF ′]
∫
C(ω)+ϑC(ω′)

e−‖x‖
2 Hn−j(dx) ν(dϑ).

Then we apply the transformation

T : ω × ω′ × (0,∞)2 → C(ω) + ϑC(ω′), (u, v, t1, t2) 7→ t1u+ t2ϑv,

which is bijective for almost all ϑ ∈ SO(n) (more precisely, for all ϑ ∈ SO(n) such that F⊥

and ϑF ′⊥ are linearly independent subspaces), and has Jacobian

J T (u, v, t1, t2) = tn−k−1
1 tk−j−1

2 [F⊥, ϑF ′⊥] = tn−k−1
1 tk−j−1

2 [F, ϑF ′],

to the integration with respect to x in J(ω, ω′). This gives

J(ω, ω′) = 2
Γ(n−j2 )

∫
SO(n)

[F, ϑF ′]2
∫
ω

∫
ω′

∫
(0,∞)2

tn−k−1
1 tk−j−1

2 e−‖t1u+t2ϑv‖2

×H2(d(t1, t2))Hk−j−1(dv)Hn−k−1(du) ν(dϑ)

= 2
Γ(n−j2 )

∫
SO(n)

[F, ϑF ′]2
∫
ω

∫
ω′

∫
(0,∞)2

tn−k−1
1 tk−j−1

2 e−(t21+t22+2t1t2〈u,ϑv〉)

×H2(d(t1, t2))Hk−j−1(dv)Hn−k−1(du) ν(dϑ).

Because of the left and right invariance of ν, we obtain for arbitrary but fixed rotations
σ ∈ SO(F⊥) and ρ ∈ SO(F ′⊥)

J(ω, ω′) = 2
Γ(n−j2 )

∫
SO(n)

=[F,ϑF ′]︷ ︸︸ ︷
[F, σ−1ϑρF ′] 2

∫
ω

∫
ω′

∫
(0,∞)2

tn−k−1
1 tk−j−1

2 e−(t21+t22+2t1t2〈u,σ−1ϑρv〉)

×H2(d(t1, t2))Hk−j−1(dv)Hn−k−1(du) ν(dϑ)

= 2
Γ(n−j2 )

∫
SO(n)

[F, ϑF ′]2
∫
ω

∫
ω′

∫
(0,∞)2

tn−k−1
1 tk−j−1

2

×
∫

SO(F⊥)

∫
SO(F ′⊥)

e−(t21+t22+2t1t2〈σu,ϑρv〉) νF
′⊥(dρ) νF⊥(dσ)

×H2(d(t1, t2))Hk−j−1(dv)Hn−k−1(du) ν(dϑ),

where we integrated over all such rotations σ ∈ SO(F⊥) and ρ ∈ SO(F ′⊥) in the second step
and applied Fubini’s theorem. The value of these two inner integrations is now independent
of the specific choice of the unit vectors u ∈ F⊥ ∩ Sn−1 and v ∈ F ′⊥ ∩ Sn−1. Therefore, we
obtain for arbitrary but fixed unit vectors u0 ∈ F⊥ ∩ Sn−1 and v0 ∈ F ′⊥ ∩ Sn−1

J(ω, ω′) = 2
Γ(n−j2 )

Hn−k−1(ω)Hk−j−1(ω′)
∫

SO(n)
[F, ϑF ′]2

∫
(0,∞)2

∫
SO(F⊥)

∫
SO(F ′⊥)

× tn−k−1
1 tk−j−1

2 e−(t21+t22+2t1t2〈σu0,ϑρv0〉) νF
′⊥(dρ) νF⊥(dσ)H2(d(t1, t2)) ν(dϑ),
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Rewriting the integrations on SO(F⊥) and SO(F ′⊥) as integrations on F⊥ ∩ Sn−1 and
F⊥ ∩ Sn−1, and again applying the transformation T (with ω = F⊥ and ω′ = F ′⊥), we get

J(ω, ω′) = H
n−k−1(ω)Hk−j−1(ω′)

ωn−kωk−j

∫
SO(n)

[F, ϑF ′]Hn−j−1
(
(F⊥ + ϑF ′⊥) ∩ Sn−1

)
ν(dϑ).

We have dim(F⊥+ϑF ′⊥) = n−j and thus Hn−j−1((F⊥+ϑF ′⊥)∩Sn−1) = ωn−j for almost
all ϑ ∈ SO(n). Hence we can apply Lemma A.5 to determine the well-known remaining
rotational integral and obtain

J(ω, ω′) = ωn−j
ωn−kωk−j

Γ(k+1
2 )Γ(n−k+j+1

2 )
Γ(n+1

2 )Γ( j+1
2 )

Hn−k−1(ω)Hk−j−1(ω′).

Plugging J(ω, ω′) into (4.4), yields

I =
n−1∑
k=j+1

Γ(k+1
2 )Γ(n−k+j+1

2 )
Γ(n+1

2 )Γ( j+1
2 )

1
ωn−k

∑
F∈Fk(P )

Hk(F ∩ β)Hn−k−1(N(P, F ) ∩ Sn−1)
× 1
ωk−j

∑
F ′∈Fn−k+j(P ′)

Hn−k+j(F ′ ∩ β′)Hk−j−1(N(P ′, F ′) ∩ Sn−1)
+ φj(P, β)φn(P ′, β′) + φn(P, β)φj(P ′, β′).

The definitions of the curvature measures for polytopes and of the coefficient αnjk (where
αnjj = αnjn = 1) yield the assertion.

4.4. The Proof of Theorem 4.1

In this section, we provide the proof of Theorem 4.1, which we, for the sake of clarity, divide
into several steps. First, we treat the translative part of the kinematic integral. This can be
done similarly to the proof of the translative integral formula for curvature measures. Then
we consider two “boundary cases” separately. This is also done in the classical (scalar)
proof. However, in the tensorial case it requires more involved techniques. In the third
and main step, we approach the explicit calculation of the rotational part of the kinematic
integral. Once this is accomplished, the proof is basically finished, as we obtain an explicit
representation of the kinematic integral in terms of generalized tensorial curvature measures
of the corresponding polytopes. Nevertheless, at this point the coefficients in the formula
are still given in terms of several iterated sums of products of binomial coefficients and
Gamma functions. Therefore, in the final step, we simplify these coefficients to attain the
form provided in the statement of the theorem.
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4.4.1. The Translative Part

The case j = n is checked easily (since then s = 0). Hence we may assume that j ≤ n− 1
in the following. Let I1 denote the integral in which we are interested. We start by
decomposing the measure µ and by substituting the definition of φr,s,lj for polytopes to get

I1 =
∫

Gn
φr,s,lj (P ∩ gP ′, β ∩ gβ′)µ(dg)

=
∫

SO(n)

∫
Rn
φr,s,lj (P ∩ (ϑP ′ + t), β ∩ (ϑβ′ + t))Hn(dt) ν(dϑ)

= cr,s,ln,j

1
ωn−j

∫
SO(n)

∫
Rn

∑
G∈Fj(P∩(ϑP ′+t))

Q(G)l
∫
G∩β∩(ϑβ′+t)

xrHj(dx)

×
∫
N(P∩(ϑP ′+t),G)∩Sn−1

usHn−j−1(du)Hn(dt) ν(dϑ).

Let ϑ ∈ SO(n) be fixed for the moment. Neglecting a set of translations t ∈ Rn of
measure zero, we can assume that the following is true (see [83, p. 241]). For every j-face
G ∈ Fj(P ∩ (ϑP ′+ t)) there are a unique k ∈ {j, . . . , n}, a unique F ∈ Fk(P ) and a unique
F ′ ∈ Fn−k+j(P ′) such that G = F ∩ (ϑF ′ + t). Conversely, for every k ∈ {j, . . . , n}, every
F ∈ Fk(P ) and every F ′ ∈ Fn−k+j(P ′), we have F ∩ (ϑF ′ + t) ∈ Fj(P ∩ (ϑP ′ + t)) for
almost all t ∈ Rn such that F ∩ (ϑF ′ + t) 6= ∅. Hence, we get

I1 = cr,s,ln,j

1
ωn−j

∫
SO(n)

n∑
k=j

∑
F∈Fk(P )

∑
F ′∈Fn−k+j(P ′)

Q(F 0 ∩ (ϑF ′)0)l

×
∫
N(P∩(ϑP ′+t),F∩(ϑF ′+t))∩Sn−1

usHn−j−1(du)

×
∫
Rn

∫
F∩(ϑF ′+t)∩β∩(ϑβ′+t)

xrHj(dx)Hn(dt) ν(dϑ), (4.5)

where we use that the integral with respect to u is independent of the choice of a vector
t ∈ Rn such that relintF ∩ relint (ϑF ′ + t) 6= ∅.

As a next step, we calculate the integral with respect to t, which we denote by I2. The
argument is essentially the same as in [83, p. 241-2]. We include it for the the sake of
completeness. For this, we can again assume that F and ϑF ′ are in general position, that
is, [F, ϑF ′] 6= 0. We set α := F ∩ β and α′ := ϑF ′ ∩ ϑβ′. We can assume that α 6= ∅ and
α′ 6= ∅, since otherwise both sides of the equation to be derived are zero. Let s0, t0 ∈ Rn

be such that s0 ∈ α ∩ (α′ + t0) 6= ∅. Then we define L1 := F 0 ∩ (ϑF ′)0, L2 := F 0 ∩ L⊥1 ,
L3 := (ϑF ′)0 ∩ L⊥1 . Hence, for every t ∈ Rn, there are uniquely determined vectors ti ∈ Li,
i = 1, 2, 3, such that t = t0 + t1 + t2 + t3. The transformation formula for integrals then
yields that

I2 = [F, ϑF ′]
∫
L3

∫
L2

∫
L1

∫
α∩(α′+t0+t1+t2+t3)

xrHj(dx)Hj(dt1)Hk−j(dt2)Hn−k(dt3).
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From
(α− s0 − t2) ∩ (α′ + t0 − s0 + t1 + t3) ⊂ F 0 ∩ (ϑF ′)0 = L1,

we conclude
α ∩ (α′ + t0 + t1 + t2 + t3) ⊂ s0 + L1 + t2.

Hence, for the two inner integrations with respect to x and t1, an application of Fubini’s
theorem yields∫

L1

∫
α∩(α′+t0+t1+t2+t3)∩(s0+L1+t2)

xrHj(dx)Hj(dt1)

=
∫
L1

∫
L1∩(α−t2−s0)∩(α′+t0−s0+t1+t3)

(x+ s0 + t2)r Hj(dx)Hj(dt1)

=
∫
1{x ∈ (α− t2 − s0) ∩ L1} (x+ s0 + t2)r

×
∫
1{t1 ∈ L1, x ∈ α′ + t0 − s0 + t1 + t3}Hj(dt1)Hj(dx)

=
∫
1{x ∈ (α− t2 − s0) ∩ L1} (x+ s0 + t2)r

×Hj([(α′ + t0 − s0) + t3] ∩ L1)Hj(dx)

= Hj([(α′ + t0 − s0) + t3] ∩ L1)
∫

(α−s0−t2)∩L1
(x+ s0 + t2)r Hj(dx)

= Hj((α′ + t0 − s0) ∩ (L1 + t3))
∫

(α−s0)∩(L1+t2)
(x+ s0)r Hj(dx).

This gives

I2 = [F, ϑF ′]
∫
L3
Hj
(
(α′ + t0 − s0) ∩ (L1 + t3)

)
Hn−k(dt3)

×
∫
L2

∫
(α−s0)∩(L1+t2)

(x+ s0)rHj(dx)Hk−j(dt2)

= [F, ϑF ′]Hn−k+j(α′ + t0 − s0)
∫
α−s0

(x+ s0)rHk(dx)

= [F, ϑF ′]Hn−k+j(F ′ ∩ β′)
∫
F∩β

xrHk(dx).

Thus, (4.5) can be rewritten as

I1 = cr,s,ln,j

1
ωn−j

n∑
k=j

∑
F∈Fk(P )

∑
F ′∈Fn−k+j(P ′)

Hn−k+j(F ′ ∩ β′)
∫
F∩β

xrHk(dx)
∫

SO(n)
[F, ϑF ′]

×Q
(
F 0 ∩ (ϑF ′)0

)l ∫
N(P∩(ϑP ′+t),F∩(ϑF ′+t))∩Sn−1

usHn−j−1(du) ν(dϑ),

where t ∈ Rn is chosen as described after (4.5).
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4.4.2. The Boundary Cases

In the summation with respect to k, we have to consider the summands for k = j and k = n

separately, since the application of some of the auxiliary results requires that k− j ≥ 1 and
k ≤ n− 1. Starting with k = j and denoting the corresponding summand by Sj , we get

Sj = cr,s,ln,j

1
ωn−j

∑
F∈Fj(P )

∑
F ′∈Fn(P ′)

Hn(F ′ ∩ β′)
∫
F∩β

xrHj(dx)
∫

SO(n)
[F, ϑF ′]

×Q
(
F 0 ∩ (ϑF ′)0

)l ∫
N(P∩(ϑP ′+t),F∩(ϑF ′+t))∩Sn−1

usHn−j−1(du) ν(dϑ)

= cr,s,ln,j

1
ωn−j

∑
F∈Fj(P )

Hn(P ′ ∩ β′)︸ ︷︷ ︸
=φn(P ′,β′)

∫
F∩β

xrHj(dx)
∫

SO(n)
[F, ϑP ′]︸ ︷︷ ︸

=[F,Rn]=1

×Q
(
F 0 ∩ (ϑP ′)0︸ ︷︷ ︸

=Rn

)l ∫
N(P∩(ϑP ′+t),F∩(ϑP ′+t))︸ ︷︷ ︸

=N(P,F )

∩Sn−1
usHn−j−1(du) ν(dϑ)

= φr,s,lj (P, β)φn(P ′, β′).

For k = n, we denote the corresponding summand by Sn and conclude from Fubini’s
theorem

Sn = cr,s,ln,j

1
ωn−j

∑
F∈Fn(P )

∑
F ′∈Fj(P ′)

Hj(F ′ ∩ β′)
∫
F∩β

xrHn(dx)
∫

SO(n)
[F, ϑF ′]︸ ︷︷ ︸

=[Rn,ϑF ′]=1

×Q
(
F 0︸︷︷︸
=Rn
∩(ϑF ′)0)l ∫

N(P∩(ϑP ′+t),P∩(ϑF ′+t))︸ ︷︷ ︸
=ϑN(P ′,F ′)

∩Sn−1
usHn−j−1(du) ν(dϑ)

= cr,s,ln,j

1
ωn−j

∫
P∩β

xrHn(dx)
∑

F ′∈Fj(P ′)
Hj(F ′ ∩ β′)

×
∫
N(P ′,F ′)∩Sn−1

∫
SO(n)

Q
(
ϑF ′

)l (ϑu)s ν(dϑ)Hn−j−1(du).

For this, we obtain from Lemma 4.6

Sn = 1{s even} cr,s,ln,j

1
ωn−j

Γ(n2 )Γ( j2 + l)Γ( s+1
2 )

√
πΓ(n+s

2 + l)Γ( j2)
Ql+

s
2

∫
P∩β

xrHn(dx)

×
∑

F ′∈Fj(P ′)
Hj(F ′ ∩ β′)

∫
N(P ′,F ′)∩Sn−1

Hn−j−1(du)

= csn,j φ
r,0, s2 +l
n (P, β)φj(P ′, β′),

where

csn,j := 1{s even} 2ωn−j
s!ωs+1ωn−j+s

= 1{s even} 1
(2π)s

(
s
2
)
!
Γ(n−j+s2 )
Γ(n−j2 )

. (4.6)
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Hence, we get

I1 = cr,s,ln,j

1
ωn−j

n−1∑
k=j+1

∑
F∈Fk(P )

∑
F ′∈Fn−k+j(P ′)

Hn−k+j(F ′ ∩ β′)

×
∫
F∩β

xrHk(dx)
∫

SO(n)
[F, ϑF ′]Q

(
F 0 ∩ (ϑF ′)0

)l
×
∫
N(P∩(ϑP ′+t),F∩(ϑF ′+t))∩Sn−1

usHn−j−1(du) ν(dϑ)

+ φr,s,lj (P, β)φn(P ′, β′) + csn,j φ
r,0, s2 +l
n (P, β)φj(P ′, β′).

Furthermore, for any t ∈ Rn such that relintF ∩ relint (ϑF ′ + t) 6= ∅ we obtain from [83,
Theorem 2.2.1]

N
(
P ∩ (ϑP ′ + t), F ∩ (ϑF ′ + t)

)
= N(P, F ) + ϑN(P ′, F ′),

and thus

I1 = cr,s,ln,j

1
ωn−j

n−1∑
k=j+1

∑
F∈Fk(P )

∑
F ′∈Fn−k+j(P ′)

Hn−k+j(F ′ ∩ β′)

×
∫
F∩β

xrHk(dx)
∫

SO(n)
[F, ϑF ′]Q

(
F 0 ∩ (ϑF ′)0

)l
×
∫

(N(P,F )+ϑN(P ′,F ′))∩Sn−1
usHn−j−1(du) ν(dϑ)

+ φr,s,lj (P, β)φn(P ′, β′) + csn,j φ
r,0, s2 +l
n (P, β)φj(P ′, β′). (4.7)

In the following, we denote by C(ω) := {λx ∈ Rn : x ∈ ω, λ > 0} the cone spanned by a set
ω ⊂ Sn−1. Moreover, if F is a face of P , we write F⊥ for the linear subspace orthogonal to
F 0. For the next and main step, we may assume that j ≤ n− 2 (since j < k ≤ n− 1). We
define the mapping

J : B(F⊥ ∩ Sn−1)× B(F ′⊥ ∩ Sn−1)→ T2l+s

by

J(ω, ω′) :=
∫

SO(n)
[F, ϑF ′]Q

(
F 0 ∩ (ϑF ′)0

)l
×
∫

(C(ω)+ϑC(ω′))∩Sn−1
usHn−j−1(du) ν(dϑ)

for ω ∈ B(F⊥ ∩ Sn−1) and ω′ ∈ B(F ′⊥ ∩ Sn−1). Then J is a finite signed measure on
B(F⊥ ∩ Sn−1) in the first variable and a finite signed measure on B(F ′⊥ ∩ Sn−1) in the
second variable, but this will not be needed in the following. In fact, we could specialize to
the case ω = N(P, F ) ∩ Sn−1 and ω′ = N(P ′, F ′) ∩ Sn−1 throughout the proof.
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Since [F, ϑF ′]Q
(
F 0 ∩ (ϑF ′)0)l depends only on the linear subspaces F 0 and (ϑF ′)0, we

can assume that F ∈ G(n, k) and F ′ ∈ G(n, n− k + j) for determining J(ω, ω′). Moreover,
for ν-almost all ϑ ∈ SO(n), the linear subspaces F⊥ and ϑ(F ′⊥) are linearly independent.
This will be tacitly used in the following.

4.4.3. The Rotational Part

In this section, ω, ω′ are fixed and as described above. Due to the right invariance of ν, we
obtain for ρ ∈ SO(F ′⊥)

J(ω, ω′) =
∫

SO(n)
[F, ϑρF ′]Q(F ∩ ϑρF ′)l

∫
(C(ω)+ϑρC(ω′))∩Sn−1

usHn−j−1(du) ν(dϑ)

=
∫

SO(n)
[F, ϑF ′]Q(F ∩ ϑF ′)l

×
∫

SO(F ′⊥)

∫
(C(ω)+ϑρC(ω′))∩Sn−1

usHn−j−1(du) νF ′⊥(dρ) ν(dϑ),

where we averaged over all such rotations ρ ∈ SO(F ′⊥) and applied Fubini’s theorem in the
second step. Next, we introduce a multiple J1 of the inner integral of J(ω, ω′) and rewrite
it by means of a polar coordinate transformation, that is,

J1 :=1
2Γ(n−j+s2 )

∫
(C(ω)+ϑρC(ω′))∩Sn−1

usHn−j−1(du)

=
∫ ∞

0

∫
(C(ω)+ϑρC(ω′))∩Sn−1

(ru)se−‖ru‖2
rn−j−1Hn−j−1(du) dr

=
∫
C(ω)+ϑρC(ω′)

xse−‖x‖
2 Hn−j(dx).

The bijective transformation (here we assume that ϑ ∈ SO(n) is such that F⊥ and ϑ(F ′⊥)
are linearly independent subspaces)

T : ω × ω′ × (0,∞)2 → C(ω) + ϑρC(ω′), (u, v, t1, t2) 7→ t1u+ t2ϑρv,

has the Jacobian

J T (u, v, t1, t2) = tn−k−1
1 tk−j−1

2 [F⊥, ϑF ′⊥] = tn−k−1
1 tk−j−1

2 [F, ϑF ′].

Hence, we obtain

J1 =
∫
ω

∫
ω′

∫
(0,∞)2

tn−k−1
1 tk−j−1

2 [F, ϑF ′] (t1u+ t2ϑρv)s e−‖t1u+t2ϑρv‖2

×H2(d(t1, t2))Hk−j−1(dv)Hn−k−1(du).
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Applying a polar coordinate transformation to the inner integral yields

J1 = [F, ϑF ′]
∫
ω

∫
ω′

∫ π
2

0

∫ ∞
0

(r cos(α))n−k−1(r sin(α))k−j−1e−‖r cos(α)u+r sin(α)ϑρv‖2

× (r cos(α)u+ r sin(α)ϑρv)s r dr dαHk−j−1(dv)Hn−k−1(du).

Using binomial expansion, we get

J1 = [F, ϑF ′]
∫
ω

∫
ω′

s∑
i=0

(
s

i

)
us−i(ϑρv)i

∫ π
2

0
cos(α)n−k+s−i−1 sin(α)k−j+i−1

×
∫ ∞

0
rn−j+s−1e−r

2(1+2 cos(α) sin(α)〈u,ϑρv〉) dr dαHk−j−1(dv)Hn−k−1(du).

We factor the occurring exponential function and expand the second part of it as a power
series, to obtain

J1 = [F, ϑF ′]
∫
ω

∫
ω′

s∑
i=0

(
s

i

)
us−i(ϑρv)i

∫ π
2

0
cos(α)n−k+s−i−1 sin(α)k−j+i−1

∫ ∞
0

rn−j+s−1

× e−r2
∞∑
t=0

(−2r2 cos(α) sin(α)〈u, ϑρv〉)t

t! dr dαHk−j−1(dv)Hn−k−1(du)

= [F, ϑF ′]
∫
ω

∫
ω′

s∑
i=0

(
s

i

)
us−i(ϑρv)i

∞∑
t=0

(−2〈u, ϑρv〉)t

t!

∫ ∞
0

rn−j+s+2t−1e−r
2 dr

×
∫ π

2

0
cos(α)n−k+s−i+t−1 sin(α)k−j+i+t−1 dαHk−j−1(dv)Hn−k−1(du),

where we interchanged the integrations with respect to r and to α with the series with
respect to t by dominated convergence which can be applied for almost all (ϑ, u). In fact,
for ν ⊗ Hn−k−1-almost all pairs (ϑ, u) ∈ SO(n) × F⊥ we have ϑ−1u 6∈ F ′⊥ (and hence
〈u, ϑρv〉 < 1, for all ρ ∈ SO(F ′⊥) and v ∈ F ′⊥) such that the series converges absolutely
and uniformly and yields an integrable upper bound. The integrations with respect to r
and to α can now be simplified, applying the definitions of the Gamma function and of the
Beta function and the relationship between them. This gives

J1 = 1
4[F, ϑF ′]

∫
ω

∫
ω′

s∑
i=0

(
s

i

)
us−i(ϑρv)i

∞∑
t=0

(−2〈u, ϑρv〉)t

t!

× Γ
(
n−k+s−i+t

2
)
Γ
(k−j+i+t

2
)
Hk−j−1(dv)Hn−k−1(du).

The series with respect to t again converges absolutely for almost all (ϑ, u); in fact,

∞∑
t=0

∣∣∣∣(−2〈u, ϑρv〉)t

t! Γ
(
n−k+s−i+t

2
)
Γ
(k−j+i+t

2
)∣∣∣∣

≤
∞∑
t=0

(2|〈u, ϑρv〉|)t

t! Γ
(
n−k+s−i+t

2
)
Γ
(k−j+i+t

2
)
<∞,
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which can be seen applying the ratio test, using as above that for ν ⊗Hn−k−1-almost all
pairs (ϑ, u) ∈ SO(n)×F⊥ we have ϑ−1u 6∈ F ′⊥ (and hence 〈u, ϑρv〉 < 1, for all ρ ∈ SO(F ′⊥)
and v ∈ F ′⊥). Furthermore,

∫
SO(n)

∫
SO(F ′⊥)

∫
ω

∫
ω′

∥∥∥∥[F, ϑF ′]2Q(F ∩ ϑF ′)l
s∑
i=0

(
s

i

)
us−i(ϑρv)i

∞∑
t=0

(−2〈u, ϑρv〉)t

t!

× Γ
(
n−k+s−i+t

2
)
Γ
(k−j+i+t

2
)∥∥∥∥Hk−j−1(dv)Hn−k−1(du) νF ′⊥(dρ) ν(dϑ)

≤
∫

SO(n)

∫
SO(F ′⊥)

∫
ω

∫
ω′

∫
(0,∞)2

tn−k−1
1 tk−j−1

2 [F, ϑF ′]
∥∥t1u+ t2ϑρv

∥∥se−‖t1u+t2ϑρv‖2

×H2(d(t1, t2))Hk−j−1(dv)Hn−k−1(du) νF ′⊥(dρ) ν(dϑ)

≤ 1
2Γ(n−j+s2 )

∫
SO(n)

∫
SO(F ′⊥)

∫
(C(ω)+ϑρC(ω′))∩Sn−1

‖u‖sHn−j−1(du) νF ′⊥(dρ) ν(dϑ)

is finite. Therefore, Fubini’s theorem yields

J(ω, ω′) = 1
2Γ(n−j+s2 )

∫
ω

∫
SO(n)

[F, ϑF ′]2Q(F ∩ ϑF ′)l

×
s∑
i=0

(
s

i

)
us−i

∞∑
t=0

(−2)t

t! Γ
(
n−k+s−i+t

2
)
Γ
(k−j+i+t

2
)

×
∫
ω′

∫
SO(F ′⊥)

(ϑρv)i〈u, ϑρv〉t νF ′⊥(dρ)Hk−j−1(dv) ν(dϑ)Hn−k−1(du).

Due to the right invariance of the measure νF ′⊥ , the integrand is now independent of the
specific choice of v ∈ F ′⊥ ∩ Sn−1. Thus, we obtain for an arbitrary but fixed unit vector
v0 ∈ F ′⊥ ∩ Sn−1

J(ω, ω′) = 1
2Γ(n−j+s2 )

Hk−j−1(ω′)
∫
ω

∫
SO(n)

[F, ϑF ′]2Q(F ∩ ϑF ′)l

×
s∑
i=0

(
s

i

)
us−i

∞∑
t=0

(−2)t

t! Γ
(
n−k+s−i+t

2
)
Γ
(k−j+i+t

2
)

×
∫

SO(F ′⊥)
(ϑρv0)i〈u, ϑρv0〉t νF

′⊥(dρ) ν(dϑ)Hn−k−1(du).

We denote the integral with respect to ρ by J2 and obtain

J2 = ϑ

∫
SO(F ′⊥)

(ρv0)i
〈
pF ′⊥(ϑ−1u) + pF ′(ϑ−1u), ρv0

〉t
νF
′⊥(dρ)

= ‖pϑF ′⊥(u)‖t ϑ
∫

SO(F ′⊥)
(ρv0)i

〈
πF ′⊥(ϑ−1u), ρv0

〉t
νF
′⊥(dρ)

if ϑ−1u /∈ F ′ (which holds by an analogous argument as above for almost all pairs (ϑ, u)).
We note that the integration over SO(F ′⊥) yields the same value as an integration over all
ϑ ∈ O(n) which fix F ′0 pointwise, since dim(F ′⊥) ∈ {1, . . . , n− 1} and n ≥ 2. Hence, an
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application of Lemma 4.7 in F ′⊥ yields

J2 = 1{i+ t even}
Γ(k−j2 )
√
π

Γ(t+ 1)
2tΓ(k−j+i+t2 )

‖pϑF ′⊥(u)‖t

×
b i2 c∑

x=( i−t2 )+

(
i

2x

)
Γ(x+ 1

2)
Γ( t−i2 + x+ 1)

πϑF ′⊥(u)i−2xQ(ϑF ′⊥)x.

Thus we conclude

J(ω, ω′) =
Γ(k−j2 )

2
√
πΓ(n−j+s2 )

Hk−j−1(ω′)
∫
ω

∫
SO(n)

[F, ϑF ′]2Q(F ∩ ϑF ′)l

×
s∑
i=0

(−1)i
(
s

i

)
us−i

∞∑
t=0

1{i+ t even}Γ
(
n−k+s−i+t

2
)
‖pϑF ′⊥(u)‖t

×
b i2 c∑

x=( i−t2 )+

(
i

2x

)
Γ(x+ 1

2)
Γ( t−i2 + x+ 1)

πϑF ′⊥(u)i−2xQ(ϑF ′⊥)x ν(dϑ)Hn−k−1(du),

where we used that (−1)t = (−1)i provided that i+ t is even.
As the series with respect to t converges absolutely for almost all (ϑ, u) (using again that

we have ϑ−1u 6∈ F ′ ∪ F ′⊥, for ν ⊗Hn−k−1-almost all pairs (ϑ, u) ∈ SO(n)× F⊥), we can
rearrange the order of the summations to get

J(ω, ω′) =
Γ(k−j2 )

2
√
πΓ(n−j+s2 )

Hk−j−1(ω′)
∫
ω

∫
SO(n)

[F, ϑF ′]2Q(F ∩ ϑF ′)l
s∑
i=0

b i2 c∑
x=0

(−1)i

×
(
s

i

)(
i

2x

)
Γ(x+ 1

2)us−iπϑF ′⊥(u)i−2xQ(ϑF ′⊥)x

×
∞∑

t=i−2x
1{i+ t even}

Γ(n−k+s−i+t
2 )

Γ( t−i2 + x+ 1)
‖pϑF ′⊥(u)‖t ν(dϑ)Hn−k−1(du).

We denote the series with respect to t by St. Then, for ϑ−1u /∈ F ′⊥, we obtain (after an
index shift)

St =
∞∑
t=0

1{2i− 2x+ t even}︸ ︷︷ ︸
=1{t even}

Γ(n−k+s+t−2x
2 )

Γ( t2 + 1)
‖pϑF ′⊥(u)‖i−2x+t

= ‖pϑF ′⊥(u)‖i−2x
∞∑
t=0

Γ(n−k+s
2 + t− x)
Γ(t+ 1) ‖pϑF ′⊥(u)‖2t

= Γ(n−k+s
2 − x)‖pϑF ′⊥(u)‖i−2x

∞∑
t=0

(
−n−k+s

2 + x

t

)
(−‖pϑF ′⊥(u)‖2)t,
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where the remaining series is just a binomial series. Hence, we get

St = Γ(n−k+s
2 − x)‖pϑF ′⊥(u)‖i−2x(1− ‖pϑF ′⊥(u)‖2)−

n−k+s
2 +x

= Γ(n−k+s
2 − x)‖pϑF ′⊥(u)‖i−2x‖pϑF ′(u)‖−n+k−s+2x.

Expanding Q(ϑF ′⊥)x = (Q−Q(ϑF ′))x in J(ω, ω′), we obtain

J(ω, ω′) =
Γ(k−j2 )

2
√
πΓ(n−j+s2 )

Hk−j−1(ω′)
∫
ω

∫
SO(n)

s∑
i=0

b i2 c∑
x=0

x∑
y=0

(−1)i+y
(
s

i

)(
i

2x

)(
x

y

)
Γ(x+ 1

2)

× Γ(n−k+s
2 − x)us−iQx−y[F, ϑF ′]2‖pϑF ′(u)‖−n+k−s+2x

× pϑF ′⊥(u)i−2xQ(ϑF ′)yQ(F ∩ ϑF ′)l ν(dϑ)Hn−k−1(du).

Changing the order of the summation under the integral gives

J(ω, ω′) =
Γ(k−j2 )

2
√
πΓ(n−j+s2 )

Hk−j−1(ω′)
∫
ω

∫
SO(n)

b s2 c∑
x=0

x∑
y=0

s∑
i=2x

(−1)i+y
(
s

i

)(
i

2x

)(
x

y

)
Γ(x+ 1

2)

× Γ(n−k+s
2 − x)us−iQx−y[F, ϑF ′]2‖pϑF ′(u)‖−n+k−s+2xpϑF ′⊥(u)i−2x

×Q(ϑF ′)yQ(F ∩ ϑF ′)l ν(dϑ)Hn−k−1(du).

We denote the integral with respect to ϑ in J(ω, ω′) by J3 and transform it, to obtain

J3 =
∫

G(n,n−k+j)

b s2 c∑
x=0

x∑
y=0

s∑
i=2x

(−1)i+y
(
s

i

)(
i

2x

)(
x

y

)
Γ(x+ 1

2)Γ(n−k+s
2 − x)

× us−iQx−y[F,G]2‖pG(u)‖−n+k−s+2xpG⊥(u)i−2xQ(G)yQ(F ∩G)l νn−k+j(dG).

Since n ≥ 2 and 1 ≤ n− k + j ≤ n− 1, Lemma A.2 yields

J3 = ωn−k+j
2ωn

∫
G(u⊥,n−k+j−1)

∫ 1

−1

∫
U⊥∩u⊥∩Sn−1

b s2 c∑
x=0

x∑
y=0

s∑
i=2x

(−1)i+y
(
s

i

)(
i

2x

)(
x

y

)
Γ(x+ 1

2)

× Γ(n−k+s
2 − x)us−iQx−y|z|n−k+j−1

(
1− z2

) k−j−2
2 [F, lin{U, zu+

√
1− z2w}]2

× ‖plin{U,zu+
√

1−z2w}(u)‖−n+k−s+2xQ(lin{U, zu+
√

1− z2w})y

×Q(F ∩ lin{U, zu+
√

1− z2w})lplin{U,zu+
√

1−z2w}⊥(u)i−2x

×Hk−j−1(dw) dz νu⊥n−k+j−1(dU).

The required integrability will be clear from (4.8) below. Since u,w ∈ U⊥, we obtain

plin{U,zu+
√

1−z2w}⊥(u) = u− pzu+
√

1−z2w(u) = u− z(zu+
√

1− z2w)

=
√

1− z2 · (
√

1− z2u− |z|sign(z)w)



4.4. The Proof of Theorem 4.1 57

and ‖plin{U,zu+
√

1−z2w}(u)‖ = |z|. Furthermore, since also F ⊂ u⊥, we have

[F, lin{U, zu+
√

1− z2w}] = [F,U ](u⊥)|z|,

Q(lin{U, zu+
√

1− z2w}) = Q(U) + (|z|u+
√

1− z2sign(z)w)2,

and, for all z ∈ [−1, 1] \ {0} and w ∈ U⊥ ∩ u⊥ ∩ Sn−1,

Q(F ∩ lin{U, zu+
√

1− z2w}) = Q(F ∩ U),

as F ⊂ u⊥ and U = lin{U, zu+
√

1− z2w} ∩ u⊥. Using the fact that the integration with
respect to w is invariant under reflection in the origin, we obtain

J3 = ωn−k+j
2ωn

∫
G(u⊥,n−k+j−1)

∫ 1

−1

∫
U⊥∩u⊥∩Sn−1

b s2 c∑
x=0

x∑
y=0

s∑
i=2x

(−1)i+y
(
s

i

)(
i

2x

)(
x

y

)
Γ(x+ 1

2)

× Γ(n−k+s
2 − x)us−iQx−y|z|j−s+2x+1

(
1− z2

) k−j+i−2x−2
2

(√
1− z2u− |z|w

)i−2x

×
(
[F,U ](u⊥)

)2 (
Q(U) + (|z|u+

√
1− z2w)2

)y
Q(F ∩ U)l

× Hk−j−1(dw) dz νu⊥n−k+j−1(dU).

Binomial expansion yields

(√
1− z2u− |z|w

)i−2x
=

i−2x∑
α=0

(−1)α
(
i− 2x
α

)(√
1− z2u

)i−2x−α(|z|w)α.
A change of the order of summation gives

J3 = ωn−k+j
2ωn

∫
G(u⊥,n−k+j−1)

(
[F,U ](u⊥)

)2 ∫ 1

−1

∫
U⊥∩u⊥∩Sn−1

b s2 c∑
x=0

x∑
y=0

s−2x∑
α=0

(−1)y
(
x

y

)

× wα
s∑

i=2x+α
(−1)i+α

(
s

i

)(
i

2x

)(
i− 2x
α

)(
1− z2

)i
Γ(n−k+s

2 − x)

× Γ(x+ 1
2)us−2x−αQx−y|z|j−s+2x+α+1

(
1− z2

) k−j−4x−α−2
2 Q(F ∩ U)l

×
(
Q(U) + (|z|u+

√
1− z2w)2

)y
Hk−j−1(dw) dz νu⊥n−k+j−1(dU).

With Lemma B.2 we conclude

J3 = ωn−k+j
2ωn

b s2 c∑
x=0

x∑
y=0

s−2x∑
α=0

(−1)y
(
x

y

)(
s

2x

)(
s− 2x
α

)
Γ(x+ 1

2)Γ(n−k+s
2 − x)us−2x−αQx−y

×
∫

G(u⊥,n−k+j−1)

(
[F,U ](u⊥)

)2 ∫ 1

−1
|z|j+s−2x−α+1

(
1− z2

) k−j+α−2
2

∫
U⊥∩u⊥∩Sn−1

wα

×Q(F ∩ U)l
(
Q(U) + (|z|u+

√
1− z2w)2

)y
Hk−j−1(dw) dz νu⊥n−k+j−1(dU). (4.8)
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At this point we easily see that the integrals in J3 are finite, since j + s− 2x− α+ 1 ≥ 0
and k − j + α− 2 ≥ −1. In fact, the absolute values of the integrands have finite integral,
which also justifies the application of Lemma A.2 above. Therefore, we can change the
order of summation and integration from now on. We write J4 for the integral with respect
to U multiplied by the factor ωn−k+j/(2ωn).
By (twofold) binomial expansion of (Q(U) + (|z|u+

√
1− z2w})2)y we obtain

J4 = ωn−k+j
2ωn

y∑
β=0

(
y

β

)∫
G(u⊥,n−k+j−1)

(
[F,U ](u⊥)

)2
Q(U)y−βQ(F ∩ U)l

×
∫ 1

−1
|z|j+s−2x−α+1

(
1− z2

) k−j+α−2
2

∫
U⊥∩u⊥∩Sn−1

wα(|z|u+
√

1− z2w)2β

× Hk−j−1(dw) dz νu⊥n−k+j−1(dU),

and in the second step

J4 = ωn−k+j
2ωn

y∑
β=0

2β∑
γ=0

(
y

β

)(
2β
γ

)
u2β−γ

∫
G(u⊥,n−k+j−1)

(
[F,U ](u⊥)

)2
Q(U)y−β

×Q(F ∩ U)l
∫ 1

−1
|z|j+s−2x−α+2β−γ+1

(
1− z2

) k−j+α+γ−2
2 dz

×
∫
U⊥∩u⊥∩Sn−1

wα+γ Hk−j−1(dw) νu⊥n−k+j−1(dU).

Using Lemma A.3 and expressing the involved spherical volumes in terms of Gamma
functions, we get

J4 =
Γ(n2 )

√
πΓ(n−k+j

2 )

y∑
β=0

2β∑
γ=0

1{α+ γ even}
(
y

β

)(
2β
γ

)

×
Γ( j+s−α−γ2 − x+ β + 1)Γ(α+γ+1

2 )
Γ(k+s

2 − x+ β + 1)
u2β−γ

∫
G(u⊥,n−k+j−1)

×
(
[F,U ](u⊥)

)2
Q(U)y−βQ(F ∩ U)lQ(U⊥ ∩ u⊥)

α+γ
2 νu

⊥
n−k+j−1(dU).

With an index shift in the summation with respect to γ we obtain

J4 =
Γ(n2 )

√
πΓ(n−k+j

2 )

y∑
β=0

α+2β∑
γ=α

1{γ even}
(
y

β

)(
2β

γ − α

)

×
Γ( j+s−γ2 − x+ β + 1)Γ(γ+1

2 )
Γ(k+s

2 − x+ β + 1)
uα+2β−γ

∫
G(u⊥,n−k+j−1)

×
(
[F,U ](u⊥)

)2
Q(U)y−βQ(F ∩ U)lQ(U⊥ ∩ u⊥)

γ
2 νu

⊥
n−k+j−1(dU).
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We plug J4 into J3 and change the order of summation to get

J3 =
Γ(n2 )

√
πΓ(n−k+j

2 )

b s2 c∑
x=0

x∑
y=0

y∑
β=0

s−2x+2β∑
γ=0

(−1)y1{γ even}
(
s

2x

)(
x

y

)(
y

β

)

× Γ(x+ 1
2)Γ(n−k+s

2 − x)
min{s−2x,γ}∑
α=(γ−2β)+

(
s− 2x
α

)(
2β

γ − α

)

×
Γ( j+s−γ2 − x+ β + 1)Γ(γ+1

2 )
Γ(k+s

2 − x+ β + 1)
us−2x+2β−γQx−y

∫
G(u⊥,n−k+j−1)

×
(
[F,U ](u⊥)

)2
Q(U)y−βQ(F ∩ U)lQ(U⊥ ∩ u⊥)

γ
2 νu

⊥
n−k+j−1(dU).

From Vandermonde’s identity we conclude that

min{s−2x,γ}∑
α=(γ−2β)+

(
s− 2x
α

)(
2β

γ − α

)
=
(
s− 2x+ 2β

γ

)
,

and thus

J3 =
Γ(n2 )

√
πΓ(n−k+j

2 )

b s2 c∑
x=0

x∑
y=0

y∑
β=0

b s2 c−x+β∑
γ=0

(−1)y
(
s

2x

)(
x

y

)(
y

β

)(
s− 2x+ 2β

2γ

)
Γ(x+ 1

2)

× Γ(n−k+s
2 − x)

Γ( j+s2 − x+ β − γ + 1)Γ(γ + 1
2)

Γ(k+s
2 − x+ β + 1)

us−2x+2β−2γQx−y

×
∫

G(u⊥,n−k+j−1)

(
[F,U ](u⊥)

)2
Q(U)y−βQ(F ∩ U)lQ(U⊥ ∩ u⊥)γ νu⊥n−k+j−1(dU).

Furthermore, the term Q(U⊥ ∩ u⊥)γ = (Q(u⊥) − Q(U))γ can be expanded so that we
obtain

J(ω, ω′) =
Γ(n2 )Γ(k−j2 )

2πΓ(n−k+j
2 )Γ(n−j+s2 )

Hk−j−1(ω′)
b s2 c∑
x=0

x∑
y=0

y∑
β=0

b s2 c−x+β∑
γ=0

γ∑
δ=0

(−1)y+δ

×
(
s

2x

)(
x

y

)(
y

β

)(
s− 2x+ 2β

2γ

)(
γ

δ

)
Γ(x+ 1

2)Γ(n−k+s
2 − x)

×
Γ( j+s2 − x+ β − γ + 1)Γ(γ + 1

2)
Γ(k+s

2 − x+ β + 1)
Qx−y

∫
ω
us−2x+2β−2γQ(u⊥)γ−δ

×
∫

G(u⊥,n−k+j−1)

(
[F,U ](u⊥)

)2
Q(U)y−β+δQ(F ∩ U)l νu⊥n−k+j−1(dU)

× Hn−k−1(du).

Reversing the order of summation, first with respect to β, and then with respect to y, we
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get

J(ω, ω′) =
Γ(n2 )Γ(k−j2 )

2πΓ(n−k+j
2 )Γ(n−j+s2 )

Hk−j−1(ω′)
b s2 c∑
x=0

x∑
y=0

x−y∑
β=0

b s2 c−y−β∑
γ=0

γ∑
δ=0

(−1)x+y+δ

×
(
s

2x

)(
x

y

)(
x− y
β

)(
s− 2y − 2β

2γ

)(
γ

δ

)
Γ(x+ 1

2)Γ(n−k+s
2 − x)

×
Γ( j+s2 − y − β − γ + 1)Γ(γ + 1

2)
Γ(k+s

2 − y − β + 1)
Qy
∫
ω
us−2y−2β−2γQ(u⊥)γ−δ

×
∫

G(u⊥,n−k+j−1)

(
[F,U ](u⊥)

)2
Q(U)β+δQ(F ∩ U)l νu⊥n−k+j−1(dU)

×Hn−k−1(du).

A change of the order of summation yields

J(ω, ω′) =
Γ(n2 )Γ(k−j2 )

2πΓ(n−k+j
2 )Γ(n−j+s2 )

Hk−j−1(ω′)
b s2 c∑
y=0

b s2 c−y∑
β=0

b s2 c−y−β∑
γ=0

γ∑
δ=0

(−1)y+δ

×
b s2 c∑

x=y+β
(−1)x

(
s

2x

)(
x

y

)(
x− y
β

)
Γ(x+ 1

2)Γ(n−k+s
2 − x)

×
(
s− 2y − 2β

2γ

)(
γ

δ

)
Γ( j+s2 − y − β − γ + 1)Γ(γ + 1

2)
Γ(k+s

2 − y − β + 1)

×Qy
∫
ω
us−2y−2β−2γQ(u⊥)γ−δ

∫
G(u⊥,n−k+j−1)

(
[F,U ](u⊥)

)2

×Q(U)β+δQ(F ∩ U)l νu⊥n−k+j−1(dU)Hn−k−1(du).

By Legendre’s duplication formula, applied several times, we obtain(
s

2x

)(
x

y

)(
x− y
β

)
Γ(x+ 1

2)

=
(

s

2y + 2β

)(
y + β

y

)
Γ(y + β + 1

2)
Γ( s+1

2 − y − β)Γ( s2 − y − β + 1)
Γ( s+1

2 − x)Γ( s2 − x+ 1)(x− y − β)!

=
(

s

2y + 2β

)(
y + β

y

)
Γ(y + β + 1

2)
(
b s2c − y − β
x− y − β

)
Γ(b s+1

2 c − y − β + 1
2)

Γ(b s+1
2 c − x+ 1

2)
.

We denote the resulting sum with respect to x by Sx. An index shift and a change of the
order of summation imply that

Sx =
b s2 c−y−β∑
x=0

(−1)b
s
2 c+x

(
b s2c − y − β

x

)
Γ(n−k+s

2 − b s2c+ x)
Γ(b s+1

2 c − b
s
2c+ x+ 1

2)
.

Hence, an application of relation (B.1′) and then of relation (2.2) with c = n−k+s
2 −b s+1

2 c−
1
2
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and m = b s2c − y − β ∈ N0 yield

Sx = (−1)b
s
2 c

Γ(n−k+s
2 − b s2c)Γ(

=s︷ ︸︸ ︷
b s+1

2 c+ b s2c−
n−k+s

2 − y − β + 1
2)

Γ(b s+1
2 c − y − β + 1

2)Γ(b s+1
2 c −

n−k+s
2 + 1

2)

=

=(−1)y+β︷ ︸︸ ︷
(−1)s+b

s
2 c+b

s+1
2 c+y+β

=Γ(n−k2 )Γ(n−k+1
2 )︷ ︸︸ ︷

Γ(n−k+s
2 − b s2c)Γ(n−k+s

2 − b s+1
2 c+ 1

2)
Γ(b s+1

2 c − y − β + 1
2)Γ(n−k+1

2 + y + β − s
2)
,

where we used that c ≥ 0, except for k = n− 1 and odd s when c = −1/2. We note that
Sx = 0 if n− k + s is odd and n− k + 1 ≤ s− 2y − 2β. Thus, we obtain

J(ω, ω′) =
Γ(n2 )Γ(n−k2 )Γ(n−k+1

2 )Γ(k−j2 )
2πΓ(n−k+j

2 )Γ(n−j+s2 )
Hk−j−1(ω′)

b s2 c∑
y=0

b s2 c−y∑
β=0

b s2 c−y−β∑
γ=0

γ∑
δ=0

(−1)β+δ

×
(

s

2y + 2β

)(
y + β

y

)(
s− 2y − 2β

2γ

)(
γ

δ

)
Γ( j+s2 − y − β − γ + 1)Γ(γ + 1

2)
Γ(k+s

2 − y − β + 1)

×
Γ(y + β + 1

2)
Γ(n−k+1

2 + y + β − s
2)
Qy
∫
ω
us−2y−2β−2γQ(u⊥)γ−δ

∫
G(u⊥,n−k+j−1)

×
(
[F,U ](u⊥)

)2
Q(U)β+δQ(F ∩ U)l νu⊥n−k+j−1(dU)Hn−k−1(du).

We conclude from Proposition 4.9 that∫
G(u⊥,n−k+j−1)

(
[F,U ](u⊥)

)2
Q(U)β+δQ(F ∩ U)l νu⊥n−k+j−1(dU)

= (n− k + j − 1)!k!
(n− 1)!j!

Γ(n+1
2 )Γ( j2 + l)Γ(k2 )

Γ(n+1
2 + β + δ)Γ( j2)Γ(k−j2 )Γ(n−k+j+1

2 )

β+δ∑
i=0

(
β + δ

i

)

× (i+ l − 2)!
(l − 2)!

Γ(k−j2 + i)Γ(n−k+j+1
2 + β + δ − i)

Γ(k2 + l + i)
Q(u⊥)β+δ−iQ(F )l+i,

and hence we get

J(ω, ω′) =
Γ(n2 )Γ(n+1

2 )(n− k + j − 1)!
(n− 1)!Γ(n−k+j

2 )Γ(n−k+j+1
2 )

k!Γ(k2 )Γ(n−k2 )Γ(n−k+1
2 )Γ( j2 + l)

2πj!Γ( j2)Γ(n−j+s2 )
Hk−j−1(ω′)

×
b s2 c∑
y=0

b s2 c−y∑
β=0

b s2 c−y−β∑
γ=0

γ∑
δ=0

β+δ∑
i=0

(−1)β+δ
(

s

2y + 2β

)(
y + β

y

)(
s− 2y − 2β

2γ

)(
γ

δ

)

×
(
β + δ

i

)
Γ( j+s2 − y − β − γ + 1)Γ(γ + 1

2)
Γ(k+s

2 − y − β + 1)
Γ(y + β + 1

2)
Γ(n−k+1

2 + y + β − s
2)

× (i+ l − 2)!
(l − 2)!

Γ(k−j2 + i)
Γ(k2 + l + i)

Γ(n−k+j+1
2 + β + δ − i)

Γ(n+1
2 + β + δ)

QyQ(F )l+i

×
∫
ω
us−2y−2β−2γQ(u⊥)β+γ−iHn−k−1(du).
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To simplify the right-hand side we apply Legendre’s duplication formula three times. Then
binomial expansion of Q(u⊥)β+γ−i = (Q − u2)β+γ−i and an index shift in the resulting
sum yield

J(ω, ω′) =
k!(n− k − 1)!Γ(k2 )Γ( j2 + l)

2n−j
√
πj!Γ( j2)Γ(n−j+s2 )

Hk−j−1(ω′)
b s2 c∑
y=0

b s2 c−y∑
β=0

b s2 c−y−β∑
γ=0

γ∑
δ=0

β+δ∑
i=0

y+β+γ∑
m=y+i

× (−1)m+y+γ+δ
(

s

2y + 2β

)(
y + β

y

)(
s− 2y − 2β

2γ

)(
γ

δ

)(
β + δ

i

)(
β + γ − i
m− y − i

)

× (i+ l − 2)!
(l − 2)!

Γ(y + β + 1
2)

Γ(n−k+1
2 + y + β − s

2)
Γ( j+s2 − y − β − γ + 1)Γ(γ + 1

2)
Γ(k+s

2 − y − β + 1)

×
Γ(k−j2 + i)

Γ(k2 + l + i)
Γ(n−k+j+1

2 + β + δ − i)
Γ(n+1

2 + β + δ)
Qm−iQ(F )l+i

∫
ω
us−2mHn−k−1(du).

An index shift in the summation with respect to β implies that

J(ω, ω′) =
k!(n− k − 1)!Γ(k2 )Γ( j2 + l)

2n−j
√
πj!Γ( j2)Γ(n−j+s2 )

Hk−j−1(ω′)
b s2 c∑
y=0

b s2 c∑
β=y

b s2 c−β∑
γ=0

γ∑
δ=0

β+δ−y∑
i=0

β+γ∑
m=y+i

× (−1)m+y+γ+δ
(
s

2β

)(
β

y

)(
s− 2β

2γ

)(
γ

δ

)(
β + δ − y

i

)(
β + γ − y − i
m− y − i

)

× (i+ l − 2)!
(l − 2)!

Γ(β + 1
2)

Γ(n−k+1
2 + β − s

2)
Γ( j+s2 − β − γ + 1)Γ(γ + 1

2)
Γ(k+s

2 − β + 1)
Γ(k−j2 + i)

Γ(k2 + l + i)

×
Γ(n−k+j+1

2 + β + δ − y − i)
Γ(n+1

2 + β + δ − y)
Qm−iQ(F )l+i

∫
ω
us−2mHn−k−1(du).

By a change of the order of summation we finally obtain

J(ω, ω′) = Hk−j−1(ω′)
b s2 c∑
m=0

m∑
i=0

bs,l,in,j,k â
s,i,m
n,j,k Q

m−iQ(F )l+i
∫
ω
us−2mHn−k−1(du),

where

bs,l,in,j,k :=
Γ(k2 )

2n−j
√
πΓ( j2)Γ(n−j+s2 )

k!(n− k − 1)!
j!

(i+ l − 2)!
(l − 2)!

Γ( j2 + l)Γ(k−j2 + i)
Γ(k2 + l + i)

,

âs,i,mn,j,k :=
m−i∑
y=0

b s2 c∑
β=y

b s2 c−β∑
γ=(m−β)+

γ∑
δ=(i−β+y)+

(−1)m+y+γ+δ
(
s

2β

)(
β

y

)(
s− 2β

2γ

)(
γ

δ

)

×
(
β + δ − y

i

)(
β + γ − y − i
m− y − i

)
Γ(β + 1

2)Γ(γ + 1
2)

×
Γ( j+s2 − β − γ + 1)

Γ(k+s
2 − β + 1)Γ(n−k+1

2 + β − s
2)

Γ(n−k+j+1
2 + β + δ − y − i)

Γ(n+1
2 + β + δ − y)

.
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4.4.4. The Simplification of the Coefficients

In this section, we simplify the coefficients âs,i,mn,j,k by a repeated change of the order of
summation and by repeated application of relations (B.1) and (B.1′).

First, an index shift by β, applied to the summation with respect to γ, gives

âs,i,mn,j,k =
m−i∑
y=0

b s2 c∑
β=y

b s2 c∑
γ=max{β,m}

γ−β∑
δ=(i−β+y)+

(−1)m+y+γ+β+δ
(
s

2β

)(
β

y

)(
s− 2β

2γ − 2β

)

×
(
γ − β
δ

)(
β + δ − y

i

)(
γ − y − i
m− y − i

)
Γ(β + 1

2)Γ(γ − β + 1
2)

×
Γ( j+s2 − γ + 1)

Γ(k+s
2 − β + 1)Γ(n−k+1

2 + β − s
2)

Γ(n−k+j+1
2 + β + δ − y − i)

Γ(n+1
2 + β + δ − y)

.

A change of the order of summation yields

âs,i,mn,j,k =
m−i∑
y=0

b s2 c∑
γ=m

γ∑
β=y

γ−β∑
δ=(i−β+y)+

(−1)m+y+γ+β+δ
(
s

2β

)(
β

y

)(
s− 2β

2γ − 2β

)(
γ − β
δ

)

×
(
β + δ − y

i

)(
γ − y − i
m− y − i

)
Γ(β + 1

2)Γ(γ − β + 1
2)

×
Γ( j+s2 − γ + 1)

Γ(k+s
2 − β + 1)Γ(n−k+1

2 + β − s
2)

Γ(n−k+j+1
2 + β + δ − y − i)

Γ(n+1
2 + β + δ − y)

.

Shifting the index of the summation with respect to δ by β, we obtain

âs,i,mn,j,k =
m−i∑
y=0

b s2 c∑
γ=m

γ∑
β=y

γ∑
δ=max{β,i+y}

(−1)m+y+γ+δ
(
s

2β

)(
β

y

)(
s− 2β

2γ − 2β

)

×
(
γ − β
δ − β

)(
δ − y
i

)(
γ − y − i
m− y − i

)
Γ(β + 1

2)Γ(γ − β + 1
2)

×
Γ( j+s2 − γ + 1)

Γ(k+s
2 − β + 1)Γ(n−k+1

2 + β − s
2)

Γ(n−k+j+1
2 + δ − y − i)

Γ(n+1
2 + δ − y)

.

A change of the order of summation gives

âs,i,mn,j,k =
m−i∑
y=0

b s2 c∑
γ=m

γ∑
δ=i+y

δ∑
β=y

(−1)m+y+γ+δ
(
s

2β

)(
β

y

)(
s− 2β

2γ − 2β

)

×
(
γ − β
δ − β

)(
δ − y
i

)(
γ − y − i
m− y − i

)
Γ(β + 1

2)Γ(γ − β + 1
2)

×
Γ( j+s2 − γ + 1)

Γ(k+s
2 − β + 1)Γ(n−k+1

2 + β − s
2)

Γ(n−k+j+1
2 + δ − y − i)

Γ(n+1
2 + δ − y)

.
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We conclude from an index shift by y, applied to the summation with respect to β,

âs,i,mn,j,k =
m−i∑
y=0

b s2 c∑
γ=m

γ∑
δ=i+y

δ−y∑
β=0

(−1)m+y+γ+δ
(

s

2y + 2β

)(
y + β

y

)(
s− 2y − 2β

2γ − 2y − 2β

)

×
(
γ − y − β
δ − y − β

)(
δ − y
i

)(
γ − y − i
m− y − i

)
Γ(y + β + 1

2)Γ(γ − y − β + 1
2)

×
Γ( j+s2 − γ + 1)

Γ(k+s
2 − y − β + 1)Γ(n−k+1

2 + y + β − s
2)

Γ(n−k+j+1
2 + δ − y − i)

Γ(n+1
2 + δ − y)

,

and by −i− y, applied to the summation with respect to δ,

âs,i,mn,j,k =
m−i∑
y=0

b s2 c∑
γ=m

γ−y−i∑
δ=0

i+δ∑
β=0

(−1)i+m+γ+δ
(

s

2y + 2β

)(
y + β

y

)(
s− 2y − 2β

2γ − 2y − 2β

)

×
(
γ − y − β
i+ δ − β

)(
i+ δ

i

)(
γ − y − i
m− y − i

)
Γ(y + β + 1

2)Γ(γ − y − β + 1
2)

×
Γ( j+s2 − γ + 1)

Γ(k+s
2 − y − β + 1)Γ(n−k+1

2 + y + β − s
2)

Γ(n−k+j+1
2 + δ)

Γ(n+1
2 + i+ δ)

.

With Legendre’s duplication formula (applied three times) we obtain(
s

2y + 2β

)(
y + β

y

)(
s− 2y − 2β

2γ − 2y − 2β

)(
γ − y − β
i+ δ − β

)(
i+ δ

i

)(
γ − y − i
m− y − i

)
× Γ(y + β + 1

2)Γ(γ − y − β + 1
2)

=
(
s

2i

)(
m− i
y

)(
γ − i
m− i

)(
s− 2i

2γ − 2i

)(
γ − y − i

δ

)(
i+ δ

β

)
Γ(i+ 1

2)Γ(γ − i+ 1
2),

and hence

âs,i,mn,j,k = Γ(i+ 1
2)
(
s

2i

)
m−i∑
y=0

b s2 c∑
γ=m

γ−y−i∑
δ=0

i+δ∑
β=0

(−1)i+m+γ+δ

×
(
m− i
y

)(
γ − i
m− i

)(
s− 2i

2γ − 2i

)(
γ − y − i

δ

)(
i+ δ

β

)
Γ(γ − i+ 1

2)

×
Γ( j+s2 − γ + 1)

Γ(k+s
2 − y − β + 1)Γ(n−k+1

2 + y + β − s
2)

Γ(n−k+j+1
2 + δ)

Γ(n+1
2 + i+ δ)

.

Now we define as,i,mn,j,k := (Γ(i+ 1
2)
( s
2i
)
)−1âs,i,mn,j,k . We first use relation (B.1) and then apply
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relation (B.1′) twice. Thus we obtain

i+δ∑
β=0

(
i+ δ

β

)
1

Γ(k+s
2 − y − β + 1)Γ(n−k−s+1

2 + y + β)

=
Γ(n+1

2 + i+ δ)
Γ(k+s

2 − y + 1)Γ(n−k−s+1
2 + i+ y + δ)Γ(n+1

2 )
,

γ−y−i∑
δ=0

(−1)δ
(
γ − y − i

δ

)
Γ(n−k+j+1

2 + δ)
Γ(n−k−s+1

2 + i+ y + δ)

=
Γ(n−k+j+1

2 )Γ(− j+s
2 + γ)

Γ(n−k−s+1
2 + γ)Γ(− j+s

2 + i+ y)

= (−1)i+γ+y Γ(n−k+j+1
2 )Γ( j+s2 − i− y + 1)

Γ(n−k−s+1
2 + γ)Γ( j+s2 − γ + 1)

,

where we used (2.2) with c = j+s
2 − i− y ≥ 0 and m = γ − i− y ∈ N0 in the second step,

and

m−i∑
y=0

(−1)m+y
(
m

y

)
Γ( j+s2 − i− y + 1)

Γ(k+s
2 − y + 1)

=
m−i∑
y=0

(−1)i+y
(
m

y

)
Γ( j+s2 −m+ y + 1)

Γ(k+s
2 + i−m+ y + 1)

= (−1)i
Γ( j+s2 −m+ 1)Γ(k−j2 +m)

Γ(k+s
2 + 1)Γ(k−j2 + i)

.

This gives

as,i,mn,j,k = (−1)i
Γ(n−k+j+1

2 )Γ( j+s2 −m+ 1)Γ(k−j2 +m)
Γ(n+1

2 )Γ(k+s
2 + 1)Γ(k−j2 + i)

×
b s2 c∑
γ=m

(
γ − i
m− i

)(
s− 2i

2γ − 2i

)
Γ(γ − i+ 1

2)
Γ(n−k−s+1

2 + γ)
.

We deduce from Legendre’s duplication formula that(
γ − i
m− i

)(
s− 2i

2γ − 2i

)
Γ(γ − i+ 1

2) =
√
π

(m− i)!
Γ( s+1

2 − i)Γ( s2 − i+ 1)
(γ −m)!Γ( s+1

2 − γ)Γ( s2 − γ + 1)

=
√
π

(
b s2c − i
m− i

)(
b s2c −m
γ −m

)
Γ(b s+1

2 c − i+ 1
2)

Γ(b s+1
2 c − γ + 1

2)
.

Denoting the remaining sum in as,i,mn,j,k with respect to γ by S4, we obtain

S4 =
b s2 c−m∑
γ=0

(
b s2c −m

γ

)
1

Γ(b s+1
2 c −m− γ + 1

2)Γ(n−k−s+1
2 +m+ γ)

,
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for which relation (B.1) yields

S4 =
Γ(n−k−s2 + b s+1

2 c+ b s2c −m)
Γ(b s+1

2 c −m+ 1
2)Γ(n−k+1

2 + b s2c −
s
2)Γ(n−k2 + b s+1

2 c −
s
2)
.

=
Γ(n−k+s

2 −m)
Γ(n−k+1

2 )Γ(n−k2 )Γ(b s+1
2 c −m+ 1

2)
.

We obtain from Legendre’s duplication formula

√
π

(
b s2c − i
m− i

)
Γ(b s+1

2 c − i+ 1
2)S4

=
Γ(n−k+s

2 −m)
Γ(n−k+1

2 )Γ(n−k2 )

√
π

(m− i)!
Γ( s2 − i+ 1)Γ( s+1

2 − i)
Γ( s2 −m+ 1)Γ( s+1

2 −m)

=
Γ(n−k+s

2 −m)
Γ(n−k+1

2 )Γ(n−k2 )

(
s− 2i

2m− 2i

)
Γ(m− i+ 1

2).

This gives

as,i,mn,j,k = (−1)i
(
s− 2i

2m− 2i

)
Γ(m− i+ 1

2)
Γ(n−k+j+1

2 )
Γ(n+1

2 )Γ(n−k+1
2 )Γ(n−k2 )Γ(k+s

2 + 1)

×
Γ(n−k+s

2 −m)Γ( j+s2 −m+ 1)Γ(k−j2 +m)
Γ(k−j2 + i)

.

Next, using (
s

2i

)(
s− 2i

2m− 2i

)
Γ(i+ 1

2)Γ(m− i+ 1
2) = s!

(s− 2m)!
π

22mi!(m− i)! ,

(n− k − 1)!k!
Γ(n−k+1

2 )Γ(n−k2 )j!
= 2n−j−1
√
π

Γ(k2 + 1)Γ(k+1
2 )

Γ( j2 + 1)Γ( j+1
2 )

,

and
Γ( j2 + l)Γ(n−k+s

2 −m)Γ(k2 )
Γ(n−j+s2 )Γ( j2)Γ(k2 + l + i)

=
√
π
j−k−2i−2m ωn−j+sωjωk+2l+2i

ωj+2lωn−k+s−2mωk
,

we get

cs,l,i,mn,j,k := ωn−kωk−j
ωn−j

cr,s,ln,j

cr,s−2m,l+i
n,k

(
s

2i

)
Γ(i+ 1

2)bs,l,in,j,ka
s,i,m
n,j,k

= (−1)i
(
s

2i

)(
s− 2i

2m− 2i

)
Γ(i+ 1

2)Γ(m− i+ 1
2) (n− k − 1)!k!

Γ(n−k+1
2 )Γ(n−k2 )j!

× (i+ l − 2)!
(l − 2)!

Γ(n−k+j+1
2 )Γ( j+s2 −m+ 1)Γ(k−j2 +m)
2n−j
√
πΓ(n+1

2 )Γ(k+s
2 + 1)
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×
Γ( j2 + l)Γ(n−k+s

2 −m)Γ(k2 )
Γ(n−j+s2 )Γ( j2)Γ(k2 + l + i)

2
√
π
k−j

Γ(k−j2 )
ωn−k
ωn−j

cr,s,ln,j

cr,s−2m,l+i
n,k

= (−1)i 1
4mi!(m− i)!

1
πi+m

(i+ l − 2)!
(l − 2)!

Γ(n−k+j+1
2 )Γ(k+1

2 )
Γ(n+1

2 )Γ( j+1
2 )

×
Γ(k2 + 1)

Γ(k+s
2 + 1)

Γ( j+s2 −m+ 1)
Γ( j2 + 1)

Γ(k−j2 +m)
Γ(k−j2 )

,

which yields the assertion.
Finally, returning to (4.7) and using the definition of the tensorial curvature measures,

we get

I1 =
n−1∑
k=j+1

b s2 c∑
m=0

m∑
i=0

cs,l,i,mn,j,k Qm−i
1

ωn−k
cr,s−2m,l+i
n,k

×
∑

F∈Fk(P )
Q(F )l+i

∫
F∩β

xrHk(dx)
∫
N(P,F )∩Sn−1

us−2mHn−k−1(du)

× 1
ωk−j

∑
F ′∈Fn−k+j(P ′)

Hn−k+j(F ′ ∩ β′)Hk−j−1
(
N(P ′, F ′) ∩ Sn−1

)
+ φr,s,lj (P, β)φn(P ′, β′) + csn,j φ

r,0, s2 +l
n (P, β)φj(P ′, β′)

=
n∑
k=j

b s2 c∑
m=0

m∑
i=0

cs,l,i,mn,j,k Qm−iφr,s−2m,l+i
k (P, β)φn−k+j(P ′, β′).

In the last step, we use that for k = j we have cs,l,i,mn,j,j = 1{i = m = 0}. Moreover, in
the case k = n we use that φr,s−2m,l+i

n vanishes for m 6= s
2 . Hence, for even s we have to

simplify the sum

s
2∑
i=0

c
s,l,i, s2
n,j,n Q

s
2−iφr,0,l+in (P, β)φj(P ′, β′)

=
s
2∑
i=0

c
s,l,i, s2
n,j,n

ωn+2l+2i
ωn+s+2l

φ
r,0, s2 +l
n (P, β)φj(P ′, β′).

For this, an application of relation (B.1′) yields

1
(2π)s

(
s
2
)
!
Γ(n+s

2 + l)
Γ(l − 1)

Γ(n2 + 1)
Γ(n+s

2 + 1)
Γ(n−j+s2 )
Γ(n−j2 )

s
2∑
i=0

(−1)i
(
s
2
i

)
Γ(i+ l − 1)
Γ(n2 + l + i)

× φr,0,
s
2 +l

n (P, β)φj(P ′, β′)

= csn,j φ
r,0, s2 +l
n (P, β)φj(P ′, β′), (4.9)

as required. This completes the proof.





CHAPTER 5

Crofton Formulae

In this chapter, we establish a complete set of Crofton formulae for the tensorial curvature
measures of polytopes. That is, for P ∈ Pn and β ∈ B(Rn), we explicitly express integrals
of the form ∫

A(n,k)
φr,s,lj (P ∩ E, β ∩ E)µk(dE)

in terms of generalized tensorial curvature measures of P , evaluated at β. Furthermore,
since the tensorial measures φr,s,lj can be continuously extended to mappings defined on
Kn × B(Rn), for l = 0, 1, we also consider the Crofton integrals∫

A(n,k)
φr,s,lj (K ∩ E, β ∩ E)µk(dE)

for K ∈ Kn, β ∈ B(Rn), l = 0, 1. Moreover, we point out several special cases of these
formulae which can be simplified even further.

Since the generalized tensorial curvature measures depend additively on the underlying
convex body (resp. polytope), all integral formulae in this chapter remain true if the
occurring convex bodies (resp. polytopes) are replaced by finite unions of convex bodies
(resp. polytopes).

In the proof of the Crofton formula for generalized tensorial curvature measures on
polytopes, we make use of a well-known connection to the corresponding kinematic formula,
which is already applied in the proof of the classical Crofton formula for curvature measures
(see [83, Theorem 4.4.5]). More intuitively, we choose the polytope in the kinematic integral
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that is uniformly moved by the rigid motion to be of a suitable dimension and “sufficiently
large” in a sense that the integration goes over to the Crofton integral in which the affine
hull of the polytope is moved uniformly.

Remark. The results in this chapter have already been submitted. To a great extent the
present chapter contains direct quotes from the publication Crofton Formulae for Tensorial
Curvature Measures: The General Case, a joint work with Daniel Hug, submitted in 2016
(see [55]).

5.1. The Results of Chapter 5

We present the Crofton formulae in two steps. We start with results for the generalized
tensorial curvature measures on polytopes. Then we state the formulae for the ones with
existing extension to convex bodies. For the latter we deduce some special cases and point
out the connection to the extrinsic results from Chapter 8.

5.1.1. Generalized Tensorial Curvature Measures on Polytopes

As explained before, we start with the Crofton formulae for the generalized tensorial
curvature measures on polytopes. First, we separately state a formula for j = k.

Theorem 5.1. Let P ∈ Pn, β ∈ B(Rn), and k, r, s, l ∈ N0 with k ≤ n. Then,

∫
A(n,k)

φr,s,lk (P ∩ E, β ∩ E)µk(dE) = 1{s even} 1
(2π)s

(
s
2
)
!
Γ(n−k+s

2 )
Γ(n−k2 )

φ
r,0, s2 +l
n (P, β).

Theorem 5.1 generalizes Theorem 2.1 in [51]. In fact, setting l = 0 and β = Rn one
obtains the known result for Minkowski tensors. If l ∈ {0, 1}, one can even formulate
Theorem 5.1 for a convex body, as in both of these cases all appearing valuations are
defined on Kn. For k = n, the integral on the left-hand side of the formula in Theorem
5.1 is trivial. However, we note that on the right-hand side the quotient of the Gamma
functions has to be interpreted as 1{s = 0}, according to (2.2).
Next, we state the formulae for general j < k.

Theorem 5.2. Let P ∈ Pn, β ∈ B(Rn), and j, k, r, s, l ∈ N0 with j < k ≤ n, and with
l = 0 if j = 0. Then,

∫
A(n,k)

φr,s,lj (P ∩ E, β ∩ E)µk(dE) =
b s2 c∑
m=0

m∑
i=0

ds,l,i,mn,j,k Qm−iφr,s−2m,l+i
n−k+j (P, β),
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where

ds,l,i,mn,j,k := (−1)i

(4π)mm!

(m
i

)
πi

(i+ l − 2)!
(l − 2)!

Γ(n−k+j+1
2 )Γ(k+1

2 )
Γ(n+1

2 )Γ( j+1
2 )

×
Γ(n−k+j

2 + 1)
Γ(n−k+j+s

2 + 1)
Γ( j+s2 −m+ 1)

Γ( j2 + 1)
Γ(n−k2 +m)

Γ(n−k2 )
.

For k = n the coefficient in Theorem 5.2 has to be interpreted as

ds,l,i,mn,j,n = 1{i = m = 0},

according to (2.2), so that the result is a tautology in this case.
The coefficients ds,l,i,mn,j,k in Theorem 5.2 are well-known from the kinematic formulae in

Theorem 4.1. In fact, they satisfy the relation

ds,l,i,mn,j,k = cs,l,i,mn,j,n−k+j . (5.1)

However, we restate them here for the sake of clarity.
Several remarkable facts concerning the coefficients ds,l,i,mn,j,k should be recalled from

Chapter 4. First, the ratio (i+ l − 2)!/(l − 2)! has to be interpreted in terms of Gamma
functions and relation (2.2) if l ∈ {0, 1}. The corresponding special cases will be considered
separately in the following two theorems and the subsequent corollaries. Second, due
to our normalization of the generalized tensorial curvature measures, the coefficients
are independent of the tensorial parameter r and depend only on l through the ratio
(i+ l − 2)!/(l − 2)!. Third, only tensors φr,s−2m,p

n−k+j (P, β) with p ≥ l show up on the right
side of the kinematic formula. Using Legendre’s duplication formula, we could shorten the
given expressions for the coefficients ds,l,i,mn,j,k even further. However, the present form has
the advantage of exhibiting that the factors in the second line cancel each other if s = 0
(and hence also m = i = 0). Furthermore, in general the coefficients are signed in contrast
to the classical kinematic formula. We shall see below that for l ∈ {0, 1} all coefficients are
non-negative.

5.1.2. (Generalized) Tensorial Curvature Measures on Convex Bodies

For l ∈ {0, 1}, the generalized tensorial curvature measures φr,s,lj can be continuously
extended to all convex bodies. In these two cases, Theorem 5.1 (in which j = k) holds for
general convex bodies as well. For this reason, we restrict our attention to the cases where
j < k in the following. The next theorems are stated without a proof, as they basically
follow from Theorem 5.2 and approximation of the given convex body by polytopes (using
the weak continuity of the curvature measures and the usual arguments needed to take
care of exceptional positions).
We start with the formula for l = 1.
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Theorem 5.3. Let K ∈ Kn, β ∈ B(Rn), and j, k, r, s ∈ N0 with 0 < j < k ≤ n. Then,

∫
A(n,k)

φr,s,1j (K ∩ E, β ∩ E)µk(dE) =
b s2 c∑
m=0

ds,1,0,mn,j,k Qmφr,s−2m,1
n−k+j (K,β),

where

ds,1,0,mn,j,k = 1
(4π)mm!

Γ(n−k+j+1
2 )Γ(k+1

2 )
Γ(n+1

2 )Γ( j+1
2 )

×
Γ(n−k+j

2 + 1)
Γ(n−k+j+s

2 + 1)
Γ( j+s2 −m+ 1)

Γ( j2 + 1)
Γ(n−k2 +m)

Γ(n−k2 )
.

Next, we state the formula for l = 0.

Theorem 5.4. Let K ∈ Kn, β ∈ B(Rn) and j, k, r, s ∈ N0 with j < k ≤ n. Then,

∫
A(n,k)

φr,s,0j (K ∩ E, β ∩ E)µk(dE) =
b s2 c∑
m=0

1∑
i=0

ds,0,i,mn,j,k Qm−iφr,s−2m,i
n−k+j (K,β),

where

ds,0,i,mn,j,k = 1
(4π)mm!

(m
i

)
πi

Γ(n−k+j+1
2 )Γ(k+1

2 )
Γ(n+1

2 )Γ( j+1
2 )

×
Γ(n−k+j

2 + 1)
Γ(n−k+j+s

2 + 1)
Γ( j+s2 −m+ 1)

Γ( j2 + 1)
Γ(n−k2 +m)

Γ(n−k2 )
.

In Theorem 5.4, we have ds,0,1,0n,j,k = 0 so that, in fact, the undefined tensor Q−1 does not
appear.

For the special case j = k − 1, we deduce two more Crofton formulae. The first concerns
the generalized tensorial curvature measures φr,s,1k−1 .

Corollary 5.5. Let K ∈ Kn, β ∈ B(Rn), and k, r, s ∈ N0 with 0 < k < n. Then,

∫
A(n,k)

φr,s,1k−1 (K ∩ E, β ∩ E)µk(dE) =
b s2 c∑
m=0

ιs,mn,k Q
mφr,s−2m,1

n−1 (K,β),

where

ιs,mn,k := 1
(4π)mm!

Γ(n2 )Γ(k+s+1
2 −m)Γ(n−k2 +m)

Γ(n+s+1
2 )Γ(k2 )Γ(n−k2 )

.

Due to the easily verified relation

φr,s−2m,1
n−1 = 2π

n− 1
(
Qφr,s−2m,0

n−1 − 2π(s− 2m+ 2)φr,s−2m+2,0
n−1

)
, (5.2)
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Corollary 5.5 can be transformed in such a way that only the tensorial curvature measures
φr,s−2m,0
n−1 are involved on the right-hand side of the preceding formula. This is presented in

the following corollary.

Corollary 5.6. Let K ∈ Kn, β ∈ B(Rn), and k, r, s ∈ N0 with 1 < k < n. Then,

∫
A(n,k)

φr,s,1k−1 (K ∩ E, β ∩ E)µk(dE) =
b s2 c+1∑
m=0

λs,mn,k Q
mφr,s−2m+2,0

n−1 (K,β),

where

λs,mn,k := π

(n− 1)(4π)m−1m!
Γ(n2 )Γ(k+s+1

2 −m)Γ(n−k2 +m− 1)
Γ(n+s+1

2 )Γ(k2 )Γ(n−k2 )

×
(
2m(k+s+1

2 −m)− (s− 2m+ 2)(n−k2 +m− 1)
)
,

for m ∈ {1, . . . , b s2c}, and

λs,0n,k := −4π2(s+ 2)
n− 1

Γ(n2 )Γ(k+s+1
2 )

Γ(n+s+1
2 )Γ(k2 )

,

λ
s,b s2 c+1
n,k := 2π

(n− 1)(4π)b
s
2 c(b s2c)!

Γ(n2 )Γ(k+s+1
2 − b s2c)Γ(n−k2 + b s2c)

Γ(n+s+1
2 )Γ(k2 )Γ(n−k2 )

.

The second special case concerns the tensorial curvature measures φr,s,0k−1 . Although this
result is also derived in a different way from the intrinsic Crofton formulae in Chapter 8
(see Theorem 8.11 and its proof in Section 8.3), we state it and derive it here as a special
case of the present more general approach.

Corollary 5.7. Let K ∈ Kn, β ∈ B(Rn), and k, r, s ∈ N0 with 1 < k < n. Then

∫
A(n,k)

φr,s,0k−1 (K ∩ E, β ∩ E)µk(dE) =
b s2 c∑
m=0

κs,mn,k Q
mφr,s−2m,0

n−1 (K,β),

where

κs,mn,k := k − 1
n− 1

1
(4π)mm!

Γ(n2 )Γ(k+s−1
2 −m)Γ(n−k2 +m)

Γ(n+s−1
2 )Γ(k2 )Γ(n−k2 )

if m 6= s−1
2 , and

κ
s, s−1

2
n,k := k(n+ s− 2)

2(n− 1)
1

(4π)
s−1

2 s−1
2 !

Γ(n2 )Γ(n−k+s−1
2 )

Γ(n+s+1
2 )Γ(n−k2 )

.

Finally, we state the remaining case where k = 1 (see also [54, Theorem 4.13]).
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Corollary 5.8. Let K ∈ Kn, β ∈ B(Rn), and r, s ∈ N0. Then∫
A(n,1)

φr,s,00 (K ∩ E, β ∩ E)µ1(dE)

=
Γ( s2 − b

s
2c+ 1)

√
π(4π)b

s
2 cb s2c!

Γ(n2 )Γ(n+1
2 + b s2c)

Γ(n+1
2 )Γ(n+s+1

2 )
Qb

s
2 cφ

r,s−2b s2 c,0
n−1 (K,β).

Comparing Corollary 5.7 and Corollary 5.8 to the corresponding results in Chapter 8,
it should be observed that the normalization of the tensorial measures in Chapter 8 is
different from the current normalization (although the measures are denoted in the same
way).

5.2. The Proofs of the Crofton Formulae

In this section, we prove the Crofton formulae which have been stated in Section 5.1. The
proof uses the connection to the corresponding (more general) kinematic formulae. For the
classical scalar-valued curvature measures this connection is well-known (see for example
[83, Theorem 4.4.5]).
We start by proving both, the Crofton formulae in Theorem 5.1 and Theorem 5.2, at

once using Theorem 4.1.

Proof of Theorem 5.1 and Theorem 5.2. Let P ∈ Pn and β ∈ B(Rn). First, we prove the
identity

J :=
∫

A(n,k)
φr,s,lj (P ∩ E, β)µk(dE) =

∫
Gn
φr,s,lj (P ∩ gEk, β ∩ gα)µ(dg) (5.3)

for an arbitrary (but fixed) Ek ∈ G(n, k) and α ∈ B(Ek) with Hk(α) = 1, where we define
J to be the Crofton integral in which we are interested. This is shown as follows. Using
(2.1), we obtain

J =
∫

SO(n)

∫
E⊥
k

∫
Rn
1β(x)φr,s,lj (P ∩ ρ(Ek + t1),dx)Hn−k(dt1) ν(dρ).

For t1 ∈ E⊥k and x ∈ ρ(Ek + t1) we have

x ∈ ρ(α+ t1 + t2)⇔ t2 ∈ −α+ ρ−1x− t1,

for all t2 ∈ Ek. Moreover, −α+ ρ−1x− t1 ⊂ Ek, since α ⊂ Ek and x ∈ ρ(Ek + t1) yields
ρ−1x− t1 ∈ Ek. Thus, we get

Hk ({t2 ∈ Ek : x ∈ ρ(α+ t1 + t2)}) = Hk(−α+ ρ−1x− t1) = Hk(α) = 1,
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and hence we have

J =
∫

SO(n)

∫
E⊥
k

∫
Rn
1β(x)

∫
Ek

1{x ∈ ρ(α+ t1 + t2)}Hk(dt2)

× φr,s,lj (P ∩ ρ(Ek + t1), dx)Hn−k(dt1) ν(dρ)

=
∫

SO(n)

∫
E⊥
k

∫
Ek

∫
Rn
1β∩ρ(α+t1+t2)(x)φr,s,lj (P ∩ ρ(Ek + t1 + t2),dx)

×Hk(dt2)Hn−k(dt1) ν(dρ).

Finally, Fubini’s theorem yields

J =
∫

SO(n)

∫
Rn
φr,s,lj (P ∩ ρ(Ek + t), β ∩ ρ(α+ t))Hn(dt) ν(dρ)

=
∫

Gn
φr,s,lj (P ∩ gEk, β ∩ gα)µ(dg),

which concludes the proof of (5.3).
Let α ∈ B(Rn) be compact with α ⊂ Ek and Hk(α) = 1. Then choose P ′ ∈ Pn with

P ′ ⊂ Ek and α ⊂ relintP ′, such that the following holds, for all g ∈ Gn: If g−1P ∩ α 6= ∅,
then g−1P ∩ Ek ⊂ P ′. Hence, if P ∩ gα 6= ∅, then P ∩ gEk = P ∩ gP ′. Thus we obtain

J =
∫

Gn
φr,s,lj (P ∩ gP ′, β ∩ gα)µ(dg),

and therefore, by Theorem 4.1

J =
n∑
p=j

b s2 c∑
m=0

m∑
i=0

cs,l,i,mn,j,p Qm−iφr,s−2m,l+i
p (P, β)φn−p+j(P ′, α).

Hence, if k = j we get

J = 1{s even} 1
(2π)s

(
s
2
)
!
Γ(n−k+s

2 )
Γ(n−k2 )

φ
r,0, s2 +l
n (P, β)φk(P ′, α)︸ ︷︷ ︸

=Hk(α)=1

= 1{s even} 1
(2π)s s2 !

Γ(n−k+s
2 )

Γ(n−k2 )
φ
r,0, s2 +l
n (P, β),

and for j < k we get

J =
b s2 c∑
m=0

m∑
i=0

cs,l,i,mn,j,n−k+j︸ ︷︷ ︸
=: ds,l,i,m

n,j,k

Qm−iφr,s−2m,l+i
n−k+j (P, β)φk(P ′, α)︸ ︷︷ ︸

=Hk(α)=1

=
b s2 c∑
m=0

m∑
i=0

ds,l,i,mn,j,k Qm−iφr,s−2m,l+i
n−k+j (P, β),
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since φq(P ′, α) = 0 for q 6= k.

Next, we prove Corollary 5.5 and Corollary 5.6, which are derived from Theorem 5.3. The
first follows immediately, whereas the second subsequently is obtained by an application of
relation (5.2).

Proof of Corollary 5.5 and Corollary 5.6. In both cases, we denote the integral we are
interested in by I. First, we consider Corollary 5.5 and hence l = 1 in the general formulae.
In this case, Theorem 5.3 yields

I =
b s2 c∑
m=0

ιs,mn,k Q
mφr,s−2m,1

n−1 (K,β),

where

ιs,mn,k := ds,1,0,mn,k−1,k = 1
(4π)mm!

Γ(n2 )Γ(k+s+1
2 −m)Γ(n−k2 +m)

Γ(n+s+1
2 )Γ(k2 )Γ(n−k2 )

,

which already proves Corollary 5.5.
Next, we turn to the proof of Corollary 5.6. From Corollary 5.5 and (5.2), we conclude

that

I = 2π
n− 1

b s2 c∑
m=0

ιs,mn,kQ
m+1φr,s−2m,0

n−1 (K,β)− 2π(s− 2m+ 2)ιs,mn,k Q
mφr,s−2m+2,0

n−1 (K,β)

= 2π
n− 1

b s2 c+1∑
m=1

ιs,m−1
n,k Qmφr,s−2m+2,0

n−1 (K,β)

− 2π
n− 1

b s2 c∑
m=0

2π(s− 2m+ 2)ιs,mn,k Q
mφr,s−2m+2,0

n−1 (K,β)

=
b s2 c∑
m=1

2π
n− 1

(
ιs,m−1
n,k − 2π(s− 2m+ 2)ιs,mn,k

)
Qmφr,s−2m+2,0

n−1 (K,β)

+ 2π
n− 1 ι

s,b s2 c
n,k Qb

s
2 c+1φ

r,s−2b s2 c,0
n−1 (K,β)− 4π2(s+ 2)

n− 1 ιs,0n,k φ
r,s+2,0
n−1 (K,β).

Denoting the coefficients by λs,mn,k , we obtain for m ∈ {1, . . . , b s2c}

λs,mn,k = π

(n− 1)(4π)m−1m!
Γ(n2 )Γ(k+s+1

2 −m)Γ(n−k2 +m− 1)
Γ(n+s+1

2 )Γ(k2 )Γ(n−k2 )

×
(
2m(k+s+1

2 −m)− (s− 2m+ 2)(n−k2 +m− 1)
)
,
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and

λs,0n,k = −4π2(s+ 2)
n− 1 ιs,0n,k = −4π2(s+ 2)

n− 1
Γ(n2 )Γ(k+s+1

2 )
Γ(n+s+1

2 )Γ(k2 )
,

λ
s,b s2 c+1
n,k = 2π

n− 1 ι
s,b s2 c
n,k

= 2π
(n− 1)(4π)b

s
2 c(b s2c)!

Γ(n2 )Γ(k+s+1
2 − b s2c)Γ(n−k2 + b s2c)

Γ(n+s+1
2 )Γ(k2 )Γ(n−k2 )

,

where λs,0n,k is defined according to the general definition, but λs,b
s
2 c+1

n,k differs slightly for
odd s.

Finally, we prove Corollary 5.7 and Corollary 5.8, which are immediate consequences of
Theorem 5.4.

Proof of Corollary 5.7 and Corollary 5.8. We denote the integral we are interested in by
I and establish both corollaries simultaneously. Theorem 5.4 yields

I =
b s2 c∑
m=0

ds,0,0,mn,k−1,kQ
mφr,s−2m,0

n−1 (K,β) +
b s2 c∑
m=1

ds,0,1,mn,k−1,kQ
m−1φr,s−2m,1

n−1 (K,β),

where

ds,0,i,mn,k−1,k := 1
4m(m− i)!

1
πi+m

Γ(n2 )
Γ(n+s+1

2 )Γ(k2 )Γ(n−k2 )
Γ(k+s+1

2 −m)Γ(n−k2 +m).

From (5.2) we obtain

I =
b s2 c∑
m=0

ds,0,0,mn,k−1,kQ
mφr,s−2m,0

n−1 (K,β) + 2π
n− 1

b s2 c∑
m=1

ds,0,1,mn,k−1,kQ
mφr,s−2m,0

n−1 (K,β)

− 4π2

n− 1

b s2 c∑
m=1

ds,0,1,mn,k−1,k(s− 2m+ 2)Qm−1φr,s−2m+2,0
n−1 (K,β),

where we used that ds,0,1,0n,k−1,k = 0. This can be rewritten in the form

I =
b s2 c∑
m=0

(
ds,0,0,mn,k−1,k + 2π

n− 1d
s,0,1,m
n,k−1,k

)
Qmφr,s−2m,0

n−1 (K,β)

− 4π2

n− 1

b s2 c−1∑
m=0

ds,0,1,m+1
n,k−1,k (s− 2m)Qmφr,s−2m,0

n−1 (K,β)

=
b s2 c−1∑
m=0

(
ds,0,0,mn,k−1,k + 2π

n− 1d
s,0,1,m
n,k−1,k −

4π2(s− 2m)
n− 1 ds,0,1,m+1

n,k−1,k

)
Qmφr,s−2m,0

n−1 (K,β)

+
(
d
s,0,0,b s2 c
n,k−1,k + 2π

n− 1d
s,0,1,b s2 c
n,k−1,k

)
Qb

s
2 cφ

r,s−2b s2 c,0
n−1 (K,β).
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Denoting the corresponding coefficients of the summand Qmφr,s−2m,0
n−1 (K,β) by κs,mn,k , we

obtain

κs,mn,k =
(

1 + 2m
n− 1

) 1
(4π)mm!

Γ(n2 )Γ(k+s+1
2 −m)Γ(n−k2 +m)

Γ(n+s+1
2 )Γ(k2 )Γ(n−k2 )

− s− 2m
n− 1

1
(4π)mm!

Γ(n2 )Γ(k+s−1
2 −m)Γ(n−k2 +m+ 1)

Γ(n+s+1
2 )Γ(k2 )Γ(n−k2 )

= 1
(4π)mm!

Γ(n2 )Γ(k+s−1
2 −m)Γ(n−k2 +m)

Γ(n+s+1
2 )Γ(k2 )Γ(n−k2 )

×
(
n+2m−1
n−1 (k+s−1

2 −m)− s−2m
n−1 (n−k2 +m)

)
︸ ︷︷ ︸

= k−1
n−1

n+s−1
2

= k − 1
n− 1

1
(4π)mm!

Γ(n2 )Γ(k+s−1
2 −m)Γ(n−k2 +m)

Γ(n+s−1
2 )Γ(k2 )Γ(n−k2 )

, (5.4)

for m ∈ {0, . . . , b s2c − 1}. For k = 1, we immediately get κs,mn,1 = 0 in these cases.
Furthermore, we have

κ
s,b s2 c
n,k =

(
1 +

2b s2c
n− 1

)
1

(4π)b
s
2 cb s2c!

Γ(n2 )Γ(k+s+1
2 − b s2c)Γ(n−k2 + b s2c)

Γ(n+s+1
2 )Γ(k2 )Γ(n−k2 )

.

If s is even and k > 1, this coincides with (5.4) for m = s
2 . If s is odd, we have

κ
s, s−1

2
n,k = k(n+ s− 2)

2(n− 1)
1

(4π)
s−1

2 s−1
2 !

Γ(n2 )Γ(n−k+s−1
2 )

Γ(n+s+1
2 )Γ(n−k2 )

and thus the assertion of Corollary 5.7. For k = 1, we obtain

κ
s,b s2 c
n,1 =

Γ( s2 − b
s
2c+ 1)

√
π(4π)b

s
2 cb s2c!

Γ(n2 )Γ(n+1
2 + b s2c)

Γ(n+1
2 )Γ(n+s+1

2 )

and thus the assertion of Corollary 5.8.



CHAPTER 6

Integral Formulae for Minkowski Tensors

Since the Minkowski tensors are the total tensorial curvature measures, it is a natural
consequent step to globalize the kinematic and Crofton formulae for tensorial curvature
measures (see Chapter 4 and Chapter 5), in order to obtain the corresponding formulae for
Minkowski tensors. Even though these integral formulae are well-studied in the translation
invariant case, using methods from algebraic integral geometry (see [15]), and there exist
Crofton formulae (which can be applied to further obtain kinematic formulae) for general
Minkowski tensors (see [51]), the aim of this chapter is to establish two complete sets of
these integral geometric formulae, which not only generalize the translation invariant results
in [15], but also allow a considerably less technical representation than in the formulae
which were derived in [51].

Recalling the integral formulae for the tensorial curvature measures on convex bodies
(see Theorem 4.4 and Theorem 5.4), we observe that the representations of the integrals
involve the generalized tensorial curvature measures φr,s,1j , which do not have a direct
global counterpart. However, McMullen’s Lemma 3.6 (or rather the consequence thereof,
Lemma 3.7) yields a representation of the globalization of these measures in terms of
Minkowski tensors. This will be the crucial ingredient of the upcoming proofs. As this
representation is most simple in the translation invariant case, we state the integral formulae
separately for translation invariant and for general Minkowski tensors.

We note that, since the Minkowski tensors depend additively on the underlying convex
body, all integral formulae in this chapter remain true if the occurring convex bodies are
replaced by finite unions thereof.
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6.1. Kinematic Formulae

In this section, we provide the complete set of kinematic formulae for the Minkowski tensors
of convex bodies. In other words, for K,K ′ ∈ Kn we express the integral mean value∫

Gn
Φr,s
j (K ∩ gK ′)µ(dg)

in terms of the Minkowski tensors of K and K ′. In fact, one does so using only a selection
of them (in particular, only scalar Minkowski tensors, that is, intrinsic volumes of K ′).

We proceed in two steps, first we state the formulae for the translation invariant Minkowski
tensors, which are then followed by the formulae for general Minkowski tensors. The proof
is basically an application of the kinematic formulae for the tensorial curvature measures
(obtained in Chapter 4), combined with Lemma 3.7.

6.1.1. Translation Invariant Minkowski Tensors

As explained before, we start by stating the kinematic formula for translation invariant
Minkowski tensors Φ0,s

j , j, s ∈ N0 with j ≤ n, where s = 0 if j = n. Here, the proof and
the representation of the kinematic integrals are more simple as in the general case, as one
can combine several coefficients of the occurring Minkowski tensors.

Theorem 6.1. For K,K ′ ∈ Kn and j, s ∈ N0 with j ≤ n, where s = 0 if j = n,

∫
Gn

Φ0,s
j (K ∩ gK ′)µ(dg) =

n∑
k=j

b s2 c∑
m=0

es,m,0n,j,k Q
mΦ0,s−2m

k (K)Vn−k+j(K ′),

where

es,m,0n,j,k := 1
(4π)mm!

Γ(n−k+j+1
2 )Γ(k+1

2 )
Γ(n+1

2 )Γ( j+1
2 )

Γ(k2 )
Γ(k+s

2 )
Γ( j+s2 −m)

Γ( j2)
Γ(k−j2 +m)

Γ(k−j2 )
,

for m = 0, . . . , b s2c − 1, and

e
s,b s2 c,0
n,j,k :=

k
2 + b s2c

(4π)b
s
2 cb s2c!

Γ(n−k+j+1
2 )Γ(k+1

2 )
Γ(n+1

2 )Γ( j+1
2 )

Γ(k2 )
Γ(k+s

2 + 1)
Γ( j+s2 − b

s
2c+ 1)

Γ( j2 + 1)
Γ(k−j2 + b s2c)

Γ(k−j2 )
.

In Theorem 6.1 one could, in fact, define the coefficient es,b
s
2 c,0

n,j,k as for general m, since
the definitions coincide for even s, and their difference for odd s is irrelevant, as Φ0,1

k ≡ 0.
However, for later use we already define them here in the correct way.
For k = j, we note that the coefficient in Theorem 6.1 is given by

es,m,0n,j,j = 1{m = 0}.



6.1. Kinematic Formulae 81

For k = n, we note that the Minkowski tensors Φ0,s−2m
n vanish if m 6= s

2 . In the case of
m = s

2 (and hence s even), the corresponding coefficient is given by

e
s, s2 ,0
n,j,n = 1

(2
√
π)s s2 !

Γ(n2 )
Γ(n+s

2 )
Γ(n−j+s2 )
Γ(n−j2 )

.

If j = 0, then the kinematic integral equals zero, for odd s, and further, for even s,
the only non-vanishing coefficients on the right side of the kinematic formula are es,

s
2 ,0

n,0,k,
k ∈ {1, . . . , n}, as in that case the quotient Γ( j+s2 −m)/Γ( j2) is read as 1{m = s

2}, due to
the continuation of the Gamma function (2.2).

6.1.2. General Minkowski Tensors

In this section, we state the kinematic formula for general Minkowski tensors. The
representation of the kinematic integral will be more involved compared to the translation
invariant case treated in Theorem 6.1, as Lemma 3.6 adds Minkowski tensors to the formula
which did not appear before, and can thus not be combined with the rest. However, the
representation of the geometric integral is still remarkably more simple than the ones
obtained for the Crofton formulae in [51] (which can be applied to obtain kinematic
formulae).

Theorem 6.2. For K,K ′ ∈ Kn and j, r, s ∈ N0 with j ≤ n, where s = 0 if j = n,

∫
Gn

Φr,s
j (K ∩ gK ′)µ(dg) =

n∑
k=j

r∑
p=0

b s2 c∑
m=0

es,m,pn,j,k Q
mΦr−p,s−2m+p

k+p (K)Vn−k+j(K ′),

where the coefficients es,m,0n,j,k are defined as in Theorem 6.1. For all further p = 1, . . . , r the
coefficients are

es,m,pn,j,k :=
mk−p

k −
s+p

2
k−j
k

(4π)mm!
Γ(n−k+j+1

2 )Γ(k+1
2 )

Γ(n+1
2 )Γ( j+1

2 )
Γ(k2 + 1)

Γ(k+s
2 + 1)

Γ( j+s2 −m)
Γ( j2 + 1)

Γ(k−j2 +m)
Γ(k−j2 )

,

for m = 0, . . . , b s2c − 1, and

e
s,b s2 c,p
n,j,k := 1

(4π)b
s
2 cb s2 − 1c!

Γ(n−k+j+1
2 )Γ(k+1

2 )
Γ(n+1

2 )Γ( j+1
2 )

Γ(k2 )
Γ(k+s

2 + 1)
Γ( j+s2 − b

s
2c+ 1)

Γ( j2 + 1)
Γ(k−j2 + b s2c)

Γ(k−j2 )
.

In Theorem 6.2, we note that for p > 0 and k = j, we have es,m,pn,j,j = 0. If p > 0 and
k = n, then the Minkowski tensors Φr−p,s−2m+p

k+p vanish. For further simplifications of the
coefficients, see the remark after Theorem 6.1.
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6.2. Crofton Formulae

In this section, we state the complete set of Crofton formulae for Minkowski tensors,
which can be derived from the corresponding formulae for tensorial curvature measures in
Chapter 5. That is, for K ∈ Kn, we explicitly express integrals of the form∫

A(n,k)
Φr,s
j (K ∩ E)µk(dE)

as a linear combination of Minkowski tensors of K (multiplied with suitable powers of
the metric tensor). Similar to the kinematic formulae, we only need a selection of these
tensorial valuations.
At first, we consider the case j = k. For the matter of completeness, we mention this

formula here, even though it is a well-known result, derived in [51] using a completely
different approach.

Theorem 6.3. Let K ∈ Kn and k, r, s, l ∈ N0 with k ≤ n, where s = 0 if k = n. Then,

∫
A(n,k)

Φr,s
k (K ∩ E)µk(dE) = 1{s even} 1

(4π)
s
2 s2 !

Γ(n2 )Γ(n−k+s
2 )

Γ(n+s
2 )Γ(n−k2 )

Q
s
2 Φr,0

n (K).

It is not necessary to state a proof of Theorem 6.3. In fact, the formula is an immediate
consequence of Theorem 5.1, which is derived by simply setting l = 0 and β = Rn. If k = n,
then the Minkowski tensor on the left side of the formula vanishes if s 6= 0, and so does the
factor Γ(n−k+s

2 )/Γ(n−k2 ) on the right side.

6.2.1. Translation Invariant Minkowski Tensors

We proceed with the Crofton formulae in the case of j < k, and start with the translation
invariant Minkowski tensors.

Theorem 6.4. Let K ∈ Kn and j, k, r, s ∈ N0 with j < k ≤ n, where s = 0 if j = n. Then,

∫
A(n,k)

Φ0,s
j (K ∩ E)µk(dE) =

b s2 c∑
m=0

es,m,0n,j,n−k+j Q
mΦ0,s−2m

n−k+j (K),

where the coefficients es,m,0n,j,n−k+j are defined as in Theorem 6.1.

For j = 0, we have Γ( j+s2 − m)/Γ( j2) = 1{m = s
2}. Thus in that case, the only

remaining summand on the right-hand side of the Crofton formula in Theorem 6.4 is
e
s, s2
n,j,kQ

s
2 Φ0,0

n−k+j(K), if s is even (else the integral on the left-hand side vanishes). We note
that Theorem 6.4 coincides with Theorem 3 in [15], which was derived by a completely
different algebraic approach.
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6.2.2. General Minkowski Tensors

Finally, we state the Crofton formula for general Minkowski tensors. Similar to the
kinematic formulae, we conclude from Lemma 3.6 that the representation of the Crofton
integrals involves more Minkowski tensors than in the translation invariant case.

Theorem 6.5. Let K ∈ Kn and j, k, r, s ∈ N0 with j < k ≤ n. Then,

∫
A(n,k)

Φr,s
j (K ∩ E)µk(dE) =

r∑
p=0

b s2 c∑
m=0

es,m,pn,j,n−k+j Q
mΦr−p,s−2m+p

n−k+j+p (K),

where the coefficients es,m,pn,j,n−k+j are defined as in Theorem 6.1 and 6.2.

In Theorem 6.5, for j = k − 1, the only summand remaining in the summation with
respect to p is the one for p = 0, as the Minkowski tensors, which occur for p > 0, vanish.

6.3. The Proofs

6.3.1. The Proofs of the Kinematic Formulae

The proofs of the kinematic formulae are applications of the kinematic formulae for tensorial
curvature measures (obtained in Chapter 4). Even though one can prove Theorem 6.1 and
Theorem 6.2 together at once, as the latter implies the first, we split the proofs in order to
emphasize the difference in the coefficients of the appearing translation invariant and the
general Minkowski tensors.
We start with the translation invariant case.

Proof of Theorem 6.1. We only prove the assertion for polytopes P, P ′ ∈ Pn. The rest
follows by an approximation argument. We denote the integral under investigation by I.
Then Theorem 4.4 with β = β′ = Rn yields

I =
n−1∑
k=j+1

( b s2 c∑
m=0

cs,0,mn,j,k Q
mΦ0,s−2m

k (P ) +
b s2 c∑
m=1

cs,1,mn,j,k Q
m−1φ0,s−2m,1

k (P,Rn)
)
Vn−k+j(P ′)

+ Φ0,s
j (P )Vn(P ′) + csn,j Q

s
2 Φ0,0

n (P )Vj(P ′).

We conclude from Lemma 3.7

φ0,s−2m,1
k (K,Rn) = 2π

k

∑
F∈Fk(P )

Q(F )Υ0(F )Θs−2m(P, F )

= 2π
k
QΦ0,s−2m

k (P )− 4π2

k
(s− 2m+ 2) Φ0,s−2m+2

k (P ).
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Hence, we have

I =
n−1∑
k=j+1

( b s2 c∑
m=0

cs,0,mn,j,k Q
mΦ0,s−2m

k (P ) +
b s2 c∑
m=1

2π
k
cs,1,mn,j,k Q

mΦ0,s−2m
k (P )

−
b s2 c−1∑
m=0

4π2

k
(s− 2m)cs,1,m+1

n,j,k QmΦ0,s−2m
k (P )

)
Vn−k+j(P ′)

+ Φ0,s
j (P )Vn(P ′) + csn,j

ωn+s
ωn

Q
s
2 Vn(P )Vj(P ′).

Combining all the sums with respect to m gives

I =
n−1∑
k=j+1

b s2 c∑
m=0

(
cs,0,mn,j,k + 2π

k
cs,1,mn,j,k −

4π2

k
(s− 2m)cs,1,m+1

n,j,k

)
QmΦ0,s−2m

k (P )Vn−k+j(P ′)

+ Φ0,s
j (P )Vn(P ′) + csn,j

ωn+s
ωn

Q
s
2 Vn(P )Vj(P ′),

which holds as cs,1,0n,j,k = 0 and, for m = b s2c, either (s− 2m) = 0 (if s is even) or Φ0,s−2m
k ≡ 0

(if s is odd). Now we simplify the occurring coefficients

es,m,0n,j,k := cs,0,mn,j,k + 2π
k
cs,1,mn,j,k −

4π2

k
(s− 2m)cs,1,m+1

n,j,k

= 1
(4π)mm!

Γ(n−k+j+1
2 )Γ(k+1

2 )
Γ(n+1

2 )Γ( j+1
2 )

Γ(k2 + 1)
Γ(k+s

2 + 1)

×
((

1 + 2m
k

) Γ( j+s2 −m+ 1)
Γ( j2 + 1)

Γ(k−j2 +m)
Γ(k−j2 )

− s− 2m
k

Γ( j+s2 −m)
Γ( j2 + 1)

Γ(k−j2 +m+ 1)
Γ(k−j2 )

)

= 1
(4π)mm!

Γ(n−k+j+1
2 )Γ(k+1

2 )
Γ(n+1

2 )Γ( j+1
2 )

Γ(k2 + 1)
Γ(k+s

2 + 1)
Γ( j+s2 −m)

Γ( j2 + 1)
Γ(k−j2 +m)

Γ(k−j2 )

×
(
k + 2m
k

(j + s

2 −m)− s− 2m
k

(k − j2 +m)
)

︸ ︷︷ ︸
= j
k
k+s

2

= 1
(4π)mm!

Γ(n−k+j+1
2 )Γ(k+1

2 )
Γ(n+1

2 )Γ( j+1
2 )

Γ(k2 )
Γ(k+s

2 )
Γ( j+s2 −m)

Γ( j2)
Γ(k−j2 +m)

Γ(k−j2 )
,

for j < k < n and m = 0, . . . , b s2c − 1. Even though it is irrelevant here, as explained
earlier, we define the coefficients for m = b s2c in a slightly different way by

e
s,b s2 c,0
n,j,k := c

s,0,b s2 c
n,j,k + 2π

k
c
s,1,b s2 c
n,j,k

=
k
2 + b s2c

(4π)b
s
2 cb s2c!

Γ(n−k+j+1
2 )Γ(k+1

2 )
Γ(n+1

2 )Γ( j+1
2 )

Γ(k2 )
Γ(k+s

2 + 1)
Γ( j+s2 − b

s
2c+ 1)

Γ( j2 + 1)
Γ(k−j2 + b s2c)

Γ(k−j2 )
,



6.3. The Proofs 85

which is necessary in Theorem 6.2. For even s this coincides with the general definition,
whereas for odd s they differ.

As the continuation of the coefficients to k = j, n is

es,m,0n,j,j = 1{m = 0}

and

es,m,0n,j,n = 1{s even} 1
(2
√
π)s s2 !

Γ(n2 )
Γ(n+s

2 )
Γ(n−j+s2 )
Γ(n−j2 )

= csn,j ,

we can briefly write

I =
n∑
k=j

b s2 c∑
m=0

es,m,0n,j,k Q
mΦ0,s−2m

k (P )Vn−k+j(P ′),

since Φ0,s−2m
n vanishes for m 6= s

2 .

In the proof of the general case, we observe that the coefficients of the translation
invariant Minkowski tensors are the same as the ones which we derived in Theorem 6.1.
However, the coefficients of the other Minkowski tensors have to be defined in a slightly
different way.

Proof of Theorem 6.2. Again, we only prove the assertion for polytopes P, P ′ ∈ Pn. The
rest follows by an approximation argument. We denote the integral under investigation
by I. Then Theorem 4.1 with β = β′ = Rn yields, as in the proof of Theorem 6.1,

I =
n−1∑
k=j+1

( b s2 c∑
m=0

cs,0,mn,j,k Q
mΦr,s−2m

k (P ) +
b s2 c∑
m=1

cs,1,mn,j,k Q
m−1φr,s−2m,1

k (P,Rn)
)
Vn−k+j(P ′)

+ Φr,s
j (P )Vn(P ′) + csn,j

ωn+s
ωn

Q
s
2 Φr,0

n (P )Vj(P ′).

We conclude from Lemma 3.7

I =
n−1∑
k=j+1

b s2 c∑
m=0

cs,0,mn,j,k Q
mΦr,s−2m

k (P )Vn−k+j(P ′)

+
n−1∑
k=j+1

2π
k

r∑
p=0

( b s2 c∑
m=1

cs,1,mn,j,k Q
mΦr−p,s−2m+p

k+p (P )

− 2π
b s2 c∑
m=1

(s− 2m+ p+ 2)cs,1,mn,j,k Q
m−1Φr−p,s−2m+p+2

k+p (P )
)
Vn−k+j(P ′)

+ Φr,s
j (P )Vn(P ′) + csn,j

ωn+s
ωn

Q
s
2 Φr,0

n (P )Vj(P ′).
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For p = 0, we can combine all of the coefficients as in the proof of the translation invariant
case in Theorem 6.1. For this purpose it is important that the definition of the coefficients
for m = s−1

2 (if s is odd) differs from the general ones, as for r > 0, we have Φr,1
k 6≡ 0 in

general. Thus, we obtain

I =
n∑
k=j

b s2 c∑
m=0

es,m,0n,j,k Q
mΦr,s−2m

k (P )Vn−k+j(P ′)

+
n−1∑
k=j+1

2π
k

r∑
p=1

( b s2 c−1∑
m=0

(
cs,1,mn,j,k,s − 2π(s− 2m+ p)cs,1,m+1

n,j,k

)
QmΦr−p,s−2m+p

k+p (P )

+ c
s,1,b s2 c
n,j,k Qb

s
2 cΦr−p,s−2b s2 c+p

k+p (P )
)
Vn−k+j(P ′),

as cs,1,0n,j,k = 0. Now we rename the remaining coefficients as

es,m,pn,j,k := 2π
k

(
cs,1,mn,j,k − 2π(s− 2m+ p)cs,1,m+1

n,j,k

)
,

which we simplify via

es,m,pn,j,k = 1
(4π)mm!

Γ(n−k+j+1
2 )Γ(k+1

2 )
Γ(n+1

2 )Γ( j+1
2 )

Γ(k2 + 1)
Γ(k+s

2 + 1)
Γ( j+s2 −m)

Γ( j2 + 1)
Γ(k−j2 +m)

Γ(k−j2 )

× 2
k

(
m
(
j+s

2 −m
)
− s−2m+p

2

(
k−j

2 +m
))

︸ ︷︷ ︸
=m k−p

k
− s+p

2
k−j
k

,

and denote es,b
s
2 c,p

n,j,k := 2π
k c

s,1,b s2 c
n,j,k , for p > 0, which gives the assertion.

6.3.2. The Proofs of the Crofton Formulae

There are several possible ways of proving the Crofton formulae for Minkowski tensors.
One can use the connection of the Crofton formula and the kinematic formula to derive
the results (for the scalar (local) case see [83, Theorem 4.4.5], for the tensorial (local) case
see the proof of Theorem 5.1 and Theorem 5.2). However, here this is done by globalizing
the Crofton formulae for the global curvature measures and then applying Lemma 3.6 to
the results. Again, we split the proof into the translation invariant and the general case,
and start with the first.

Proof of Theorem 6.4. We only prove the assertion for a polytope P ∈ Pn. The rest follows
by an approximation argument. We denote the integral under investigation by I. Then
Theorem 5.4 with β = Rn yields

I =
b s2 c∑
m=0

cs,0,mn,j,n−k+j Q
mΦ0,s−2m

n−k+j (P ) +
b s2 c∑
m=1

cs,1,mn,j,n−k+j Q
m−1φ0,s−2m,1

n−k+j (P,Rn),
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where we applied relation (5.1) to use the same notation as in the kinematic formulae. As
in the preceding proofs, we obtain from Lemma 3.7

I =
b s2 c∑
m=0

cs,0,mn,j,n−k+j Q
mΦ0,s−2m

n−k+j (P ) + 2π
n−k+j

b s2 c∑
m=1

cs,1,mn,j,n−k+j Q
mΦ0,s−2m

n−k+j (P )

− 4π2

n−k+j

b s2 c∑
m=1

(s− 2m+ 2)cs,1,mn,j,n−k+j Q
m−1Φ0,s−2m+2

n−k+j (P ).

Comparing this to the proof of Theorem 6.1, we observe, that we simply obtain the same
coefficients in a different order. Thus, the proof is already complete.

In the proof of the Crofton formulae for general Minkowski tensors, we observe that the
coefficients of the translation invariant Minkowski tensors are the same as the ones which
we derived in Theorem 6.1. However, the coefficients of the other Minkowski tensors have
to be defined in a slightly different way.

Proof of Theorem 6.5. We only prove the assertion for a polytope P ∈ Pn. The rest follows
by an approximation argument. We denote the integral under investigation by I. Then
Theorem 5.4 with β = Rn (and application of (5.1)) yields

I =
b s2 c∑
m=0

cs,0,mn,j,n−k+j Q
mΦr,s−2m

n−k+j (P ) +
b s2 c∑
m=1

cs,1,mn,j,n−k+j Q
m−1φr,s−2m,1

n−k+j (P,Rn).

As before, we conclude from Lemma 3.7

I =
b s2 c∑
m=0

cs,0,mn,j,n−k+j Q
mΦr,s−2m

n−k+j (P ) + 2π
n−k+j

b s2 c∑
m=1

r∑
p=0

cs,1,mn,j,n−k+j Q
mΦr−p,s−2m+p

n−k+j+p (P )

− 4π2

n−k+j

b s2 c∑
m=1

r∑
p=0

cs,1,mn,j,n−k+j(s− 2m+ p+ 2)Qm−1Φr−p,s−2m+p+2
n−k+j+p (P ).

Similarly to the preceding proof we observe, that we obtain the same coefficients as in the
proof of Theorem 6.2, which concludes the proof.





CHAPTER 7

Integral Formulae for SO(n)-Covariant
Valuations

In the preceding three chapters we derived several complete sets of kinematic and Crofton
formulae for tensorial curvature measures and for Minkowski tensors. The aim of this
chapter is to establish the corresponding integral geometric formulae for SO(n)-covariant
tensorial curvature measures (introduced in Section 3.1.4) and for their total measures,
the SO(n)-covariant Minkowski tensors (see Section 3.2.1). These valuations only occur in
dimensions two and three (the total measures even vanish in dimension three).
Hence, for K,K ′ ∈ K2 and β, β′ ∈ B(R2), our purpose is to express the integral mean

values ∫
G2
φ̆r,sj (K ∩ gK ′, β ∩ gβ′)µ(dg), (7.1)

and ∫
A(2,1)

φ̆r,sj (K ∩ E, β ∩ E)µ1(dE), (7.2)

in terms of (SO(2)-covariant) tensorial curvature measures of K evaluated at β and, in
the kinematic case (7.1), of K ′ evaluated at β′. Furthermore, we deduce the corresponding
integral formulae for the SO(2)-covariant Minkowski tensors.
Moreover, for P, P ′ ∈ P3 and β, β′ ∈ B(R3), we develop explicit formulae for the
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kinematic integrals ∫
G3
φ̆r,s,l(P ∩ gP ′, β ∩ gβ′)µ(dg), (7.3)

and for the Crofton integrals∫
A(3,k)

φ̆r,s,l(P ∩ E, β ∩ E)µk(dE). (7.4)

For the SO(3)-covariant tensorial curvature measures with continuous extensions to the
convex bodies (that is, for l = 0), we provide analog formulae for K,K ′ ∈ K3. Since
the total SO(3)-covariant tensorial curvature measures vanish, we do not consider global
versions of the formulae in dimension three.

7.1. SO(2)-Covariant Tensorial Valuations

In this section, we start our investigations in dimension two. At first, we state the kinematic
formulae (7.1) for the local and the global valuations. In the second step, we provide the
Crofton formulae (7.2).

7.1.1. Kinematic Formulae

We begin with the kinematic formulae for SO(2)-covariant tensorial curvature measures in
the following theorem.

Theorem 7.1. Let K,K ′ ∈ K2, β, β′ ∈ B(R2) and r, s ∈ N0. Then∫
G2
φ̆r,s1 (K ∩ gK ′, β ∩ gβ′)µ(dg) = φ̆r,s1 (K,β)φ2(K ′, β′),

and ∫
G2
φ̆r,s0 (K ∩ gK ′, β ∩ gβ′)µ(dg)

= φ̆r,s0 (K,β)φ2(K ′, β′) + 1{s even}
Γ( s+1

2 )
√
πΓ( s+4

2 )
Q

s
2 φ̆r,01 (K,β)φ1(K ′, β′).

Remarkably, in Theorem 7.1, the representations of the kinematic integrals contain
SO(2)-covariant tensorial curvature measures of the convex body K, and (scalar) curvature
measures of the convex body K ′ (which are O(2)-invariant). Moreover, they only involve
a selection of measures, which is even smaller than the corresponding formulae for the
classical tensorial curvature measures in Theorem 4.4.
We easily conclude the corresponding kinematic formulae for the SO(2)-covariant Min-

kowski tensors.
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Corollary 7.2. Let K,K ′ ∈ K2, and r, s ∈ N0. Then∫
G2

Φ̆r,s
1 (K ∩ gK ′)µ(dg) = Φ̆r,s

1 (K)V2(K ′),

and ∫
G2

Φ̆r,s
0 (K ∩ gK ′)µ(dg) = Φ̆r,s

0 (K)V2(K ′).

Corollary 7.2 is easily obtained by setting β = β′ = Rn and applying the definition of
the SO(2)-covariant Minkowski tensors. Moreover, we note that the kinematic integral
for Φ̆r,s

0 can be represented by only one summand, as the second summand (occurring in
Corollary 7.2) vanishes, due to relation (3.9) which states that Φ̆r,0

1 = 0, r ∈ N0.

7.1.2. Crofton Formulae

We proceed with the Crofton formulae for SO(2)-covariant tensorial curvature measures.
Here, the only interesting results arise for the intersectional integrals on the affine Grass-
mannian A(2, 1). In fact, for E ∈ A(2, 0), we have φ̆r,s0 (K∩E, ·) = 0, which is an immediate
consequence of Lemma 7.7 in Section 7.3.1. Therefore, the Crofton integral vanishes in
this case. The following theorem treats the remaining case.

Theorem 7.3. Let K ∈ K2, β ∈ B(R2) and r, s ∈ N0. Then∫
A(2,1)

φ̆r,s1 (K ∩ E, β ∩ E)µ1(dE) = 0,

and ∫
A(2,1)

φ̆r,s0 (K ∩ E, β ∩ E)µ1(dE) = 1{s even}
Γ( s+1

2 )
√
πΓ( s+4

2 )
Q

s
2 φ̆r,01 (K,β).

Theorem 7.3 can be proved using the same method as in the proofs of Theorem 5.1 and
Theorem 5.2. Therefore, we do not provide it here. Furthermore, there is a global version
of Theorem 7.3, which can be obtained by setting β = Rn (in the same way as Corollary 7.2
was deduced from Theorem 7.1). For the matter of completeness, we state it here.

Corollary 7.4. Let K ∈ K2, and r, s ∈ N0 and j ∈ {0, 1}. Then∫
A(2,1)

Φ̆r,s
j (K ∩ E)µ1(dE) = 0.

Remarkably, the global Crofton formulae for both of the SO(2)-covariant tensorial
curvature measures vanish. This fact again follows from relation (3.9) which already
simplified the kinematic formulae.
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7.2. SO(3)-Covariant Tensorial Valuations

In this section, we proceed with our investigations in dimension three. At first, we state the
kinematic formulae (7.3) for the SO(3)-covariant tensorial curvature measures on polytopes
and (if existing) for their continuous extensions on convex bodies. In the second step,
we provide the Crofton formulae (7.4). As the total SO(3)-covariant tensorial curvature
measures vanish, there are no global results.

7.2.1. Kinematic Formulae

We begin with the kinematic formulae for SO(3)-covariant tensorial curvature measures in
the following theorem.

Theorem 7.5. Let P, P ′ ∈ P3, β, β′ ∈ B(R3) and r, s, l ∈ N0. Then∫
G3
φ̆r,s,l(P ∩ gP ′, β ∩ gβ′)µ(dg) = φ̆r,s,l(P, β)φ3(P ′, β′).

In Theorem 7.5, we can replace the polytopes by convex bodies K,K ′ ∈ K3 if l = 0, since
in this case there exist continuous extensions of the SO(3)-covariant tensorial curvature
measures to K3. We do not consider global versions of these kinematic formulae, as the
global counterparts of the SO(3)-covariant tensorial curvature measures vanish.

As in Theorem 7.1 in R2, we note, that the representations of the kinematic integrals in
Theorem 7.5 consist of SO(3)-covariant tensorial curvature measures of the polytope P ,
and (scalar) curvature measures of the polytope P ′ (which are O(3)-invariant). Moreover,
the representations in Theorem 7.5 are more simple than the corresponding ones for the
generalized tensorial curvature measures in Theorem 4.1.

7.2.2. Crofton Formulae

The Crofton formulae for SO(3)-covariant tensorial curvature measures are rather simple,
as the only potentially interesting intersectional integrals vanish. This is stated in the
following theorem.

Theorem 7.6. Let P ∈ P3, β ∈ B(R3) and k, r, s, l ∈ N0 with 0 < k < 3. Then∫
A(3,k)

φ̆r,s,l(P ∩ E, β ∩ E)µk(dE) = 0.

Similar to the two dimensional case, we do not provide the proof of Theorem 7.6, but
refer to the proof of the Crofton formulae for generalized tensorial curvature measures (see
Theorem 5.1 and Theorem 5.2), which is easily transferred to the current situation.
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7.3. The Proofs

In this section, we provide the proofs of the main results of this chapter, Theorem 7.1 and
Theorem 7.5. Before we provide these in Section 7.3.2, we state and prove an integral
geometric lemma in Section 7.3.1, which is then applied several times in the upcoming
proofs.

7.3.1. An Auxiliary Lemma

In the proofs of Theorem 7.1 and Theorem 7.5, we need the following lemma in dimensions
two and three. Nevertheless, here we state a more general version.

Lemma 7.7. Let u1, . . . , un ∈ Sn−1 be an orthonormal basis of Rn, and s1, . . . , sn ∈ N0,
where si is odd for some i ∈ {1, . . . , n}. Then∫

SO(n)
ϑ
(
us1

1 · · ·u
sn
n

)
ν(dϑ) = 0.

The special cases of Lemma 7.7 that we need are the following. For u ∈ S2, and s ∈ N0,
we have ∫

SO(2)
ϑ
(
uus

)
ν(dϑ) = 0. (7.5)

This is basically equation (43) in [49, Theorem 6] (resp. relation (3.9) in this thesis), which
states that the SO(2)-covariant Minkowski tensors Φ̆0,s

0 , s ∈ N0, vanish. This is also proved
there. However, as a matter of completeness, we still provide a different proof here.
For u, v ∈ S3 with v ∈ u⊥, and s1, s2 ∈ N0, we have∫

SO(3)
ϑ
(
(u× v)us1vs2

)
ν(dϑ) = 0. (7.6)

Further, if s1 is odd and w ∈ u⊥ then we obtain∫
SO(w⊥)

ϑ
(
(u× v)us1vs2

)
νw
⊥(dϑ) = 0. (7.7)

In fact, we can split the occurring vectors into their components in w⊥ and in linw, and
then apply equation (7.5) in w⊥. That is, denoting the integral in (7.7) by I,

I =
∫

SO(w⊥)
ϑ
((
pw⊥(u× v) + plinw(u× v)︸ ︷︷ ︸

=〈u×v,w〉w

)
us1
(
pw⊥(v) + plinw(v)︸ ︷︷ ︸

=〈v,w〉w

)s2
)
νw
⊥(dϑ),

where u remains unchanged as w ∈ u⊥. Since we have 〈pw⊥(v), u〉 = 〈v, pw⊥(u)〉 = 0 and
〈pw⊥(u× v), u〉 = 〈u× v, pw⊥(u)〉 = 0, it follows that pw⊥(v), pw⊥(u× v) ∈ u⊥ ∩ w⊥ and
hence these two vectors are multiples of each other. That is, we can write pw⊥(v) = c1x and
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pw⊥(u× v) = c2x, where x ∈ S2 ∩ w⊥ and c1, c2 ∈ [−1, 1] (which are chosen independently
of ρ). Applying the binomial theorem to the summations yields

I =
s2∑
i=0

(
s2
i

)
ci1
(
〈v, w〉w

)s2−i
(
c2

∫
SO(w⊥)

ϑ
(
us1xi+1

)
νw
⊥(dϑ)

+ 〈u× v, w〉w
∫

SO(w⊥)
ϑ
(
us1xi

)
νw
⊥(dϑ)

)
,

where we used that ϑw = w for ϑ ∈ SO(w⊥). Then it follows from equation (7.5) applied
in w⊥ that both of the remaining integrals vanish, as u, x form an orthonormal basis in w⊥.

Now we provide the proof of Lemma 7.7.

Proof of Lemma 7.7. We prove the assertion by induction on n ∈ N with n ≥ 2. We denote
the integral under investigation by In.
Induction start: For n = 2, let u1, u2 ∈ S1 be an orthonormal basis of R2, and s1, s2 ∈ N0,

where without loss of generality s1 is odd. Due to the invariance of the Haar measure ν,
the tensor I2 ∈ Ts1+s2 is rotation invariant. That is, for a rotation ρ ∈ SO(2), we have

ρI2 =
∫

SO(2)
ρϑ
(
us1

1 u
s2
2
)
ν(dϑ) =

∫
SO(2)

ρϑ
(
us1

1 u
s2
2
)
ν(dϑ) = I2.

Therefore, if s1 + s2 is odd, then I2 is of odd tensor rank, and thus I2 = 0. So we assume
s1 + s2 to be even, meaning that s1 and s2 are odd. As Q

s1+s2
2 is up to scalar multiples

the only rotation invariant tensor of rank s1 + s2, there is a constant c ∈ R such that
I2 = cQ

s1+s2
2 holds. Finally, to determine c, let v ∈ S1. Then we have

c = 〈vs1+s2 , cQ
s1+s2

2 〉 =
∫

SO(2)
〈v, ϑu1〉s1〈v, ϑu2〉s2 ν(dϑ).

Without loss of generality, let u2 := u1. Then, since SO(2) is commutative, we can rewrite

c = 1
ω2

∫
S1
〈v, u〉s1〈v, u〉s2 H1(du).

A simple transformation of the integral yields

c = 1
ω2

∫ 1

−1

∫
S1∩v⊥︸ ︷︷ ︸

={v,−v}

√
1− z2−1〈

v, zv +
√

1− z2w
〉︸ ︷︷ ︸

=z

s1〈
v, zv +

√
1− z2w

〉︸ ︷︷ ︸
=
√

1−z2〈v,w〉

s2 H0(dw) dz = 0

= 1
ω2

∫ 1

−1

√
1− z2s2−1

zs1 dz
∫
{v,−v}

〈v, w〉s2 H0(dw).

Since both integrals vanish due to the parity of s1 and s2, we have I2 = 0.
Induction step: Assume the assertion to be proved for all dimensions up to n− 1 ≥ 2.

Then, let u1, . . . , un ∈ Sn−1 be an orthonormal basis of Rn, and s1, . . . , sn ∈ N0, where
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without loss of generality s1 is odd. For ρ ∈ SO(u⊥n ), the invariance of ν gives

In =
∫

SO(n)
(ϑρu1)s1 · · · (ϑρun−1)sn−1(ϑ ρun︸︷︷︸

=un

)sn ν(dϑ).

Hence, we obtain with an application of Fubini’s theorem

In =
∫

SO(n)
ϑ

(
usnn

∫
SO(u⊥n )

ρ
(
us1

1 · · ·u
sn−1
n−1

)
νu
⊥
n (dρ)

)
ν(dϑ).

The induction hypothesis applied in u⊥n to the integral with respect to ρ yields the
assertion.

7.3.2. The Proofs of the Main Results

We start with the proof of Theorem 7.1. Interestingly, the method of proof of the kinematic
formulae for generalized tensorial curvature measures does not simply carry over to the
present case. In fact, we change the approach, when the integration over the intersection
of normal cones needs to be evaluated (see equation (7.9) and the following). This turns
out to be quite promising in such a low dimension (it is further transferred to the proof of
Theorem 7.5 in dimension three, which we provide subsequently) and might even help to
find an easier proof of Theorem 4.1.

Proof of Theorem 7.1. We prove both of the formulae at once and only for polytopes
P, P ′ ∈ P2. The general case then follows by approximation. We denote the kinematic
integrals by Ij , j ∈ {0, 1}. Then we start by decomposing the measure µ to get

Ij =
∫

G2
φ̆r,sj (P ∩ gP ′, β ∩ gβ′)µ(dg)

=
∫

SO(2)

∫
R2
φ̆r,sj (P ∩ (ϑP ′ + t), β ∩ (ϑβ′ + t))H2(dt) ν(dϑ)

=
∫

SO(2)

∫
R2

∑
G∈Fj(P∩(ϑP ′+t))

∫
G∩β∩(ϑβ′+t)

xrHj(dx)

×
∫
N(P∩(ϑP ′+t),G)∩S1

uusH1−j(du)H2(dt) ν(dϑ).

Now we proceed as in the proof of the kinematic formulae for generalized tensorial curvature
measures to obtain

Ij =
2∑
k=j

∑
F∈Fk(P )

∑
F ′∈F2−k+j(P ′)

H2−k+j(F ′ ∩ β′)
∫
F∩β

xrHk(dx)

×
∫

SO(2)
[F, ϑF ′]

∫
N(P∩(ϑP ′+t),F∩(ϑF ′+t))∩S1

uusH1−j(du) ν(dϑ), (7.8)

where the integral with respect to u is independent of the choice of a vector t ∈ R2 such
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that relintF ∩ relint (ϑF ′ + t) 6= ∅. Next, we consider the two summands for k = j and for
k = 2 separately. In the first case, we get

∑
F∈Fj(P )

∑
F ′∈F2(P ′)

H2(F ′ ∩ β′)
∫
F∩β

xrHj(dx)

×
∫

SO(2)
[F, ϑF ′]

∫
N(P∩(ϑP ′+t),F∩(ϑF ′+t))∩S1

uusH1−j(du) ν(dϑ)

= H2(P ′ ∩ β′)
∑

F∈Fj(P )

∫
F∩β

xrHj(dx)
∫

SO(2)

∫
N(P,F )∩S1

uusH1−j(du) ν(dϑ)

= φ̆r,sj (P, β)φ2(P ′, β′).

In the second case, Fubini’s theorem yields

∑
F∈F2(P )

∑
F ′∈Fj(P ′)

Hj(F ′ ∩ β′)
∫
F∩β

xrH2(dx)

×
∫

SO(2)
[F, ϑF ′]

∫
N(P∩(ϑP ′+t),F∩(ϑF ′+t))∩S1

uusH1−j(du) ν(dϑ)

=
∑

F ′∈Fj(P ′)
Hj(F ′ ∩ β′)

∫
P∩β

xrH2(dx)
∫
N(P ′,F ′)∩S1

∫
SO(2)

ϑ(uus) ν(dϑ)H1−j(du)

= 0,

which follows from equation (7.5), the special case of Lemma 7.7 in R2.
If j = 1, then these are the only two cases for k to be considered. If j = 0, then there is

also the case k = 1. Since we obtain from [83, Theorem 2.2.1]

N
(
P ∩ (ϑP ′ + t), F ∩ (ϑF ′ + t)

)
= N(P, F ) + ϑN(P ′, F ′),

for any t ∈ R2 such that relintF ∩ relint (ϑF ′ + t) 6= ∅, we get

S1 :=
∑

F∈F1(P )

∑
F ′∈F1(P ′)

H1(F ′ ∩ β′)
∫
F∩β

xrH1(dx)

×
∫

SO(2)
[F, ϑF ′]

∫
N(P∩(ϑP ′+t),F∩(ϑF ′+t))∩S1

uusH1(du) ν(dϑ)

=
∑

F∈F1(P )

∑
F ′∈F1(P ′)

H1(F ′ ∩ β′)
∫
F∩β

xrH1(dx)

×
∫

SO(2)
[F, ϑF ′]

∫
(N(P,F )+ϑN(P ′,F ′))∩S1

uusH1(du) ν(dϑ) (7.9)

for the summand k = 1 in (7.8) if j = 0.
Up to now we proceeded accordingly to the proof of Theorem 4.1. But as it turns out,

now we have to use a different approach. In fact, an evaluation of the remaining integral
with respect to ϑ in (7.9) according to the original proof does not seem to be promising,
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as one soon reaches a dead end. However, since the normal cones of P at F and of P ′ at
F ′ are one-dimensional, we can make use of the simple structure of the Minkowski sum
thereof. This is done in the following.
Let uF (resp. uF ′) denote the unique outer unit normal of F (resp. F ′). That is,

N(P, F ) = {uF } (resp. N(P, F ′) = {uF ′}) and thusN(P, F )+ϑN(P ′, F ′) = pos{uF , ϑuF ′}.
Therefore, we obtain for the integration with respect to ϑ in (7.9), denoted by J ,

J =
∫

SO(2)
[F, ϑF ′]︸ ︷︷ ︸

=[uF ,ϑuF ′ ]

∫
S1
1
{
u ∈ pos{uF , ϑuF ′}

}
uusH1(du) ν(dϑ).

Next we observe that the equality 1
{
u ∈ pos{uF , ϑuF ′}

}
= 1

{
u ∈ int pos{uF , ϑuF ′}

}
holds

for H1-almost all u ∈ S1. The occuring condition can be rewritten as follows

u ∈ int pos{uF , ϑuF ′} ⇔ ∃λ, µ > 0 : u = λuF + µϑuF ′

⇔ ∃λ, µ > 0 : ϑuF ′ = 1
µ
u− λ

µ
uF

⇔ ∃λ̃, µ̃ > 0 : ϑuF ′ = µ̃u+ λ̃(−uF )

⇔ ϑuF ′ ∈ int pos{u,−uF }.

Hence, we have 1
{
u ∈ pos{uF , ϑuF ′}

}
= 1

{
ϑuF ′ ∈ pos{u,−uF }

}
for H1-almost all u ∈ S1,

and therefore

J =
∫

SO(2)
[uF , ϑuF ′ ]

∫
S1
1
{
ϑuF ′ ∈ pos{u,−uF }

}
uusH1(du) ν(dϑ).

A transformation of the integration with respect to ϑ and Fubini’s theorem yield

J = 1
ω2

∫
S1
uus

∫
S1
1
{
v ∈ pos{u,−uF }

}
[uF , v]H1(dv)H1(du).

For the inner integration with respect to v, we get

∫
S1
1
{
v ∈ pos{u,−uF }

}
[uF , v]H1(dv) =

∫ ∠(u,−uF )

0
sin(α) dα

= 1− cos(∠(u,−uF ))

= 1 + 〈u, uF 〉, (7.10)

where ∠(u,−uF ) ∈ [0, π] denotes the angle between u and −uF . This gives

J = 1
ω2

∫
S1

(1 + 〈u, uF 〉)uusH1(du)

= 1
ω2

∫
S1
〈u, uF 〉uusH1(du),

where we applied equation (7.5) (the special case of Lemma 7.7 in R2) again, in the second
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step. Transforming the remaining integral in J yields

J = 1
ω2

∫ 1

−1

∫
S1∩u⊥F︸ ︷︷ ︸

={uF ,−uF }

√
1− z2−1 〈

zuF +
√

1− z2w, uF
〉

×
(
zuF +

√
1− z2w

) (
zuF +

√
1− z2w

)s
H0(dw) dz

= 1
ω2

∫ 1

−1

∫
{uF ,−uF }

z
√

1− z2−1 (
zuF +

√
1− z2w

) (
zuF +

√
1− z2w

)s
H0(dw) dz.

Then we conclude from the binomial theorem

J = 1
ω2

s∑
i=0

(
s

i

)
uFu

s−i
F

∫ 1

−1
zs−i+2

√
1− z2i−1

dz
∫
{uF ,−uF }

wiH0(dw)

+ 1
ω2

s∑
i=0

(
s

i

)
us−iF

∫ 1

−1
zs−i+1

√
1− z2i dz

∫
{uF ,−uF }

wwiH0(dw).

The definition of the beta function and∫
{uF ,−uF }

wlwiH0(dw) = 1{i+ l even} 2(−uF )luiF , l ∈ {0, 1},

give

J = 2
ω2

s∑
i=0

1{s− i even}1{i even}
(
s

i

)
B( s−i+3

2 , i+1
2 )ui+1

F us−iF

− 2
ω2

s∑
i=0

1{s− i odd}1{i odd}
(
s

i

)
B( s−i+2

2 , i+2
2 )uiFus−i+1

F .

We combine the resulting summations with respect to i and get

J = 1{s even} 2
ω2Γ( s+4

2 )

[ s∑
i=0

1{i even}
(
s

i

)
Γ( s−i+3

2 )Γ( i+1
2 )ui+1

F us−iF

− 1{i odd}
(
s

i

)
Γ( s−i+2

2 )Γ( i+2
2 )uiFus−i+1

F

]
.

Furthermore, evaluating the indicator functions, we obtain

J = 1{s even} 2
ω2Γ( s+4

2 )

[ s
2∑
i=0

(
s

2i

)
Γ( s−2i+3

2 )Γ(2i+1
2 )u2i+1

F us−2i
F

−
(

s

2i+ 1

)
Γ( s−2i+1

2 )Γ(2i+3
2 )u2i+1

F us−2i
F

]
.
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The two summands inside the summation with respect to i can be combined as follows

J = 1{s even} 2
ω2Γ( s+4

2 )

[ s
2∑
i=0

( s−2i+1
2 )

(
s

2i

)
Γ( s−2i+1

2 )Γ(2i+1
2 )u2i+1

F us−2i
F

− s−2i
2

(
s

2i

)
Γ( s−2i+1

2 )Γ(2i+1
2 )u2i+1

F us−2i
F

]

= 1{s even} 1
ω2Γ( s+4

2 )

s
2∑
i=0

(
s

2i

)
Γ( s−2i+1

2 )Γ(2i+1
2 )u2i+1

F us−2i
F .

Applying the binomial theorem to u2i
F = (Q− u2

F )i yields

J = 1{s even} 1
ω2Γ( s+4

2 )

s
2∑
i=0

i∑
m=0

(−1)i−m
(
s

2i

)(
i

m

)
Γ( s−2i+1

2 )Γ(2i+1
2 )QmuFus−2m

F .

Then a change of the order of summation and an index shift give

J = 1{s even} 1
ω2Γ( s+4

2 )

s
2∑

m=0

s
2−m∑
i=0

(−1)i
(

s

2i+ 2m

)(
i+m

m

)
Γ( s−2m−2i+1

2 )Γ(2i+2m+1
2 )

×QmuFus−2m
F .

Next we apply Legendre’s duplication formula three times to the coefficients of the remaining
tensors to obtain(

s

2i+ 2m

)(
i+m

m

)
Γ( s−2m−2i+1

2 )Γ(2i+2m+1
2 ) = s!

m!i!
(i+m)!Γ(2i+2m+1

2 )
(2i+ 2m)!

Γ( s−2i−2m+1
2 )

(s− 2i− 2m)!

=
√
πΓ( s+1

2 )
(
s
2
m

)(
s
2 −m
i

)

and hence

J = 1{s even}
√
πΓ( s+1

2 )
ω2Γ( s+4

2 )

s
2∑

m=0

(
s
2
m

) s
2−m∑
i=0

(−1)i
(
s
2 −m
i

)
︸ ︷︷ ︸

=1{m= s
2}

QmuFu
s−2m
F

= 1{s even}
√
πΓ( s+1

2 )
ω2Γ( s+4

2 )
Q

s
2uF .

Plugging this into (7.9) gives

S1 = 1{s even}
√
πΓ( s+1

2 )
ω2Γ( s+4

2 )
Q

s
2

∑
F∈F1(P )

∫
F∩β

xrH1(dx)uF︸ ︷︷ ︸
=φ̆r,01 (P,β)

∑
F ′∈F1(P ′)

H1(F ′ ∩ β′)

︸ ︷︷ ︸
=2φ1(P ′,β′)

.

Combining this with the results for the summands where k = 0, 2, yields the assertion.
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Next, we prove Theorem 7.5. As in the proof of Theorem 7.1, we change the approach of
the proof of Theorem 4.1 at a certain point (see equation (7.11)). Then we proceed as in
two dimensions, which works similarly (with some minor difficulties) as the codimension of
the involved faces again equals one.

Proof of Theorem 7.5. We denote the kinematic integral by I. A decomposition of the
measure µ yields

I =
∫

SO(3)

∫
R3
φ̆r,s,l(P ∩ (ϑP ′ + t), β ∩ (ϑβ′ + t))H3(dt) ν(dϑ)

=
∫

SO(3)

∫
R3

∑
F∈F1(P∩(ϑP ′+t))

v2l+1
F

∫
F∩β∩(ϑβ′+t)

xrH1(dx)
∫
N(P∩(ϑP ′+t),F )∩S2

× (vF × u)usH1(du)H3(dt) ν(dϑ).

In the same way as in the proof of Theorem 4.1, we obtain

I =
3∑

k=1

∑
F∈Fk(P )

∑
F ′∈F4−k(P ′)

H4−k(F ′ ∩ β′)
∫
F∩β

xrHk(dx)
∫

SO(3)
[F, ϑF ′] v2l+1

F∩(ϑF ′+t)

×
∫
N(P∩(ϑP ′+t),F∩(ϑF ′+t))∩S2

(vF∩(ϑF ′+t) × u)usH1(du) ν(dϑ),

where the integral with respect to u is independent of the choice of a vector t ∈ R3 such
that relintF ∩ relint (ϑF ′ + t) 6= ∅. By Sk, k = 1, 2, 3, we denote the summands of the
summation with respect to k, and calculate each of them separately. For S1 we get

S1 =
∑

F∈F1(P )

∑
F ′∈F3(P ′)

H3(F ′ ∩ β′)
∫
F∩β

xrH1(dx)
∫

SO(3)
[F, ϑF ′] v2l+1

F∩(ϑF ′+t)

×
∫
N(P∩(ϑP ′+t),F∩(ϑF ′+t))∩S2

(vF∩(ϑF ′+t) × u)usH1(du) ν(dϑ)

= H3(P ′ ∩ β′)
∑

F∈F1(P )
v2l+1
F

∫
F∩β

xrH1(dx)
∫
N(P,F )∩S2

(vF × u)usH1(du)

= φ̆r,s,l(P, β)φ3(P ′, β′).

Next, we show that both of the other summands vanish. In fact, for k = 3, we obtain

S3 =
∑

F∈F3(P )

∑
F ′∈F1(P ′)

H1(F ′ ∩ β′)
∫
F∩β

xrH3(dx)
∫

SO(3)
[F, ϑF ′] v2l+1

F∩(ϑF ′+t)

×
∫
N(P∩(ϑP ′+t),F∩(ϑF ′+t))∩S2

(vF∩(ϑF ′+t) × u)usH1(du) ν(dϑ)

=
∫
P∩β

xrH3(dx)
∑

F ′∈F1(P ′)
H1(F ′ ∩ β′)

×
∫

SO(3)

∫
N(ϑP ′,ϑF ′)∩S2

v2l+1
ϑF ′ (vϑF ′ × u)usH1(du) ν(dϑ).
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Then, Lemma 7.7 in R3 (more precisely, equation (7.6)) yields after an application of
Fubini’s theorem

S3 =
∫
P∩β

xrH3(dx)
∑

F ′∈F1(P ′)
H1(F ′ ∩ β′)

×
∫
N(P ′,F ′)∩Sn−1

∫
SO(3)

(ϑvF ′)2l+1(ϑvF ′ × ϑu) (ϑu)s ν(dϑ)H1(du)

= 0,

as vF ′ , u, vF ′ × u form an orthonormal basis of R3.
For k = 2, we have

S2 =
∑

F∈F2(P )

∑
F ′∈F2(P ′)

H2(F ′ ∩ β′)
∫
F∩β

xrH2(dx)
∫

SO(3)
[F, ϑF ′] v2l+1

F∩(ϑF ′+t)

×
∫
N(P∩(ϑP ′+t),F∩(ϑF ′+t))∩S2

(vF∩(ϑF ′+t) × u)usH1(du) ν(dϑ). (7.11)

We denote the integral with respect to ϑ by J1 and apply once more [83, Theorem 2.2.1] to
obtain

N
(
P ∩ (ϑP ′ + t), F ∩ (ϑF ′ + t)

)
= N(P, F ) + ϑN(P ′, F ′).

Since dimF = dimF ′ = 2, there exist unique outer unit normal vectors uF (resp. uF ′)
of F (resp. F ′), such that N(P, F ) = {uF } (resp. N(P ′, F ′) = {uF ′}). Consequently, we
have N(P ∩ (ϑP ′ + t), F ∩ (ϑF ′ + t)) = pos{uF , ϑuF ′}. It follows that

J1 =
∫

SO(3)

∫
lin{uF ,ϑuF ′}∩S2

1 {u ∈ pos{uF , ϑuF ′}} [uF , ϑuF ′ ]

× v2l+1
F∩(ϑF ′+t) (vF∩(ϑF ′+t) × u)usH1(du) ν(dϑ).

In the same manner as in the proof of Theorem 7.1, we have

1 {u ∈ pos{uF , ϑuF ′}} = 1 {ϑuF ′ ∈ pos{u,−uF }} ,

for H1-almost all u ∈ (lin{uF , ϑuF ′} ∩ S2). We further set

vF∩(ϑF ′+t) = uF × ϑuF ′
‖uF × ϑuF ′‖

∈
(
lin{uF , ϑuF ′}⊥ ∩ S2),

which is defined for ν-almost all ϑ ∈ SO(3). We recall, that the calculations are independent
of the choice of vF∩(ϑF ′+t) ∈ (lin{uF , ϑuF ′}⊥ ∩ S2). Therefore, it follows that

J1 =
∫

SO(3)

∫
lin{uF ,ϑuF ′}∩S2

1 {ϑuF ′ ∈ pos{u,−uF }} [uF , ϑuF ′ ]

×
(

uF×ϑuF ′
‖uF×ϑuF ′‖

)2l+1( uF×ϑuF ′
‖uF×ϑuF ′‖

× u
)
usH1(du) ν(dϑ).
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A transformation of the integration with respect to ϑ yields

J1 = 1
ω3

∫
S2

∫
lin{uF ,w}∩S2

1 {w ∈ pos{u,−uF }} [uF , w]

×
(

uF×w
‖uF×w‖

)2l+1(
uF×w
‖uF×w‖ × u

)
usH1(du)H2(dw).

From another transformation of the integral with respect to w, we conclude

J1 = 1
2ω3

∫
u⊥F∩S2

∫
lin{uF ,v}∩S2

|〈v, w〉|
∫

lin{uF ,w}∩S2
1 {w ∈ pos{u,−uF }} [uF , w]

×
(

uF×w
‖uF×w‖

)2l+1(
uF×w
‖uF×w‖ × u

)
usH1(du)H1(dw)H1(dv),

where we can rewrite |〈v, w〉| =
√

1− |〈uF , w〉|2 = [uF , w]. We further apply

uF × w
‖uF × w‖

=

 uF × v, if 〈w, v〉 > 0,

−uF × v, if 〈w, v〉 < 0,

to obtain

J1 = 1
2ω3

∫
u⊥F∩S2

∫
lin{uF ,v}∩S2

∫
lin{uF ,w}∩S2

1 {w ∈ pos{u,−uF }} [uF , w]2

×
(
uF × v

)2l+1((uF × v)× u
)
usH1(du)H1(dw)H1(dv).

As v ∈ u⊥F , it follows that lin{uF , w} = lin{uF , v}, for H1-almost all w ∈ lin{uF , v}. Then
Fubini’s theorem yields

J1 = 1
2ω3

∫
u⊥F∩S2

∫
lin{uF ,v}∩S2

∫
lin{uF ,v}∩S2

1 {w ∈ pos{u,−uF }} [uF , w]2H1(dw)

×
(
uF × v

)2l+1((uF × v)× u
)
usH1(du)H1(dv).

We denote the inner integration with respect to w by J2 and get

J2 =
∫

pos{u,−uF }∩S2
[uF , w]2H1(dw)

=
∫ ∠(u,−uF )

0
sin(α)2 dα

= ∠(u,−uF )− sin
(
∠(u,−uF )

)
cos

(
∠(u,−uF )

)
=: c(∠(u,−uF )),

where ∠(u,−uF ) ∈ [0, π] denotes the angle between u and −uF . Thus, we obtain

J1 = 1
2ω3

∫
u⊥F∩S2

∫
lin{uF ,v}∩S2

c(∠(u,−uF ))
(
uF × v

)2l+1((uF × v)× u
)
usH1(du)H1(dv).
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For ρ ∈ SO(u⊥F ), it follows from the rotation invariance of H1 that

J1 = 1
2ω3

∫
u⊥F∩S2

∫
lin{uF ,ρv}︸ ︷︷ ︸
=ρlin{uF ,v}

∩S2
c(∠(u,−uF ))

×
(
uF × ρv︸ ︷︷ ︸
=ρ(uF×v)

)2l+1((uF × ρv︸ ︷︷ ︸
=ρ(uF×v)

)× u
)
usH1(du)H1(dv)

= 1
2ω3

∫
u⊥F∩S2

∫
lin{uF ,v}∩S2

c(∠(ρu,−uF )︸ ︷︷ ︸
=∠(u,−uF )

)

×
(
ρ(uF × v)

)2l+1
ρ
(
(uF × v)× u

)
(ρu)sH1(du)H1(dv).

Then we can integrate over all such rotations ρ ∈ SO(u⊥F ) and obtain

J1 = 1
2ω3

∫
SO(u⊥F )

∫
u⊥F∩S2

∫
lin{uF ,v}∩S2

c(∠(u,−uF ))

×
(
ρ(uF × v)

)2l+1
ρ
(
(uF × v)× u

)
(ρu)sH1(du)H1(dv) νu⊥F (dρ).

A further application of Fubini’s theorem yields

J1 = 1
2ω3

∫
u⊥F∩S2

∫
lin{uF ,v}∩S2

c(∠(u,−uF ))

×
∫

SO(u⊥F )
ρ
((
uF × v

)2l+1((uF × v)× u
)
us
)
νu
⊥
F (dρ)H1(du)H1(dv).

Now it follows from equation (7.7) (the consequence of Lemma 7.7) that the inner integral
with respect to ρ vanishes, which finishes the proof.





CHAPTER 8

Intrinsic Crofton Formulae

In the present chapter, we use a different normalization of the (intrinsic) generalized
tensorial curvature measures and the (intrinsic) Minkowski tensors, defined in Chapter 3,
in order to simplify the representations of the upcoming formulae. That is, we define

φ̂r,s,lj := ωn−j
(
cr,s,ln,j

)−1
φr,s,lj and φ̂r,0,0n :=

(
cr,0,0n,n

)−1
φ̂r,0,0n

on Kn × B(Rn), for j, r, s ∈ N0 with j < n, l ∈ {0, 1}, and set the corresponding total
measures as

Φ̂r,s
j := φ̂r,s,0j (·,Rn) and Φ̂r,0

n := φ̂r,0,0n (·,Rn).

Furthermore, for E ∈ A(n, k) with k ∈ {0, . . . , n}, we define

φ̂r,s,lj,E := ωk−j
(
cr,s,lk,j

)−1
φr,s,lj,E and φ̂r,0,0k,E :=

(
cr,0,0k,k

)−1
φ̂r,0,0k,E

on (Kn∩B(E))×B(Rn), where j, r, s ∈ N0 with j < k, l ∈ {0, 1}, and set the corresponding
total measures as

Φ̂r,s
j,E := φ̂r,s,0j,E (·,Rn) and Φ̂r,0

n,E := φ̂r,0,0n,E (·,Rn)

However, we still refer to these valuations as (intrinsic) tensorial curvature measures, resp.
(intrinsic) Minkowski tensors, since they are simply renormalized versions thereof.

The aim of this chapter is to state and prove a set of Crofton formulae for the intrinsic
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tensorial curvature measures on convex bodies. More precisely, for K ∈ Kn, β ∈ B(Rn)
and j, k, i, r, s ∈ N0 with 0 ≤ j ≤ k ≤ n, we express the integral mean value∫

A(n,k)
Q(E)i φ̂r,s,0j,E (K ∩ E, β ∩ E)µk(dE) (8.1)

in terms of (generalized) tensorial curvature measures of K, evaluated at β. In fact, we
show that this expression requires only a selection of these valuations.
By globalization of (8.1), we then deduce explicit expressions for the Crofton integrals∫

A(n,k)
Q(E)i Φ̂0,s

j,E(K ∩ E)µk(dE) (8.2)

in terms of Minkowski tensors ofK. However, in the global case we restrict our investigations
to the translation invariant intrinsic Minkowski tensors (setting r = 0). Crofton formulae
for general (intrinsic) Minkowski tensors have already been established in [51]. The proofs in
this chapter are based on the approach used to prove these. Nevertheless, the restriction to
the translation invariant case allows substantial simplifications of the appearing coefficients.

Via the relation between extrinsic and intrinsic tensorial curvature measures depicted in
Lemma 3.5, one can derive extrinsic Crofton formulae from the intrinsic results. This is
what we explain in detail for j = k − 1, meaning we investigate Crofton integrals of the
type ∫

A(n,k)
φ̂r,s,0k−1 (K ∩ E, β ∩ E)µk(dE), (8.3)

and we again obtain simplified coefficients in that case. These formulae are special cases of
the Crofton formulae stated and proved in Chapter 5. Nevertheless, they are provided here
as well, as the approach is completely different from the one in Chapters 4 and 5. Moreover,
we introduce an alternative representation of the tensorial curvature measures (similar to
the so called Ψ-basis of the Minkowski tensors, introduced in [15, Proposition 4.10]) and
show quite simple Crofton formulae for the thus obtained valuations.

We note that, since the tensorial curvature measures (resp. Minkowski tensors) depend
additively on the underlying convex body, all integral formulae in this chapter remain true
if the occurring convex bodies are replaced by finite unions thereof.

Remark. The results in this chapter have already been published. To a great extent
the present chapter contains direct quotes from the publication Crofton formulae for
tensor-valued curvature measures, a joint work with Daniel Hug, appearing as Chapter 4 in
the lecture notes Tensor Valuations and their Applications in Stochastic Geometry and
Imaging edited by Kiderlen and Vedel Jensen (see [54] in [58]). Parts of this chapter (more
precisely, Theorem 8.4 and the global results in Section 8.1.2 with the deduction thereof)
are already included in my Master’s thesis from 2014 (see [99]).
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8.1. The Results of Chapter 8

In this section, we state the formulae for the Crofton integrals (8.1), (8.2) and (8.3). Along
the way, we present some special cases which are either new results or have already been
proved by other authors using different methods.

8.1.1. Intrinsic Tensorial Curvature Measures

At first, we give the formulae concerning the integrals (8.1) and (8.2), and start with the
local versions, where we distinguish the cases j = k and j < k. In the first theorem we
consider the former.

Theorem 8.1. Let K ∈ Kn, β ∈ B(Rn) and i, k, r, s ∈ N0 with k < n. Then

∫
A(n,k)

Q(E)i φ̂r,s,0k,E (K ∩ E, β ∩ E)µk(dE) =
Γ(n2 )Γ(k2 + i)
Γ(n2 + i)Γ(k2 )

Qiφ̂r,0,0n (K,β)

if s = 0; for s 6= 0 the integral on the left is zero.

If s = 0 in Theorem 8.1, then relation (2.2) allows us to interpret the coefficient of the
tensor on the right-hand side as 0, if k = 0 and i 6= 0, and as 1, if k = i = 0. A global
version of Theorem 8.1 is obtained by simply setting β = Rn.

Next, we proceed with the case j < k.

Theorem 8.2. Let K ∈ Kn, β ∈ B(Rn) and i, j, k, r, s ∈ N0 with j < k < n and k > 1.
Then∫

A(n,k)
Q(E)i φ̂r,s,0j,E (K ∩ E, β ∩ E)µk(dE)

= γn,k,j

b s2 c+i∑
z=0

Qz
(
λ

(0)
n,k,j,s,i,z φ̂

r,s+2i−2z,0
n−k+j (K,β) + λ

(1)
n,k,j,s,i,z φ̂

r,s+2i−2z−2,1
n−k+j (K,β)

)
,

where for ε ∈ {0, 1} we set

γn,k,j :=
(
n− k + j − 1

j

)
Γ(n−k+1

2 )
2π ,

λ
(ε)
n,k,j,s,i,z :=

i∑
p=0

b s2 c+i−p∑
q=(z−p+ε)+

(−1)p+q−z
(
i

p

)(
s+ 2i− 2p

2q

)(
p+ q − ε

z

)
Γ(q + 1

2)

×
Γ( j+s2 + i− p− q + 1)
Γ(n−k+j+s

2 + i− p+ 1)
Γ(k−1

2 + p)Γ(n−k2 + q)
Γ(n+1

2 + p+ q)
ϑ

(ε)
n,k,j,p,q,

ϑ
(0)
n,k,j,p,q := (n− k + j)

(
k−1

2 + p
)
, ϑ

(1)
n,k,j,p,q := p(n− k)− q(k − 1).

In Theorem 8.2, if j = k − 1, then the tensorial curvature measures and the generalized
tensorial curvature measures are linearly dependent. In this case, the right-hand side can
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be expressed as a linear combination of the valuations Qzφ̂r,s+2i−2z,0
n−1 (K, ·), whereas the

measures Qzφ̂r,s+2i−2z,1
n−1 (K, ·) are not needed. An explicit description of this case is given

in Corollary 8.9 for i = 0 and in (8.12) for i ∈ N0.
If the additional metric tensor is omitted as a weight function, that is in the case

i = 0 (= p), then the coefficients λ(ε)
n,k,j,s,0,z in Theorem 8.2 simplify to a single sum.

Apparently, the coefficients in Theorem 8.2 are not well-defined in the (here excluded)
case k = 1 and j = 0, as Γ(0) is involved in the numerator of λ(ε)

n,1,0,s,i,z. Although this
issue can be resolved by the proper interpretation of the (otherwise ambiguous) expression
Γ(p) · p = Γ(p+ 1) as 1 for p = 0, we prefer to state and derive this case separately. In fact,
our analysis leads to substantial simplifications of the constants, as our next result shows.

Theorem 8.3. Let K ∈ Kn, β ∈ B(Rn) and i, r, s ∈ N0. Then∫
A(n,1)

Q(E)i φ̂r,s,00,E (K ∩ E, β ∩ E)µ1(dE)

=
Γ(n2 )Γ( s+1

2 + i)
πΓ(n+s+1

2 + i)

s
2 +i∑
z=0

(−1)z
(
s
2 + i

z

)
1

1− 2z Q
s
2 +i−zφ̂r,2z,0n−1 (K,β)

for even s. If s is odd, then
∫

A(n,1)
Q(E)i φ̂r,s,00,E (K ∩ E, β ∩ E)µ1(dE) =

Γ(n2 )Γ( s2 + i+ 1)
√
πΓ(n+s+1

2 + i)
Q

s−1
2 +iφ̂r,1,0n−1 (K,β).

We note that in Theorem 8.3 the Crofton integral is expressed only by tensorial curvature
measures φ̂r,z,0n−1 (multiplied with suitable powers of the metric tensor), whereas generalized
tensorial curvature measures are not needed. A global version of Theorem 8.3 is obtained
by simply setting β = Rn.

A translation invariant, global version of Theorem 8.2 allows us to combine several of the
summands on the right-hand side of the formula with the help of McMullen’s Lemma 3.6.

Theorem 8.4. Let K ∈ Kn and i, j, k, s ∈ N0 with j < k < n and k > 1. Then

∫
A(n,k)

Q(E)i Φ̂0,s
j,E(K ∩ E)µk(dE) = γn,k,j

b s2 c+i∑
z=0

λ
(0)
n,k,j,s,i,z Q

zΦ̂0,s+2i−2z
n−k+j (K),

where γn,k,j and λ
(0)
n,k,j,s,i,z are defined as in Theorem 8.2, but

ϑ
(0)
n,k,j,s,i,z,p,q := (n− k + j)

(
k−1

2 + p
)
−
(
p(n− k)− q(k − 1)

)(
1 + k−j−1

s+2i−2z−1(1− z
p+q )

)
replaces ϑ(0)

n,k,j,p,q, except if s is odd and z = b s2c+ i, where λ(0)
n,k,j,s,i,b s2 c+i

:= 0.

In Theorem 8.4, if p = q = 0, then the definition of λ(0)
n,k,j,s,i,z implies that also z = 0 and

thus, ϑ(0)
n,k,j,s,i,0,0,0 is well-defined with z

p+q = 1.
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8.1.2. Some Special Cases

In the following, we state some special cases of the just given theorems. For that purpose,
we restrict to the case of Crofton formulae for unweighted intrinsic Minkowski tensors or
tensorial curvature measures, meaning i = 0.

Corollary 8.5. Let K ∈ Kn and k, j, s ∈ N0 with 0 ≤ j < k < n. Then

∫
A(n,k)

Φ̂0,s
j,E(K ∩ E)µk(dE) = δn,k,j,s

b s2 c∑
z=0

ηn,k,j,s,z Q
zΦ̂0,s−2z

n−k+j(K),

where

δn,k,j,s :=
(
n− k + j − 1

j

)
Γ(n−k+1

2 )Γ(k+1
2 )

πΓ(n−k+j+s
2 + 1)

,

ηn,k,j,s,z :=
b s2 c∑
q=z

(−1)q−z
(
s

2q

)(
q

z

)
Γ(q + 1

2)
Γ( j+s2 − q + 1)Γ(n−k2 + q)

Γ(n+1
2 + q)

×
(
n−k+j

2 + q + (k−j−1)(q−z)
s−2z−1

)
,

but ηn,k,j,s,b s2 c := 0 if s is odd.

Specific choices of s

Next we collect some special cases of Corollary 8.5, which are obtained for specific choices
of s ∈ N0 by applications of Legendre’s duplication formula and elementary calculations.

Corollary 8.6. Let K ∈ Kn and k, j ∈ N0 with 0 ≤ j < k < n. Then∫
A(n,k)

Φ̂0,2
j,E(K ∩ E)µk(dE)

=
Γ(k+1

2 )Γ(n−k+j+1
2 )

Γ(n+3
2 )Γ( j+1

2 )

(
n−k

4(n−k+j) QΦ̂0,0
n−k+j(K) + n−k+nj+j

2(n−k+j) Φ̂0,2
n−k+j(K)

)
.

Corollary 8.7. Let K ∈ Kn and k, j ∈ N0 with 0 ≤ j < k < n. Then

∫
A(n,k)

Φ̂0,3
j,E(K ∩ E)µk(dE) = j + 1

n− k + j + 1
Γ(k+1

2 )Γ(n−k+j
2 )

Γ(n+1
2 )Γ( j2)

Φ̂0,3
n−k+j(K).

As Γ( j2)−1 = 0, for j = 0, the integral in Corollary 8.7 equals 0 in this case. However, as
the integrand on the left-hand side is already 0, this is not surprising. The same is true for
any odd number s ∈ N and j = 0.
Corollary 8.7 immediately leads to a result which was obtained and applied by Bernig

and Hug in [15, Lemma 4.13].
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Corollary 8.8. Let K ∈ Kn. Then

∫
A(n,2)

Φ̂0,3
1,E(K ∩ E)µk(dE) =

(
n

2

)−1

Φ̂0,3
n−1(K).

The choice j = k − 1

Furthermore, we obtain simple Crofton formulae for the specific choice j = k − 1 in the
local and in the global case.

Corollary 8.9. Let K ∈ Kn, β ∈ B(Rn) and k, r, s ∈ N0 with 1 < k < n. Then

∫
A(n,k)

φ̂r,s,0k−1,E(K ∩ E, β ∩ E)µk(dE) = δn,k,k−1,s

b s2 c∑
z=0

ξn,k,s,z Q
zφ̂r,s−2z,0

n−1 (K,β),

where

ξn,k,s,z :=
b s2 c∑
q=z

(−1)q−z
(
s

2q

)(
q

z

)
Γ
(
q + 1

2

) Γ(k+s+1
2 − q)Γ(n−k2 + q)

Γ(n−1
2 + q)

.

Corollary 8.9 will be derived from Theorem 8.2 in the same way as Theorem 8.4 is proved.
More specifically, we apply the special case of Lemma 3.1 where l = 1, that is,

φ̂r,s,1n−1 = Qφ̂r,s,0n−1 − φ̂
r,s+2,0
n−1 , (8.4)

which can be considered as a local version of McMullen’s Lemma 3.6 in the particular
case where j = n− 1. Although k = 1 is excluded in Corollary 8.9, the result is formally
consistent with Theorem 8.3 (for i = 0), which can be checked by simplifying the coefficients
ξn,1,s,z with the help of Zeilberger’s algorithm.
A global version of Corollary 8.9 is obtained by setting β = Rn.
Finally, Theorem 8.3 can be globalized to give a result, which was obtained in [65] by a

completely different approach.

Corollary 8.10. Let K ∈ Kn and s ∈ N0. Then

∫
A(n,1)

Φ̂0,s
0,E(K ∩ E)µk(dE) = 2ωn+s+1

πωs+1ωn

s
2∑

z=0

(−1)z

1− 2z

(
s
2
z

)
Q

s
2−zΦ̂0,2z

n−1(K)

for even s. For odd s the integral on the left-hand side equals 0.

We note that if s ∈ N is odd, then the Crofton integral in Theorem 8.3 is a non-zero
measure, as the tensorial curvature measures φ̂r,1,0n−1(K, ·) are non-zero (if the underlying
set K is at least (n− 1)-dimensional), whereas Φ̂0,1

n−1 ≡ 0 in the global case considered in
Corollary 8.10.
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8.1.3. Extrinsic Tensorial Curvature Measures

In the following, we state Crofton formulae for tensorial curvature measures for j = k − 1.
The method also applies to the cases where j ≤ k − 2, but it remains to be explored to
which extent the constants can be simplified then by the current approach. However, in
Chapter 5 we have presented all the remaining cases, though obtained by a completely
different approach.
As for the intrinsic versions, we have to distinguish between the cases k > 1 and k = 1.

We start with the former, which is basically a (renormalized) special case of Theorem 5.4.

Theorem 8.11. Let K ∈ Kn, β ∈ B(Rn) and k, r, s ∈ N0 with 1 < k < n. Then

∫
A(n,k)

φ̂r,s,0k−1 (K ∩ E, β ∩ E)µk(dE) =
b s2 c∑
z=0

κn,k,s,z Q
zφ̂r,s−2z,0

n−1 (K,β),

where

κn,k,s,z := k − 1
n− 1

π
n−k

2 Γ(n2 )
Γ(k2 )Γ(n−k2 )

Γ( s+1
2 )Γ( s2 + 1)

Γ(n−k+s+1
2 )Γ(n+s−1

2 )
Γ(n−k2 + z)Γ(k+s−1

2 − z)
Γ( s2 − z + 1)z!

if z 6= s−1
2 , and

κn,k,s, s−1
2

:= π
n−k−1

2
2k(n+ s− 2)

(n− 1)(n− k + s− 1)
Γ(n2 )

Γ(n−k2 )
Γ( s2 + 1)
Γ(n+s+1

2 )
. (8.5)

In Theorem 8.11, if s is odd the coefficient κn,k,s,(s−1)/2 has to be defined separately,
as the proof shows. In fact, one easily checks that the difference amounts to a factor
k(n+ s− 2)[(k − 1)(n+ s− 1)]−1. For even s, the constants involved in the proof of
Theorem 8.11 can be simplified by a direct calculation to arrive at the asserted result.
However, if s is odd, we need the connection to the work [15] to simplify the constants.
Since this connection breaks down for z = (s− 1)/2, s odd, a separate direct calculation is
required for this case, and that finally yields the correct constant in (8.5). The result is
also consistent with the special case k = 1 which is considered next. The more structural
viewpoint in Chapter 5 provides another explanation for the case distinction required for
the coefficients in the preceding Crofton formula (see Corollary 5.7, which is a renormalized
version of Theorem 8.11).

For k = 1 the Crofton integrals can be represented with a single tensorial measure, as
the following theorem shows.

Theorem 8.12. Let K ∈ Kn, β ∈ B(Rn) and r, s ∈ N0. Then

∫
A(n,1)

φ̂r,s,00 (K ∩ E, β ∩ E)µ1(dE) = π
n−2

2
Γ(n2 )

Γ(n+1
2 )

Γ(b s+1
2 c+ 1

2)
Γ(n2 + b s+1

2 c)
Qb

s
2 cφ̂

r,s−2b s2 c,0
n−1 (K,β).
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Theorem 8.12 is a renormalized version of Corollary 5.8. It can be easily checked that
this formula for k = 1 can be obtained from Theorem 8.11 (which actually holds for k > 1)
by a formal specialization and proper interpretation of expressions which a priori are not
well-defined. For this to work, it is indeed crucial that for odd values of s and z = (s− 1)/2
the definition in (8.5) applies.

In [15, Proposition 4.10], an alternative basis of the vector space of continuous, translation
invariant and rotation covariant Tp-valued valuations on Kn was introduced, based on the
trace free part of the Minkowski tensors, which was called the Ψ-basis. In the same spirit
(but locally and with the current normalization), we now define

ψ̂r,s,0k := φ̂r,s,0k + 1√
π

b s2 c∑
j=1

(−1)j
(
s

2j

)
Γ(j + 1

2)Γ(n2 + s− j − 1)
Γ(n2 + s− 1) Qjφ̂r,s−2j,0

k

for r, s ∈ N0 and k ∈ {0, . . . , n− 1}. Interpreting this definition in the right way if n = 2
and s = 0 (where ψ̂r,0,0k = φ̂r,0,0k ), we can also write

ψ̂r,s,0k = 1√
π

b s2 c∑
j=0

(−1)j
(
s

2j

)
Γ(j + 1

2)Γ(n2 + s− j − 1)
Γ(n2 + s− 1) Qjφ̂r,s−2j,0

k . (8.6)

In particular, ψ̂r,s,0k = φ̂r,s,0k for s ∈ {0, 1}. Conversely, we have

φ̂r,s,0k = 1√
π

b s2 c∑
j=0

(
s

2j

)
Γ(j + 1

2)Γ(n2 + s− 2j)
Γ(n2 + s− j) Qjψ̂r,s−2j,0

k . (8.7)

Although this will not be needed explicitly, it shows how we can switch between a φ̂-
representation and a ψ̂-representation of tensorial curvature measures.

The main advantage of the new local tensor valuations given in (8.6) is that the Crofton
formula takes a particularly simple form.

Corollary 8.13. Let K ∈ Kn, β ∈ B(Rn), and let k, r, s ∈ N0 with 0 < k < n.
If s /∈ {0, 1}, then∫

A(n,k)
ψ̂r,s,0k−1 (K ∩ E, β ∩ E)µk(dE)

= π
n−k

2
k − 1
n− 1

Γ(n2 )Γ(k+s−1
2 )

Γ(k2 )Γ(n+s−1
2 )

Γ( s+1
2 )

Γ(n−k+s+1
2 )

ψ̂r,s,0n−1 (K,β).

If s = 0, then

∫
A(n,k)

ψ̂r,0,0k−1 (K ∩ E, β ∩ E)µk(dE) = π
n−k+1

2
Γ(n2 )Γ(k+1

2 )
Γ(k2 )Γ(n−k+1

2 )Γ(n+1
2 )

ψ̂r,0,0n−1 (K,β).
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If s = 1, then∫
A(n,k)

ψ̂r,1,0k−1 (K ∩ E, β ∩ E)µk(dE) = π
n−k

2
k

n

1
Γ(n−k+2

2 )
ψ̂r,1,0n−1 (K,β).

For r = 0 and β = Rn, Corollary 8.13 coincides with [15, Corollary 6.1] (in the case
corresponding to j = k − 1). If s ∈ {0, 1}, then ψ̂r,s,0k = φ̂r,s,0k and Corollary 8.13 coincides
with Theorem 8.11 (resp. Theorem 8.12, for k = 1). If k = 1, then the integral in Corollary
8.13 vanishes, except for s ∈ {0, 1}.

8.2. The Proofs for the Intrinsic Results

In this section, we prove the intrinsic Crofton formulae stated in Section 8.1.1. The
approach applied here is heavily based on the proofs in [51]. Therefore, before we can start,
we derive an integral formula which is required in the following proofs (similarly to the
procedure in [51]).

8.2.1. Auxiliary Integral Formulae

With the preliminary integral formulae from [51], recalled in Appendix A, we are able
to establish the following integral formula, which is a slightly modified version of [51,
Proposition 4.7].

Proposition 8.14. Let i, j, k, s ∈ N0 with j < k < n and k > 1, F ∈ G(n, n− k + j) and
u ∈ F⊥ ∩ Sn−1. Then∫

G(n,k)
Q(L)iπL(u)s‖pL(u)‖j−k[F,L]2 νk(dL)

= γn,k,j

b s2 c+i∑
z=0

(
λ

(0)
n,k,j,s,i,zu

2 + λ
(1)
n,k,j,s,i,zQ(F )

)
Qzus+2i−2z−2,

where the coefficients are defined as in Theorem 8.2.

In Proposition 8.14 we exclude the case k = 1, the reason of which becomes clear in
the following proof, which further leads to undefined coefficients in that case (see the
explanation after Theorem 8.2). However, these coefficients can be properly interpreted,
such that the assertion also holds for k = 1. Nevertheless, we derive this case separately in
Proposition 8.15.
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Proof. The integral geometric transformation formula in Lemma A.2 yields∫
G(n,k)

Q(L)iπL(u)s‖pL(u)‖j−k[F,L]2 νk(dL)

= ωk
2ωn

∫
G(u⊥,k−1)

∫ 1

−1

∫
U⊥∩u⊥∩Sn−1

|t|k−1(1− t2)
n−k−2

2 πlin{U,tu+
√

1−t2w}(u)s

×Q
(
lin
{
U, tu+

√
1− t2w

})i‖plin{U,tu+
√

1−t2w}(u)‖j−k

×
[
F, lin

{
U, tu+

√
1− t2w

}]2Hn−k−1(dw) dt νu⊥k−1(dU).

As

Q
(
lin
{
U, tu+

√
1− t2w

})
= Q(U) +

(
|t|u+

√
1− t2sign(t)w

)2
,

πlin{U,tu+
√

1−t2w}(u) = |t|u+
√

1− t2sign(t)w,

‖plin{U,tu+
√

1−t2w}(u)‖ = |t|,[
F, lin

{
U, tu+

√
1− t2w

}]
= [F,U ](u⊥)|t|

hold for all t ∈ [−1, 1] \ {0}, we obtain∫
G(n,k)

Q(L)iπL(u)s‖pL(u)‖j−k[F,L]2 νk(dL)

= ωk
2ωn

∫
G(u⊥,k−1)

∫ 1

−1

∫
U⊥∩u⊥∩Sn−1

|t|j+1(1− t2)
n−k−2

2
(
[F,U ](u⊥))2(|t|u+

√
1− t2w

)s
×
(
Q(U) + (|t|u+

√
1− t2w)2)iHn−k−1(dw) dt νu⊥k−1(dU),

where we used the fact that the integration with respect to w is invariant under reflections in
the origin. Then we apply the binomial theorem to the terms (Q(U) + (|t|u+

√
1− t2w)2)i

and (|t|u+
√

1− t2w)s+2p and get∫
G(n,k)

Q(L)iπL(u)s‖pL(u)‖j−k[F,L]2 νk(dL)

= ωk
2ωn

i∑
p=0

s+2p∑
q=0

(
i

p

)(
s+ 2p
q

)∫
G(u⊥,k−1)

∫ 1

−1
|t|j+s+2p−q+1(1− t2)

n−k+q−2
2 dt

×
∫
U⊥∩u⊥∩Sn−1

wqHn−k−1(dw)
(
[F,U ](u⊥))2us+2p−qQ(U)i−p νu⊥k−1(dU).

Since Lemma A.3 yields∫
U⊥∩u⊥∩Sn−1

wqHn−k−1(dw) = 1{q even}2ωn−k+q
ωq+1

Q(U⊥ ∩ u⊥)
q
2 ,

we can rewrite the integration with respect to t in terms of the Beta function and apply
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the relation of the latter to the Gamma function, to obtain∫
G(n,k)

Q(L)iπL(u)s‖pL(u)‖j−k[F,L]2 νk(dL)

= ωk
ωn

i∑
p=0

b s2 c+p∑
q=0

(
i

p

)(
s+ 2p

2q

)
Γ( j+s2 + p− q + 1)Γ(n−k2 + q)

Γ(n−k+j+s
2 + p+ 1)

ωn−k+2q
ω2q+1

× us+2p−2q
∫

G(u⊥,k−1)
Q(U⊥ ∩ u⊥)q

(
[F,U ](u⊥))2Q(U)i−p νu⊥k−1(dU).

Applying the binomial theorem to Q(U⊥ ∩ u⊥)q = (Q(u⊥)−Q(U))q yields∫
G(n,k)

Q(L)iπL(u)s‖pL(u)‖j−k[F,L]2 νk(dL)

=
Γ(n2 )
√
πΓ(k2 )

i∑
p=0

b s2 c+p∑
q=0

q∑
y=0

(−1)y
(
i

p

)(
s+ 2p

2q

)(
q

y

)
Γ(q + 1

2)
Γ( j+s2 + p− q + 1)
Γ(n−k+j+s

2 + p+ 1)

× us+2p−2qQ
(
u⊥
)q−y ∫

G(u⊥,k−1)

(
[F,U ](u⊥))2Q(U)i−p+y νu⊥k−1(dU). (8.8)

We conclude from Lemma A.6, which is applied in u⊥ to the remaining integral on the
right-hand side of (8.8),∫

G(n,k)
Q(L)iπL(u)s‖pL(u)‖j−k[F,L]2 νk(dL)

= (n− k + j)!(k − 1)!√
π(n− 1)!j!

Γ(n2 )Γ(n+1
2 )

Γ(k2 )Γ(k+1
2 )

i∑
p=0

b s2 c+p∑
q=0

(
i

p

)(
s+ 2p

2q

)
Γ(q + 1

2)

×
Γ( j+s2 + p− q + 1)
Γ(n−k+j+s

2 + p+ 1)
us+2p−2q

q∑
y=0

(−1)y
(
q

y

)
Γ(k−1

2 + i− p+ y)
Γ(n+1

2 + i− p+ y)

×
((

k−1
2 + i− p+ y

)
Q
(
u⊥
)i−p+q + k−n

n−k+j (i− p+ y)Q
(
u⊥
)i−p+q−1

Q(F )
)
.

Relation (B.1′) applied twice to the summations with respect to y and Legendre’s duplication
formula applied three times to the Gamma functions involving n, k and n−k yield together
with the definitions of γn,k,j and ϑ(ε)

n,k,j,p,q, ε ∈ {0, 1},∫
G(n,k)

Q(L)iπL(u)s‖pL(u)‖j−k[F,L]2 νk(dL)

= γn,k,j

i∑
p=0

b s2 c+i−p∑
q=0

(
i

p

)(
s+ 2i− 2p

2q

)
Γ(q + 1

2)

×
Γ( j+s2 + i− p− q + 1)
Γ(n−k+j+s

2 + i− p+ 1)
Γ(k−1

2 + p)Γ(n−k2 + q)
Γ(n+1

2 + p+ q)

× us+2i−2p−2q
(
ϑ

(0)
n,k,j,p,qQ

(
u⊥
)p+q − ϑ(1)

n,k,j,p,qQ
(
u⊥
)p+q−1

Q(F )
)
,
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where we changed the order of summation with respect to p. From the binomial theorem
applied to Q(u⊥)p+q = (Q− u2)p+q we obtain∫

G(n,k)
Q(L)iπL(u)s‖pL(u)‖j−k[F,L]2 νk(dL)

= γn,k,j

i∑
p=0

b s2 c+i−p∑
q=0

(
i

p

)(
s+ 2i− 2p

2q

)
Γ(q + 1

2)
Γ( j+s2 + i− p− q + 1)
Γ(n−k+j+s

2 + i− p+ 1)

×
Γ(k−1

2 + p)Γ(n−k2 + q)
Γ(n+1

2 + p+ q)

(p+q∑
z=0

(−1)p+q−z
(
p+ q

z

)
ϑ

(0)
n,k,j,p,qQ

zus+2i−2z

+
p+q−1∑
z=0

(−1)p+q−z
(
p+ q − 1

z

)
ϑ

(1)
n,k,j,p,qQ

zus+2i−2z−2Q(F )
)
.

A change of the order of summation, such that we sum with respect to z first, gives∫
G(n,k)

Q(L)iπL(u)s‖pL(u)‖j−k[F,L]2 νk(dL)

= γn,k,j

b s2 c+i∑
z=0

(
λ

(0)
n,k,j,s,i,zu

2 + λ
(1)
n,k,j,s,i,zQ(F )

)
Qzus+2i−2z−2,

which concludes the proof.

Next we state and prove the extension of Proposition 8.14 to the case of k = 1.

Proposition 8.15. Let i, s ∈ N0, F ∈ G(n, n− 1) and u ∈ F⊥ ∩ Sn−1. Then∫
G(n,1)

Q(L)iπL(u)s‖pL(u)‖−1[F,L]2 ν1(dL)

=
Γ(n2 )Γ( s+1

2 + i)
πΓ(n+s+1

2 + i)

s
2 +i∑
z=0

(−1)z
(
s
2 + i

z

)
1

1− 2zu
2zQ

s
2 +i−z

for even s. If s is odd, then
∫

G(n,1)
Q(L)iπL(u)s‖pL(u)‖−1[F,L]2 νk(dL) =

Γ(n2 )Γ( s2 + i+ 1)
√
πΓ(n+s+1

2 + i)
uQ

s−1
2 +i.

Proof. The proof basically works as the proof of Proposition 8.14. But we do not need to
apply Lemma A.6, as (8.8) simplifies to∫

G(n,1)
Q(L)iπL(u)s‖pL(u)‖−1[F,L]2 νk(dL)

=
Γ(n2 )
π

i∑
p=0

b s2 c+p∑
q=0

q∑
y=0

(−1)y
(
i

p

)(
s+ 2p

2q

)(
q

y

)
Γ(q + 1

2)
Γ( s2 + p− q + 1)

Γ(n+s+1
2 + p)

× us+2p−2qQ
(
u⊥
)q−y ∫

G(u⊥,0)

(
[F,U ](u⊥))2Q(U)i−p+y νu⊥k−1(dU).
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Since the remaining integral on the right-hand side equals 1, if p = i and y = 0, and in all
the other cases it equals 0, we obtain∫

G(n,k)
Q(L)iπL(u)s‖pL(u)‖j−k[F,L]2 νk(dL)

=
Γ(n2 )
π

b s2 c+i∑
q=0

(
s+ 2i

2q

)
Γ(q + 1

2)
Γ( s2 + i− q + 1)

Γ(n+s+1
2 + i)

us+2i−2qQ
(
u⊥
)q
.

Applying the binomial theorem to Q(u⊥)q = (Q− u2)q yields∫
G(n,k)

Q(L)iπL(u)s‖pL(u)‖j−k[F,L]2 νk(dL)

=
Γ(n2 )
π

b s2 c+i∑
q=0

q∑
z=0

(−1)q−z
(
s+ 2i

2q

)(
q

z

)
Γ(q + 1

2)
Γ( s2 + i− q + 1)

Γ(n+s+1
2 + i)

us+2i−2zQz.

A change of the order of summation and Legendre’s duplication formula applied to the
Gamma functions involving q give∫

G(n,k)
Q(L)iπL(u)s‖pL(u)‖j−k[F,L]2 νk(dL)

=
(s+ 2i)!Γ(n2 )

2s+2iΓ(n+s+1
2 + i)

b s2 c+i∑
z=0

1
z!

b s2 c+i∑
q=z

(−1)q−z

Γ( s+1
2 + i− q)(q − z)!

us+2i−2zQz.

If s is even, we conclude from Lemma B.3 applied to the summation with respect to q and
from another application of Legendre’s duplication formula that∫

G(n,k)
Q(L)iπL(u)s‖pL(u)‖j−k[F,L]2 νk(dL)

=
Γ(n2 )Γ( s+1

2 + i)
πΓ(n+s+1

2 + i)

s
2 +i∑
z=0

(−1)
s
2 +i−z+1

(
s
2 + i

z

)
1

s+ 2i− 2z − 1u
s+2i−2zQz.

A change of the order of summation with respect to z then yields the assertion.
On the other hand, if s is odd, the binomial theorem gives, for b s2c+ i 6= z,

b s2 c+i∑
q=z

(−1)q−z

Γ( s+1
2 + i− q)(q − z)!

= 1
(b s2c+ i− z)!

b s2 c+i−z∑
q=0

(−1)q
(
b s2c+ i− z

q

)

= 1
(b s2c+ i− z)! (1− 1)b

s
2 c+i−z

= 0. (8.9)
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For b s2c+ i = z, the sum on the left-hand side of (8.9) equals 1. Hence, we finally obtain

∫
G(n,k)

Q(L)iπL(u)s‖pL(u)‖j−k[F,L]2 νk(dL) =
Γ(n2 )Γ( s2 + i+ 1)
√
πΓ(n+s+1

2 + i)
uQb

s
2 c+i,

if s is odd.

8.2.2. The Proofs

Now we possess all the required tools to provide the proofs of the main results of this
chapter and start with the proof of Theorem 8.1.

Proof of Theorem 8.1. Let L ∈ G(n, k) and t ∈ L⊥. Then we have

φ̂r,s,0k,Lt
(K ∩ Lt, β ∩ Lt) = 1{s = 0}

∫
K∩β∩Lt

xrHk(dx)

and thus, for s 6= 0,∫
A(n,k)

Q(E)iφ̂r,s,0k,E (K ∩ E, β ∩ E)µk(dE)

=
∫

G(n,k)

∫
L⊥

Q(Lt)iφ̂r,s,0k,Lt
(K ∩ Lt, β ∩ Lt)Hn−k(dt) νk(dL)

= 0.

Furthermore, for s = 0 Fubini’s theorem yields∫
A(n,k)

Q(E)iφ̂r,0,0k,E (K ∩ E, β ∩ E)µk(dE)

=
∫

G(n,k)
Q(L)i

∫
L⊥

∫
K∩β∩Lt

xrHk(dx)Hn−k(dt) νk(dL)

=
∫

G(n,k)
Q(L)i νk(dL)

∫
K∩β

xrHn(dx).

Then we conclude the proof with Lemma A.4 and the definition of φ̂r,0,0n .

We turn to the proof of Theorem 8.2. The integral formula in Lemma A.7 allows us
to rewrite the integration with respect to the intrinsic support measure, appearing in the
Crofton integral of Theorem 8.2 (in the definition of the tensorial curvature measures).
After this integral transformation we apply the other integral formulae to calculate the
remaining integrals.

Proof of Theorem 8.2. First, we prove the formula for a polytope P ∈ Pn. The general
result then follows by an approximation argument.
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As a matter of convenience, we name the integral of interest I. Then Lemma A.7 yields

I = ωk−j

∫
G(n,k)

Q(L)i
∫
L⊥

∫
Lt×(L∩Sn−1)

1β(x)xrus

× Λ(Lt)
j (P ∩ Lt, d(x, u))Hn−k(dt) νk(dL)

=
∑

F∈Fn−k+j(P )

∫
F∩β

xrHn−k+j(dx)
∫

G(n,k)
Q(L)i

×
∫
N(P,F )∩Sn−1

πL(u)s‖pL(u)‖j−k[F,L]2Hk−j−1(du) νk(dL).

With Fubini’s theorem we conclude

I =
∑

F∈Fn−k+j(P )

∫
F∩β

xrHn−k+j(dx)
∫
N(P,F )∩Sn−1

×
∫

G(n,k)
Q(L)iπL(u)s‖pL(u)‖j−k[F,L]2 νk(dL)Hk−j−1(du). (8.10)

Then we obtain from Proposition 8.14

I = γn,k,j
∑

F∈Fn−k+j(P )

∫
F∩β

xrHn−k+j(dx)

×
(b s2 c+i∑

z=0
λ

(0)
n,k,j,s,i,zQ

z
∫
N(P,F )∩Sn−1

us+2i−2zHk−j−1(du)

+
b s2 c+i−1∑
z=0

λ
(1)
n,k,j,s,i,zQ

zQ(F )
∫
N(P,F )∩Sn−1

us+2i−2z−2Hk−j−1(du)
)
.

With the definition of the tensorial curvature measures we get

I = γn,k,j

b s2 c+i∑
z=0

λ
(0)
n,k,j,s,i,zQ

zφ̂r,s+2i−2z,0
n−k+j (P, β)

+ γn,k,j

b s2 c+i−1∑
z=0

λ
(1)
n,k,j,s,i,zQ

zφ̂r,s+2i−2z−2,1
n−k+j (P, β).

Combining the two sums yields the assertion in the polytopal case.
As pointed out before, there exists a weakly continuous extension of the generalized

tensorial curvature measures φ̂r,s+2i−2z−2,1
n−k+j from the set of all polytopes to Kn. The same

is true for the tensorial curvature measures φ̂r,s+2i−2z,0
n−k+j . Hence, approximating a convex

body K ∈ Kn by polytopes yields the assertion in the general case.

Now we prove Theorem 8.3, which deals with the case k = 1 excluded in the statement
of Theorem 8.2.

Proof of Theorem 8.3. The proof basically works as the one of Theorem 8.2. Again, we
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prove the formula for a polytope P ∈ Pn. We call the integral of interest I and proceed as
in the previous proof in order to obtain (8.10). Now we apply Proposition 8.15 and obtain

I =
Γ(n2 )Γ( s+1

2 + i)
πΓ(n+s+1

2 + i)

s
2 +i∑
z=0

(−1)z
(
s
2 + i

z

)
1

1− 2zQ
s
2 +i−z

×
∑

F∈Fn−1(P )

∫
F∩β

xrHn−k+j(dx)
∫
N(P,F )∩Sn−1

u2zH0(du),

if s is even. Hence, we conclude the assertion with the definition of φ̂r,2z,0n−1 .
If s is odd, Proposition 8.15 yields

I =
Γ(n2 )Γ( s2 + i+ 1)
√
πΓ(n+s+1

2 + i)
Q

s−1
2 +iφ̂r,1,0n−1 (P, β).

As sketched in the proof of Theorem 8.2, the general result follows by an approximation
argument.

For the proof of Theorem 8.4, we first globalize Theorem 8.2 and then apply Lemma 3.7
(which is a direct consequence of McMullen’s Lemma 3.6) to treat the appearing valuations
φ̂0,s+2i−2z−2,1
n−k+j (·,Rn). For the sake of convenience, we add here the special case of Lemma 3.7

which we need (and with the renormalized valuations that we use in this chapter).

Lemma 8.16. Let P ∈ Pn and j, s ∈ N0 with j ≤ n− 1. Then

n−j+s
s+1 Φ̂0,s+2

j (P ) =
∑

F∈Fj(P )
Q(F⊥)Hj(F )

∫
N(P,F )∩Sn−1

usHn−j−1(du).

With the help of Lemma 8.16, now we can prove Theorem 8.4.

Proof of Theorem 8.4. We only prove the formula for a polytope P ∈ Pn. As before, the
general result follows by an approximation argument.

We briefly write I for the Crofton integral under investigation. Starting from the special
case of Theorem 8.2 where r = 0 and β = Rn, we obtain

I = γn,k,j

b s2 c+i∑
z=0

λ
(0)
n,k,j,s,i,zQ

zΦ̂0,s+2i−2z
n−k+j (P ) + γn,k,j

b s2 c+i−1∑
z=0

λ
(1)
n,k,j,s,i,zQ

z

×
∑

F∈Fn−k+j(P )
Q(F )Hn−k+j(F )

∫
N(P,F )∩Sn−1

us+2i−2z−2Hk−j−1(du).

With Q(F ) = Q−Q(N(P, F )) and Lemma 8.16 we get

∑
F∈Fn−k+j(P )

Q(F )Hn−k+j(F )
∫
N(P,F )∩Sn−1

us+2i−2z−2Hk−j−1(du)

= QΦ̂0,s+2i−2z−2
n−k+j (P )− k−j+s+2i−2z−2

s+2i−2z−1 Φ̂0,s+2i−2z
n−k+j (P )
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and thus

I = γn,k,j

b s2 c+i∑
z=0

λ
(0)
n,k,j,s,i,zQ

zΦ̂0,s+2i−2z
n−k+j (P )

+ γn,k,j

b s2 c+i−1∑
z=0

λ
(1)
n,k,j,s,i,zQ

z(QΦ̂0,s+2i−2z−2
n−k+j (P )− k−j+s+2i−2z−2

s+2i−2z−1 Φ̂0,s+2i−2z
n−k+j (P )

)
.

Combining these sums yields

I = γn,k,j

b s2 c+i∑
z=0

(
λ

(0)
n,k,j,s,i,z + λ

(1)
n,k,j,s,i,z−1 −

k−j+s+2i−2z−2
s+2i−2z−1 λ

(1)
n,k,j,s,i,z

)
QzΦ̂0,s+2i−2z

n−k+j (P ).

In fact, we have λ(1)
n,k,j,s,i,−1 = 0 and, furthermore for even s, as the sum with respect to q

is empty, λ(1)
n,k,j,s,i,b s2 c+i

also vanishes. On the other hand, for odd s, as Φ̂0,1
n−k+j ≡ 0, the

last summand of the sum with respect to z actually vanishes and thus its coefficient does
not have to be determined and is defined as zero.

Hence, we obtained a representation of the integral with the desired Minkowski tensors.
It remains to determine the coefficients explicitly. First, we consider the case where (k > 1
and) z ∈ {1, . . . , b s2c+ i− 1}. We get

λ
(0)
n,k,j,s,i,z + λ

(1)
n,k,j,s,i,z−1 =

i∑
p=0

b s2 c+i−p∑
q=(z−p)+

(−1)p+q−z
(
i

p

)(
s+ 2i− 2p

2q

)(
p+ q

z

)
Γ(q + 1

2)

×
Γ( j+s2 + i− p− q + 1)Γ(k−1

2 + p)Γ(n−k2 + q)
Γ(n−k+j+s

2 + i− p+ 1)Γ(n+1
2 + p+ q)

×
(
(n− k + j)(k−1

2 + p)− z
p+q

(
p(n− k)− q(k − 1)

))
and

λ
(1)
n,k,j,s,i,z =

i∑
p=0

b s2 c+i−p∑
q=(z−p)+

(−1)p+q−z
(
i

p

)(
s+ 2i− 2p

2q

)(
p+ q

z

)
Γ(q + 1

2)

×
Γ( j+s2 + i− p− q + 1)Γ(k−1

2 + p)Γ(n−k2 + q)
Γ(n−k+j+s

2 + i− p+ 1)Γ(n+1
2 + p+ q)

× p+q−z
p+q

(
p(n− k)− q(k − 1)

)
. (8.11)
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Hence we conclude

λ
(0)
n,k,j,s,i,z + λ

(1)
n,k,j,s,i,z−1 −

k−j+s+2i−2z−2
s+2i−2z−1 λ

(1)
n,k,j,s,i,z

=
i∑

p=0

b s2 c+i−p∑
q=(z−p)+

(−1)p+q−z
(
i

p

)(
s+ 2i− 2p

2q

)(
p+ q

z

)
Γ(q + 1

2)

×
Γ( j+s2 + i− p− q + 1)Γ(k−1

2 + p)Γ(n−k2 + q)
Γ(n−k+j+s

2 + i− p+ 1)Γ(n+1
2 + p+ q)

×
(
(n− k + j)(k−1

2 + p)− p(n−k)−q(k−1)
p+q

(
p+ q + (k−j−1)(p+q−z)

s+2i−2z−1

))
.

The case z = b s2c+ i, for even s, follows similarly. For z = 0, we have λ(1)
n,k,j,s,i,−1 = 0 and

(8.11) still holds, if one cancels the remaining p+q−z
p+q = 1.

Finally, we provide the argument for Corollary 8.9, which is the special case of Theorem 8.2
obtained for i = 0 and j + 1 = k ≥ 2. The proof makes use of relation (8.4) to rewrite the
generalized tensorial curvature measures φ̂r,s−2z−2,1

n−1 .

Proof of Corollary 8.9. With the specific choices of the indices, we obtain

λ
(ε)
n,k,k−1,s,0,z =

b s2 c∑
q=z+ε

(−1)q−z
(
s

2q

)(
q − ε
z

)
Γ(q + 1

2)

×
Γ(k+s+1

2 − q)
Γ(n+s+1

2 )
Γ(k−1

2 )Γ(n−k2 + q)
Γ(n+1

2 + q)
ϑ

(ε)
n,k,k−1,0,q,

with
ϑ

(0)
n,k,k−1,0,q = 1

2(n− 1)(k − 1), ϑ
(1)
n,k,k−1,0,q := −q(k − 1),

and
γn,k,k−1 =

(
n− 2
k − 1

)
Γ(n−k+1

2 )
2π .

Let us denote the Crofton integral by I. Then, (8.4) applied to the generalized tensorial
curvature measures φ̂r,s−2z−2,1

n−1 in Theorem 8.2 yields that

I = γn,k,k−1

b s2 c∑
z=0

Qz
(
λ

(0)
n,k,k−1,s,0,z − λ

(1)
n,k,k−1,s,0,z

)
φ̂r,s−2z,0
n−1 (K,β)

+ γn,k,k−1

b s2 c+1∑
z=1

Qzλ
(1)
n,k,k−1,s,0,z−1φ̂

r,s−2z,0
n−1 (K,β)

= γn,k,k−1

b s2 c∑
z=0

Qz
(
λ

(0)
n,k,k−1,s,0,z + λ

(1)
n,k,k−1,s,0,z−1 − λ

(1)
n,k,k−1,s,0,z

)︸ ︷︷ ︸
=:λ

φ̂r,s−2z,0
n−1 (K,β),
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where

λ =
Γ(k−1

2 )
Γ(n+s+1

2 )

b s2 c∑
q=z

(−1)q−z
(
s

2q

)
Γ(q + 1

2)
Γ(k+s+1

2 − q)Γ(n−k2 + q)
Γ(n+1

2 + q)

×
[(
q

z

)
1
2(n− 1)(k − 1)−

(
q − 1
z − 1

)
(−1)q(k − 1)−

(
q − 1
z

)
(−1)q(k − 1)

]

=
Γ(k−1

2 )
Γ(n+s+1

2 )

b s2 c∑
q=z

(−1)q−z
(
s

2q

)
Γ(q + 1

2)
Γ(k+s+1

2 − q)Γ(n−k2 + q)
Γ(n+1

2 + q)

(
q

z

)
(k − 1)

(
n−1

2 + q
)

= 2
Γ(k+1

2 )
Γ(n+s+1

2 )

b s2 c∑
q=z

(−1)q−z
(
s

2q

)(
q

z

)
Γ(q + 1

2)
Γ(k+s+1

2 − q)Γ(n−k2 + q)
Γ(n−1

2 + q)
,

from which the assertion follows.

8.3. The Proofs for the Extrinsic Results

Our starting point is the relation, due to McMullen, between the intrinsic and the extrinsic
Minkowski tensors (see [68, Theorem 5.1]). The localization of this result stated in
Lemma 3.5 (which has to be renormalized to fit the setting of this chapter) can be
combined with the binomial theorem applied to the relation Q = Q(E) +Q(E⊥), where
E ⊂ Rn is any k-flat, which yields the following lemma.

Lemma 8.17. Let j, k, r, s ∈ N0 with j < k < n, let K ∈ Kn with K ⊂ E ∈ A(n, k) and
β ∈ B(Rn). Then

φ̂r,s,0j (K,β) = π
n−k

2 s!
Γ(n−j+s2 )

b s2 c∑
m=0

m∑
l=0

(−1)m−l
(
m

l

)
Γ(k−j+s2 −m)

4mm!(s− 2m)!Q
lQ(E)m−lφ̂r,s−2m,0

j,E (K,β).

We start with the proof of Theorem 8.11, for which we use Theorem 8.2 after an
application of Lemma 8.17.

Proof of Theorem 8.11. Lemma 8.17 for j = k − 1 gives∫
A(n,k)

φ̂r,s,0k−1 (K ∩ E, β ∩ E)µk(dE)

= π
n−k

2 s!
Γ(n−k+s+1

2 )

b s2 c∑
m=0

m∑
l=0

(−1)m−l
Γ( s+1

2 −m)
4mm!(s− 2m)!

(
m

l

)
Ql

×
∫

A(n,k)
Q(E)m−lφ̂r,s−2m,0

k−1,E (K ∩ E, β ∩ E)µk(dE).

For j = k− 1 we can argue as in the proof of Corollary 8.9 to see that Theorem 8.2 implies
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that ∫
A(n,k)

Q(E)iφ̂r,s,0k−1,E(K ∩ E, β ∩ E)µk(dE)

= γn,k,k−1

b s2 c+i∑
z=0

λn,k,k−1,s,i,z Q
zφ̂r,s+2i−2z,0

n−1 (K ∩ E, β ∩ E), (8.12)

where

λn,k,k−1,s,i,z = (k − 1)
i∑

p=0

b s2 c+i−p∑
q=(z−p)+

(−1)p+q−z
(
i

p

)(
s+ 2i− 2p

2q

)(
p+ q

z

)

× Γ(q + 1
2)

Γ(k+s+1
2 + i− p− q)

Γ(n+s+1
2 + i− p)

Γ(k−1
2 + p)Γ(n−k2 + q)
Γ(n−1

2 + p+ q)
.

(Of course, for i = 0 we recover Corollary 8.9.) Hence, we obtain∫
A(n,k)

φ̂r,s,0k−1 (K ∩ E, β ∩ E)µk(dE)

= γn,k,k−1
π
n−k

2 s!
Γ(n−k+s+1

2 )

b s2 c∑
m=0

m∑
l=0

b s2 c−l∑
z=0

(−1)m−l
Γ( s+1

2 −m)
4mm!(s− 2m)!

(
m

l

)
× λn,k,k−1,s−2m,m−l,z Q

l+zφ̂r,s−2l−2z,0
n−1 (K,β).

An index shift of the summation with respect to z yields∫
A(n,k)

φ̂r,s,0k−1 (K ∩ E, β ∩ E)µk(dE)

= γn,k,k−1
π
n−k

2 s!
Γ(n−k+s+1

2 )

b s2 c∑
m=0

m∑
l=0

b s2 c∑
z=l

(−1)m−l
Γ( s+1

2 −m)
4mm!(s− 2m)!

(
m

l

)
× λn,k,k−1,s−2m,m−l,z−lQ

zφ̂r,s−2z,0
n−1 (K,β).

Changing the order of summation gives∫
A(n,k)

φ̂r,s,0k−1 (K ∩ E, β ∩ E)µk(dE)

= γn,k,k−1
π
n−k

2 s!
Γ(n−k+s+1

2 )

b s2 c∑
z=0

z∑
l=0

b s2 c∑
m=l

(−1)m−l
Γ( s+1

2 −m)
4mm!(s− 2m)!

(
m

l

)
× λn,k,k−1,s−2m,m−l,z−lQ

zφ̂r,s−2z,0
n−1 (K,β). (8.13)

The coefficients of the tensorial curvature measures on the right-hand side of (8.13) do not
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depend on the choice of r ∈ N0 or β ∈ B(Rn). Thus, we can set

∫
A(n,k)

φ̂r,s,0k−1 (K ∩ E, β ∩ E)µk(dE) =
b s2 c∑
z=0

κn,k,s,z Q
zφ̂r,s−2z,0

n−1 (K,β),

where the coefficient κn,k,s,z is uniquely defined in the obvious way. By choosing r = 0 and
β = Rn, we can compare this to the Crofton formula for translation invariant Minkowski
tensors in [15]. In fact, since the measures Qzφ̂0,s−2z,0

n−1 (K,Rn), z ∈ {0, . . . , bs/2c} \
{(s− 1)/2}, are linearly independent, we can conclude from the Crofton formula for
the translation invariant Minkowski tensors in [15, Theorem 3] that

κn,k,s,z = k − 1
n− 1

π
n−k

2 Γ(n2 )
Γ(k2 )Γ(n−k2 )

Γ( s+1
2 )Γ( s2 + 1)

Γ(n−k+s+1
2 )Γ(n+s−1

2 )
Γ(n−k2 + z)Γ(k+s−1

2 − z)
Γ( s2 − z + 1)z!

for z 6= (s− 1)/2. If z = (s− 1)/2, then φ̂0,s−2z,0
n−1 (K,Rn) = Φ̂0,1

n−1(K) = 0, and hence we
do not get any information about the corresponding coefficient from the global theorem.
Consequently, we have to calculate κn,k,s,(s−1)/2 directly, which is what we do later in the
proof.
But first we demonstrate that the coefficients of the tensorial curvature measures in

(8.13) can be determined also by a direct calculation if s is even. In fact, we obtain

S :=
b s2 c∑
m=l

(−1)m−l
Γ( s+1

2 −m)
4mm!(s− 2m)!

(
m

l

)
λn,k,k−1,s−2m,m−l,z−l

= (k − 1)
b s2 c∑
m=l

m∑
p=l

b s2 c−p∑
q=(z−p)+

(−1)m+l+p+q−z Γ( s+1
2 −m)

4mm!(s− 2m)!

×
(
m

l

)(
m− l
p− l

)(
s− 2p

2q

)(
p+ q − l
z − l

)
Γ(q + 1

2)

×
Γ(k+s+1

2 − p− q)
Γ(n+s+1

2 − p)
Γ(k−1

2 + p− l)Γ(n−k2 + q)
Γ(n−1

2 + p+ q − l)
.

Changing the order of summation gives

S = (k − 1)
b s2 c∑
p=l

b s2 c−p∑
q=(z−p)+

(−1)l+q−z
(
s− 2p

2q

)(
p+ q − l
z − l

)
Γ(q + 1

2)

×
Γ(k+s+1

2 − p− q)
Γ(n+s+1

2 − p)
Γ(k−1

2 + p− l)Γ(n−k2 + q)
Γ(n−1

2 + p+ q − l)

×
b s2 c∑
m=p

(−1)m+p
(
m

l

)(
m− l
p− l

)
Γ( s+1

2 −m)
4mm!(s− 2m)! .
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We denote the sum with respect to m by T and conclude

T =
b s2 c∑
m=p

(−1)m+p
(
m

l

)(
m− l
p− l

)
Γ( s+1

2 −m)
4mm!(s− 2m)!

= 1
l!(p− l)!

b s2 c∑
m=p

(−1)m+p Γ( s+1
2 −m)

4m (m− p)!(s− 2m)! .

An index shift yields

T = 1
2sl!(p− l)!

b s2 c−p∑
m=0

(−1)m
2s−2p−2mΓ( s+1

2 − p−m)
m!(s− 2p− 2m)! .

Legendre’s duplication formula gives

T =
√
π

2sl!(p− l)!

b s2 c−p∑
m=0

(−1)m 1
m!Γ( s2 − p−m+ 1) .

If s is even, the binomial theorem yields

T =
√
π

2sl!(p− l)!( s2 − p)!

s
2−p∑
m=0

(−1)m
(
s
2 − p
m

)

=
√
π

2sl!(p− l)!( s2 − p)!
(1− 1)

s
2−p

= 1{p = s

2}
√
π

2sl!( s2 − l)!
.

Hence, we obtain

S = (k − 1)
√
π

2sl!( s2 − l)!

0∑
q=(z− s2 )+

(−1)l+q−z
(
s
2 + q − l
z − l

)
Γ(q + 1

2)

×
Γ(k+1

2 − q)
Γ(n+1

2 )
Γ(k+s−1

2 − l)Γ(n−k2 + q)
Γ(n+s−1

2 + q − l)

= (−1)l−z
(k − 1)

√
πΓ(1

2)
2sl!( s2 − l)!

(
s
2 − l
z − l

)
Γ(k+1

2 )
Γ(n+1

2 )
Γ(k+s−1

2 − l)Γ(n−k2 )
Γ(n+s−1

2 − l)

= (−1)l−z
Γ(k+1

2 )Γ(n−k2 )
Γ(n+1

2 )
(k − 1)π

2sl!( s2 − l)!

(
s
2 − l
z − l

)
Γ(k+s−1

2 − l)
Γ(n+s−1

2 − l)
.

Furthermore, Legendre’s duplication formula yields

s!S = (−1)l−z
(k − 1)

√
πΓ(k+1

2 )Γ(n−k2 )Γ( s+1
2 )

Γ(n+1
2 )

(
s
2
l

)(
s
2 − l
z − l

)
︸ ︷︷ ︸

=( s2z )(zl)

Γ(k+s−1
2 − l)

Γ(n+s−1
2 − l)

.
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Thus, we obtain∫
A(n,k)

φ̂r,s,0k−1 (K ∩ E, β ∩ E)µk(dE)

= γn,k,k−1
π
n−k+1

2

Γ(n−k+s+1
2 )

(k − 1)Γ(k+1
2 )Γ(n−k2 )Γ( s+1

2 )
Γ(n+1

2 )

s
2∑

z=0

(
s
2
z

)

×
z∑
l=0

(−1)l−z
(
z

l

)
Γ(k+s−1

2 − l)
Γ(n+s−1

2 − l)
Qzφ̂r,s−2z,0

n−1 (K,β).

From relation (B.1′) we conclude∫
A(n,k)

φ̂r,s,0k−1 (K ∩ E, β ∩ E)µk(dE)

= γn,k,k−1
π
n−k+1

2

Γ(n−k+s+1
2 )

(k − 1)Γ(k+1
2 )Γ( s+1

2 )
Γ(n+1

2 )Γ(n+s−1
2 )

×
s
2∑

z=0

(
s
2
z

)
Γ(k+s−1

2 − z)Γ(n−k2 + z)Qzφ̂r,s−2z,0
n−1 (K,β).

With

γn,k,k−1 =
(
n− 2
k − 1

)
Γ(n−k+1

2 )
2π = (n− 2)!

(n− k − 1)!(k − 1)!
Γ(n−k+1

2 )
2π

we get ∫
A(n,k)

φ̂r,s,0k−1 (K ∩ E, β ∩ E)µk(dE)

= (n− 2)!
Γ(n+1

2 )
Γ(n−k+1

2 )
(n− k − 1)!

Γ(k+1
2 )

(k − 2)!
π
n−k−1

2 Γ( s+1
2 )

2Γ(n+s−1
2 )Γ(n−k+s+1

2 )

×
s
2∑

z=0

(
s
2
z

)
Γ(k+s−1

2 − z)Γ(n−k2 + z)Qzφ̂r,s−2z,0
n−1 (K,β).

Legendre’s formula applied three times gives∫
A(n,k)

φ̂r,s,0k−1 (K ∩ E, β ∩ E)µk(dE)

= k − 1
n− 1

Γ(n2 )
Γ(k2 )Γ(n−k2 )

π
n−k

2 Γ( s+1
2 )

Γ(n+s−1
2 )Γ(n−k+s+1

2 )

×
s
2∑

z=0

(
s
2
z

)
Γ(k+s−1

2 − z)Γ(n−k2 + z)Qzφ̂r,s−2z,0
n−1 (K,β),

which confirms the coefficients for even s.
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On the other hand, if s is odd, then Lemma B.3 yields

T =
√
π

2sl!(p− l)!

s−1
2 −p∑
m=0

(−1)m 1
m!Γ( s2 − p−m+ 1)

=
√
π

2sl!(p− l)!

( s+1
2 −p∑
m=0

(−1)m 1
m!Γ( s2 − p−m+ 1) − (−1)

s+1
2 −p

1
( s+1

2 − p)!Γ(1
2)

)

=
√
π

2sl!(p− l)!

(
(−1)

s+1
2 −p

1
√
π(−s+ 2p)( s+1

2 − p)!
− (−1)

s+1
2 −p

1
√
π( s+1

2 − p)!

)
,

which can be further simplified as

T = (−1)
s−1

2 −p
√
π

2sl!(p− l)!
1

√
π( s+1

2 − p)!
( 1
s−2p + 1)

= (−1)
s−1

2 −p
1

2s−1(s− 2p)( s−1
2 − p)!l!(p− l)!

= (−1)
s−1

2 −p
2Γ( s2 + 1)
√
π(s− 2p)s!

(
s−1

2
p

)(
p

l

)
.

Hence, we obtain

s!
z∑
l=0

S =
2(k − 1)Γ( s2 + 1)

√
π

z∑
l=0

s−1
2∑
p=l

s−1
2 −p∑

q=(z−p)+

(−1)
s−1

2 +l+p+q−z 1
(s− 2p)

×
(
s−1

2
p

)(
p

l

)(
s− 2p

2q

)(
p+ q − l
z − l

)
Γ(q + 1

2)

×
Γ(k+s+1

2 − p− q)
Γ(n+s+1

2 − p)
Γ(k−1

2 + p− l)Γ(n−k2 + q)
Γ(n−1

2 + p+ q − l)
.

This yields∫
A(n,k)

φ̂r,s,0k−1 (K ∩ E, β ∩ E)µk(dE)

= 2(k − 1)γn,k,k−1
π
n−k−1

2 Γ( s2 + 1)
Γ(n−k+s+1

2 )

s−1
2∑

z=0
Qzφ̂r,s−2z,0

n−1 (K,β)

×
z∑
l=0

s−1
2∑
p=l

s−1
2 −p∑

q=(z−p)+

(−1)
s−1

2 +l+p+q−z 1
(s− 2p)

(
s−1

2
p

)(
p

l

)(
s− 2p

2q

)

×
(
p+ q − l
z − l

)
Γ(q + 1

2)
Γ(k+s+1

2 − p− q)
Γ(n+s+1

2 − p)
Γ(k−1

2 + p− l)Γ(n−k2 + q)
Γ(n−1

2 + p+ q − l)
.
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With

γn,k,k−1 =
(
n− 2
k − 1

)
Γ(n−k+1

2 )
2π = (n− 2)!

(n− k − 1)!(k − 1)!
Γ(n−k+1

2 )
2π

we get∫
A(n,k)

φ̂r,s,0k−1 (K ∩ E, β ∩ E)µk(dE)

= (n− 2)!
(n− k − 1)!(k − 2)!

π
n−k−3

2 Γ(n−k+1
2 )Γ( s2 + 1)

Γ(n−k+s+1
2 )

s−1
2∑

z=0
Qzφ̂r,s−2z,0

n−1 (K,β)

×
z∑
l=0

s−1
2∑
p=l

s−1
2 −p∑

q=(z−p)+

(−1)
s−1

2 +l+p+q−z 1
(s− 2p)

(
s−1

2
p

)(
p

l

)(
s− 2p

2q

)(
p+ q − l
z − l

)

× Γ(q + 1
2)

Γ(k+s+1
2 − p− q)

Γ(n+s+1
2 − p)

Γ(k−1
2 + p− l)Γ(n−k2 + q)
Γ(n−1

2 + p+ q − l)
.

We denote the threefold sum with respect to l, p and q by R. Hence, R multiplied with
the factor in front of the sum with respect to z equals κn,k,s,z. A direct calculation for R
still remains an open task. However, for the proof this is not required.

Finally, if s is odd we calculate the only so far unknown coefficient κn,k,s,(s−1)/2. For z =
(s− 1)/2 we see that the sum over q only contains one summand, namely q = (s− 1)/2− p.
Hence, we obtain

R = Γ(k2 + 1)
z∑
l=0

s−1
2∑
p=l

(−1)
s−1

2 +l
(
s−1

2
p

)(
p

l

)
Γ( s2 − p)

Γ(k−1
2 + p− l)Γ(n−k+s−1

2 − p)
Γ(n+s+1

2 − p)Γ(n+s
2 − l − 1)

= Γ(k2 + 1)
s−1

2∑
p=0

(−1)
s−1

2

(
s−1

2
p

)
Γ( s2 − p)

Γ(n−k+s−1
2 − p)

Γ(n+s+1
2 − p)

p∑
l=0

(−1)l
(
p

l

)
Γ(k−1

2 + p− l)
Γ(n+s

2 − l − 1)
.

Then relation (B.1′) yields

R =
Γ(k2 + 1)Γ(k−1

2 )Γ(n−k+s−1
2 )

Γ(n+s
2 − 1)

s−1
2∑

p=0
(−1)

s−1
2 +p

(
s−1

2
p

)
Γ( s2 − p)

Γ(n+s+1
2 − p)

=
Γ(k2 + 1)Γ(k−1

2 )Γ(n−k+s−1
2 )

Γ(n+s
2 − 1)

s−1
2∑

p=0
(−1)p

(
s−1

2
p

)
Γ(1

2 + p)
Γ(n2 + 1 + p) .

Again, we apply relation (B.1′) and obtain

R =
√
π

Γ(k2 + 1)Γ(k−1
2 )

Γ(n+1
2 )

Γ(n+s
2 )Γ(n−k+s−1

2 )
Γ(n+s

2 − 1)Γ(n+s+1
2 )

.
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Thus, we conclude

κn,k,s, s−1
2

= (n− 2)!
(n− k − 1)!(k − 2)!

π
n−k−3

2 Γ(n−k+1
2 )Γ( s2 + 1)

Γ(n−k+s+1
2 )

R

= π
n−k−2

2
(n− 2)!
Γ(n+1

2 )
Γ(k2 + 1)Γ(k−1

2 )
(k − 2)!

Γ(n−k+1
2 )

(n− k − 1)!
(n+ s− 2)Γ( s2 + 1)

(n− k + s− 1)Γ(n+s+1
2 )

.

Applying three times Legendre’s formula gives

κn,k,s, s−1
2

= π
n−k−1

2
2k(n+ s− 2)

(n− 1)(n− k + s− 1)
Γ(n2 )

Γ(n−k2 )
Γ( s2 + 1)
Γ(n+s+1

2 )
,

which completes the argument.

Next we prove Theorem 8.12. As in the previous proof, one can compare the Crofton
integral to the global one obtained in [15, Theorem 3]. However, we deduce it directly from
Theorem 8.3.

Proof of Theorem 8.12. Lemma 8.17 yields

∫
A(n,1)

φ̂r,s,00 (K ∩ E, β ∩ E)µ1(dE) = π
n−1

2 s!
Γ(n+s

2 )

b s2 c∑
m=0

m∑
l=0

(−1)m−l
(
m

l

)
Γ( s+1

2 −m)
4mm!(s− 2m)!Q

l

×
∫

A(n,1)
Q(E)m−lφ̂r,s−2m,0

0,E (K ∩ E, β ∩ E)µ1(dE).

If s ∈ N0 is even, we conclude from Theorem 8.3∫
A(n,1)

φ̂r,s,00 (K ∩ E, β ∩ E)µ1(dE)

= π
n−1

2 s!
Γ(n+s

2 )

s
2∑

m=0

m∑
l=0

(−1)m−l
(
m

l

)
Γ( s+1

2 −m)
4mm!(s− 2m)!

×
Γ(n2 )Γ( s+1

2 − l)
πΓ(n+s+1

2 − l)

s
2−l∑
z=0

(−1)z
(
s
2 − l
z

)
1

1− 2z Q
s
2−zφ̂r,2z,0n−1 (K,β).

A change of the order of summation yields∫
A(n,1)

φ̂r,s,00 (K ∩ E, β ∩ E)µ1(dE)

= π
n−1

2 s!
Γ(n+s

2 )

s
2∑
l=0

s
2∑

m=l
(−1)m−l

(
m

l

)
Γ( s+1

2 −m)
4mm!(s− 2m)!

×
Γ(n2 )Γ( s+1

2 − l)
πΓ(n+s+1

2 − l)

s
2−l∑
z=0

(−1)z
(
s
2 − l
z

)
1

1− 2z Q
s
2−zφ̂r,2z,0n−1 (K,β).
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Legendre’s duplication formula gives for the sum with respect to m, which we denote by S,

S =
√
π

2s

s
2∑

m=l
(−1)m−l

(
m

l

)
1

m!Γ( s2 −m+ 1)

=
√
π

2sl!

s
2−l∑
m=0

(−1)m 1
m!Γ( s2 − l −m+ 1) .

As seen before, we conclude from the binomial theorem

S =
√
π

2s( s2 − l)!l!

s
2−l∑
m=0

(−1)m
(
s
2 − l
m

)

= 1{l = s

2}
Γ( s+1

2 )
s! .

Hence, we obtain ∫
A(n,1)

φ̂r,s,00 (K ∩ E, β ∩ E)µ1(dE)

=
π
n−3

2 Γ( s+1
2 )

Γ(n+s
2 )

Γ(n2 )Γ(1
2)

Γ(n+1
2 )

Q
s
2 φ̂r,0,0n−1 (K,β)

= π
n−2

2
Γ(n2 )Γ( s+1

2 )
Γ(n+s

2 )Γ(n+1
2 )

Q
s
2 φ̂r,0,0n−1 (K,β).

On the other hand, if s ∈ N is odd, we conclude from Theorem 8.3∫
A(n,1)

φ̂r,s,00 (K ∩ E, β ∩ E)µ1(dE)

=
π
n−2

2 Γ(n2 )s!
Γ(n+s

2 )

s−1
2∑

m=0

m∑
l=0

(−1)m−l
Γ( s+1

2 −m)
4mm!(s− 2m)!

(
m

l

)
Γ( s2 − l + 1)
Γ(n+s+1

2 − l)
Q

s−1
2 φ̂r,1,0n−1 (K,β).

A change of the order of summation yields∫
A(n,1)

φ̂r,s,00 (K ∩ E, β ∩ E)µ1(dE)

=
π
n−2

2 Γ(n2 )s!
Γ(n+s

2 )

s−1
2∑
l=0

s−1
2∑

m=l
(−1)m−l

Γ( s+1
2 −m)

4mm!(s− 2m)!

(
m

l

)
Γ( s2 − l + 1)
Γ(n+s+1

2 − l)
Q

s−1
2 φ̂r,1,0n−1 (K,β).

Legendre’s duplication formula gives for the sum with respect to m, which we denote by S,

S =
√
π

2sl!

s−1
2 −l∑
m=0

(−1)m 1
m!Γ( s2 − l −m+ 1) .
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Then Lemma B.3 yields

S =
√
π

2sl!

( s+1
2 −l∑
m=0

(−1)m 1
m!Γ( s2 − l −m+ 1) − (−1)

s+1
2 −l

1
( s+1

2 − l)!Γ(1
2)

)

=
√
π

2sl!

(
(−1)

s−1
2 −l

1
√
π(s− 2l)( s+1

2 − l)!
− (−1)

s+1
2 −l

1
√
π( s+1

2 − l)!

)
= (−1)

s−1
2 −l

1
2s−1l!(s− 2l)( s−1

2 − l)!
.

Hence, we obtain∫
A(n,1)

φ̂r,s,00 (K ∩ E, β ∩ E)µ1(dE)

=
π
n−2

2 Γ(n2 )s!
2sΓ(n+s

2 )

s−1
2∑
l=0

(−1)
s−1

2 −l
1

l!( s−1
2 − l)!

Γ( s2 − l)
Γ(n+s+1

2 − l)
Q

s−1
2 φ̂r,1,0n−1 (K,β)

=
π
n−2

2 Γ(n2 )s!
2sΓ( s+1

2 )Γ(n+s
2 )

s−1
2∑
l=0

(−1)l
(
s−1

2
l

)
Γ(l + 1

2)
Γ(n+2

2 + l)
Q

s−1
2 φ̂r,1,0n−1 (K,β).

Then relation (B.1′) gives∫
A(n,1)

φ̂r,s,00 (K ∩ E, β ∩ E)µ1(dE)

= s!
2sΓ( s+1

2 )
π
n−1

2 Γ(n2 )
Γ(n+s+1

2 )Γ(n+1
2 )

Q
s−1

2 φ̂r,1,0n−1 (K,β).

Now the assertion follows from Legendre’s duplication formula.

Finally, we show that the Crofton formula has a very simple form in the ψ-representation
of tensorial curvature measures, which is stated in Corollary 8.13.

Proof of Corollary 8.13. The cases s ∈ {0, 1} are checked directly, hence we can assume
s ≥ 2 in the following. Using (8.6) we get∫

A(n,k)
ψ̂r,s,0k−1 (K ∩ E, β ∩ E)µk(dE)

= 1√
π

b s2 c∑
j=0

(−1)j
(
s

2j

)
Γ(j + 1

2)Γ(n2 + s− j − 1)
Γ(n2 + s− 1) Qj

×
∫

A(n,k)
φ̂r,s−2j,0
k−1 (K ∩ E, β ∩ E)µk(dE). (8.14)
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Then, for k 6= 1, Theorem 8.11 yields∫
A(n,k)

ψ̂r,s,0k−1 (K ∩ E, β ∩ E)µk(dE)

= 1√
π

b s2 c∑
j=0

(−1)j
(
s

2j

)
Γ(j + 1

2)Γ(n2 + s− j − 1)
Γ(n2 + s− 1)

×
b s2 c−j∑
z=0

κn,k,s−2j,z Q
z+jφ̂r,s−2j−2z,0

n−1 (K,β)

= 1√
π

b s2 c∑
j=0

b s2 c∑
z=j

(−1)j
(
s

2j

)
Γ(j + 1

2)Γ(n2 + s− j − 1)
Γ(n2 + s− 1)

× κn,k,s−2j,z−j Q
zφ̂r,s−2z,0

n−1 (K,β),

where

κn,k,s−2j,z−j = k − 1
n− 1

π
n−k

2 Γ(n2 )
Γ(k2 )Γ(n−k2 )

Γ( s+1
2 − j)Γ( s2 − j + 1)

Γ(n−k+s+1
2 − j)Γ(n+s−1

2 − j)

×
Γ(n−k2 + z − j)Γ(k+s−1

2 − z)
Γ( s2 − z + 1)(z − j)! ,

if z 6= (s − 1)/2. On the other hand, if z = (s − 1)/2, then the coefficient needs to be
multiplied by the factor k(n+s−2j−2)

(k−1)(n+s−2j−1) (see the comment after Theorem 8.11).
Applying Legendre’s duplication formula twice, we thus obtain∫

A(n,k)
ψ̂r,s,0k−1 (K ∩ E, β ∩ E)µk(dE)

= k − 1
n− 1

π
n−k+1

2 Γ(n2 )
Γ(k2 )Γ(n−k2 )

s!
2s

b s2 c∑
z=0

Γ(k+s−1
2 − z)

z!Γ(n2 + s− 1)Γ( s2 − z + 1)Q
zφ̂r,s−2z,0

n−1 (K,β)

×
z∑
j=0

(−1)j
(
z

j

)
Γ(n2 + s− j − 1)Γ(n−k2 + z − j)

Γ(n−k+s+1
2 − j)Γ(n+s−1

2 − j)

×
(
1− 1{z = s−1

2 }
(
1− k(n+s−2j−2)

(k−1)(n+s−2j−1)

))
,

Denoting the sum with respect to j by Sz, an application of Lemma B.4 shows that

Sz =
z∑
j=0

(−1)j
(
z

j

)
Γ(n2 + s− j − 1)Γ(n−k2 + z − j)

Γ(n−k+s+1
2 − j)Γ(n+s−1

2 − j)

= (−1)z
Γ(n−k2 )Γ( s+1

2 )Γ(k+s−1
2 )Γ(n2 + s− z − 1)

Γ(n−k+s+1
2 )Γ(n+s−1

2 )Γ( s+1
2 − z)Γ(k+s−1

2 − z)
, (8.15)

for z 6= (s − 1)/2 and k > 1. On the other hand, for z = (s− 1)/2 =: t, we obtain from
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Lemma B.4 and Lemma B.5 (since s > 1 and thus t > 0)

St = k
k−1

t∑
j=0

(−1)j
(
t

j

)(
1− 1

n+2t−2j

) Γ(n2 + 2t− j)Γ(n−k2 + t− j)
Γ(n−k2 + t− j + 1)Γ(n2 + t− j)

= k
k−1

( t∑
j=0

(−1)j
(
t

j

)
Γ(n2 + 2t− j)Γ(n−k2 + t− j)

Γ(n−k2 + t− j + 1)Γ(n2 + t− j)

−
t∑

j=0
(−1)j

(
t

j

)
1

n−k
2 +t−j

Γ(n2 + 2t− j)
Γ(n2 + t− j + 1)

)

= (−1)t
Γ(n−k2 )Γ(t+ 1)Γ(k2 + t)

Γ(k2 )Γ(n−k2 + t+ 1)
,

which coincides with (8.15) for z = (s− 1)/2.
Thus, we have∫

A(n,k)
ψ̂r,s,0k−1 (K ∩ E, β ∩ E)µk(dE)

= k − 1
n− 1

π
n−k+1

2 Γ(n2 )Γ(k+s−1
2 )

Γ(k2 )Γ(n−k+s+1
2 )Γ(n+s−1

2 )
s!Γ( s+1

2 )
2s

×
b s2 c∑
z=0

(−1)z
Γ(n2 + s− z − 1)

z!Γ(n2 + s− 1)Γ( s2 − z + 1)Γ( s+1
2 − z)

Qzφ̂r,s−2z,0
n−1 (K,β).

Applying Legendre’s duplication formula twice, we get∫
A(n,k)

ψ̂r,s,0k−1 (K ∩ E, β ∩ E)µk(dE)

= k − 1
n− 1

π
n−k

2 Γ(n2 )Γ(k+s−1
2 )Γ( s+1

2 )
Γ(k2 )Γ(n−k+s+1

2 )Γ(n+s−1
2 )

× 1√
π

b s2 c∑
z=0

(−1)z
(
s

2z

)
Γ(z + 1

2)Γ(n2 + s− z − 1)
Γ(n2 + s− 1) Qzφ̂r,s−2z,0

n−1 (K,β).

With (8.6) we obtain the assertion for k 6= 1.
On the other hand, if k = 1, then Theorem 8.12 yields for (8.14) that∫

A(n,1)
ψ̂r,s,00 (K ∩ E, β ∩ E)µk(dE)

=
π
n−3

2 Γ(n2 )
Γ(n+1

2 )Γ(n2 + s− 1)

b s2 c∑
j=0

(−1)j
(
s

2j

)
Γ(j + 1

2)

×
Γ(n2 + s− j − 1)Γ(b s+1

2 c − j + 1
2)

Γ(n2 + b s+1
2 c − j)

Qb
s
2 cφ̂

r,s−2b s2 c,0
n−1 (K,β).

Denoting the sum with respect to j by S and applying Legendre’s duplication formula
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three times, we conclude that

S =
√
πΓ(b s+1

2 c+ 1
2)
b s2 c∑
j=0

(−1)j
(
b s2c
j

)
Γ(n2 + s− j − 1)
Γ(n2 + b s+1

2 c − j)
.

Since s ≥ 2, relation (B.1′) yields S = 0 due to (2.2), and hence the assertion.





APPENDIX A

Basic Integral Formulae

In this chapter, we recall various integral formulae, which are known for some time and
have been applied several times in different works on integral geometry.
A basic tool in this work is the following integral geometric transformation formula,

which is a special case of [85, Theorem 7.2.6].

Lemma A.1. Let 0 ≤ j ≤ k ≤ n be integers, F ∈ G(n, k), and let f : G(n, n− k+ j)→ R
be integrable. Then∫

G(n,n−k+j)
f(L) νn−k+j(dL) = dn,j,k

∫
G(F,j)

∫
G(U,n−k+j)

[F,L]jf(L) νUn−k+j(dL) νFj (dU)

with

dn,j,k :=
k−j∏
i=1

Γ( i2)Γ(n−k+j+i
2 )

Γ( j+i2 )Γ(n−k+i
2 )

.

The preceding lemma yields the next result, which is again an integral geometric
transformation formula (which is required in Chapter 4 and Chapter 8). It can be used to
carry out an integration over linear Grassmann spaces recursively. Here we (implicitly)
require that n ≥ 2.

Lemma A.2 ([51, Corollary 4.2]). Let u ∈ Sn−1 and let h : G(n, k)→ T be an integrable
function, where and 0 < k < n. Then∫

G(n,k)
h(L) νk(dL) = ωk

2ωn

∫
G(u⊥,k−1)

∫ 1

−1

∫
U⊥∩u⊥∩Sn−1

|t|k−1(1− t2)
n−k−2

2

× h
(
lin
{
U, tu+

√
1− t2w

})
Hn−k−1(dw) dt νu⊥k−1(dU).
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The following lemmas can be derived from Lemma A.2 (for proofs see [84, (24)], [51,
Lemma 4.3, Proposition 4.5, and Corollary 4.6]).

Lemma A.3 ([84, (24)]). Let s ∈ N0 and n ≥ 1. Then∫
Sn−1

usHn−1(du) = 1{s even} 2ωn+s
ωs+1

Q
s
2 .

The next lemma is used in the proofs of Lemma A.5 below and Lemma 4.5 in Chapter 4.

Lemma A.4 ([51, Lemma 4.3]). Let i, k ∈ N0 with k ≤ n and n ≥ 1. Then

∫
G(n,k)

Q(L)i νk(dL) =
Γ(n2 )Γ(k2 + i)
Γ(n2 + i)Γ(k2 )

Qi.

In Lemma A.4, we interpret the coefficient of the tensor on the right-hand side of the
equation as 0 if k = 0 and i 6= 0, and as 1 if k = i = 0. This follows from relation (2.2) and
fits the value of the integral on the right.
The following lemma extends Lemma A.4 (but the latter is used in the proof of

Lemma A.5). It will be needed in the proof of Proposition 4.9 in Chapter 4 (of which
Lemma A.5 in the case a = 2 is a special case).

Lemma A.5 ([51, Proposition 4.5]). Let a, i ∈ N0, k, r ∈ {0, . . . , n} with k + r ≥ n ≥ 1,
and let F ∈ G(n, r). Then

∫
G(n,k)

[F,L]aQ(L)i νk(dL) = en,k,r,a
Γ(n+a

2 )
Γ(n+a

2 + i)Γ(k+a
2 )

i∑
β=0

(−1)β
(
i

β

)
Γ(k+a

2 + i− β)

×
Γ(n−k2 + β)Γ(a2 + 1)Γ( r2)

Γ(n−k2 )Γ(a2 + 1− β)Γ( r2 + β)
Qi−βQ(F )β

with

en,k,r,a :=
n−r−1∏
p=0

Γ(n−p2 )Γ(k−p+a2 )
Γ(n−p+a2 )Γ(k−p2 )

.

Proof. Although this lemma is stated in [51, Proposition 4.5] only for k, r ≥ 1, it is easy to
check that it remains true for k = 0 (and r = n) and for r = 0 (and k = n) with n ≥ 1 as
well as for n = k = r = 1.

The only non-trivial case that has to be checked concerns the assertion for k = 0, r = n

and i ≥ 1, where we have to show that the right side is the zero tensor. For this we
can assume that a > 0, since the case a = 0 is covered by Lemma A.4. Up to irrelevant
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constants, the factor on the right side equals

i∑
β=0

(−1)β
(
i

β

)
Γ(a2 + i− β)

Γ(n2 + β)
Γ(a2 + 1− β)Γ(n2 + β)

= (−1)i
i∑

β=0
(−1)β

(
i

β

)
Γ(a2 + β)

Γ(a2 + 1− i+ β) = 0,

which follows from relation (B.1′), since Γ(1− i)−1 = 0 for i ≥ 1.

Interestingly, the sum representation of the integral in Lemma A.5 simplifies significantly
for the special choice of a = 2, as in that case the factor Γ(a2 + 1− β)−1 equals 0 for all
β > 1. Therefore, we state this result in a separate lemma, even though it is an immediate
consequence of the preceding lemma.

Lemma A.6 ([51, Corollary 4.6]). Let a, i ∈ N0, k, r ∈ {0, . . . , n} with k+ r ≥ n ≥ 1, and
let F ∈ G(n, r). Then

∫
G(n,k)

[F,L]2Q(L)i νk(dL) = r!k!
n!(k + r − n)!

Γ(n2 + 1)Γ(k2 + i)
Γ(n2 + i+ 1)Γ(k2 + 1)

×
(
(k2 + i)Qi + ik−nr Qi−1Q(F )

)
.

In Lemma A.6, we interpret the second summand on the right-hand side of the equation
as 0, if i = 0, which is consistent with [51, Lemma 4.4]. If r = 0, we also interpret the
second summand as 0 and the integral on the left equals Qi. If k = 0, we interpret the
right side as 1{s = 0}, since we read Γ(k2 + i)(k2 + i) for i = 0.
We conclude this chapter with the following integral formula (see [51, p. 503]), which

is a special case of [72, Theorem 3.1] and is required in the proof of the intrinsic Crofton
formulae.

Lemma A.7. Let P ∈ Pn be a polytope and 0 ≤ j < k < n. Let further L ∈ G(n, k) and
g : Rn × (Sn−1 ∩ L)→ T be a measurable bounded function. Then∫

L⊥

∫
Lt×(L∩Sn−1)

g(x, u) Λ(Lt)
j (P ∩ Lt, d(x, u))Hn−k(dt)

= 1
ωk−j

∑
F∈Fn−k+j(P )

∫
F×(N(P,F )∩Sn−1)

g(x, πL(u))‖pL(u)‖j−k[F,L]2Hn−1(d(x, u)).





APPENDIX B

Explicit Sum Expressions

In this chapter, we establish closed form expressions for sums which are required in the
preceding parts. All of them can be proved using special relations obtained by application
of Zeilberger’s algorithm (see [70]).

Remark. The results in this chapter have already been published or submitted in different
works. Lemma B.1 and Lemma B.2 can be found in Kinematic Formulae for Tensorial
Curvature Measures, a joint work with Daniel Hug, submitted in 2016 (see [53]). Lemma B.3,
Lemma B.4 and Lemma B.5 can be found in Crofton Formulae for Tensor-Valued Curvature
Measures, a joint work with Daniel Hug in the lecture notes Tensor Valuations and their
Applications in Stochastic Geometry and Imaging edited by Kiderlen and Vedel Jensen (see
[54], which is Chapter 4 in [58]).

Lemma B.1. Let q ∈ N0, b, c ∈ R. Then

q∑
y=0

(
q

y

)
1

Γ(b+ y)Γ(c− y) = Γ(b+ c+ q − 1)
Γ(c)Γ(b+ q)Γ(b+ c− 1) . (B.1)

In this work, we often use a consequence of Lemma B.1: With (2.2) we obtain for a > 0
and b ∈ R the relation

q∑
y=0

(−1)y
(
q

y

)
Γ(a+ y)
Γ(b+ y) = Γ(a)Γ(b− a+ q)

Γ(b+ q)Γ(b− a) , (B.1′)

which can be found as Lemma 15.6.4 in [1] under the additional assumption a < b (and
thus b > 0). Since this case is not sufficient for our purposes, we deduce the current more
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general version via Zeilberger’s algorithm.

Proof. For the proof, we can assume that b, c /∈ Z. The general case then follows from a
continuity argument. We set

F (q, y) :=
(
q

y

)
1

Γ(b+ y)Γ(c− y) , q, y ∈ N0.

Then we have F (q, y) = 0 if y /∈ {0, . . . , q}. We set

f(q) :=
q∑

y=0
F (q, y), q ∈ N0.

Furthermore, for q, y ∈ N0 we define

G(q, y) :=



y(b+y−1)
q−y+1 F (q, y), for y ∈ {0, . . . , q},

G(q, q)− (b+ q)F (q + 1, q)

+(b+ c+ q − 1)F (q, q), for y = q + 1,

0, for y ≥ q + 2.

A direct calculation yields

−(b+ q − 1)F (q, y) + (b+ c+ q − 2)F (q − 1, y) = G(q − 1, y + 1)−G(q − 1, y)

for y ∈ N0 and q ∈ N. Summing this relation for all y ∈ {0, . . . , q} gives

−(b+ q − 1)f(q) + (b+ c+ q − 2)f(q − 1) = 0,

and thus recursively

f(q) = (b+ c+ q − 3)(b− a+ q − 2)
(b+ q − 2)(b+ q − 1) f(q − 2)

...

= (b+ c− 1) · · · (b+ c+ q − 2)
b · · · (b+ q − 1) f(0)

= Γ(b+ c+ q − 1)Γ(b)
Γ(b+ q)Γ(b+ c− 1)f(0).

With f(0) = 1
Γ(b)Γ(c) we obtain the assertion.

The next two lemmas can also be proved with the help of Zeilberger’s algorithm. We,
however, show the closed sum expressions in a shorter, more direct way.
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Lemma B.2. Let α, β, γ ∈ N, 0 < j < n. Then

s∑
i=2x+α

(−1)i+α
(
s

i

)(
i

2x

)(
i− 2x
α

)(
1− z2

)i
=
(
s

2x

)(
s− 2x
α

)
z2s−4x−2α(1− z2)2x+α.

Proof. We start with an index shift

s∑
i=2x+α

(−1)i+α
(
s

i

)(
i

2x

)(
i− 2x
α

)(
1− z2

)i
=
(
1− z2

)2x+α s−2x−α∑
i=0

(
s

i+ 2x+ α

)(
i+ 2x+ α

2x

)(
i+ α

α

)(
z2 − 1

)i
.

It is easy to check that(
s

i+ 2x+ α

)(
i+ 2x+ α

2x

)(
i+ α

α

)
=
(
s

2x

)(
s− 2x
α

)(
s− 2x− α

i

)
.

Then the binomial theorem yields

s−2x−α∑
i=0

(
s− 2x− α

i

)(
z2 − 1

)i
= z2s−4x−2α,

and thus the assertion.

Lemma B.3. Let a ∈ N0. Then

a∑
q=0

(−1)q

Γ(a− q + 1
2)q!

= (−1)a√
π(1− 2a)a! .

Proof. For the sum S on the left-hand side of the asserted equation, we obtain

S =
a∑
q=0

(
2q

2a− 1
(−1)q

Γ(a− q + 1
2)q!

+ 2q + 2
2a− 1

(−1)q

Γ(a− q − 1
2)(q + 1)!

)
,

where we use that (−1
2)Γ(−1

2) =
√
π. Due to cancellation in this telescoping sum, the

assertion follows immediately.

Lemma B.4. Let a, b, c ∈ R and z ∈ N0 with a > z ≥ 0 and b > 0. Then

z∑
j=0

(−1)j
(
z

j

)
Γ(a− j)Γ(b+ z − j)

Γ(c− j)Γ(a+ b− c− j + 1)

= (−1)z Γ(a− z)Γ(b)
Γ(a+ b− c+ 1)Γ(c)

Γ(a− c+ 1)
Γ(a− c+ 1− z)

Γ(c− b)
Γ(c− b− z) .
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The factor Γ(a− c+ 1) (resp. Γ(c− b)) in Lemma B.4 does not cause any problems for
c − a ∈ N (resp. b − c ∈ N0), as the also appearing Γ(a − c+ 1− z) (resp. Γ(c− b − z))
cancels out the singularity. On the other hand, in our applications of the lemma, we only
need the cases where a− c+ 1 > z and c− b > z.

Proof. We set

F (z, j) := (−1)j
(
z

j

)
Γ(a− j)Γ(b+ z − j)

Γ(c− j)Γ(a+ b− c− j + 1) ,

for j ∈ {0, . . . , z}, and F (z, j) = 0 in all other cases, and

f(z) :=
z∑
j=0

F (z, j).

Furthermore, we define the function

G(z, j) :=



− j(a−j)(b+z−j)
z−j+1 F (z, j), for j ∈ {0, . . . , z},

G(z, z) + (a− z − 1)F (z + 1, z)

+(c− b− z − 1)(a− c− z)F (z, z), for j = z + 1,

0, otherwise.

A direct calculation yields

(a− z)F (z, j) + (c− b− z)(a− c− z + 1)F (z − 1, j)

= G(z − 1, j + 1)−G(z − 1, j)

for j ∈ N0. Summing this relation over j ∈ {0, . . . , z} gives

(a− z)f(z) + (c− b− z)(a− c− z + 1)f(z − 1) = 0

and thus

f(z) = (c− b− z)(c− b− z + 1)(a− c− z + 1)(a− c− z + 2)
(a− z)(a− z + 1) f(z − 2)

...

= (−1)z Γ(c− b)Γ(a− c+ 1)Γ(a− z)
Γ(c− b− z)Γ(a− c+ 1− z)Γ(a)f(0),

where
Γ(c− b)

Γ(c− b− z) = (c− b− z) · · · (c− b− 1)
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is well-defined, even for b− c ∈ N0, and a similar statement holds for Γ(a−c+1)
Γ(a−c+1−z) . With

f(0) = Γ(a)Γ(b)
Γ(c)Γ(a+ b− c+ 1)

we obtain the assertion.

Lemma B.5. Let a, b ∈ R with a, b > 0 and t ∈ N. Then

t∑
j=0

(−1)j 1
b+ j

(
t

j

)
Γ(a+ t+ j)
Γ(a+ 1 + j) = Γ(a− b+ t)Γ(b)Γ(t+ 1)

Γ(a− b+ 1)Γ(b+ t+ 1) .

The factor Γ(a− b+ t) in Lemma B.5 does not cause any problems for b− a− t ∈ N0,
as the also appearing Γ(a − b+ 1) cancels out the singularity. In our application of the
lemma, we will additionally know that a > b.

Proof. We set

F (t, j) := (−1)j 1
b+ j

(
t

j

)
Γ(a+ t+ j)
Γ(a+ 1 + j) ,

for which we see that F (t, j) = 0 if j /∈ {0, . . . , t}, and

f(t) :=
t∑

j=0
F (t, j).

Furthermore, we define the function

G(t, j) :=



j(a+j)(a+2t+1)(t2+t(a+1)−j+1)(b+j)
t(t−j+1)(a+t)(a+t+1) F (t, j), for j ∈ {0, . . . , t},

G(t, t)− (b+ t+ 1)F (t+ 1, t)

+(t+ 1)(a− b+ t)F (t, t), for j = t+ 1,

0, otherwise.

A direct calculation yields

−(b+ t)F (t, j) + t(a− b+ t− 1)F (t− 1, j) = G(t− 1, j + 1)−G(t− 1, j)

for j ∈ N0. Summing this relation over j ∈ {0, . . . , t} gives

−(b+ t)f(t) + t(a− b+ t− 1)f(t− 1) = 0
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and thus

f(t) = (t− 1)t(a− b+ t− 2)(a− b+ t− 1)
(b+ t− 1)(b+ t) f(t− 2)

...

= Γ(t+ 1)Γ(a− b+ t)Γ(b+ 2)
Γ(a− b+ 1)Γ(b+ t+ 1) f(1).

With

f(1) = 1
b
− 1
b+ 1 = 1

b(b+ 1)

we obtain the assertion.
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