

Increase in Cycling Stability of Doped LiNi_{0.5}Mn_{1.5}O₄-Spinels during Charging between 2.0 and 5.0 V

A. Höweling, A. Stoll, H. Geßwein, J.R. Binder

Institute for Applied Materials - Ceramic Materials and Technologies

Motivation – Doping Elements

٠

•

Institute for Applied Materials -**Ceramic Materials and Technologies**

Ru-Ti Doping – Synthesis

Ru-Ti vs. Fe-Ti Doping – Morphology

[A. Höweling, et al., J. Electrochem. Soc., 164, A6349-A6358 (2017)]

Institute for Applied Materials – Ceramic Materials and Technologies

Ru-Ti vs. Fe-Ti Doping – Properties

Physical

Chemical

Material	Li ¹	Ni ¹	Mn ¹	Fe ¹	Ru¹	Ti ¹
	1.0	0.51	1.41	-	0.09	0.03
LNMRTO _{HT}	1.0	0.51	1.40	-	0.09	0.03
	1.0	0.49	1.39	0.10	-	0.03
LNMFTO _{HT}	1.0	0.49	1.39	0.10	-	0.03

- No change in granule size
- LNMRTO exhibits higher conductivity
- Bulk conductivity of HT higher than AP
- Chemical composition as targeted

13.01.2016

[•] Strong increase of particle size

¹ data in mol

Ru-Ti vs. Fe-Ti Doping– Composition

[A. Höweling, et al., J. Electrochem. Soc., 164, A6349-A6358 (2017)]

6

Institute for Applied Materials – Ceramic Materials and Technologies

Ru-Ti vs. Fe-Ti Doping – Electrochemistry

[A. Höweling, et al., J. Electrochem. Soc., 164, A6349-A6358 (2017)]

Ru-Ti vs. Fe-Ti Doping – Electrochemistry

[A. Höweling, et al., J. Electrochem. Soc., 164, A6349-A6358 (2017)]

Institute for Applied Materials – Ceramic Materials and Technologies

Ru-Ti vs. Fe-Ti Doping – Electrochemistry

[A. Höweling, et al., J. Electrochem. Soc., 164, A6349–A6358 (2017)]

Institute for Applied Materials – Ceramic Materials and Technologies

Mechanisms for capacity loss

Ru-Ti doping – voltage profile (C/10)

Ru-Ti doping – 2 V capacities in literature

2.7 V plateau depends on

- ordering
- doping
- morphology
- annealing temperature

criteria	LNMRuTO _{mod}	LNMRuTO _{HT}
ordering	(+)	(-)
morphology	truncated	octahedral
temperature	800 °C	1000 °C
2.7 V capacity	larger	smaller

These are only observations!

Ru-Ti doping – voltage profile

[A. Höweling, et al., J. Electrochem. Soc., 164, A6349-A6358 (2017)]

Ru-Ti doping – in-situ XRD

• What is the reason for the voltage drop?

[A. Höweling, et al., J. Electrochem. Soc., 164, A6349-A6358 (2017)]

Institute for Applied Materials – Ceramic Materials and Technologies

Ru-Ti doping - Model

Conclusions

