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Abstract 

The influence of turbulence on fish swimming is of considerable interest in both biological and en-

gineering contexts. Fish-behavior investigations have contributed significantly to the understanding of 

the response of fish to different flow characteristics. However, it has not been clarified yet how the 

specific features of turbulence influence fish swimming performance. According to earlier publica-

tions, one of these features is the predictability of turbulence that, in this study, is interpreted as the 

existence of predictable changes in the flow field due to turbulence, which fish might be able to antici-

pate. Importantly, the feature of predictability refers to the flow alone without considering the ability 

of fish to recognize or use predictable changes of the flow. 

The fundamental assumption of this work is that repeating changes in the flow are the basis for 

predictability, because repetition facilitates their recognition by experience on the fish’ part. Leaning 

to this assumption, if repeating changes in the flow form repeating sequences of changes, the changes 

occurring later within the repeating sequence are considered predictable in the sense of short-term 

predictability, even if the repeating sequence itself occurs non-periodically. While the predictability of 

the flow is quite evident in case of a flow with periodic pattern, there are no methods available to re-

veal non-periodically repeating sequences of changes in the flow. 

The objective of this thesis has been to develop a novel flow-analysis methodology suitable for de-

tecting predictable turbulent flow events and their occurrences in vertical-slot fish passes, even if they 

occur non-periodically. Here, the term flow event refers to changes in the flow field associated with the 

appearance of turbulent flow structures or with their change of position and the term occurrence de-

notes instances of times at which the particular flow event happens. 

The presented methodology is applied in this work to a Particle Image Velocimetry (PIV) meas-

urement performed in the scale model of a vertical-slot fish pass and is based on Proper Orthogonal 

Decomposition (POD). 

First, the velocity dataset measured by PIV is analyzed using conventional flow-analysis methods 

with the aims, on the one hand, to reveal the flow characteristics relevant for the presented methodolo-

gy, and on the other hand, to discuss whether POD results are suitable to represent flow events. 

Then, repeating sequences of large-scale flow events and their occurrences are detected based on 

POD results. The methodology essentially consists of the detailed examination of POD modes repre-

senting repeating flow events and the corresponding time series of POD coefficients. Once repeating 

flow events have been identified, repeating sequences of their occurrences can be detected based on 

the time series of the POD coefficients. In addition, it is shown that it is possible to involve in the 

analysis supplementary flow features that are not represented by POD modes. 

Finally, it is demonstrated that the POD results leading to the detection of predictable flow events 

can also be obtained with low-resolution measurements that, in principle, can be carried out by means 

of point measurement techniques. This is essential for the applicability of the presented methodology 

to fish behavior experiments in full-scale facilities, where the occurrences of the predictable flow 

events have to be correlated with the simultaneous response of fish. 

  



 

  



 

Kurzfassung 

Sowohl in biologischer als auch in ingenieurtechnischer Hinsicht ist der Einfluss von Turbulenz auf 

das Schwimmverhalten von Fischen von großem Interesse. Versuche mit Fischen haben wesentlich 

zum Verständnis der Reaktion von Fischen auf Strömungen verschiedener Eigenschaften beigetragen. 

Es ist jedoch nicht abschließend geklärt, wie sich die einzelnen Eigenschaften der Turbulenz auf das 

Schwimmverhalten auswirken. Laut einer kürzlichen Studie ist eine der maßgebenden Eigenschaften 

die Vorhersagbarkeit von Turbulenz, welche nach Interpretation dieser Arbeit bedeutet, dass es vor-

hersagbare Änderungen der Strömung gibt, die von Fischen erkannt werden könnten. Die Vorhersag-

barkeit bezieht sich dabei auf die Strömung und beinhaltet nicht die Fähigkeit von Fischen, vorhersag-

bare Änderungen in der Strömung zu erkennen. 

Die grundlegende Annahme des angewendeten Ansatzes dieser Arbeit ist, dass sich wiederholende 

Änderungen in der Strömung die Basis für die Vorhersagbarkeit sind, da die Wiederholungen das Er-

kennen solcher Änderungen durch Erfahrung von Seite des Fisches fördern. Wenn sich solche Ände-

rungen der Strömung in bestimmter Reihenfolge wiederholen, werden demzufolge die Änderungen am 

Ende der Abfolge (kurzfristig) vorhersagbar. Die Änderungen der Strömung, die am Ende der Abfolge 

auftreten, sind auch dann vorhersagbar, wenn die Abfolge sich nicht periodisch wiederholt. 

Das Ziel dieser Arbeit war es daher, eine neuartige Strömungsanalyse-Methodik zu entwickeln, die 

geeignet ist, vorhersagbare turbulente Strömungsereignisse und deren Auftreten in vertikalen Schlitz-

fischpässen zu detektieren, auch wenn die Strömungsereignisse nicht periodisch auftreten. Der Begriff 

Strömungsereignis (flow event) wird in der vorliegenden Arbeit verwendet, um Änderungen in der 

Strömung zu bezeichnen, die mit dem Erscheinen oder Positionsänderung von turbulenten Strömungs-

strukturen verbunden sind, und mit Auftreten (occurrence) wird das zeitliche Vorkommen bezeichnet. 

Während die Vorhersagbarkeit von periodischen Strömungsereignissen relativ evident ist, war das Ziel 

der Arbeit eine Methodik zu entwickeln, die zur Detektion von nicht periodischen Strömungsereignis-

sen geeignet ist, weil dafür derzeit noch keine Methoden zur Verfügung stehen. 

Fischpässe sind Bauwerke, die für Fische die Durchgängigkeit von Flüssen an Querbauwerken er-

möglichen; sie werden in unterschiedlichen Ausführungen hergestellt, wobei der Schlitzpass einer der 

gängigsten Fischpasstypen ist. Anhand von früheren Studien wird deutlich, dass die Strömung inner-

halb von Fischpässen stark turbulent ist. Die Vorhersagbarkeit der Strömung in Schlitzpässen ist von 

besonderer Bedeutung für die passierenden Fische, da Schlitzpässe aus Reihen von identischen Be-

cken bestehen und dementsprechend hier die Kenntnis eines vorhersagbaren Musters, das am Anfang 

einer solchen Anlage gelernt wurde, in den weiteren Becken vorteilhaft einsetzbar ist. 

Die präsentierte Methodik besteht aus einer Reihe von Strömungsanalysemethoden, mittels derer 

sich wiederholende Abfolgen von Strömungsereignissen und deren Auftreten detektiert werden kön-

nen. Die Methodik wird in dieser Arbeit an experimentellen Ergebnissen einer Particle Image Veloci-

metry (PIV) Messung demonstriert, die im skalierten Labormodell eines Schlitzpasses ermittelt wur-

den. 

Ein wesentlicher Bestandteil der Methodik ist die Anwendung von Proper Orthogonal Decomposi-

tion (POD), mit der sich wiederholende Strömungsereignisse effizient ermittelt werden konnten. Die 

im Schlitzpassmodell durchgeführte Messung wurde zunächst mittels konventioneller Strömungsana-

lyseverfahren und POD analysiert, um zu verstehen, wie POD-Resultate zu interpretieren sind. 



 

Daraufhin wurden in dem gemessenen Geschwindigkeitsdatensatz wiederholt auftretende Strö-

mungsereignisse auf Basis von POD-Resultaten identifiziert und analysiert. Auf diese Weise konnte 

gezeigt werden, wie wiederholende Abfolgen von Strömungsereignissen identifiziert werden können. 

Darüber hinaus wurde mit einem hypothetischen Beispiel demonstriert, wie zusätzliche Strömungsei-

genschaften, die eine vorteilhafte oder nachteilige Strömungssituation beschreiben, mit den sich wie-

derholenden Strömungsereignissen in die Analyse eingebunden werden kann. 

Zum Schluss konnte im Rahmen der Arbeit gezeigt werden, dass die POD-Resultate, die für das 

Detektieren von vorhersagbaren Strömungsereignissen relevant sind, auch anhand von Messungen mit 

sehr niedriger Auflösung erhalten werden können. Dies belegt, dass die Detektion vorhersagbarer 

Strömungsereignisse prinzipiell auch mittels Punktmessungen möglich ist, wenn die für die Detektion 

relevanten POD-Komponenten vorher mittels PIV bestimmt wurden. Dies ist wichtig für die Anwend-

barkeit der vorgestellten Methodik, da das Auftreten der vorsagbaren Strömungsereignisse mit dem 

Verhalten der Fische korreliert werden müssen, was nur durch mit Fischverhaltensbeobachtungen 

gleichzeitigen Strömungsmessungen möglich ist. 
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1 Introduction 

The ecological continuity of rivers is an important element of their good ecological status, which is 

one of the key targets of the European Water Framework Directive. The longitudinal connectivity is of 

particular importance for fish. It assures not only the longitudinal migration to spawning areas for 

migratory fish, but also ensures the sufficient extent of fish habitats by gaining access to areas in up-

stream or downstream sections of rivers. Artificial or natural transversal obstructions in rivers like 

falls, dams, weirs or barrages usually represent obstructions to the longitudinal connectivity, as they 

are unpassable barriers for most species. 

 

 

Figure 1.1 View of the vertical-slot fish pass in Koblenz, Germany (Image: BAW) 

Fish passes are hydraulic structures that are built to facilitate the passage of such transversal ob-

structions by fish, in either upstream or downstream direction. In facilities providing upstream pas-

sage, like the vertical-slot fish pass (Figure 1.1), the flow usually becomes highly turbulent due to high 

flow velocities and high velocity gradients. 
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The main objective of fish pass design guidelines is to create facilities that are adjusted to the bio-

logical requirements of the target fish species considering a wide range of factors. The requirements of 

fish are, however, still being researched regarding several factors. 

For the swimming performance of fish against the mean flow velocity, a quite clear relationship 

was determined in the past between swimming speed, fish size and fish endurance based on fish-

behavior experiments (see Section 1.1). The mean flow velocities within fish passes are accordingly 

limited by the guidelines based on the limited swimming capability of fish. 

In contrast, the influence of turbulence on fish swimming performance is one of the ongoing major 

research topics worldwide. Although it has been recognized by fish-behavior investigations that turbu-

lence can significantly decrease the swimming performance of fish, it could not be clearly shown to 

date how the individual features of turbulence determine this influence. Accordingly, fish pass design 

guidelines contain currently no specifications on the features of turbulence in vertical-slot fish passes 

(e.g. DWA 2014). 

Since earlier fish-behavior studies focusing on individual turbulence features lead to inconsistent 

results, it has been proposed in a recently published framework on fish-behavior investigations to con-

duct and evaluate such experiments in the future using a combination of different features of turbu-

lence. The suggested features are the intensity and the predictability of turbulence as well as the fea-

tures describing the orientation and the scale of the turbulent structures (see Section 1.1). Thereby, the 

predictability of turbulence is interpreted in this work to indicate whether there are changes in the flow 

due to turbulence that fish might be able to anticipate. 

The feature of predictability might be of particular importance in vertical-slot fish passes, because 

they consist of a series of pools, which means that fish encounter the same flow again and again while 

swimming through the pools. Patterns learned at the beginning of such a facility can be expected to be 

recognized further upstream. 

While at least estimation methods are known for determining the intensity features of turbulence, 

and the orientation and scale features of flow structures, there is no flow-analysis method available to 

detect and examine predictable changes in the flow, unless they occur periodically (see Section 1.1). 

Periodicity, however, develops in turbulent flows only under very special conditions and is rather rare 

in natural flows or in hydraulic structures of complex geometries. As long as the predictability of non-

periodically repeating changes in the flow cannot be investigated, the influence of the predictability of 

turbulence is going to be neglected in the assessment of the swimming performance of fish. For this 

reason a novel flow-analysis methodology is required that is suitable for investigating the predictabil-

ity of non-periodically occurring flow changes. 

1.1 Background 

The vertical-slot fish pass is one of the most popular types of fish passes providing upstream pas-

sage. It consists of a rectangular open channel divided into a series of pools that are interconnected by 

vertical slots, where water flows through from pool to pool from the headwater to the tailwater, so that 

fish can swim through the slots from pool to pool from the tailwater to the headwater of a barrage. In 

this way, the large height difference between the headwater and the tailwater is distributed among the 

water level differences between the pools of the fish pass. The water level differences at the slots cre-

ate a jet-like main stream in the pools represented by high flow velocities, which results in highly tur-

bulent flow within the pools due to the high velocity gradients (e.g. Rajaratnam et al. 1986, Raja-
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ratnam et al. 1992, Larinier 1992, Wu et al. 1999, Puertas et al. 2004; Liu et al. 2006; Tarrade et al. 

2008, Wang et al. 2010, Tarrade et al. 2011). 

Turbulence is characterized by fluctuations of the flow velocity about the mean velocity. These 

fluctuations arise due to the unsteady turbulent flow structures and flow instabilities, which occur over 

a wide range of temporal and spatial scales in natural flows or hydraulic structures with complex ge-

ometries, like fish passes. Turbulence is consequently characterized by different features, like the sta-

tistical characteristics of the fluctuations or the size or orientation features of the flow structures. 

Swimming performance of fish against the mean flow velocity is described by the speed that a fish 

can maintain over a period of time and can be classified to three different swimming modes (e.g. Hoar 

and Randall 1978, Powers and Orsborn, 1984). While the so called sustained swimming speed can be 

maintained without fatigue, because it is an aerobic swimming, swimming at higher speeds (prolonged 

and burst speeds) leads to fatigue. A functional relationship can be given between the swimming speed 

and the time to fatigue, in which the higher the swimming speed is, the sooner the fatigue occurs. This 

relationship depends on several factors like temperature, fish species, or fish size. If fatigue once oc-

curs, a resting period is needed for muscle recovery. In theory the distance a fish can swim can be 

calculated based on the flow velocity, the fish speed and the fatigue time, but such a calculation is very 

simplified, as this relationship does not consider, among others, the influence of turbulence decreasing 

the swimming performance and is not indicating the variance between fish individuals. 

  

(a) 

 

 

(b) 

 

 

Figure 1.2 Swimming pattern of trout: (a) in steady flow, (b) in a Karman-vortex-street. The ten body 

contours show approximately one tail-beat cycle (after Liao2007) 

The influence of turbulence on fish behavior was addressed by numerous experiments in the past. 

In such investigations turbulence has mostly been recognized as a flow characteristic that affects the 

swimming performance of fish by causing an increase in the energy costs of swimming or by disturb-

ing the ability of fish to hold their position. Though, it is not clearly shown to date how the individual 

features of turbulence determine this influence. Since the individual features playing a role have been 

gradually identified by such investigations, most studies had disregarded the features that were identi-

fied later. Earlier studies evaluated only the statistical characteristics of the fluctuations, like the stand-

ard deviation, turbulent kinetic energy, Reynolds shear stress and their normalized forms (e.g. Odeh et 

al. 2002, Enders et al. 2003, Nikora et al. 2003, Guiny et al. 2005, Smith et al. 2005). The scale and 

the orientation features of the flow structures were first involved after some studies could not show an 

influence based on the intensity features (e.g. Nikora et al. 2003, Tritico et al. 2010). Other research 

groups in turn examined fish behavior in Kármán vortex streets and observed that fish could take ad-
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vantage of the periodic changes in the flow due to the periodic vortex shedding (Liao et al. 2003, 

Pryzbilla et al. 2010). 

Lacey et al. (2012) have therefore proposed to evaluate future fish-behavior examinations using the 

combination of the features describing the intensity and the periodicity of turbulence as well as the 

features describing the orientation and the scale of the turbulent structures in order to obtain compara-

ble results. The feature of periodicity is thereby intended to indicate whether there are changes in the 

flow that might be anticipated by fish, which is reconsidered in the following. 

Periodicity develops in turbulent flows only under very special conditions and is rather rare in natu-

ral flows or in hydraulic structures of complex geometries. The term periodicity is mathematically 

well defined; a periodic function repeats its values at regular time intervals. Periodicity has been se-

lected as a relevant feature by Lacey et al. (2012), because trout were observed to adjust their swim-

ming pattern to the vortex shedding characteristics of the periodic vortices in Kármán vortex streets 

(Figure 1.2). The studied fish made use of the flow velocities reduced by the upstream directed veloci-

ty component of the rotating vortices, thereby reducing their swimming costs (Liao 2003). Crucial to 

this behavior is that fish knew by experience what vortex arrives next with the flow; hence they could 

anticipate changes in the flow. 

Predictability might, however, arise without a periodic pattern. If a particular sequence of changes 

in the flow occurs again and again repeatedly, the changes at the end of the sequence are hypothetical-

ly predictable, even if the sequence is repeating in non-regular time intervals. Whether fish can make 

use of the predictability based on such non-periodically repeating sequences of changes in the flow has 

not been investigated explicitly yet. For the investigation of such behavior, first a flow-analysis meth-

od is required that is suitable for identifying non-periodically repeating changes in the flow, so that 

fish behavior can be correlated with such changes in the flow. 

Changes in the flow due to turbulence can be associated with the appearance and position change 

of turbulent flow structures. The investigation of turbulent flow structures in highly turbulent flows is, 

however, particularly challenging, since flow structures of different time and length scales appear 

simultaneously, hence superimposed, in the velocity fields (see Section 2.1). The superposition of flow 

structures disturbs both the detection and the feature determination of the individual flow structures. In 

addition, the flow field in the pools of vertical-slot fish passes is significantly inhomogeneous due to 

the presence of the jet-like main stream, which is limiting the applicable analysis methods (e.g. Adrian 

et al. 2000). Moreover, an unsteady main stream grants further complexity to the flow, since the fluc-

tuations generated by the main stream might have similar frequencies as other large flow structures 

(see Section 0), which further complicates the distinction between different structures. Although these 

suggest separating the flow structures of different scales by some means, an appropriate separation is 

still being searched for (e.g. Sokoray-Varga et al. 2014). 

Considering recent observations, the feature of predictability of turbulence is of particular interest 

in vertical-slot fish passes. The main stream in the pools appeared to show an unsteady, oscillating 

pattern in some laboratory scale model investigations (e.g. Wang et al. 2010, Sokoray-Varga et al. 

2012), which has been confirmed using flow-analysis methods by Tarrade et al. (2011). Although fish 

appeared to make use of the oscillating character of the flow during crossing the slot in the observa-

tions of Wang et al (2010), this fish behavior could not be correlated with the unsteady flow, because, 

on the one hand, the flow measurements were not carried out simultaneously with the fish observa-

tions and, on the other hand, there was no flow-analysis methodology available that was suitable for 
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detecting predictable flow events. Thus, the predictability aspects of the oscillation process have not 

been examined so far. 

1.2 Objectives and approach 

The work resulting in this thesis has been carried out as part of an ongoing joint research initiative 

between the Institute for Water and River Basin Management (IWG) at the Karlsruhe Institute for 

Technology and the German Federal Waterways Engineering and Research Institute (BAW). The aim 

of this joint research is to improve the design criteria of vertical-slot fish passes by considering a wide 

range of aspects. In the framework of the research program, fish-behavior experiments are planned in 

order to enhance our understanding of the fish-hydraulics interactions in such facilities and, thereby, 

improve their design criteria. 

The objective of this thesis has been to develop a flow-analysis methodology for detecting turbu-

lent flow events in vertical-slot fish passes whose occurrences are predictable (short-term predictabil-

ity). Here, the term flow event refers to changes in the flow field associated with the appearance of 

turbulent flow structures or with their change of position, such as the appearance of a turbulent eddy at 

a location or the trajectory displacement of an unsteady main stream. The term occurrence denotes 

instances of times at which the particular flow event happens, e.g. when a particular turbulent eddy 

appears at a given location. Since it is reasonable to assume that in vertical-slot fish passes periodic 

flow events are unlikely, a methodology is required that is suitable for investigating the predictability 

of repeating flow events that occur non-periodically, that can later be used for the evaluation of the 

fish-behavior experiments. 

The fundamental assumption of the present approach is that repeating flow events are the basis for 

predictability, because repetition facilitates their recognition by experience on the fish’ part. Leaning 

on this assumption, the following requirements for predictability have been formulated: 

1. flow events occurring repeatedly in the flow exist, 

2. repeating sequences of different flow events exist. 

If these conditions are fulfilled, the flow events occurring later within the repeating sequence can 

be considered predictable in the sense of short-term predictability, even if the sequence itself is repeat-

ing non-periodically. 

It has to be highlighted that the feature of predictability refers to the flow alone. Whether fish are 

able to recognize and use predictable flow events of given characteristics is a separate issue, which 

will have to be ascertained using fish-behavior experiments in the future by correlating fish behavior 

and the occurrences of predictable flow events. Hence, the present work has the objective to develop a 

methodology that detects predictable flow events and their occurrences based on flow analysis meth-

ods. 

In order to achieve this goal, first a laboratory model of a vertical-slot fish pass has been designed 

and built in the laboratory of the BAW in Karlsruhe with a geometric scale of 1:4.1, and then, a 2D-2C 

Particle Image Velocimetry (PIV) measurement performed in this model has been used to identify 

predictable flow events by means of a combination of flow-analysis methods. 
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1.3 Thesis outline 

The outline of the thesis is as follows. 

Chapter 2 provides first a brief summary on the origin and the scales of turbulence as known from 

the turbulence theory and then introduces the computation methods that were used in this work for the 

characterization of turbulent flows. 

Chapter 3 presents a literature review on the hydraulics of vertical-slot fish passes relevant for the 

methodology described in Chapter 6. 

Chapter 4 describes first the laboratory scale model and the experiment execution, then addresses 

possible scale effects arising from the use of scale models by considering the model similitude, and 

presents finally the used Particle Image Velocimetry (PIV) system including the methods used for the 

PIV evaluation. 

Chapter 5 displays the results of the PIV measurement analyzed using the methods described in 

Chapter 2. The analysis has the objective to reveal the flow characteristics relevant for the methodolo-

gy presented in Chapter 6. The chapter shows time-series analysis results, the results of Proper Or-

thogonal Decomposition (POD), and considerations on the interpretation of POD results. 

Chapter 6 presents the methodology developed for detecting predictable flow events, considera-

tions on involving supplementary flow features in the examination and considerations on performing 

the measurements without using PIV. 

Chapter 7 closes with summary, conclusions and recommendations for the future work. 
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2 Characterization of turbulent flows 

In this chapter a brief summary is given first on the origin and the scales of turbulence; then, the 

methods are presented that were used in this work for the characterization of turbulent flows. 

2.1 Origin and scales of turbulence 

Most flows occurring in nature and in engineering practice are turbulent. Accordingly, there is a 

very large amount of literature available on turbulence, so that the following information can be found 

in the most textbooks on turbulence (e.g. Pope 2000, Davidson 2004). 

Turbulence is characterized by random fluctuations of the flow velocity about the mean velocity 

(Figure 2.1). The random characteristic denotes that different realizations of the same experiment yield 

to different temporal sequences of the fluctuations; hence the exact sequences of fluctuations are not 

reproducible in detail. 

  

 

 

 

Figure 2.1 Velocity fluctuations typical for turbulent flows 

The reason for the random characteristic is that although the Navier-Stokes equation describing flu-

id motion is deterministic, its non-linearity leads to chaotic behavior of the result under certain condi-

tions. Chaotic behavior means that the result is sensitive to disturbances of the initial conditions, 

which implies, for example, that small disturbances in the inflow velocities or in the upstream water 

levels of a channel induce perturbations in the flow velocities downstream. As disturbance free initial 

conditions never occur, no realizations of the flow yield exactly the same sequences of fluctuations. 

Furthermore, the induced perturbations are themselves disturbances for the later flow development. 

A good indicator of how sensitive the flow is to disturbances of the initial conditions is the Reyn-

olds number: 

𝑅𝑒 =
𝑢 ∙ 𝑑


  (2.1) 
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where u is the characteristic velocity of the flow, d is the characteristic length scale of the flow and 

 is the viscosity of water ( ~ 10
-6

 m
2
/s). The characteristic length scale of the flow can be chosen as 

the smallest measure of the flow, which is usually e.g. its depth in open channel flows or its width in 

case of jets. 

The Reynolds number is a measure of the ratio of the inertial forces to the viscous forces in the in-

vestigated flow. Inertial forces are the forces required to slowdown the moving fluid; viscous forces 

are the forces that are exerted by the internal friction of the fluid to decrease the velocity of the mov-

ing fluid. 

At low Reynolds numbers the viscous forces are large enough to damp the perturbations of the flow 

velocities, so that disturbances do not lead to fluctuations in the result, and the flow is not sensitive to 

disturbances of the initial conditions (laminar flow). At high Reynolds number, in turn, the damping 

effect of the viscous forces is largely insufficient to suppress the perturbations, which leads to flow 

instabilities and to a complex series of events yielding to the random fluctuations of the flow velocity 

(turbulent flow). For this reason, the flow at high Reynolds numbers is sensitive to disturbances of the 

initial conditions. In general, the higher the Reynolds number is, the more sensitive is the flow to dis-

turbances. Since this sensitivity also depends on the magnitude of the disturbance, a universal critical 

value of the Reynolds number above which the flow is always turbulent does not exist. However, at 

the scales of typical open channel flows in engineering practice the flow can be considered to be fully 

turbulent if Re >> 2000. 

 

(a) (b) (c) 
 

(d) (e) 

 

Figure 2.2 Simple shear flow types: (a) jet, (b) wake, (c) mixing layer, (d) boundary layer and (e) 

channel flow 

A high potential to become turbulent have flows with velocity gradients called shear flows, because 

the evolving flow instabilities can transport fluid of given velocity to a flow region with significantly 

different velocity, which generates further instabilities. Simple types of shear flows are the free shear 

flows (e.g. jet, wake, mixing layer), which are remote from walls and where turbulence arises due to 

the velocity gradients, and wall-bounded shear flows (e.g. pipe, flat-plate boundary layer), where both 

mean value and fluctuation of the velocity must be zero at the wall (Figure 2.2). Most flows in engi-

neering practice are more complex than these simple flow types. Since the flow in vertical-slot fish 
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passes is dominantly a free shear flow, the following description mainly presents turbulence from free 

shear point of view. 

In flows at high Reynolds numbers the instabilities developed in the flow generate turbulent flow 

structures characterized by rotating motion, called eddies. These eddies become themselves unstable 

and break up to smaller eddies, which are also unstable and break up to even smaller and smaller ed-

dies. The break-up process of eddies is essentially driven by inertial forces and continues until the 

eddies are so small, that the energy of the eddies get dissipated. This can be recognized based on the 

Reynolds numbers of the eddies. Eddies can be characterized by their size l, their characteristic veloci-

ty u(l), their characteristic time scale (which is the turn-over-time) (l)=l/u(l), and their Reynolds 

numbers Rel(l)=u(l)l/. While the eddy sizes get smaller and smaller, their characteristic velocities, 

time scales and Reynolds numbers decrease. As the eddies are so small, that the viscous forces become 

significant, the energy of the eddies get dissipated. 

The above process is also called the energy cascade and it describes how the kinetic energy of the 

mean flow gets dissipated through turbulence. First, the largest eddies extract energy from the kinetic 

energy of the mean flow, then, the kinetic energy is transferred from larger eddies to the smaller ed-

dies through the break-up process without extracting further kinetic energy from the mean flow, and 

finally, the kinetic energy is dissipated by the smallest eddies. As these three different processes coin-

cide with the scales of eddies, they are assigned to ranges of eddy sizes: the energy containing range, 

the inertial subrange and the dissipation range, where the two latter ones form the universal equilibri-

um range. Further, the distribution of the turbulent kinetic energy among eddies of different sizes is 

well displayed by the energy spectrum as illustrated in Figure 2.3. 

The turbulent flow finally consists of lots of eddies of different time and length scales, which occur 

superimposed in the velocity fields and in the fluctuations of the time series. Although the exact se-

quences of fluctuations, hence the exact occurrences of eddies, are not reproducible in detail by differ-

ent realizations of the same experiment, the statistical quantities of the fluctuations are reproduced 

well, because the scales of all eddies mainly depend on the characteristic scales of the mean flow, the 

boundary and the viscosity of the fluid. This dependence is demonstrated in more details next. 

 

 

Figure 2.3 A typical distribution of the turbulent kinetic energy among the eddies of different sizes at 

high Reynolds numbers 
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The largest eddies are created by mean flow instabilities. The geometric characteristics of the large 

eddies contained by the energy containing range are determined by the mean flow geometry and are 

affected by the boundary conditions of the flow. The geometry of large-scale eddies has accordingly 

directional biases, i.e. differences in the fluctuations of different directions. Their size l0 is comparable 

with the characteristic geometric length scales of the mean flow, their characteristic velocity u0 is on 

the order of magnitude of the mean standard deviation, their Reynolds number Re0=u0l0/ is in the 

order of magnitude of the mean flow Reynolds number and their characteristic time scale is =l0/u0. It 

has to be pointed out that these eddy sizes and characteristics have to be interpreted as order of magni-

tudes. An exact size at which large eddies are created cannot be specified, in particular because the 

sizes vary from eddy to eddy due to the chaotic behavior of the flow. This accordingly also applies to 

other eddy characteristics. 

While large eddies become unstable and break up to smaller and smaller eddies, the directional bi-

ases gradually vanish, so that eddies below a certain size are statistically isotropic and are called small 

eddies (l<lEI, lEI ~ 1/6*l0). In addition, below a certain size eddies are not created by the mean flow but 

by breaking up of larger eddies, which implies that neither energy nor directional biases of the mean 

flow are introduced at these scales. In the universal equilibrium range, where the eddies are isotropic 

and the mean flow does not introduce energy or directional biases, the eddy characteristics are similar 

for all flows at high Reynolds numbers and the break-up process gain universal characteristics. This 

can be well observed in the inertial subrange, where the distribution of the kinetic energy across the 

eddy sizes follows the universal -5/3-power-law function, which can be recognized on the -5/3 slope 

of the energy spectrum displayed in logarithmic scale. Thus the kinetic energy content of the eddy 

sizes can be determined by the kinetic energy level at lEI. The characteristic velocities and time scales 

belonging to eddy size l in the inertial subrange can be calculated as: 

𝑢(𝑙)~𝑢0 ∙ (𝑙/𝑙0)
1/3

(𝑙)~ 0 ∙ (𝑙/𝑙0)
2/3

  (2.2) 

The inertial subrange ends at the eddy size where dissipation becomes significant (lDI). In the dissi-

pation range (l<lDI, lDI ~ 60*) the kinetic energy content gradually reduces as viscous forces are 

more and more significant with decreasing eddy sizes. The smallest eddies that occur in a turbulent 

flow are defined by the Kolmogorov scale. The characteristic length , the characteristic velocity u 

and the characteristic time scale , of these eddies can be calculated based on the Reynolds number of 

the mean flow as: 

 ~ 𝑙0 ∙ 𝑅𝑒−3/4

𝑢~𝑢0 ∙ 𝑅𝑒−1/4

 ~ 0 ∙ 𝑅𝑒−1/2

  (2.3) 

Equations (2.2) and (2.3) confirm that the characteristics of small-scale eddies are only dependent 

on the characteristics of the large-scale eddies (l0, u0, t0) and on the Reynolds number of the mean 

flow. Once the large eddies of a flow are characterized, the small scales can be well estimated, which 

demonstrates why the characterization of the large eddies is essential. 

Since the characteristics of the large eddies are determined by the characteristics of the mean flow 

and the boundary of the flow, the characteristics of all eddies in the different ranges essentially depend 

on these characteristics. This contributes to the statistical quantities of the fluctuations being well re-

produced in different realizations of the same experiment, even though the exact sequences of flow 
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structures, hence fluctuations, are not reproducible in detail. This highlights why the statistical descrip-

tion is indispensable for the characterization of turbulence. 

As mentioned before, most flows in the engineering practice are more complex than the simple 

shear flow types presented previously. More complex flows usually contain several flow processes 

that produce large eddies simultaneously, so that the generated fluctuations and eddies appear super-

imposed in the measured velocities and the energy cascade. 

2.2 Definitions 

For the following description of the methods used for characterizing turbulent flows it is important 

to declare that the present work uses the Eulerian description of the flow, i.e. the temporal evolution of 

the flow velocities are described at fixed locations of space as: 

u𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢𝑖(𝑥, 𝑦, 𝑧, 𝑡) ∙ 𝐞𝑥 + 𝑣𝑖(𝑥, 𝑦, 𝑧, 𝑡) ∙ 𝐞𝒚 + 𝑤𝑖(𝑥, 𝑦, 𝑧, 𝑡) ∙ 𝐞𝑧  (2.4) 

where u
i
 is the instantaneous three-dimensional flow velocity vector at location (x, y, z) and time t 

(i stands for “instantaneous”), ex, ey and ez are orthonormal unit vectors in x, y and z directions of the 

three-dimensional Cartesian coordinate system respectively; and u
i
, v

i
 and w

i
 are the magnitudes of the 

velocity components in x, y and z directions of the same coordinate system respectively. 

The velocity information is provided as discrete data both in time and space in the present work 

due to the applied measurement technique. Velocity information that is discrete in time is provided as 

time series at the individual locations, velocity information that is discrete in space is provided at dis-

crete locations of a field, in grid points of a rectangular grid. 

A velocity time series is a sequence of velocity data collected over time. The velocity time series in 

present work consist of velocity data at equidistant, discrete time steps at a fixed location of space. 

The discrete time values of the time steps can be given in time as:  

𝑡𝑛 = 𝑛 ∙ ∆𝑡 = 𝑛 ∙
1

𝑓𝑠
,     𝑛 = 1,2, … ,𝑁  (2.5) 

where t is the time difference between samples, fs is the sampling frequency of the measurement, 

n denoting the time step and N is the number of time steps (sample size). 

As described previously, turbulence is represented by the fluctuation of the velocity time series. 

The fluctuating part of the velocity is obtained by the Reynolds decomposition, namely by subtracting 

the mean velocity from the instantaneous velocity as (e.g. Pope 2000): 

𝑢′(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢𝑖(𝑥, 𝑦, 𝑧, 𝑡) − 𝑢𝑚(𝑥, 𝑦, 𝑧)

𝑣′(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣𝑖(𝑥, 𝑦, 𝑧, 𝑡) − 𝑣𝑚(𝑥, 𝑦, 𝑧)

𝑤′(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤𝑖(𝑥, 𝑦, 𝑧, 𝑡) − 𝑤𝑚(𝑥, 𝑦, 𝑧)

  (2.6) 

where u’, v’ and w’ are the fluctuations of the velocity components; and u
m
, v

m
 and w

m
 are the mean 

values of the velocity components. In this work, the mean values of the velocity components were 

determined using the temporal means defined as: 

𝑢𝑚(𝑥, 𝑦, 𝑧) =
1

𝑁
∙ ∑ 𝑢𝑖 (𝑥, 𝑦, 𝑧, 𝑡𝑛)𝑁

𝑛=1

𝑣𝑚(𝑥, 𝑦, 𝑧) =
1

𝑁
∙ ∑ 𝑣𝑖 (𝑥, 𝑦, 𝑧, 𝑡𝑛)𝑁

𝑛=1

𝑤𝑚(𝑥, 𝑦, 𝑧) =
1

𝑁
∙ ∑ 𝑤𝑖 (𝑥, 𝑦, 𝑧, 𝑡𝑛)𝑁

𝑛=1

.  (2.7) 
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The mean velocity field is the vector field consisting of the mean velocity vectors u
m
(x,y,z) in the 

individual grid points, which is defined as:  

u𝑚(𝑥, 𝑦, 𝑧) = 𝑢𝑚(𝑥, 𝑦, 𝑧) ∙ 𝐞𝑥 + 𝑣𝑚(𝑥, 𝑦, 𝑧) ∙ 𝐞𝒚 + 𝑤𝑚(𝑥, 𝑦, 𝑧) ∙ 𝐞𝑧  (2.8) 

Particle Image Velocimetry (PIV) technique provides velocity datasets of a measurement field. A 

velocity dataset consists of individual velocity fields that represent different time steps of a velocity 

acquisition in the same grid points, which can also be considered as simultaneously measured velocity 

time series in the individual grid points. The velocity dataset can be analyzed using different ap-

proaches. The velocities in a grid point captured over time can be analyzed by time-series analysis 

tool. The instantaneous velocity vectors at a time step represent an instantaneous velocity field, which 

can be examined for spatial structures in the flow. A combined investigation involving the temporal 

and spatial dimensions is called spatio-temporal analysis. 

It has to be highlighted that, although the methods are presented in this section for three-

dimensional velocity data (u, v, w), they are applied during the analysis using only the u and v velocity 

components. This means that flow features normally consisting of three velocity components are cal-

culated here using only two components, which is denoted by the subscript “uv” (e.g. TKEuv is the 

turbulent kinetic energy involving only the u and v components). The velocity components involved in 

the calculation of an individual flow feature are generally marked as subscript of the flow feature nota-

tion, e.g. v is the standard deviation of the v velocity component. 

2.3 Statistical analysis of time series 

The equations of componentwise calculated characteristics, hence involving velocity component 

separately, are only presented for the u velocity component in this subsection and can be analogously 

implemented for further velocity components. 

2.3.1 Statistical features of fluctuations 

The standard deviation of the velocity time series can be calculated as: 

𝜎𝑢 (𝑥, 𝑦, 𝑧) = √
1

𝑁
∙ ∑ ( 𝑢′ (𝑥, 𝑦, 𝑧, 𝑡𝑛) )2𝑁

𝑛=1 .  (2.9) 

The variance of the velocity time series (also called second order central moment) is: 

VAR𝑢 (𝑥, 𝑦, 𝑧) = 𝜎𝑢
2 =

1

𝑁
∙ ∑( 𝑢′ (𝑥, 𝑦, 𝑧, 𝑡𝑛) )2

𝑁

𝑛=1

  (2.10) 

The r-th order central moment about the mean of a velocity time series can be obtained as: 

𝜇𝑟,𝑢(𝑥, 𝑦, 𝑧) =
1

𝑁
∙ ∑( 𝑢′ (𝑥, 𝑦, 𝑧, 𝑡𝑛) )r

𝑁

𝑛=1

  (2.11) 

The turbulent kinetic energy (TKE) represents the average kinetic energy per unit mass contained 

by the velocity fluctuation and can be calculated using the variance of the velocity components, i.e. the 

square of the standard deviations: 

𝑇𝐾𝐸(𝑥, 𝑦, 𝑧) =
1

2
(𝜎𝑢

2 + 𝜎𝑣
2 + 𝜎𝑤

2).  (2.12) 
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2.3.2 Velocity spectra 

The velocity spectrum shows how the turbulent kinetic energy (more precisely, the variance) of the 

fluctuation is distributed over frequency, that is to say it reveals the contribution of the different fre-

quencies to the total variance of the fluctuation. The velocity spectrum is usually regarded as an ap-

proximation of the kinetic energy distribution across the eddy sizes (see Figure 2.3) through the appli-

cation of Taylor’s hypothesis of frozen turbulence, which relates the frequencies to wavenumbers by 

considering the convection velocity. 

The velocity spectrum is the one-sided power spectral density (PSD) of the velocity time series, 

which can be obtained from the discrete Fourier transform (DFT) of the time series. Several methods 

exist for the computation of the PSD. As it will be seen later, different PSD computation methods 

were used in this work depending on the purpose on the examination. In order to explain the differ-

ences between them, the following methods are described in this section: calculating the PSD without 

using a window, calculating the PSD using a windowing function and calculating the PSD using the 

averaging Welch’s method using a windowing function. 

The complex DFT coefficients of a time series are defined as (e.g. Pope 2000): 

𝐶𝑢(x, y, z, f𝑘) = ∑ 𝑢(𝑥, 𝑦, 𝑧, 𝑡𝑛) ∙ 𝑒−
2𝜋𝑖𝑛𝑘

𝑁

𝑁

𝑛=1

, −
𝑁

2
≤ 𝑘 ≤

𝑁

2
  (2.13) 

where the frequency fk, is obtained as: 

𝑓𝑘 =
𝑘

𝑁 ∙ ∆𝑡
  (2.14) 

The one-sided PSD can be computed from the square magnitudes of the DFT as (e.g. Pope 2000): 

𝑆𝑢𝑢(x, y, z, 𝑓𝑘) = 2 ∙
1

𝑁
∙ ∆𝑡 ∙ |𝐶𝑢(𝑥, 𝑦, 𝑧, 𝑓𝑘)|

2
, 0 < 𝑘 ≤

𝑁

2
   (2.15) 

Without going into details of the mathematical background of spectral analysis, the following two 

essential issues have to be considered when computing the PSD of a turbulent velocity time series: the 

effects arising from the finite length time series and the high variance of the PSD arising from the 

randomness of the time series. 

The first issue arises because the time series of the measured process is truncated at the ends due to 

the finite length of the measurement (e.g. Pollock 1999). As a result, jumps appear at the ends of the 

time series, which lead to false power contributions at several frequencies in the PSD. Note that low 

frequencies are not affected by this issue.  

This effect can be dampened out by applying windowing functions to the time series before calcu-

lating the DFT as (e.g. Vaseghi 2000): 

𝐶𝑢
(𝑤)

(𝑥, 𝑦, 𝑧, 𝑓𝑘) = ∑ 𝑢(𝑥, 𝑦, 𝑧, 𝑡𝑛) ∙ 𝑤(𝑛) ∙ 𝑒−
2𝜋𝑖𝑛𝑘

𝑁

𝑁

𝑛=1

, −
𝑁

2
≤ 𝑘 ≤

𝑁

2
  (2.16) 

where w(n) is a windowing function of length N containing a weight for every time-series element. 

The power loss caused by the window can be compensated in the PSD as (e.g. Vaseghi 2000): 

𝑆𝑢𝑢
(𝑤)

(𝑥, 𝑦, 𝑧, 𝑓𝑘) = 2 ∙
1

𝑁
∙

1

𝑊𝑐
∙ |C𝑢

(𝑤)
(𝑥, 𝑦, 𝑧, 𝑓𝑘)|

2
, 0 < 𝑘 ≤

𝑁

2
  (2.17) 
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where Wc can be calculated as: 

𝑊𝑐 =
1

𝑁
∑ 𝑤(𝑛)2

𝑁

𝑛=1

  (2.18) 

The weights of the windowing function are reduced at the ends of the time series, thereby reducing 

the effects of the truncation. The reduced power contributions arising due to the reduced fluctuations 

at the ends are compensated by the correction factor Wc, so that the integral of the PSD yields the total 

variance. Note that applying a rectangular window provides the same result as calculating the DFT 

without applying a window function. 

It has to be pointed out that PSD estimations using non-rectangular windows can produce biased 

results as follows. The duration of velocity measurements is usually optimized with respect of time 

(see Section 2.3.3) so that just the minimal number of large-scale events are captured, which are nec-

essary to produce a measured variance value that is sufficiently converging to the true variance value. 

Since windowing functions suppress the variance contributions of large-scale events at the beginning 

and at the end of the time series, the remaining large-scale events in the middle of the time series 

might be insufficient to obtain a sufficiently converging variance value. For this reason the PSD values 

at low frequencies become reduced by the windowing. 

The second issue, when computing the PSD of a turbulent velocity time series, is the high variance 

in the PSD arising from the randomness of the velocity time series, which can significantly disturb the 

clear recognition of the power distribution over the frequencies. This effect can be effectively reduced 

by applying methods that are averaging the results of several PSDs computed from the given velocity 

time series. Such an averaging method is Welch’s method, which first divides the time series into K 

overlapping segments, then calculates the PSDs of the windowed segments, and finally averages the 

obtained PSDs as (e.g. Vaseghi 2000): 

𝑆𝑢𝑢
(𝑎,𝑤)

(𝑥, 𝑦, 𝑧, 𝑓𝑘) =
1

𝐾
∑𝑆𝑢𝑢

(𝑖,𝑤)
(𝑥, 𝑦, 𝑧, 𝑓𝑘)

𝐾

𝑖=1

  (2.19) 

where Suu
(i,w)

 is the PSD of the i-th segment calculated according to Eqs. (2.16) and (2.17). 

On the one hand, the higher the number of the segments is, the smoother is the PSD. On the other 

hand, smooth results are produced on the cost of frequency resolution, so that distinct peaks at fre-

quencies near to each other tend to merge to single peaks with increasing number of segments. It has 

to be highlighted that the previously described bias effect arising from the windowing, which affects 

the low frequency contributions, also applies for this method, however, it is expected to be significant-

ly lower, because the windowing is applied to each segments of the time series. 

In the present work the power spectra were calculated using MATLAB 2011b, which computes the 

DFT using the fast Fourier transform (FFT) algorithm called FFTW (Frigo et al. 1998). The segment 

overlap used for the computation of the PSD by Welch’s method was always 50 %, but the number of 

segments was varied as will be highlighted later in this section. The windowing function used was the 

Blackman-Harris window (Harris 1978), which is composed of cosine elements expected to introduce 

the least possible false frequencies to the PSD and is defined as: 

𝑤(𝑛) = 𝑎0 − 𝑎1 cos (
2𝜋(𝑛 − 1)

𝑁
) + 𝑎2 cos (

4𝜋(𝑛 − 1)

𝑁
) − 𝑎3 cos(

6𝜋(𝑛 − 1)

𝑁
)  (2.20) 

where a0 = 0.35875, a1 = 0.48829, a2 = 0.14128 and a3 = 0.01168. 
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(a) (b) 

(c) (d) 

Figure 2.4 Velocity spectra of a measured velocity time series obtained by different methods: (a) PSD 

without using a window, (b) PSD using a Blackman-Harris window, (c) PSD computed by Welch’s 

method using Blackman-Harris window and 4 time-series segments, (d) PSD computed by Welch’s 

method using Blackman-Harris window and 12 time-series segments. 

In order to illustrate the differences arising from the different methods, the PSDs of a measured ve-

locity time series were computed by each of the methods described in this section and are displayed in 

Figure 2.4. Figure 2.4 (a) shows the velocity spectra calculated without using a windowing function 
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according to Eqs. (2.13) and (2.15). Here, although the PSD values corresponding to low frequencies 

are correct, it can be expected that false power contributions are contained at higher frequencies and 

the spectra calculated this way show high variance. Figure 2.4 (b) displays the velocity spectra calcu-

lated based on Eqs. (2.16) and (2.17) by using a Blackman-Harris window. The impact of the window-

ing on the velocity spectra can be observed in the PSD values at low frequencies, where some values 

are significantly reduced. Figures 2.4 (c) and (d) show the PSDs computed by Welch’s method accord-

ing to Eq. (2.19) using K = 4 and K = 16 segments, respectively. It can be well observed that the high 

variance in the spectra is effectively reduced by increasing the number of segments, so that the power 

distribution over frequency becomes clearer. On the other hand, smooth results are produced on the 

cost of frequency resolution, which can be well recognized in the frequency range 0.1-0.2 Hz, where 

the two distinct frequency contributions in Figure 2.4 (c) are fused to a single “peak” in Figure 2.4 (d). 

Note that, in contrast to the power distribution expected according to Figure 2.3, the power contri-

butions stop decreasing with increasing frequency at about 50 Hz in Figure 2.4. This can be considered 

as the measurement noise and will be revisited in Section 4.3.5. 

These examples point out that the method to use for the PSD estimation depends on the examined 

frequency range and on the objective of the examination. If the power contributions of the lowest fre-

quencies are needed, the PSD without using a window has been used; if peaks have to be identified at 

low frequencies, the PSD computed by Welch method using low number of segments was used; and if 

the contributions of the highest frequencies are in focus, the PSD computed by Welch method using 

high number of segments was used. 

2.3.3 Convergence analysis of measured statistical quantities 

As discussed previously, the statistical description of turbulence is essential because the statistical 

quantities of the fluctuations are well reproduced by different realizations of the flow, even though the 

temporal sequence of the fluctuations is not reproducible in detail. Due to the randomness of the fluc-

tuations, however, the strictly accurate, true statistical quantities would only be achievable by infinite 

number of measured samples, which is not practicable. 

The statistical quantities derived from a finite number of samples always deviate from the true 

quantities to some extent. For this reason, the quantities derived from measurements are called estima-

tions and the computational algorithms applied to obtain them are called estimators. Note that all of 

the computation methods presented in Section 2.3 are estimators. 

Since only a finite number of samples are collected during a finite length measurement, it has to be 

ensured that the collected number of samples is sufficient for obtaining statistical features that proper-

ly characterize the measured flow. The convergence analysis of the measured statistics has the aim to 

reveal whether the number of samples is sufficient, hence, in the present work, whether the measure-

ment duration is long enough. Considering that the true value of the statistical quantities is unknown, 

the convergence analysis of the measured statistics comprises, firstly, whether the statistical values 

obtained by the measurement converge over the measurement time and, secondly, the estimation of the 

error arising from the finite measurement duration. 

The convergence of the measured quantities was examined in the present work using cumulative 

statistical functions, which show the change of the statistical quantities with increasing duration, hence 

cumulated measurement time. If the measurement duration is large enough, the cumulative statistical 

functions converge. 
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The cumulative mean function CMF and the cumulative variance functions CVF, which show the 

change of the mean and variance values with increasing measurement duration, can be calculated for 

the individual velocity components as follows: 

𝐶𝑀𝐹𝑢(𝑥, 𝑦, 𝑧, 𝑡𝑘) =
1

𝑘
∙ ∑ 𝑢𝑖 (𝑥, 𝑦, 𝑧, 𝑡𝑛)

𝑘

𝑛=1

  (2.21) 

𝐶𝑉𝐹𝑢(𝑥, 𝑦, 𝑧, 𝑡𝑘) =
1

𝑘
∙ ∑(𝑢′ (𝑥, 𝑦, 𝑧, 𝑡𝑛))2

𝑘

𝑛=1

  (2.22) 

where k = 1,2,3,…,N. Note that the final value of these functions at k = N, give the mean value ac-

cording to Eq. (2.7) and the variances according to Eq. (2.10), respectively. 

 

(a) 

(b) 

Figure 2.5 The (a) cumulative mean function and the (b) cumulative variance function of a velocity 

time series for the u and v components. The dashed line marks the 95%-durations of the variance. 

Figure 2.5 exemplarily shows the cumulative mean and cumulative variance functions of both the u 

and the v velocity components of a measured velocity time series. Although it can be recognized based 

on these functions, whether the displayed statistical quantities converge, the visual inspection of these 

functions in every grid point is impracticable at high numbers of grid points. In order to obtain a more 

compact representation of the convergence characteristics, the following indicator of the convergence 

can be computed. 

The duration t
(95%)

, after which the variance has at least 95% of the final variance value, can be giv-

en as: 

𝐶𝑉𝐹𝑢(𝑥, 𝑦, 𝑧, 𝑡𝑘) > 0.95 ∙ 𝐶𝑉𝐹𝑢(𝑥, 𝑦, 𝑧, 𝑡𝑁),   for 𝑡𝑘 ≥ 𝑡
(95%)

  (2.23) 
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which is: 

𝐶𝑉𝐹𝑢(𝑥, 𝑦, 𝑧, 𝑡𝑘) > 0.95 ∙ 𝑉𝐴𝑅𝑢(𝑥, 𝑦, 𝑧),    for 𝑡𝑘 ≥ 𝑡
(95%)

  (2.24) 

This indicator is called 95%-duration in this work. High values of the 95%-duration with respect to 

the applied measurement duration mean that the variance changed more than 5% in the last time-

segment of the measurement, which indicate that the applied measurement duration might be too short 

for the good convergence of the measured variance. Note that this indicator was not determined for the 

mean values, because locations with mean velocities near to 0 result in misleading high 95%-

durations. 

The error arising from the finite measurement duration cannot be quantified based on these cumula-

tive statistical functions, since the true values of the mean and the variance are unknown. As described 

before, the statistical quantities obtained from the measurement are estimations, which deviate from 

the true statistical quantities due to the finite length measurement. 

The error of the estimation with respect to the true quantity can be derived analytically as shown in 

e.g. Tropea et al. (2007). Note that the estimated error is to be considered as the standard deviation of 

the measured quantity with respect to the true quantity. By dividing this error by the measured quanti-

ty, the normalized error can be obtained (Bendat et al. 2000). Accordingly, the normalized mean error 

of the measured mean values and the normalized mean error of the measured variances can be estimat-

ed as: 

𝜖(𝑢𝑚)(𝑥, 𝑦, 𝑧) =
1

𝑢𝑚(𝑥, 𝑦, 𝑧)
√

2 ∙ 𝜏𝐼,𝑢(𝑥, 𝑦, 𝑧)

𝑇
∙ 𝑉𝐴𝑅𝑢 (𝑥, 𝑦, 𝑧)2  (2.25) 

𝜖(𝑉𝐴𝑅𝑢)(𝑥, 𝑦, 𝑧) =
1

𝑉𝐴𝑅𝑢(𝑥, 𝑦, 𝑧)
√

2 ∙ 𝜏𝐼,𝑢(𝑥, 𝑦, 𝑧)

𝑇
∙ (𝜇4,𝑢(𝑥, 𝑦, 𝑧) − 𝑉𝐴𝑅𝑢 (𝑥, 𝑦, 𝑧)2)  (2.26) 

where I,u is the integral time scale and T is the duration of the measurement. 

The integral time scale is usually computed from the autocorrelation function of the time series; 

however, due to the randomness of the fluctuations, the obtained values often show a considerable 

variability. For this reason, the integral time scales were deduced in the present work from the velocity 

spectra as (e.g. Pope 2000): 

𝜏𝐼,𝑢(𝑥, 𝑦, 𝑧) =
𝜋

2
∙
𝑆𝑢𝑢(x, y, z, 0)

𝑉𝐴𝑅𝑢(𝑥, 𝑦, 𝑧)
  (2.27) 

where Suu(x,y,z,0) is the value of the velocity spectrum at 0 Hz, which was approximated by the 

first available value of the velocity spectrum, since the velocity spectrum does not have a value a 

f = 0 Hz. In order to achieve the best possible estimation, the velocity spectrum used for this calcula-

tion was the PSD without using a windowing function according to Eqs. (2.13) and (2.15), since the 

PSD values at low frequencies are not affected by the windowing using this method. 

Note that both normalized errors in Eqs. (2.25) and (2.26) are themselves estimations, because the 

true statistical quantities (variance, 4-th order moments and integral time scales) needed to calculate 

them are unknown, so that the available estimations of the required statistical quantities have to be 

used. 
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2.4 Spatial features of vector fields 

If the spatial structures formed by vectors of a vector field are of similar size, so that the field is 

homogeneous, the characteristic length scale of the structures can be estimated based on the spatial 

autocorrelation-coefficient functions of the vector field. 

 

 

Figure 2.6 A vector field containing vortical structures of similar size. 

The x-directional and y-directional spatial autocorrelation-coefficient functions of the v and the u 

velocity fields (SACFx and SACFy) can be computed as: 

𝐒𝐀𝐂𝐅𝑥(𝑥𝑙𝑎𝑔) = ( ∑ ∑ 𝑣𝑠𝑓(𝑥, 𝑦) ∙ 𝑣𝑠𝑓(𝑥 + 𝑥𝑙𝑎𝑔, 𝑦) 

𝑦𝑒

𝑦=𝑦1

𝑥𝑒−𝑥𝑙𝑎𝑔

𝑥=𝑥1

)/ ∑ ∑ 𝑣𝑠𝑓(𝑥, 𝑦) ∙ 𝑣𝑠𝑓(𝑥, 𝑦) 

𝑦𝑒

𝑦=𝑦1

𝑥𝑒

𝑥=𝑥1

𝐒𝐀𝐂𝐅𝑦(𝑦𝑙𝑎𝑔) = ( ∑ ∑ 𝑢𝑠𝑓(𝑥, 𝑦) ∙ 𝑢𝑠𝑓(𝑥, 𝑦 + 𝑦𝑙𝑎𝑔) 

𝑦𝑒−𝑦𝑙𝑎𝑔

𝑦=𝑦1

𝑥𝑒

𝑥=𝑥1

)/ ∑ ∑ 𝑢𝑠𝑓(𝑥, 𝑦) ∙ 𝑢𝑠𝑓(𝑥, 𝑦) 

𝑦𝑒

𝑦=𝑦1

𝑥𝑒

𝑥=𝑥1

 (2.28) 

where u
sf
 and v

sf
 are the spatial fluctuations of the u and v velocity components (after removing the 

whole-field spatial mean values), x1 and y1 are the smallest x and y coordinates, xe and ye are the larg-

est x and y coordinates, xlag and ylag are the spatial lags in x and y directions. 

The x-directional and y-directional characteristic length scales of the vector field (LC,x and LC,y) are 

obtained as the first spatial lag resulting in zero correlation, hence the zero crossing of the SACF. 
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Figure 2.7 The spatial autocorrelation-coefficient functions of the vector field: SACFx (red, dashed) 

and SACFy (blue, solid) 

Figure 2.7 shows the SACFs of the vector field displayed in Figure 2.6. It can be recognized that 

the lags of the first zero-crossings in (LC,x~ 5 cm, LC,y~5 cm) correspond approximately to the average 

radius of the vortical structures to be observed in the vector field. Note that the accuracy of the values 

depends on the spatial resolution of the velocity data and that this simple estimation works well only if 

the structures in the vector field are of similar size. 

2.5 Spatio-temporal analysis by Proper Orthogonal Decompo-

sition (POD) 

The Proper Orthogonal Decomposition (POD) is a method that is suitable to be applied on velocity 

datasets with inhomogeneous flow fields (e.g. Adrian et al. 2000). 

Since the review of the mathematical background of POD is beyond the scope of this work, only a 

very brief description of POD and the equations needed to compute POD are presented in this section. 

Further information about the method can be found in e.g. Lumley (1967), Sirovich (1987), Au-

bry (1991), Cordier (2003), Meyer et al. (2007), Kriegseis et al. (2010). 

From mathematical point of view, POD creates a set of orthonormal basis functions for the input 

velocity dataset, so that each individual time step of the input dataset can be reconstructed using these 

new basis functions, called POD modes. An important property of POD is that it calculates the basis 

functions from the input velocity dataset without need for assumptions about the flow. Further, the 

POD modes are optimal in terms of variance representation, which means that the POD modes with 

highest contribution to the ensemble turbulent kinetic energy are the first modes. For these reason the 

most energetic and largest structures of the flow are usually represented by the first POD modes, so 

that largest structures can be usually investigated using the first few modes. 

In order to compute POD, the velocity dataset has to be arranged in a specific form. First, the mean 

velocity field of the dataset, which is considered as POD mode 0, is subtracted from the dataset at the 

beginning, so that the following steps are done using only the fluctuating parts of the velocity. 

The typical velocity dataset of a PIV measurement contains two- (or three-) dimensional velocity 

vectors (u, v; w) in M positions of the measurement grid for N time steps. Such a velocity dataset can 

be arranged in a matrix of size 2MxN (or 3MxN in case of three-dimensional data) as follows: 
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X =  

[
 
 
 
 
 
 
 
 
 
 

𝑢′(𝑝1, 𝑡1) 𝑢′(𝑝1, 𝑡2)

𝑢′(𝑝2, 𝑡1) 𝑢′(𝑝2, 𝑡2)

⋯
…

𝑢′(𝑝1, 𝑡𝑁)

𝑢′(𝑝2, 𝑡𝑁)
⋮ ⋮

𝑢′(𝑝𝑀, 𝑡1) 𝑢′(𝑝𝑀 , 𝑡2)

𝑣′(𝑝1, 𝑡1) 𝑣′(𝑝1, 𝑡2)

⋮
⋯
⋯

⋮
𝑢′(𝑝𝑀, 𝑡𝑁)

𝑣′(𝑝1, 𝑡𝑁)
⋮

𝑣′(𝑝𝑀 , 𝑡1)

𝑤′(𝑝1, 𝑡1)
⋮

⋮
𝑣′(𝑝𝑀 , 𝑡2)

𝑤′(𝑝1, 𝑡2)
⋮

𝑤′(𝑝𝑀 , 𝑡1) 𝑤′(𝑝𝑀 , 𝑡2)

⋮
⋯
⋯
⋮
⋯

⋮
𝑣′(𝑝𝑀 , 𝑡𝑁)

𝑤′(𝑝1, 𝑡𝑁)
⋮

𝑤′(𝑝𝑀 , 𝑡𝑁)]
 
 
 
 
 
 
 
 
 
 

= [𝐱1 ⋯𝐱𝑛 ⋯𝐱𝑁]  (2.29) 

where the column vectors x
n
 contain the velocities of the individual time steps tn and the row vec-

tors contain the time series of a component in the individual grid point pm located in (xm, ym, zm). 

POD is calculated based on the auto-covariance matrix of the velocity data matrix X. According to 

whether the auto-covariance matrix is computed as XX
T
 or as X

T
X, the approaches Classical POD 

(also called Direct POD) and Snapshot POD can be distinguished, respectively. As the snapshot POD 

approach consists of more steps than the classical approach, first the steps of the snapshot approach 

are presented, and then the connection to the classical approach is highlighted. 

The auto-covariance matrix of the velocity data matrix is created as: 

C = XTX  (2.30) 

The corresponding eigenvalue problem to solve is: 

C = D  (2.31) 

where the diagonal matrix D contains the eigenvalues 'i ordered in descending order: 

𝐃 =

[
 
 
 
 
𝜆′1

⋱
0

𝜆′𝑖

0
⋱

𝜆′𝑁]
 
 
 
 

  (2.32) 

and the columns of  contain the temporal eigenvectors of the velocity data matrix. These eigen-

vectors are orthogonal and are used as basis to construct the corresponding POD modes as follows. 

First, spatial vectors are computed as: 

' = X = [′𝟏  ⋯ ′𝒊 ⋯′𝑵] (2.33) 

where the columns of ’ are orthogonal vectors and have to be normalized by their Euclidean 

norms as: 

𝑖 =
′𝑖

‖′𝑖‖
  (2.34) 

The obtained column vectors 
i
 are the orthonormal POD modes and are the spatial eigenvectors 

of the velocity data matrix X: 

 = [𝟏  ⋯ 𝒊 ⋯𝑵]  (2.35) 

Due to the normalization of the column vectors 
’i
, the correction of the corresponding temporal 

eigenvectors is necessary. Instead of calculating weighting factors for each eigenvector separately, it is 

more practical to extract the correct temporal vectors, called POD coefficients, using the orthonormal 

POD modes as: 
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A = TX = [a1 ⋯ a𝑛 ⋯ a𝑁] =

[
 
 
 
a1

⋮
a𝑖

⋮
a𝑁]

 
 
 

,  (2.36) 

where POD coefficients in the column vector a
n
 contain the coefficients corresponding to the indi-

vidual POD modes at time step n, and the POD coefficients in the row vector ai contain the time series 

of coefficients over the time steps 1..n..N corresponding to POD mode i. Considering the modified 

POD coefficients, the adjusted values of i can be calculated as the variance of the time series as: 

𝑖 = VAR(ai)  (2.37) 

The ensemble velocity variance produced by POD mode i is equivalent to i. The contribution of 

the POD mode i to the ensemble variance of the input velocity dataset can be obtained as the normal-

ized lambda values: 

𝑝𝑖 =
𝜆𝑖

‖𝜆‖
  (2.38) 

which is equivalent contribution of the POD mode i to the ensemble turbulent kinetic energy of the 

input velocity dataset. 

Further, the sum of the coefficients in the row vector ai belonging to the POD mode i is per defini-

tion zero: 

∑𝑎𝑖,𝑗

𝑁

𝑗=1

= 0  

The input velocity dataset including every time step can be reconstructed as the sum of the products 

of the POD modes and the corresponding POD coefficients: 

X = A = [𝟏  ⋯ 𝒊 ⋯𝑵]

[
 
 
 
a1

⋮
a𝑖

⋮
a𝑁]

 
 
 

  (2.40) 

The reconstruction of a limited number of time steps is possible by involving only the needed time 

steps of each time series ai in the reconstruction. If some of the POD modes are excluded during the 

reconstruction, the resulting dataset is not an exact reconstruction of the original dataset. 

According to the Classical POD approach, the auto-covariance matrix is computed as: 

𝐑 = XXT,  (2.41) 

and the eigenvalue problem can be written as: 

R = D,  (2.42) 

where the diagonal matrix D contains the eigenvalues i and the columns of  are the orthonormal 

spatial eigenvectors of the velocity data matrix, which are the POD modes. Thus, the orthonormal 

POD modes can be obtained directly as the eigenvectors of XX
T
 without needing the calculations in 

Eqs. (2.33) to (2.35). 

The difference between the two approaches is that Snapshot POD computes the POD results based 

on the two-point temporal correlation tensor obtained as X
T
X, whereas Classical POD computes the 

POD results based on the two-point spatial correlation tensor received as XX
T
 (Figure 2.8). The two 
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approaches yield, however, the same POD modes and POD coefficients. The number of modes is the 

smallest dimension of the velocity data matrix regardless of the approach used, hence in case of two-

dimensional velocity data min(N, 2M) defines the valuable amount of data in the results. 

  

(a) (b) 

Figure 2.8 Schematic view of the (a) Snapshot POD and (b) Classical POD (after Cordier 2003). 

An essential difference between the computations of the two approaches is the size of the eigenval-

ue problem, which is determined by the size of the auto-covariance matrix, i.e. NxN for Snapshot POD 

and 2Mx2M for Classical POD. If N is significantly smaller than 2M, the computational cost of using 

Snapshot POD is lower. Therefore, the approach to use is to be decided on the basis of the size of the 

available velocity data matrix. 

Note that one can obtain the eigenvectors in Eqs. (2.31) and (2.42) by Singular Value Decomposi-

tion as: 

𝐗 = 𝐒T  (2.43) 

where the left singular vectors in  are the eigenvectors of XX
T
 as in Eq. (2.42) of Classical POD, 

the right singular vectors in  are the eigenvectors of X
T
X as in Eq. (2.31) of Snapshot POD, and 

S
2
=D (Cordier 2003). The use of Singular Value Decomposition to compute the spatial and temporal 

eigenvectors is also called Biorthogonal Decomposition. 

A POD analysis usually focuses on the POD modes with the largest energy contributions and on 

the examination of the characteristics of corresponding time series of POD coefficients. However, an 

individual POD mode is by itself not an extracted flow structure, but rather a spatial oscillation com-

ponent, which will be demonstrated in Chapter 5.  

Most studies that managed to describe flow structures using POD have identified the POD modes 

necessary for the reconstruction based on connections between individual POD modes. Such connec-

tions are, for example, the almost identical energy contributions of POD modes and the identical dom-

inant frequencies of POD coefficients corresponding to connected POD modes (e.g. Bernero et al. 

2000, Meyer et al. 2007, Feng et al. 2011). In addition, the POD modes used in such studies are the 

very first modes representing the large flow structures, which could also be recognized and verified 

visually. 
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3 Literature review on the hydraulics of verti-

cal-slot fish passes 

A vertical-slot fish pass consists of a rectangular open channel divided into a series of pools by 

cross walls (Figure 3.1). The pools are interconnected by vertical slots established in the cross walls, 

where water can flow through from pool to pool. This arrangement divides the large water level dif-

ference between the headwater and the tailwater of the barrage into small water level differences be-

tween the pools which can be surmounted by fish. 

 

 

Figure 3.1 Plan view of typical pools of a vertical-slot fish pass with the main denotations 

Due to the limited space near barrages, such fish passes often have a folded layout, where irregular 

pools (e.g. turning pools) serve as connection of the straight sections. Though, the majority of pools 

are regular pools in a straight layout, hence most scientific investigations in the literature cope with the 

flow in the straight sections neglecting the influence of irregular pools on the hydraulics of the straight 

sections. Since the present investigation also deals with regular pools, the literature review in this sec-

tion focuses on results gained in vertical-slot fish passes of identical pools in a straight layout. 

For the following review it has to be pointed out that the uniform flow condition for such arrange-

ments is defined so that the water depths and flow velocities are identical in each pool (see e.g. Raja-

ratnam et al. 1986), even though they are not identical within the pools. Further, the slot geometry is 

considered to be part of the pool geometry, so that pools with the same pool dimensions but with dif-

ferences in any other geometric element are considered as different pool geometries. 

3.1 Hydraulic performance of the vertical-slot fish pass 

Current fish pass design guidelines (e.g. DWA 2014) define design criteria based on the overall 

hydraulic performance of the vertical-slot fish pass, which consists of a one-dimensional description of 

the hydraulics involving the relation between the water depth and the discharge, the maximum flow 
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velocity in the pools and an average measure for the level of turbulence in the pools. These hydraulic 

characteristics are fundamental for hydraulic design and have accordingly been objects of numerous 

hydraulic investigations in the past. 

 

 

Figure 3.2 Schematic view of the water levels within the pools (solid line) and the assumption of a 

horizontal water surface (dashed line). (after Sokoray-Varga et al. 2015) 

An essential parameter for the equations of these hydraulic characteristics is the nominal head drop 

at the cross walls of subsequent pools h, which is calculated by assuming horizontal water surfaces 

within the pools (Figure 3.2). The nominal head drop divided by the pool length is regarded as the 

slope parameter of the fish pass. In case of uniform flow, the nominal head drop is equal to the bottom 

level difference between subsequent pools. 

In contrast to the assumption of a horizontal water surface within the pools, experimental results 

have revealed (e.g. Rajaratnam et al. 1986, Wu et al 1999, Puertas et al. 2004) that the water surface is 

not horizontal in reality but it tends to increases from a minimum level behind the upstream cross wall 

of the pool to a maximum level in front of the downstream cross wall (Figures 3.2 and 3.3). The tilt of 

the water surface within the pools has been later found to be geometry specific and dependent on the 

slope, but independent of the discharge (Puertas et al. 2004).  

 

 

Figure 3.3 Distribution of the average water levels within a pool (after Puertas et al. 2004) 

The relationship between the mean depth in the pools and the discharge in the fish pass has been 

shown to be linear for uniform flow in previous experimental investigations (Rajaratnam et al. 1986, 

Rajaratnam et al. 1992, Wu et al. 1999 and Puertas et al. 2004). These studies involved 20 different 
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pool geometries at different slopes and discharges, and the resulting depth-discharge equations can be 

expressed as (Sokoray-Varga et al. 2015): 

𝑄 =   𝛼 ∙ √
𝑠

2 ∙ 𝐿
∙ ℎ𝑚 ∙ 𝑠 ∙ √2 ∙ 𝑔 ∙ ∆ℎ  (3.1) 

where  is a pool geometry dependent coefficient, hm is the mean depth in the pools, s is the slot 

width, h is the nominal head drop between subsequent pools, L is the pool length and g is gravity. 

The coefficient  proved to be essentially dependent on the geometry of the pool but to be constant for 

different discharges for uniform flow conditions, which results in the linear relationship between dis-

charge and flow depth. Puertas et al. (2004) have detected a slight dependence of  on the slope. 

Wang et al. 2010 suggested using the following equation: 

𝑄 =  𝐶𝑚𝑑  ∙  ℎ𝑚  ∙  𝑠 ∙  √2 ∙ 𝑔 ∙ ∆ℎ  (3.2) 

where hm is the mean water depth in the pools, and Cmd is the discharge coefficient being only 

slightly dependent on the slope. The link between Eqs. (3.1) and (3.2) can be given as: 

𝐶𝑚𝑑 =
𝛼

√2
∙ √

𝑠

𝐿
  (3.3) 

It has to be noted that there also exist further equations for the depth-discharge relationship, which, 

however do not make use of linearity (e.g. Rajaratnam et al. 1986, Larinier 1992, DVWK 1996, DWA 

2010, Krüger et al. 2010, DWA 2014, Fuentes-Peres et al. 2014). 

 

 

Figure 3.4 Vertical distribution of the flow velocities measured within the slots of different pool ge-

ometries (after Rajaratnametal1986) 

The experimental investigations of Rajaratnam et al. (1986), Wu et al. (1999), Puertas et al. (2004) 

and Liu et al. (2006) found that the maximal flow velocity in the slot is approximately: 

𝑣𝑚𝑎𝑥,𝑠 = √2∙g∙∆h  (3.4) 

Their measurements have demonstrated that the maximal velocity in the slot is independent of the 

discharge and is essentially the same in different distances above the bottom – except near the surface 

and near the bottom (Figure 3.4). This explains the linear depth-discharge relationship in Eq. (3.2). 
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3.2 Velocity distribution in the pools 

The investigations mentioned previously (Rajaratnam et al. 1986, Wu et al. 1999, Puertas et al. 

2004, Wang et al. 2010) have demonstrated that the mean flow velocities within the pools and the slots 

of vertical-slot fish passes are essentially the same in different distances above the bottom (except near 

the surface and near the bottom), hence there are no significant differences in the horizontal velocity 

fields in different heights. The vertical velocity component has been shown to be generally small with-

in the pools compared to the other components in these studies. The vertical velocity component ob-

tained higher values only near the slots; in most parts of the pools it proved to be typically higher for 

slopes over 5% and was observed to be negligibly small for lower slopes. Additionally, the flow veloc-

ities in vertical-slot fish passes have been found to be independent of the discharge. The linear rela-

tionship found between the water depth and the discharge in Eq. (3.1) and (3.2) confirms these find-

ings. 

 

(a) (b) 

Figure 3.5 Typical positions of the main streams (thick lines) and recirculation flows (thin lines) in the 

pools of vertical-slot fish passes: (a) flow pattern 1, (b) flow pattern 2. 

These investigations have also shown that the horizontal velocity distribution in the pools consists 

of two types of flow regions: a main stream and several recirculation regions (Figure 3.5). The main 

stream is the jet-like stream traveling along a curved trajectory from the upstream slot to the next in 

the pool. It is characterized by high flow velocities, which decay along the trajectory but still stay 

higher than in the recirculation regions. The flow velocities have been observed to be even higher 

within the main stream at some distance below the slot than within the slot (Wu et al. 1999, Wang et 

al. 2010), but no equation has been found for its value so far. The recirculation regions are shear driv-

en by the main stream and are characterized by circulations of lower flow velocities. The extents and 

locations of these flow regions vary in function of the specific pool geometry, however, two typical 

arrangements of flow regions have been observed, which are referred to as flow patterns (e.g. Wu et 

al. 99, Puertas et al. 2004, Liu et al. 2006, Tarrade et al. 2008, Wang et al. 2010, Höger et al. 2014). 

Flow pattern 1 is characterized by a slightly curved main-stream trajectory and large recirculation 

regions on both sides of the main stream (Figure 3.5 a). Flow pattern 2 is characterized by a rounded 

main-stream trajectory that travels from the upstream slot toward the side wall of the pool and then to 

the next slot, so that one large recirculation region develops (Figure 3.5 b). Beside the large recircula-

tion regions, several smaller recirculation regions can occur in case of both flow patterns. 
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Recent experimental studies have shown that the type of flow pattern depends on the pool geome-

try and the slope of the fish pass. However, it is currently not been finally clarified yet how large the 

influence of individual geometry parameters is (Wang et al. 2010, Höger et al. 2014). 

3.3 Turbulence characteristics in the pools 

The potential energy represented by the head drop between the pools is dissipated in every pool by 

turbulent mixing of the main stream, which results in a highly turbulent flow within the pools. Since 

turbulence had been recognized as influencing fish swimming performance long ago, its quantification 

has been an objective of hydraulics investigations from the beginning of fish pass research. Though, 

the methods used for characterizing turbulence have evolved with the development of measurement 

techniques. 

The rate of dissipated energy per unit pool volume is a calculated measure of turbulence in the 

pools, which has been used since early studies on fish passes (e.g. Rajaratnam et al. 1986, Larinier 

1992). It is computed as: 

𝐸𝐷 =
𝜌 ∙ 𝑔 ∙ 𝑄 ∙ ∆ℎ

𝐿 ∙ 𝐵 ∙ ℎ𝑚
  (3.5) 

where  the density of water and B is the pool width. The value of ED proved to be independent of 

the discharge in later studies (Wu et al. 1999, Puertas et al. 2004). Although this pool average value is 

still widely used as fish pass design criterion by considering thresholds for the target fish species 

(DWA 2014), the interpretation of this value with regard to the features of turbulence is unclear. 

The determination of turbulence features by measurements became possible as velocity time series 

could be captured at high enough frequencies as a result of the developments in the flow velocity 

measurement technology, especially the appearance of Acoustic Doppler Velocimeters (ADV) and 

Particle Image Velocimetry (PIV). 

  

(a) (b) 

Figure 3.6 Distributions of (TKEuv)
1/2

 in pools with different geometries. The dashed lines illustrate the 

approximate centerline of the main stream based on the mean velocity fields (after Wang et al. 2010 

and Tarrade et al. 2008). 
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Turbulent kinetic energy (TKE) measurements in vertical-slot fish passes (e.g. Puertas et al. 2004, 

Liu et al. 2006, Wang et al. 2010) have demonstrated that the maximum TKE levels occur near the 

slots, which decrease along the main stream. Within the pools, high TKE levels arise in the shear 

zones between the main stream and the recirculation regions, whereas other parts of the pool are char-

acterized by lower TKE levels (e.g. Figure 3.6). Further, the TKE has been found to be independent of 

the distance from the bottom and to be only weakly affected by discharge variations (Puertas et al. 

2004, Wang et al. 2010). 

  

(a) (b) 

(c) (d) 

Figure 3.7 Unsteady main-stream positions in the instantaneous velocity fields at different time steps 

measured in the same pool geometries as in Wang et al. (2010) (after Tarrade et al. 2011). 

The large-scale flow structure, i.e. the main stream and the recirculation regions, has been observed 

to show an unsteady, oscillating character in some laboratory scale-model investigations (Wang et al 

2010, Tarrade et al 2011, Sokoray-Varga et al. 2012). This can be recognized in the instantaneous 

velocity fields of PIV measurements shown in Figure 3.7, where both the location of the main stream 

and the extents of the recirculation regions are unsteady in both of the two different pool geometries 

representing two different flow patterns. Based on visual observations of the instantaneous velocity 

fields in different pool geometries, Tarrade et al. (2011) explained the oscillation process as a com-
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bined result of velocity bursts arriving from the upstream pool and fluid exchange between the recircu-

lation regions and the main stream. 

Tarrade et al. (2011) additionally analyzed the PIV measurements of both pool geometries shown 

in Figure 3.7 by Proper Orthogonal Decomposition (POD). They recognized that POD mode 1 roughly 

describes the main-stream oscillation in both geometries. The frequency spectra of the POD-

coefficient time series corresponding to POD mode 1 indicated that the characteristic frequencies of 

the main-stream oscillation were 0.12 and 0.08 Hz. The similar energy contribution levels (i) of POD 

modes 1 and 2 revealed that POD mode 2 is connected with POD mode 1. Based on the spatial distri-

bution patterns of the vectors in the POD modes they concluded that POD mode 2 represented burst 

processes of the main stream and POD modes 3 and 4 represented processes arising as a result of the 

oscillation. More detailed connections between these POD modes or further characteristics of the os-

cillation were, however, not extracted from the results. 
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4 Experimental methods 

In this chapter, first the laboratory scale model and the experiment execution are described, then 

possible scale effects arising from using a scale models are addressed by considering the model simili-

tude, and finally technical details of the used Particle Image Velocimetry (PIV) system are presented. 

4.1 Experimental setup and execution 

The laboratory model of the vertical-slot fish pass was built in the hydraulic laboratory of the 

BAW. The model consists of 9 identical pools installed in a flume with a slope of 2.8% (Figures 4.1 

and4.2). 

 

 

Figure 4.1 Side view and plan view of the laboratory model. 

 

 

 

Figure 4.2 Picture of the laboratory model 
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The pools have a width of 78.5 cm and a length of 99.0 cm; the slot width is 12.2 cm (Figure 4.3 a). 

The Reynolds number in the scale model is about Re ~ 90 000 considering the slot width as character-

istic length and the velocity in the slot as characteristic velocity, which is 0.75 m/s based on Eq. (3.4). 

 

 
(a) (b) 

Figure 4.3 (a) Plan view of a pool and (b) position of the PIV measurement field within the pool. 

Dimensions are in cm. 

The used laboratory model was not the scale replica of a particular fish pass. Since the dimensions 

of the pool geometry followed the suggestions of the German design guideline of 2010 (DWA 2010), 

which specifies the dimensions of every pool element based on the slot width, the model can be con-

sidered to be a scale model that is not restricted to particular geometric scale (unless the slope is iden-

tical). Though, the geometric scale is 1:4.1 with respect to the fish passes being planned along the 

Neckar River in Germany. 

The head tank of the model is supplied with water from the constant-head high-level tank of the la-

boratory. The discharge in the model can be manually set using an inductive discharge meter (IDM), 

the water levels can be adjusted by a tilting weir. The water depths were measured by rulers on the 

downstream side of the baffles and on the upstream side of the cross walls in the same positions in 

every pool. 

The side walls and the bottom of the pools were made of glass, the cross walls and the baffles were 

made of wood. The edges of the cross walls and the baffles were rounded using a 10 mm radius mill-

ing cutter in order to better reflect the edge configuration of the concrete elements in real fish passes 

and to reduce the amount of air bubbles introduced to the water. It has to be noted that the y-positions 

of the baffles had to be adjusted due to the rounded edges in order to ensure the specified slot width. 

The measurement analyzed in this work was carried out in uniform flow conditions at a discharge 

of 20 l/s, which was achieved by adjusting the tilting weir so that the water depths were nearly the 

same in the pools. Though, uniform flow conditions could only be reached in a section of five pools 

from pool 4 to pool 8, because the water depths deviated in the first three and the last pools, hence 

they appeared to be influenced by the inlet and outlet flow conditions. In the pools with uniform flow 

the water depths were 21 cm on the downstream side of the baffles and 24 cm on the upstream side of 

the cross walls. The velocity distribution showed flow pattern 1 in every pool of the model. 

The PIV measurement was performed in pool 6 in a 48 x 38 cm large field 10 cm above the bottom 

in a plane parallel to bottom as shown in Figure 4.3 (b). The measurement plane was illuminated 
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through the side wall by the laser of the PIV system, and the images were taken by the camera looking 

through the bottom of the model. The position of the measurement field was selected as displayed in 

order to include both the main stream and significant parts of the recirculation region in the measure-

ment, thereby containing the main transversal velocity gradients of the flow. In order to reduce the 

disturbing reflections of the illumination from the surface waves, a 60 x 50 cm large black plate was 

placed over the measurement field 2 cm below the water surface. 

Based on the literature results presented in the previous chapter, the hydraulic characteristics in the 

pools are independent of the distance from the bottom, so that a measurement performed in a single 

height was considered to characterize well the processes in the entire depth. Further, since the vertical 

component of the mean velocity also proved to be negligibly small for such slopes, the plate was ex-

pected to have negligible influence on the vertical flow velocity distribution near the position of the 

measurement field. The plate was selected to be significant smaller than the pool size in order to min-

imize its influence on the pool-wide water-level oscillations, which are expected to be connected with 

flow velocity oscillations. However, the final impact of the somewhat dampened water level oscilla-

tions on the velocity oscillations was not quantified yet. 

The measurement analyzed in the present work was obtained using the 2D-2C PIV system present-

ed in Section 4.3. The five minutes long measurement performed at a sampling frequency of 200 Hz 

resulted in 60 000 time steps. The recordings were first processed with a Particle Tracking Veloci-

metry (PTV) algorithm, and then the scattered velocity data was interpolated at each time step to the 

rectangular grid of 5.0x5.0 mm. Note that, since the measurement plane was parallel to bottom, the 

direction of the measured u-velocity components was not horizontal but parallel to bottom. 

4.2 Model similarity 

Quantities from a scale model can be up-scaled to full-scale quantities using specific scale ratios. 

For example, the lengths (l), the velocities (u) and the times (t) can be up-scaled as: 

𝑙(𝑃) = 𝑐𝑙 ∙ 𝑙(𝑀)

𝑢(𝑃) = 𝑐𝑢 ∙ 𝑢(𝑀)

𝑡(𝑃) = 𝑐𝑡 ∙ 𝑡(𝑀)

  (4.1) 

where subscripts P and M refer to quantities in the prototype and the model respectively, cl is the 

scale ratio of lengths being the geometric scale, cu is the scale ratio of velocities and ct is the scale ratio 

of times. 

A laboratory scale model is perfectly similar to its full-scale prototype, if it fulfils the geometric, 

kinematic and dynamic similarity, i.e. the similarity of shapes (length), motion (time) and forces, re-

spectively. This means that the ratios of the corresponding quantities in the two systems have to be 

constant. The dynamic similarity implies the geometric and kinematic similarity and additionally re-

quires that the ratios of all forces in the scale model and the prototype are identical. The most relevant 

forces in fluid dynamics are inertial forces, gravitational forces, viscous forces, pressure forces, sur-

face tension forces and elastic compression forces. The identity of the ratios of all these forces means 

that the ratio of inertial forces is equal to the ratio of gravitational forces and to the ratio of viscous 

forces etc. in the scale model and the prototype. However, gravity and viscosity are usually unscaled 

in scale models, because the gravity acting in the scale model is usually the same as in the prototype, 

and the viscosity of the model fluid is also unscaled, if the identical fluid is used in the scale model as 
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in the prototype. Consequently, a perfectly similar scale model is hardly possible (with the exception 

of full-scale scale models). For this reason, only the most dominant forces are scaled and modelled 

properly by applying special similarity laws, whereas other forces are neglected during the modelling, 

which may lead to scale effects. For more detailed information it is recommended to refer a textbook 

or an article on this subject (e.g. Yalin 1971, Heller 2011). 

The flow in vertical-slot fish passes was usually modelled in the literature by applying Froude simi-

larity laws. Froude similarity yields the following scale factors for e.g. times and velocities: 

𝑐𝑢 = √𝑐𝑙

𝑐𝑡 = √𝑐𝑙

  (4.2) 

Froude similarity implies that the inertial and the gravitational forces are scaled properly, whereas 

other forces are not. While pressure forces, surface tension forces and elastic compression forces are 

expected to play a negligible role in the flow processes in vertical-slot fish passes, viscous forces play 

a role in the energy cascade of turbulence, hence in the development of the turbulent structures (see 

Chapter 2). Viscous forces are, however, not scaled properly by the scale model used in the present 

work, since the water used in the scale model is the same fluid as in the prototype, i.e. viscosity is 

unscaled in the model. 

In the present work the scale effects arising from the incorrect scaling of viscous forces in the scale 

model were examined as follows. The characteristic eddy sizes in the scale model (l0(M), lEI(M), lDI(M), 

(M)) were first estimated based on the characteristic sizes in the prototype (l0(P), lEI(P), lDI(P), (P)) and 

then compared with each other (for characteristic eddy sizes see Section 2.1). 

 

 

Figure 4.4 Schematic view of the energy spectra in the prototype (solid lines and lengths denoted by P) 

and in the scale model (dashed lines and lengths denoted by M). 

The characteristics of large eddies (l >  lEI) and of eddies in the inertial subrange (l > lDI) are deter-

mined by the geometry of the mean flow and the boundary of the flow. Further, processes in these 

ranges are substantially driven by inertial forces. Therefore, the characteristics of these eddies are re-

produced properly by Froude models, so that their sizes are scaled with the geometric scale as: 
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𝑙0(𝑀) =
1

𝑐𝑙
∙ 𝑙0(𝑃)

𝑙𝐸𝐼(𝑀) =
1

𝑐𝑙
∙ 𝑙𝐸𝐼(𝑃)

   (4.3) 

In the dissipation range, in turn, viscous forces are significant, which are not scaled correctly in 

Froude models. The dissipation range in the model (l < lDI(M)) is determined by the Reynolds number 

in the scale model, which can written as: 

𝑅𝑒(𝑀) =
𝑢(𝑀) ∙ 𝑙(𝑀)


=

1
𝑐𝑢

∙ 𝑢(𝑃) ∙
1
𝑐𝑙

∙ 𝑙(𝑃)


=

1

𝑐𝑙 ∙ √𝑐𝑙

∙
𝑢(𝑃) ∙ 𝑙(𝑃) 


= 𝑐𝑙

−3/2
∙ 𝑅𝑒(𝑃)  (4.4) 

The Kolmogorov scale in the scale model can be approximated using Eqs. (2.3) and (4.4) as: 

(𝑀) = 𝑙0(𝑀) ∙ 𝑅𝑒(𝑀)
−3/4

=
1

𝑐𝑙
∙ 𝑙0(𝑃) ∙ (𝑐𝑙

−3/2
∙ 𝑅𝑒(𝑃))

−3/4
= 𝑐𝑙

1/8
∙ (𝑃)  (4.5) 

It can be recognized that while large eddies are smaller in the scale model than in the prototype, 

dissipative eddies (lDI > l > ) are relatively larger in the scale model than in the prototype (Fig-

ure 4.4). 

Turbulent structures are expected to be reproduced properly by a scale model unless they are in the 

dissipation range of the scale model, i.e. only eddies of sizes l >> lDI(M) are expected to be reproduced 

properly. This scale effect arises from the improper scaling of the viscous forces in Froude models and 

is relevant, if the investigated turbulent scales are in the dissipation range in the scale model. 

The flow in a scale model is seriously affected by this scale effect, if the dissipation range and the 

energy containing range in a scale model get near to each other, i.e. there is no significant inertial 

subrange. In this case, the flow in the scale model is not fully turbulent, so that even the mean flow 

characteristics are expected to be improperly reproduced. This is usually avoided by choosing a geo-

metric scale yielding a high Reynolds number, so that the flow in the scale model is fully turbulent. 

The estimation of the different eddy sizes in the scale model used in this work give the following 

results. Since the eddies of the energy containing range are determined by the width of the main 

stream at the slot (s = 12.2 cm), their sizes are in the same order of magnitude yielding l0(M)~10 cm. 

The inertial subrange starts at an order of magnitude smaller eddy sizes lEI(M)~1.67 cm (see Section 

2.1). The Reynolds number in the scale model used in present work is about Re(M)~ 90 000 (see Sec-

tion 4.1). The eddy sizes of the dissipation range in the scale model can be estimated based on Eqs. 

(2.3) and using l0(M) and Re(M); the Kolmogorov scale gives (M)~0.001 cm and the upper limit of the 

dissipation range is about lDI(M)~0.06 cm. Although this estimation has to be regarded as an order of 

magnitude approximation, it clearly shows that a significant inertial subrange is expected in the scale 

model, so that a part of the inertial subrange of the prototype is expected to be reproduced properly. 

Since the present study deals with the energy containing range, which is scaled properly in the 

scale model used in the present work, the results are expected to be unaffected by the scale effect de-

scribed before. Although the results presented in this work are not scaled to prototype, the Froudian 

scaling laws are applicable to convert the results of the scale model to prototype (for the energy con-

taining range). 
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4.3 Particle Image Velocimetry (PIV) 

The velocity data of the present work was measured by an in-house constructed Particle Image Ve-

locimetry (PIV) system. 

4.3.1 Principles of PIV 

Particle Image Velocimetry (PIV) is an optical measurement technique providing non-intrusive 

flow velocity measurements at high sampling rates over the whole measurement field simultaneously. 

In this section a brief description is given on this technique; for more detailed information it is worth 

to consult e.g. Raffel et al. 1998. 

The methodological principle of PIV is that tracer particles are added to the flow that are illuminat-

ed by an intensive light source and recorded by cameras. The local flow velocities are measured by 

determining the displacements of the tracer particles in the images between two subsequent record-

ings, which define the velocity by considering the time delay between recording the images. The parti-

cle displacement can be determined based on the characteristic group of neighboring particles, called 

here neighborhood, which has a specific local distribution pattern. 

PIV systems usually consist of following essential hardware components: camera(s) to take images, 

data recording units to store the taken images, tracer particles that follow the flow as correctly as pos-

sible, a light source (usually a laser) with adequate optics to illuminate the tracer particles, and a trig-

ger to synchronize all the components (Figure 4.5). 

 

 

Figure 4.5 Schematic view of the PIV system 

There exist different PIV-system configurations. The PIV system of the present work used light-

sheet optics for the illumination and a single camera to record the images. Since the light-sheet optics 

illuminates a quasi 2D plane of the flow, and the single camera provides two velocity vector compo-

nents, which are the projections of the three-dimensional vectors into the image plane, such a system is 

conventionally denoted as 2D-2C. 

The velocity vectors are obtained by evaluating the recorded PIV images by software. There are 

two basic types of velocity evaluation algorithms. Particle Image Velocimetry (PIV) algorithms subdi-
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vide the images into rectangular segments, called interrogation areas, and determine the displacements 

of the individual interrogation areas, so that one vector is produced per interrogation area. Particle 

Tracking Velocimetry (PTV) algorithms, in turn, determine the displacement of each individual parti-

cle based on the individual neighborhoods. Both types of algorithms have advantages and disad-

vantages. Essential differences are briefly the following. Due to the spatial filtering effect of the inter-

rogation areas, PIV algorithms produce lower noise results but are more sensitive to local velocity 

gradients. PTV algorithms, in turn, provide higher spatial resolution and are less sensitive to velocity 

gradients, but the obtained scattered data has a higher noise and has to be interpolated if the analysis is 

grid point based. It has to be noted that there exists a large number of methods for both types of algo-

rithms, which themselves have strengths and weaknesses. 

Further, it can be distinguished between single-pulsed and double-pulsed systems. Without going 

in details on the physical backgrounds of pulsed lasers, double-pulsed lasers produce pulse pairs with 

short time separation, which result in image pairs recorded with short time separation. Since the veloc-

ity evaluation algorithms have limitation on the largest and smallest particle displacements between 

subsequent images and on the gradients in the displacement of neighborhoods, the time delay between 

recording the images has to be adjusted to these characteristics. As the time separation between the 

pulses of the double pulse is relative flexible selectable, double pulsed lasers are more flexible adjust-

able than single pulsed lasers. In turn, while single pulsed systems produce a velocity field based on 

every image, only every second image provides velocity data in a double pulsed system, since a veloc-

ity field is only obtained by an image pair created by a pulse pair. 

4.3.2 PIV hardware 

The light source of the system was a 20 W Nd:YAG single pulsed laser emitting visible green light 

at 532 nm wavelength (Yasmin/Quantel). The maximal pulse rate was 200 Hz at pulse energy of 100 

mJ; the pulse duration was 8 ns and the beam diameter was 8 mm. The green color was selected be-

cause green light is less absorbed in water than red (e.g. Smith et al. 1981). 

The light sheet was produced from the beam by a combination of a cylindrical lens and a collimat-

ing mirror, which generated a constant width plane light sheet of approximately 50 cm width. The 

images were recorded via a surface mirror through the bottom of the model. (Figure 4.5) 

An 8-bit monochrome camera with a CMOS sensor of 1280x1024 pixels resolution was used to 

record the images (Mikrotron MC1362). The camera was used with a Zeiss Planar T 1.4/85 ZF objec-

tive providing low optical distortion. The field of view of the camera was nearly 51x41 cm, which 

resulted in a pixel resolution of 0.4 mm/pixel.  

The 250 Megabytes data per second produced by the camera (200 fps) was transferred to the image 

acquisition system over Camera Link interface. The image acquisition system was a RAID system 

capable to store data in real time at such transfer rates. The measurement duration of 300 s resulted in 

nearly 75 GB of raw image data. 

To visualize the flow, polyamide particles of p = 1.06 g/cm
3
 density and particle diameters be-

tween 30-250 m (VESTOSINT 1101) were used. 
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4.3.3 Velocity evaluation using particle tracking 

The velocity information was extracted from the recorded image sequence using the Particle Track-

ing Velocimetry (PTV) algorithm published in Sokoray-Varga et al. (2008). The PTV evaluation con-

sists of two essential steps: particle detection and particle displacement determination. 

The particle detection identifies the tracer particles in the recorded images and determines the co-

ordinates of their centroids with sub-pixel accuracy. The tracer particles are first detected based on 

their typical brightness pattern in the images. Then, in order to achieve a higher accuracy of the parti-

cle positions than the pixel resolution of the images, the sub-pixel accuracy locations of the particle 

centroids are estimated by an interpolation method. Such interpolation methods tend, however, to shift 

the particle centroid towards the center of the pixels, which is referred to as pixel locking. Since this 

introduces an error to the resulting velocity vectors (see Section 4.3.5), this tendency can be displayed 

using the probability density function of the fractional part of the obtained particle positions (Figure 

4.6). 

It has to be noted that sub-pixel interpolation methods require that the particles are visible on at 

least 3x3 pixels. Since the particle diameter of the present work was significantly smaller than the 

image resolution of 0.4 mm/pixels (see Section 4.3.2), the requirement was fulfilled by defocusing the 

objective. 

  

 

 

 

Figure 4.6 Probability density function of the fractional part of the particle positions. 

The particle displacement determination identifies each particle in the subsequent frame based on 

the characteristic distribution pattern of their neighborhoods, so that the displacement vector of each 

individual particle can be determined. Sources of errors in the identification are too strong defor-

mations of the neighborhood (velocity gradients) or the appearance or disappearance of particles in the 

second image (e.g. out-of-plane velocity). Both sources lead to false particle detections, which have to 

be filtered out in the results. The filtering of the erroneous velocity vectors was performed using the 

median filter by Westerweel et al. (2005). 

An indicator for the effectiveness of the particle displacement determination is the percentage of 

the successfully identified particles with respect to the number of particles in the first image, which 

was about 66% in the present velocity evaluation. The number of successfully identified particles was 

about 25 000 per image. 

The velocity vectors can be determined after converting the origin and the end positions of the par-

ticles from image coordinates to real coordinates based on the camera calibration field. 
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4.3.4 Interpolation to a rectangular grid 

The scattered velocity vectors obtained by the PTV algorithm were interpolated to a rectangular 

grid using the Delaunay triangulation based natural neighbor interpolation method, which can be brief-

ly explained as follows (e.g. Barnett 1981). 

The Voronoi tessellation assigns a cell to each of the scattered data points based on the Delaunay 

triangulation (Figure 4.7 a). As a result, the Voronoi cell assigned to Pk defines the positions in the 

plane that are nearer to Pk than to any other scattered point. The natural neighbors of Pk are the scat-

tered points corresponding to the cells neighboring with the cell of Pk. 

According to the natural neighbor interpolation, the points to be interpolated is temporarily inserted 

to the tessellation, and the Voronoi cell of the inserted point is created by reassigning portions from 

the cells of the natural neighbors according to the Voronoi tessellation (Figure 4.7 b). The value of the 

new point is interpolated as: 

𝑢(𝑥𝑛, 𝑦𝑛) = ∑𝑤𝑖 ∙ 𝑢(𝑥𝑖 , 𝑦𝑖)

𝑚

𝑖=1

  (4.6) 

where u(xi,yi) is the velocity in the i-th natural neighbor of the grid point, wi is the weight corre-

sponding to the i-the natural neighbor and m is the number of natural neighbors. The weights are cal-

culated based on the areas originating from the individual natural neighbors as exemplary shown in 

Figure 4.7 (b). As a result, the interpolating surface is C
1
-continuous, which means that its first deriva-

tive is continuous. 

  

(a) (b) 

Figure 4.7 Natural neighbor interpolation of scattered data: (a) natural neighbors of point Pk and (b) 

the weights wi of the interpolation at point Pn. The black points are scattered data points, the dashed 

lines are the Delaunay triangles and the solid lines are the Voronoi cells. (after Ledoux 2006) 

Interpolation is only possible within the area covered by scattered data. In order to avoid extrapola-

tion, the area of the grid was selected to be preferably within the convex hull of the locations of the 

scattered vectors. Though, as a result of the moving characteristic of particles with inhomogeneous 

distribution and of vectors missing due to error filtering, some grid points happen to fall outside the 

convex hull of the scattered data in some snapshots. Data in such grid points has been extrapolated by 

the nearest neighbor method. 
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The interpolated values always differ to some extent from the true velocity values. In addition, 

since the interpolation is performed on the basis of data containing measurement noise, the interpola-

tion methods might increase or decrease the noise in the result. 

The interpolation method described above has been selected after comparing the noise levels ob-

tained from different interpolation methods. The noise levels were ascertained based on the velocity 

spectra computed from the interpolated data (see Section 4.3.5). As it will be explained later, the noise 

level in the time series can be seen on the variance contributions at high frequencies, where a nearly 

constant value in the velocity spectra is reached. For ascertaining the noise levels, the velocity spectra 

were computed by Welch’s method according to Eq. (2.19) using K = 16 segments, because smoothed 

values were required at high frequencies. 

Figure 4.8 exemplarily shows velocity spectra of time series obtained using two different interpola-

tion methods. The results in Figure 4.8 (a) were produced using the interpolation method presented in 

this section; whereas the results in Figure 4.8 (b) were produced using cubic interpolation, which is 

also based on the Delaunay triangulation and is C
2
 continuous. As it can be observed, the noise level in 

the dataset interpolated by the natural neighbor interpolation is lower. This can be considered as a 

consequence of the weighted spatial averages computed by the method, which decrease the rather ran-

dom errors arising from the pixel locking of the particle detection. 

  

(a) (b) 

Figure 4.8 Velocity spectra in the same grid point resulting from datasets produced using different 

interpolation methods: (a) natural neighbor interpolation and (b) cubic interpolation. 

(u and v denote the PSD of the interpolated time series, u
(n)

 and v
(n)

 denote the noise) 

4.3.5 Measurement errors 

The main errors in the velocities measured by the presented PIV system arise due to out-of-plane 

motion, particle density, pixel locking and interpolation to rectangular grid. 

The out-of-plane motion produces an error, because, due to the use of a single camera, the meas-

ured vector components are the projections of the three-dimensional vectors into the image plane. The 

error introduced by this depends on the magnitude of the out-of-plane velocity component, which, 

however, has not been measured explicitly. Since the largest and most energetic flow structures within 
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the vertical-slot fish pass can be considered to be approximately two dimensional in the area of the 

measurement field (see Sections 3.2 and 3.3), this error was neglected in this work. 

Due to the principles of PIV, it has to be assured that tracer particles follow the local flow veloci-

ties. The primary source of error is the density difference between fluid and tracer particle. The behav-

ior of particles exposed to accelerations in a fluid flow can be estimated by the Stokes number (e.g. 

Ruck 1990): 

𝑆𝑡𝑘 =
𝜏𝑝 ∙ 𝑢𝑓

𝑙𝑓
  4.7 

where uf is the characteristic velocity of the fluid, lf is the characteristic size in the fluid and p is 

the relaxation time of the particle, which can be obtained as: 

𝜏𝑝 =
𝑑𝑝

2 ∙ 𝜌𝑝

18 ∙ ∙𝜌𝑓
  4.8 

where dp is the particle diameter, p is the particle density and f is the fluid density. The lf is in-

tended to represent the distance after which the fluid can be expected to decelerate from uf to 0. Tracer 

particles follow the flow faithfully if Stk << 1. The flow characteristics uf = 0.75 m/s, lf = 0.1 m and 

the largest particle sizes of dp = 250 m yield Stk ~ 0.02, so that errors arising from tracing accuracy is 

negligible. 

The errors arising from the pixel locking of the particle detection and from the interpolation of the 

scattered data to the rectangular grid are handled together in the present examination as follows. 

Pixel locking arises during particle detection and occurs when the estimated position of the particle 

is shifted towards the next integer value (see Section 4.3.3). If the velocity vectors are determined 

based on such inaccurate particle positions, the error propagates to the measured velocity vectors and 

results in a noise in the velocity. As described in Section 4.3.4, the interpolation also affects the noise 

level. Since only the interpolated data was used in the later analysis, only the resulting noise and the 

collective error of these sources are considered in this work based on the interpolated data. 

Accordingly, the measured fluctuation time series are considered to be composed as: 

𝑢𝑖 = 𝑢𝑖,(𝑡) + 𝑢𝑖,(𝑛)  4.9 

where u
i,(t)

 are the instantaneous values of the true velocity and u
i,(n)

 are the instantaneous contribu-

tions of the noise. 

For the estimation of the arising error, it is assumed that the collective noise resulting from the pix-

el locking and the interpolation is Gaussian white noise in the velocity fluctuations. Gaussian white 

noise has a constant variance contribution over frequency, so that the PSD of the noise in the velocity 

fluctuation is constant: 

𝑆𝑢𝑢
(𝑛)(𝑓 ) = const  (4.10) 

The PSD of the measured velocity that contains noise is (e.g. Nikora et al. 1998): 

𝑆𝑢𝑢
(𝑚)(𝑓 ) = 𝑆𝑢𝑢

(𝑡)(𝑓 ) + 𝑆𝑢𝑢
(𝑛)(𝑓)  (4.11) 

where Suu
(m)

 is the PSD of the measured velocity, Suu
(t)

 is the PSD of the true velocity. 

Since the variance contributions of the turbulent velocity fluctuation decrease with increasing fre-

quency (see Section 2.1) but the variance contributions of the noise in the velocity fluctuation is as-

sumed to be constant, the variance contributions of the noise become dominant above a certain fre-
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quency fc (e.g. Figure 4.8), so that Suu
(n)

 can be determined based on the constant values at high fre-

quencies of the velocity spectra (e.g. Nikora et al. 1998). 

The PSD contribution level of the noise in the velocity fluctuation was calculated in this work as 

follows. First, the critical frequency fc, above which the PSD of the measured velocity time series ob-

tained a constant value, was ascertained. This could be determined in the velocity spectra of every grid 

point as fc ~ 60 Hz. Then, the PSD contribution level of the noise was calculated in each individual 

grid point for each velocity component as the mean PSD value at frequencies above fc: 

𝑆𝑢𝑢
(𝑛)

(𝑥, 𝑦, 𝑧) =
1

𝑀
∑ 𝑆𝑢𝑢

(𝑎,𝑤)
(𝑥, 𝑦, 𝑧, 𝑓𝑘), 𝑓𝑘 > 𝑓𝑐

𝑀

𝑘=1

   (4.12) 

where fc is the critical frequency, Suu
(a,w)

 is the PSD of the measured time series and M is the num-

ber of the available frequencies above fc. The PSD of the measured time series was computed by 

Welch’s method according to Eq. (2.19) using K = 16 segments, in order to get a variance reduced 

spectra at high frequencies (see Section 2.3.2). Figure 4.9 exemplarily shows the results of such a cal-

culation. 

  

 

 

 

Figure 4.9 PSD contribution levels of the noise in the measured velocity time series; u and v denote 

the PSD of the measured time series, u
(n)

 and v
(n)

 denote the PSD of the noise. 

The variance arising from the noise in the velocity fluctuation was obtained as the integral of the 

PSD contributions over the frequency: 

𝑉𝐴𝑅𝑢
(𝑛)(𝑥, 𝑦, 𝑧) = ∑ 𝑆𝑢𝑢

(𝑛)(𝑥, 𝑦, 𝑧, 𝑓𝑘)

𝑁/2

𝑘=1

  (4.13) 

The variances arising from the noise in the velocity fluctuation produced by the pixel locking and 

the interpolation was estimated in every grid point of the PIV measurement for both velocity compo-

nents as described above (Figure 4.10). 
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(a) (b) 

Figure 4.10 The variance introduced by the pixel locking and the interpolation to the measured veloci-

ty time series of (a) u-velocity component and (b) v-velocity component 

The error introduced to the velocity variance by this noise can be expressed in percentage of the to-

tal variance of the measured time series in every grid point (Figure 4.11): 

∈𝑉𝐴𝑅
(𝑛) (𝑥, 𝑦, 𝑧) =

𝑉𝐴𝑅𝑢
(𝑛)(𝑥, 𝑦, 𝑧)

𝑉𝐴𝑅𝑢 (𝑥, 𝑦, 𝑧)
  (4.14) 

where VARu(x,y,z) is the variance of the measured time series according to Eq. (2.10). 

  

 

(a) (b) 

Figure 4.11 The error introduced by the pixel locking and the interpolation to the measured velocity 

variance of (a) u-velocity component and (b) v-velocity component 

Note that, although the variances and velocity spectra of the measurement could be corrected by 

reducing them by the contribution of the noise based on Eq. (4.11), the velocity time series cannot be 

corrected adequately. For this reason, in order to keep the integrity of the different calculated features, 

the velocity spectra and variances are also not corrected in the present work. 
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5 Statistical analysis and Proper Orthogonal 

Decomposition of the PIV measurement 

In this chapter the measured velocity dataset is analyzed using the methods described in Chapter 2. 

The PIV measurement was carried out as described in Section 4.1. The measurement of 5 minutes 

duration performed at 200 Hz measurement frequency resulted in a velocity dataset containing 60 000 

instantaneous velocity fields, each consisting of 7 469 two-dimensional velocity vectors located on a 

rectangular grid with 5.0x5.0 mm spacing. 

5.1 Time-series analysis in the grid points 

For the analysis of the velocity time series in the individual grid points the instantaneous velocities 

were decomposed to mean velocities and velocity fluctuations following Eqs. (2.6) and (2.7). 

 

 

Figure 5.1 The mean velocity field with the centerline of the mean main stream. Detailed results of the 

time series in the grid points PA-PD are presented. 
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Figure 5.1 shows the mean velocity vectors in the individual grid points. The main stream inter-

connecting the slots consists of higher velocities, whereas the recirculation region is characterized by 

lower velocities, as described in the literature. The velocity distribution confirms that the flow in the 

pool is of flow pattern 1. The velocity magnitudes are roughly about 3 times higher within and around 

the main stream than in the recirculation region, and the ratio of the highest and lowest mean velocities 

is 15, which indicate an inhomogeneous mean flow field. A streamline along the highest velocity 

magnitudes of the cross sections is displayed by a dashed line in Figures 5.1 and 5.2 to illustrate the 

centerline of the main stream in the mean velocity field, called here the mean main-stream centerline. 

The turbulent kinetic energy field in Figure 5.2 shows that the highest turbulence levels arise on the 

sides of the mean main stream, which are expected to be turbulence generating zones. 

 

 

Figure 5.2 The turbulent kinetic energy field with the centerline of the mean main stream. Detailed 

results of the time series in the grid points PA-PD are presented. 

The time-series analysis was performed in every measured grid point as described in Section 2.3. 

Though, as detailed results of each of the 7 469 individual grid points cannot be displayed in a printed 

work, those in the grid points PA-PD marked in Figures 5.1 and 5.2 were selected to be shown explicit-

ly, as they represent well the tendencies within the measurement field. The selected points are in the 

same cross section; PA, PB and PC are on the left-hand side of the mean main-stream centerline, where-

as PD is on the right-hand side in main flow direction; PC and PD represent the zones of highest TKE 

levels on each side of the mean main stream, while PB represents the transition zone and PA the areas 

characterized by low TKE levels. Time series of these grid points are displayed in Figure 5.3. 
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(a) 

(b) 

(c) 

(d) 

Figure 5.3 Exemplary sequences of the measured velocity time series in (a) PA, (b) PB, (c) PC, (d) PD. 

The power spectra of the velocity time series are shown in Figure 5.4. Welch’s method according 

to Eq. (2.19) using K = 4 segments was selected for the computation as a compromise between obtain-

ing recognizable peaks at low frequencies and gaining a smoothed power distribution. Although the 
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power spectra are very similar in the individual grid points, a continuous transition of the characteris-

tics can be observed within the measurement field. The tendency of this transition is well represented 

by the results of points PA, PB and PC (Figures 5.4 a-c) on the left-hand side of the mean main-stream 

centerline, while the results of PD represents well the flow characteristics on the right-hand side. 

  

(a) (b) 

(c) (d) 

Figure 5.4 Velocity spectra of the measured time series (a) in PA, (b) in PB, (c) in PC, (d) in PD. 

The energy contribution levels generally decrease from the high levels in PC through PB to the low 

levels in PA (Figure 5.4 a-c), which agrees with the change of the TKE levels (Figure 5.2). The power 

spectra show a clear -5/3 slope in every measured grid point, which approves that the energy contain-

ing range was captured by the measurement. The frequency, at which the velocity spectra obtain 

the -5/3 slope, is about 3 Hz in positions near to the mean main stream and decreases with increasing 

distance from the main stream to about 1 Hz. Note that this will be used in Chapter 6. Remarkable 

peaks can be observed in the velocity spectra between 0.1 and 0.2 Hz, which is more significant near 

to the main stream than in grid points further away. It can, however, not be determined based on such 

statistical analyses, what flow structures produce these peaks, which will be revisited in Chapter 6. 
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Although the u- and the v-components show very similar spectra in most parts of the field, there are 

some areas, like in PD on the right-hand side of the mean main-stream centerline, where their energy 

contributions are significantly different in the low frequency range (e.g. Figure 5.4 d). 

For the analysis of the measurement duration both the convergence of statistical quantities was ex-

amined and the error arising from the finite length measurement was estimated. The mean and the 

variance were examined in particular, because they are expected to be the most relevant quantities for 

the Proper Orthogonal Decomposition (POD) analysis in Section 5.3 and Chapter 6. 

The convergence of the statistical quantities over the measurement time were visually confirmed in 

every grid point based on the cumulative mean and cumulative variance functions of the time series as 

described in Section 2.3.1. The 95%-duration of the variance, which reveals over which duration the 

last 5% change of the final variance value is obtained (see Section 2.3.1), was determined in every grid 

point and is displayed as field for the u-velocity component in Figure 5.5. The 95%-duration reveals 

that, although the variances converge, the last 5% change occurs in the last 30 seconds of the meas-

urement duration in large parts of the measurement field, which suggests that the measurement dura-

tion was not long enough in these areas. 

 

 

Figure 5.5 Durations at which 95% of the final variance value is reached 

In order to quantify the error arising from the finite length measurement, the normalized mean er-

rors of the measured mean and variance values were estimated in every grid point according to Eqs. 

(2.25) and (2.26), and are displayed in Figures 5.6 (a) and (b), respectively. Note that the results are 

shown here for the u-velocity component, as it yielded to higher errors than the v-velocity component. 
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(a) 

(b) 

Figure 5.6 Estimated mean error of (a) the mean values and (b) the variances arising from the finite 

length of the measurement for the u-velocity components 
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The estimated normalized errors of the measured mean values are below 10 % in the mean main 

stream and are below 20 % in the most parts of the measurement field; higher values arise in the areas 

with low mean velocities (Figure 5.6 a). Though, the higher values are not only a result of dividing by 

the low mean values according to Eq. (2.25), but are rather a consequence of the high integral time 

scales (Figure 5.7), which were calculated according to Eq. (2.27). 

The estimated normalized errors of the measured variance values are significantly higher in most 

parts of the flow field (Figure 5.6 b), and it can be recognized on its distribution that it is related to the 

distribution of the integral time scale (Figure 5.7). Further, its distribution shows a certain similarity to 

the distribution of the 95%-durations of the variance (Figure 5.5). 

 

 

Figure 5.7 Integral time scales of the measured u-velocity components in the measurement field 

These results prove that, on the one hand, different areas require different measurement duration 

for steady statistics and that, on the other hand, different statistical quantities also need different meas-

urement duration. Although the variance values did not reach their steady values, it will be shown in 

Section 5.3.3 that the captured data is sufficient for the method presented in Chapter 6. 
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5.2 Inspection of the instantaneous velocity fields 

The instantaneous velocity fields of the velocity dataset contain the instantaneous velocity fluctua-

tions in the individual grid points, which appear as a perturbation of the spatial velocity distribution 

within the vector fields. The main stream is, however, dominant enough to be recognized visually 

based on the velocity magnitudes in the instantaneous velocity fields (Figure 5.8). 

 

(a) 

 

(b) (c) 

Figure 5.8 Instantaneous velocity fields at different time steps: (a) at 55.895 s, (b) at 62.560 s and (c) 

at 79.030 s. The dashed line represents the mean main-stream centerline. 

By observing a sequence of instantaneous velocity fields, the location of the main stream appears to 

oscillate around the mean main-stream centerline. Although instantaneous velocity fields shown in 

Figure 5.8 do not represent one cycle of the oscillation, the different main-stream positions can be well 

recognized visually. Compared to the mean main-stream centerline illustrated by the dashed line, the 

instantaneous main stream has a steeper curved trajectory at time step tI=55.895 s (Figure 5.8 a), while 

it appears nearly in the same position at time step tII=62.560 s (Figure 5.8 b) and follows a flatter tra-

jectory at time step tIII=79.030 s (Figure 5.8 c). 

It is reasonable to suspect that the peaks observed in the velocity spectra of the time series (Figure 

5.4) are produced by this oscillation. However, although the main stream can be roughly recognized 

visually, it is a challenge to quantify the frequency or the amplitude of the oscillation based on the 

instantaneous velocity fields, since the instantaneous positions of the main-stream centerlines are hard-

ly determinable reliably. It has been made attempts to calculate the instantaneous centerlines both by 

using streamlines and polynomial curve-fitting on the highest velocity magnitudes (see Chapter 6). But 

streamlines were directed out of the visually recognizable main-stream centerline due to the other flow 

structures present in the flow fields, and polynomial curve-fitting on the locations with the highest 

velocity magnitudes also missed the centerline due to the velocities of large flow structures. 

Note that the characteristics of the main-stream oscillation are revisited in Chapter 6. 
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5.3 Proper Orthogonal Decomposition analysis 

POD of the measured velocity dataset was computed as described in Section 2.5. The velocity da-

taset consisting of N=60 000 time steps and M=7 469 two-dimensional velocity vectors per time step 

yielded 2*M = 14 938 POD modes consisting of 7 469 two-dimensional vectors and corresponding 

2*M=14 938 time series of POD coefficients with N=60 000 time steps. As it will be demonstrated 

later, a POD mode and the corresponding POD-coefficient time series practically form a spatial oscil-

lation. The contribution of a POD mode i at time step tn to the input dataset can be calculated as the 

product of the vector field of POD mode i and the value of the POD coefficient at the needed time step 

ai(tn), so that the contributions of a POD mode over all time steps yield a spatial oscillation. 

In the present section, first the results of POD are presented, and then the applicability of POD is 

examined for detecting flow structures in the velocity dataset. 

5.3.1 Results of POD 

The contributions of the individual POD modes to the ensemble turbulent kinetic energy of the 

measured velocity dataset are shown in Figure 5.9. It can be recognized that the first POD mode has 

the highest energy contribution and that the contribution of the modes decreases with increasing mode 

number. The distribution of the turbulent kinetic energy among the POD modes shows a roughly linear 

relation in a logarithmic scale (Figure 5.10). 

 

 

Figure 5.9 Contributions and cumulated contributions of the first 150 POD modes to the ensemble 

turbulent kinetic energy of the input velocity dataset. 

 

Figure 5.10 Distribution of ensemble turbulent kinetic energy among POD modes 
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Figure 5.11 POD mode 1 

 

Figure 5.12 POD mode 10 
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Figure 5.13 POD mode 45 

 

Figure 5.14 POD mode 300 
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Figure 5.15 POD mode 600  

 

Figure 5.16 POD mode 1390 
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Since it is not possible to display each of the 14,938 POD modes in a printed work, only POD 

modes 1, 10, 45, 300, 600 and 1390 are presented here explicitly in order to show the tendencies in the 

characteristics of the POD modes and POD coefficients. POD mode 1390 was selected, because a 

reconstruction using modes 1 to 1390 reproduces 95 % of the total ensemble turbulent kinetic energy. 

The selected POD modes are shown in Figures 5.11 - 5.16. Note that the same vector scale has 

been used in these plots and that the vector lengths are in the same range, since POD modes are or-

thonormal, not just orthogonal. It can be observed that the vectors of the POD modes typically form 

structures, which are of similar size within the individual modes. As it will be shown in Section 5.3.2, 

these structures are not flow structures but the spatial patterns of the oscillations produced by the POD 

modes. The higher the mode number is, the smaller the typical size of the structures is, so that in POD 

modes of very high order not even clear structures can be recognized (Figure 5.16).  

In order to visualize the tendency of decreasing typical structure sizes with increasing POD mode 

numbers, the characteristic length scales of the individual POD modes were calculated as described in 

Section 2.4. The characteristic length scales of the POD modes appear to show a roughly linear ten-

dency on a logarithmic scale (Figure 5.17). It has to be noted that although the described method is 

intended for homogeneous fields, it was applicable because the structures are usually of similar size 

within an individual POD mode. 

 

 

Figure 5.17 Characteristic length scales of POD modes in x- (dashed line) and in y-direction (solid 

line). 

The POD-coefficient time series corresponding to the selected POD modes are displayed in Figures 

5.18 and 5.19. These show that the higher the mode number, the smaller the coefficients values, hence 

the amplitudes. The frequency spectra of these POD coefficients (Figures 5.20 and 5.21) show that the 

higher the mode number is, the higher frequencies are involved. 

These characteristics of the POD results demonstrate that the spatial size of the oscillating struc-

tures and the amplitudes of the oscillation decrease with increasing mode number, while the frequen-

cies of the oscillations increase. 
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(a) 

(b) 

(c) 

(d) 

Figure 5.18 Time series of the POD coefficients corresponding to (a) mode 1, (b) mode 10, (c) 

mode 45 and (d) mode 300 
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(a) 

(b) 

Figure 5.19 Time series of the POD coefficients corresponding to (a) mode 600 and (b) mode 1390 

(a) 

(b) 

Figure 5.20 Frequency spectra of the POD coefficients corresponding to (a) mode 1 and (b) mode 10 
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(a) 

(b) 

(c) 

(d) 

Figure 5.21 Frequency spectra of the POD coefficients corresponding to (a) mode 45, (b) mode 300, 

(c) mode 600 and (d) mode 1390 
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5.3.2 On the interpretation of the POD results 

The vortical structures that can be observed in the vector fields of POD modes are by themselves 

not extracted flow structures. This can be demonstrated using the contributions of POD mode 45 to the 

reconstructed dataset at different time steps. As mentioned before, the contribution of POD mode i at 

time step tn can be calculated as the product of the vector field of POD mode i and the value of the 

POD coefficient at the needed time step ai(tn). Accordingly, Figure 5.22 shows the contributions of 

mode 45 at two time steps with different POD coefficients; the value of the coefficient is a45= 200 in 

Figure 5.22 (a) and a45= -200 in Figure 5.22 (b). It can be seen that the sign of the coefficient deter-

mines the rotation direction of the vortical structures in the contribution of the POD mode. Following 

Eq. (2.39), the sum of a POD coefficient ai over the time is zero. Consequently, the contribution of a 

POD mode occurs similar frequently with both rotation directions. As it is highly improbable that tur-

bulent eddies of same size but opposite rotation direction occur at the same location alternately in tur-

bulent flows, the POD modes are by themselves not extracted flow structures, but just oscillation 

components needed to reproduce the input dataset. 

Since the velocity dataset can be reconstructed using the combination of the POD modes, it is ob-

vious, that flow structures evolve in the reconstructed dataset as the combined contribution of the POD 

modes, hence as the superposition of the oscillations. 

However, structures evolving in the combination of arbitrary POD modes are also inappropriate to 

be considered as flow structures, similarly to the vortical structures in the individual POD modes. This 

can be well demonstrated using the reconstructed velocity field at time step t =2.070 s. The velocity 

field reconstructed using POD modes 1-45 contains two marked distinct vortical structures (Figure 

5.23). These are neither present in the velocity field reconstructed using POD modes 1-17 (Figure 

5.24), nor in the velocity field reconstructed using POD modes 18-45 (Figure 5.25), although the sum 

of these POD modes contain them. Furthermore, none of the POD modes from 18 to 45 contain vorti-

cal structures with the same center positions as the marked structures. 

Consequently, flow structures evolve as the combination of several POD modes, and it is a chal-

lenge to find the POD modes necessary for the reconstruction of a particular eddy of interest. This also 

implies that excluding arbitrary POD modes probably excludes only some portions of flow structures, 

so that the structures in the reconstructed data become distorted. 

Studies that described flow structures using POD have identified the necessary POD modes based 

on connections between the contributing POD modes, like the almost identical energy contributions or 

identical characteristic frequencies of POD coefficients (e.g. Bernero et al. 2000, Meyer et al. 2007, 

Feng et al. 2011). Note that the flow structures described by POD in such studies occurred repeatedly 

in the same positions, hence they were mostly oscillations. 

Since the energy contributions of modes, the sizes of the vortical structures within modes and the 

frequencies of the POD-coefficient time series show a continuous transition from mode to mode in the 

present data, identities mentioned above were not found between the modes of the present dataset. 

This will be revisited in Chapter 6. 

The only POD mode that could not be involved in such an examination is POD mode 0, i.e. the 

mean velocity field, as it has no POD coefficients and no turbulent kinetic energy contribution. Since 

the mean velocity field is not homogeneous and consists of a structured vector field (Figure 5.1), its 

modulation may result in structures not present in the vector fields of POD modes and had to be exam-

ined explicitly. 
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(a) 

(b) 

Figure 5.22 The contribution of POD mode 45 at different coefficients (a) a=200 and (b) a= -200 
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Figure 5.23 The combined contribution of POD modes 1-45 at the time step t =2.070 s 

 

Figure 5.24 The combined contribution of POD modes 1-17 at the time step t =2.070 s 
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Figure 5.25 The combined contribution of POD modes 18-45 at the time step t =2.070 s 

Figure 5.26 (a) shows the contribution of POD mode 1 at three time steps with significantly differ-

ent POD coefficients: a1~ -1200 at tI=55.895 s (Figure 5.26 a/I), a1~ 0 at tII=62.560 s (Figure 5.26 a/II), 

and a1= +1000 at a time step tIII=79.030 s (Figure 5.26 a/III). As demonstrated before, the sign of the 

coefficient determines the rotation direction of the vortical structure in the contribution of the POD 

mode (Figure 5.26 a). Figure 5.26 (b) contains the reconstructed velocity data using the POD modes 0 

and 1, denoted as POD modes 0-1. It can be recognized that the result of the modulation by POD 

mode 1 is a displacement of the main-stream location. The impact of POD mode 1 on the main stream 

can be visually compared with the raw velocity fields at different time steps in Figures 5.26 (b-c). It 

can be recognized that the displacement of the main stream observed in the modulated mean flow cor-

responds roughly the displacements observed in the raw velocity data. 

Note that the oscillating main stream is recognizable in the reconstructed velocity field, but not in 

the vector field of the POD mode. In other words, the oscillating main stream evolves as flow structure 

by the combination of POD modes 0-1, but in the sense of the oscillation components it is represented 

by a single POD mode. 
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 (a) (b) (c) 

(I) tI=55.895 s, 

a1(tI) ~ -1200 

   

(II) tII=62.560 s, 

a1(tII) ~ 0 

   

(III) tIII=79.030 s, 

a1(tIII) ~ +1200 

   

  
 

Figure 5.26 Velocity fields at three time steps (I-III) with different contributions of POD mode 1; (a) the contribution of POD mode 1, (b) the velocity fields re-

constructed using POD modes 0-1 and (c) the raw velocity fields. 
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It can be deduced that flow structures with different moving patterns are represented differently in 

POD modes, according to the turbulent kinetic energy representation of POD modes, as follows. Flow 

structures that occur at the same locations repeatedly, introduce a considerable amount of turbulent 

kinetic energy at those locations and, especially large structures involving larger areas, therefore usu-

ally generate a few number of POD modes representing the structure. Flow structures, in turn, that do 

not occur at the same locations repeatedly but are, for example, convected with the flow do not pro-

duce high fluctuation power at fixed locations, and are not going to be represented by few POD 

modes. Hence, if there are large flow processes occurring repeatedly at the same locations, they are 

going to be represented by POD modes of high energy contributions, while fluctuations of other flow 

structures have to be reconstructed by the combination of several POD modes. 

Further, it is reasonable to assume that flow structures occurring repeatedly at nearly but not exact-

ly the same position generate a POD mode of high energy contribution containing a kind of spatial 

intersection of the occurrences, and the exact position is reproduced by involving further POD modes 

to the reconstruction. This implies that a reconstruction involving only the POD mode containing the 

intersection of such flow structure is not going to reproduce the flow structure exactly. However, as it 

will be seen in Chapter 6, the POD mode containing the intersections is suitable for investigating the 

occurrences of such flow structures. 

5.3.3 On the convergence of POD results 

Since POD modes are computed as a set of optimal basis functions of the given input velocity da-

taset, variations in the input dataset have consequently an impact on the POD results. Therefore, the 

impact of the measurement duration on the POD results was explicitly investigated. Such an examina-

tion is, however, computationally quite extensive, since the POD results have to be computed for each 

selected duration. For this reason, this examination was undertaken based on the POD results of only 

three durations: 3-, 4- and 5-minutes durations. The velocity datasets of 3- and 4-minutes durations 

were fragments of the available 5-minutes long measurement, both with the same initial time step as 

the original dataset. The convergence of the results is examined here by comparing the results of dif-

ferent durations. 

The distributions of turbulent kinetic energy contributions among POD modes resulting from dif-

ferent measurement durations yield nearly the same result (Figure 5.27); a difference can be only rec-

ognized at the highest mode numbers. 

 

 

Figure 5.27 Distributions of turbulent kinetic energy among POD modes resulting from different 

measurement durations; dashed line: 3-minutes, dashed-dot line: 4-minutes, solid line: 5-minutes. 
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 (I) 3 minutes duration (II) 4 minutes duration (III) 5 minutes duration 

(a) mode 1 

   

(b) mode 10 

   

(c) mode 45 

   

 
 

Figure 5.28 POD modes 1, 10 and 45 resulting from different measurement durations. The vectors are displayed as unit vectors; the color contours show the vec-

tor magnitudes and the contour levels are the same for all subfigures.
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As illustrated by Figures 5.28 (a-c), POD modes of different mode numbers are changed to differ-

ent extent with increasing duration. While the first POD modes change little (Figure 5.28 a), low-order 

POD modes appear to converge with increasing duration (Figure 5.28 b). The higher the mode number 

is, the more dissimilar the POD modes are at different durations (e.g. Figure 5.28 c). 

A similar tendency can be observed in the time series of the POD coefficients arising from different 

measurement durations (Figure 5.29); the lower the mode number is, the more similar are the curves of 

the time series. Note that the offset in the coefficient time series corresponding to POD mode 1 can be 

explained by the different mean velocity fields resulting from the different durations. A quantitative 

comparison of the coefficient time series arising from different durations is not performed here, since 

such a comparison has to consider the different mean velocity fields, which, however, requires more 

sophisticated methods, like the Common Base POD (Kriegseis et al. 2010). 

 

(a) 

(b) 

(c) 

Figure 5.29 POD coefficients resulting from different measurement durations: (a) modes 1, (b) mode 

10 and (c) mode 45. Dotted line: 3-minutes, dashed line: 4-minutes and solid line: 5-minutes duration. 
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It can be concluded, that although the POD results are adjusted to the changed content of the input 

velocity dataset, low-order POD modes prove to converge to steady vector fields and the first modes 

obtain a nearly steady content already at shorter measurement durations. 

Considering that POD results are intended to be used to identify repeating flow processes, practical 

significance on the reproducibility of the results is obtained by comparing POD results of independent-

ly performed measurements of the same flow. For this purpose, the results of two shorter but overlap-

ping fragments, the first 3-minutes and the last 3 minutes of the available 5 minutes long measurement 

are compared in the following. Since only low-order POD modes appeared to be nearly steady for 3-

minutes duration in the previous analysis, only low-order POD modes are compared here.  

 (I) first 3 minutes (II) last 3 minutes 

(a) mode 1 

  

(b) mode 2 

  

(c) mode 10 

  

 
 

Figure 5.30 Comparison of POD modes resulting from the (I) first and (II) the last 3-minutes frag-

ments of the available measurement: (a) POD mode 1, (b) POD mode 2 and (c) POD mode 10 

The comparison of the POD modes resulting from the two fragments show that while the first POD 

modes show a high degree of similarity (e.g. Figures 5.30 a-b), the higher the mode number is, the less 

resemblance can be recognized between the POD modes arising from the two 3-minutes fragments 

(e.g. Figures 5.30 c). 
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The overlapping one minute long period of the two fragments permits the direct comparison of the 

POD-coefficient time series (Figure 5.31). The comparison reveals that the curves of the time series 

corresponding to the same mode number show high similarity at low mode numbers, which decreases 

with increasing mode number. 

Briefly, POD results are computed to reproduce the input dataset; hence they are adjusted to the 

patterns in the particular input dataset. Although the 3 minutes duration proved to be too short to get 

steady POD results in the previous subsection, POD of two, in large parts different 3-minutes long 

velocity datasets of the same flow lead to nearly the same POD results at low mode numbers and the 

corresponding POD-coefficient time series followed systematic patterns. This affirms that low-order 

POD modes represent processes that occur repeatedly in the flow. 

 

(a) 

(b) 

(c) 

Figure 5.31 Comparison of POD coefficients resulting from the first (solid line) and the last (dashed 

line) 3-minutes fragments of the available measurement: (a) POD mode 1, (b) POD mode 2 and (c) 

POD mode 10.  
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5.4 Summary 

The mean velocity field of the measurement confirmed that both parts of the main stream and parts 

of the recirculation region were included in the measurement field, which leads to an inhomogeneous 

mean flow field. Although the main stream appears to be clearly recognizable in the mean velocity 

field, observing the instantaneous velocity field of sequential time steps reveals that the main stream is 

oscillating, which is not recognizable based on the mean flow field. 

The velocity spectra of the velocity time series show a clear -5/3 slope in every measured grid 

point, which approves that the measurement captured the energy containing range to a significant ex-

tent. Remarkable peaks were detected in the velocity spectra between 0.1 and 0.2 Hz in most grid 

point. This indicates that large parts of the measurement field are affected by processes of such low 

frequencies. It can, however, not be determined based on such statistical analyses, what flow structures 

produce these peaks, which will be justified in Chapter 6. 

The instantaneous vector fields contain the velocity fluctuations of turbulent flow structures super-

imposed to the mean velocity field, which represents a considerable disturbance in the vector distribu-

tion, hence in detecting flow structures. Although the main stream is a dominant flow structure that 

can be roughly recognized visually, its instantaneous centerline could not be determined reliably in the 

instantaneous velocity fields, so that further characteristics of the main-stream oscillation, like charac-

teristic frequencies or amplitude of the oscillation, cannot be determined based on the raw velocity 

data. 

The analysis of the measurement duration has shown, on the one hand, that the measured mean and 

variance values converge over the measurement time in every grid point. On the other hand, the exam-

ination of the errors arising from the finite length measurement pointed out that the estimated error in 

the measured variances is significant in large parts of the measurement field. This means that the 

measurement duration of 5-minutes was not sufficient in large parts of the flow field for obtaining 

steady variance values. 

POD is a method that is suitable to be applied on velocity datasets with inhomogeneous flow fields. 

It decomposes the input velocity dataset to orthogonal oscillation components defined as single vector 

fields, called POD modes, and corresponding coefficient time series. The contribution of an individual 

POD mode at a given time step is the product of the vector field of the POD mode and the value of the 

POD coefficient at the needed time step. The instantaneous velocity field at a time step can be recon-

structed as the sum of the contributions of the individual POD modes at that time step. 

The vortical structures that can be observed in the vector fields of the POD modes are by them-

selves not flow structures but just spatial patterns of the oscillation created by the individual POD 

modes. Flow structures evolve as the result of the combined contributions of several POD modes. Fur-

ther, apparent structures in the velocity fields reconstructed using arbitrary combinations of POD 

modes are also not suitable to be regarded as flow structures without further evidence, because the 

exclusion of arbitrary POD modes from the reconstruction probably excludes only some portions of 

flow structures, so that the structures in the reconstructed data become distorted. For these reasons, it 

is generally a challenge to find the appropriate POD modes participating in the reconstruction of a 

particular flow structure of interest. 

The POD modes expected to be relevant for describing flow structures or characteristic flow pro-

cesses are usually low-order POD modes that are connected. Connection can be usually identified 
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based on common characteristics, like identical energy contributions or identical dominant frequencies 

of the POD coefficients. Such a connection between POD modes was not clearly recognizable in the 

measured dataset. However, the main flow field, also called POD mode 0, could not be involved in 

such an examination, because it has no turbulent kinetic energy contribution or POD coefficients. 

Since the movement pattern of the main-stream displacement shows an oscillating character, it is 

expected to be efficiently represented in the POD result. As a result of the structure of the auto-

covariance matrix in Eq. (2.30) and the eigenvalue problem in Eq. (2.31) POD works grid point 

bounded. If a flow structure occurs at the same locations repeatedly, it introduces significant amount 

of turbulent kinetic energy at the same locations, so that it is probably represented by very few POD 

modes with large energy contributions. For this reason, POD can be efficiently used to identify flow 

structures that occur at the same locations repeatedly, especially large structures showing an oscillat-

ing pattern. 

The velocity data reconstructed using POD modes 0-1 appeared to reproduce a dominant part of the 

oscillating main stream. The oscillating main stream is recognizable in the velocity field reconstructed 

using POD modes 0-1, even though it is not obviously recognizable in the vector field of the POD 

mode 1. In the sense of the oscillation components, however, it is dominantly represented by a single 

POD mode. It has to be further noted that the dominant reproduction of the oscillating main stream by 

POD modes 0-1 could only be confirmed by visual examination in this chapter. 

The examination of the impact of the measurement duration on the POD results is computationally 

extensive, since POD has to be computed explicitly for each examined duration, hence dataset with 

given duration. For this reason, the examination was performed in this chapter using datasets of three 

different durations and revealed that low-order POD modes and POD coefficients converge already at 

shorter durations. Furthermore, the POD modes 1 and 2 and the corresponding POD coefficients 

yielded essentially the same result based on 3-minutes and on 5-minutes durations. 
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6 Detecting predictable flow events based on 

non-periodically repeating flow events 

As described in Section 1.1 predictability of turbulence has been proposed in the literature as one 

of the features that essentially determine the influence of turbulence on fish swimming behavior. The 

feature of predictability is interpreted in this work as the existence of turbulent flow events in the flow 

whose occurrences are predictable. The fundamental assumption of the present approach is that repeat-

ing flow events are the basis for predictability, because repetition facilitates their recognition by expe-

rience on the fish’ part. Leaning on this assumption, the following requirements for predictability 

(short-term predictability) have been formulated: 

1. flow events occurring repeatedly in the flow exist, 

2. repeating sequences of different flow events exist in the flow. 

If these conditions are fulfilled, the flow events occurring later within the repeating sequence are 

considered predictable in the sense of short-term predictability, even if the sequence itself is repeating 

non-periodically. 

It has to be reminded that the feature of predictability refers to the flow alone. Whether fish are 

able to recognize or use predictable flow events of given characteristics, has to be evaluated based on 

fish-behavior experiments by correlating fish behavior and the occurrences of predictable flow events. 

While fish-behavior experiments have already proven that fish can make use of the predictability of 

periodically occurring flow events (see Section 1.1), the predictability of non-periodically repeating 

flow events has not been evaluated yet, because such flow events could not be detected by the flow-

analysis methods so far. 

In this chapter a flow-analysis methodology is presented that is suitable for detecting non-

periodically repeating predictable flow events and their occurrences. First, it is presented how repeat-

ing sequences of flow events can be identified based on POD. Then, it is demonstrated how a supple-

mentary flow feature that is not represented by a POD mode can be involved in the examination. Fi-

nally, it is discussed how the predictable flow events determined using the method presented could be 

detected in full-scale facilities by means of point measurement techniques. 
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6.1 Identifying repeating flow events occurring sequentially 

based on POD 

As described in Chapter 5, repeating flow events are expected to be well represented by POD 

modes, especially if they are of large scale and occur frequently at the same locations. In the present 

section repeating sequences of flow events are identified based on POD results. 

First the main-stream oscillation is examined in detail based on POD mode 1, because it is the larg-

est and most energetic flow structure with repeating character, which expectedly is the easiest that fish 

will recognized. Then, further POD modes are studied in order to find other repeating flow events that 

are in connection with the main-stream oscillation. Finally, the sequence of the occurrence of the con-

nected flow events is determined. 

6.1.1 Examining the oscillating main stream based on POD mode 1 

As shown in the previous chapter, the oscillating main stream could be principally reproduced by 

POD modes 0-1, i.e. by the velocity fields reconstructed using POD modes 0 and 1 (Figure 5.26). 

However, the rough agreement of the main-stream locations in the raw and the reconstructed velocity 

fields was only asserted by visual comparison of the velocity fields at different time steps. Although 

Tarrade et al. (2011) also found that POD mode 1 roughly describes the main-stream oscillation (see 

Section 3.3), they did not present a comparison of the main-stream locations in the raw velocity fields 

and in the velocity fields reconstructed using POD modes 0-1. 

The verification of the correctness of the main-stream locations reconstructed by POD modes 0-1 is 

difficult, because it requires the comparison of the main-stream locations in the raw and the recon-

structed velocity fields. However, the accurate location of the main stream cannot be determined relia-

bly in the raw velocity fields due to the disturbing presence of the instantaneous fluctuations of super-

imposed turbulent flow structures (Figure 6.1 a). In order to make the main stream in the raw velocity 

fields better identifiable, the fluctuations arising from small-scale flow structures were reduced in the 

present section using low-pass frequency filtering by considering that small-scale turbulent flow struc-

tures are not only of smaller size but statistically also of higher frequency. The low-pass frequency 

filtering was performed on the time series of each grid point; the frequency cutoff was selected as 

0.7 Hz based on the velocity spectra in the grid points (e.g. Figure 5.4), which contained peaks be-

tween 0.1 and 0.2 Hz and showed the -5/3 slope starting at about 1-3 Hz. 

The instantaneous velocity fields of the raw data, the low-pass frequency-filtered data and the data 

reconstructed using POD modes 0-1 can be compared visually at three different time steps in Figure 

6.1. It can be seen that the fluctuations are significantly reduced in the low-pass filtered velocity fields 

(Figure 6.1 b) and that the main-stream locations show a good agreement between the low-pass fre-

quency-filtered data and the data reconstructed using POD modes 0-1. Although this confirms that 

POD modes 0-1 reproduce the oscillating main stream to a large extent, the agreement is still qualita-

tive. 
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 (a) Raw data (b) Low-pass filtered data (c) Data reconstructed using POD mode 1 

tI=55.895 s 

 

a1(tI) ~ -1200 

   

tII=62.560 s 

 

a1(tII) ~ 0 

   

tIII=79.030 s 

 

a1(tIII) ~ +1200 

   

 
 

Figure 6.1 Instantaneous velocity fields of (a) raw velocity data (b) low-pass frequency-filtered velocity data (c) velocity data reconstructed using POD 

modes 0-1 at three different time steps. The dashed line represents the mean main-stream centerline. 
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As a first attempt to quantitatively compare the main-stream locations in the different velocity 

fields, the curves along the highest velocity magnitudes within the main-stream were generated. The 

curves resulting from the low-pass frequency-filtered velocity fields were, however, inconsistent by 

using both streamlines and polynomial curve-fitting as follows. Streamlines were directed out of the 

visually recognizable main-stream centerline due to portions of small-scale velocity fluctuations that 

persisted after the filtering. The polynomial curve-fitting to the locations with the highest velocity 

magnitudes were misled by large flow structures that produced high velocity magnitudes outside the 

main stream. Such flow structures persisted in the velocity fields after the frequency filtering, because 

they possessed similar fluctuation frequencies as the main-stream oscillation. 

Finally, instead of generating curves, the y-positions of the grid points with the highest velocity 

magnitudes were used to approximately compare main-stream centerline locations as follows. The y-

position of the grid point in the cross-section of x=35.00 cm with the highest velocity magnitudes has 

been ascertained at every time step for both the filtered and the reconstructed datasets (Figure 6.2). 

This cross-section was selected because the main-stream centerline position showed strong deviations 

from the mean main-stream centerline and, at the same time, the velocity difference between the main 

stream centerline and the rest of the flow was still significant (Figure 6.1 c). 

 

 

Figure 6.2 Approximated y-position of the main stream centerline at x=35.00 cm in the frequency-

filtered (dashed line) and in the reconstructed (solid line) datasets. The grey rectangle marks the ex-

emplary interval. The precision of the y-positions is 5.0 mm due to the grid resolution of the data. 

Figure 6.2 represents the comparison of the main-stream centerline positions in the data recon-

structed using POD modes 0-1 and in the frequency-filtered data. This confirms that they coincide to a 

large extent, but also reveals significant deviations at several short intervals. Such an exemplary inter-

val marked by the grey rectangle is examined next in detail. 

The sequence of the raw and of the reconstructed velocity fields corresponding to the exemplary in-

terval (Figure 6.2) is displayed in Figures 6.3 and 6.4. Three characteristic sections can be distin-

guished in the sequence of the raw velocity fields (Figures 6.3 b and 6.4 b). First a large flow structure 

enters to the measurement field from the upstream side (tIII-tIV); then the flow structure travels on the 

left-hand side of the main stream, thereby pulling the main stream from its original position and be-

coming less and less distinguishable from the main stream (tV-tVII); and finally the flow structure is 

undistinguishable from the main stream and the main stream returns to its original position (tVII-tX). 
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 (a) (b) 

 

tI=76,100 s 

 

   

 

tII=76,400 s 

 

   

 

tIII=76,700 s 

 

   

 

tIV=77,000 s 

 

   

 

tV=77,300 s 

 

   

 
 

Figure 6.3 Sequence of velocity fields between t=76.1-77.3 s in (a) the dataset reconstructed using 

POD mode 0-1 (b) the raw dataset. The bar graphs show the values of the POD coefficient of mode 1 
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 (a) (b) 

 

tVI=77,600 s 

 

   

 

tVII=77,900 s 

 

   

 

tVIII=78,200 s 

 

   

 

tIX=78,500 s 

 

   

 

tX=78,800 s 

 

   

 
 

Figure 6.4 Sequence of velocity fields between t=77.6-78.8 s in (a) the dataset reconstructed using 

POD mode 0-1 (b) the raw dataset. The bar graphs show the values of the POD coefficient of mode 1. 
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It is notable in the velocity fields reconstructed using POD modes 0-1 (Figures 6.3 a and 6.4 a) that, 

while only a marginal displacement of the main stream occurs at the beginning of the process (tI–tIV), 

the displacement becomes more and more significant as the flow structure pulls the main stream and 

becomes less and less distinguishable from the main stream (tV–tVII), which corresponds with the visu-

al observations in the raw velocity fields. This explains the differences in the y-positions in Figure 6.2, 

which arise from the different contents of the two datasets. While the dataset reconstructed using POD 

modes 0-1 just contains a main stream with a consistent centerline (Figures 6.3 a and 6.4 a), the low-

pass frequency-filtered data additionally contains flow structures that sometimes produce high veloci-

ties outside the main stream, which results in deviations in the y-positions. Further, the example also 

highlights that, while POD mode 1 itself is not used for reproducing the large flow structure, it repro-

duces the main-stream displacement caused by the flow structure traveling along the main stream. 

This justifies that the data reconstructed using POD modes 0-1 can be considered as the dominant 

component of the oscillating main stream. 

It is interesting that the energy contribution of POD mode 1 to the ensemble turbulent kinetic ener-

gy is 18.7 %, which is not uniformly distributed over the measurement field but rather concentrated on 

the sides of the mean main stream. Figure 6.5 (a) shows the ratio of the turbulent kinetic energy pro-

duced by POD mode 1 to the total turbulent kinetic energy over the measurement field. This reveals 

that the turbulent kinetic energy introduced by POD mode 1 is the highest on the left-hand side of the 

mean main stream (represented by PC) and its contribution locally exceeds 50% of the local total tur-

bulent kinetic energy level (Figure 6.5 a). 

  

  

(a) (b) 

Figure 6.5 (a) Distribution of the local TKE contributions of POD mode 1 and (b) turbulent kinetic 

energy field of the dataset reconstructed excluding POD mode 1. 

Figure 6.5 (b) shows the turbulent kinetic energy field of the dataset reconstructed excluding POD 

mode 1, i.e. the dataset reconstructed using POD modes from 2 to 14938. This figure confirms that the 

high turbulent kinetic energy levels in the two zones on the sides of the mean main stream shown in 

Figure 5.2 are produced by the main-stream oscillation represented by POD mode 1. 

The contribution of POD mode 1 to the ensemble turbulent kinetic energy can also be observed by 

comparing velocity spectra of the raw dataset and the dataset reconstructed excluding POD mode 1. In 
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the velocity spectra it can be recognized that the energy contributions are significantly changed at low 

frequencies in positions near the mean main stream, for example in position PC (Figure 6.6 ). 

  

(a) (b) 

Figure 6.6 Velocity spectra in position PC in (a) the raw dataset and (b) the dataset reconstructed ex-

cluding POD mode 1. 

6.1.2 Identifying repeating flow events connected with POD mode 1 

In this section, further POD modes of high energy contributions are examined in detail in order to 

find other repeating flow events that are in connection with POD mode 1, i.e. the main-stream oscilla-

tion. The following investigation focuses on POD modes of high energy contributions, because they 

proved to be deterministic in representing processes of the flow in the previous chapter (see Section 

5.3.3). Though, since it is not possible to display details of each POD mode in the printed work, only 

the characteristics of the POD modes 1 to 6 are presented exemplary in this section. 

Figures 6.7 and 6.8 show the vector fields of the individual POD modes (columns a) and reveal 

their impact on the flow (columns b and c). The impact of an examined POD mode is demonstrated 

through the velocity fields reconstructed using POD mode 0 and the examined POD mode at both a 

large positive (Figures 6.7 b and 6.8 b) and a large negative POD coefficient (Figures 6.7 c and 6.8 c). 

The coefficients have been selected because they are typical large values for the examined POD mode 

(see Figure 5.18 a for POD mode 1), so that the corresponding reconstructed velocity fields can be 

regarded as instantaneous velocity fields. It can be observed in the reconstructed velocity fields that 

different modes produce different oscillations of the trajectory along the highest velocities. While the 

direction of the main-stream displacement caused by the oscillation of POD mode 1 is identical along 

the whole length, POD modes of higher order often represent oscillations yielding displacements in 

alternating directions at different wavelengths and positions. The impacts of the individual POD 

modes on the flow, however, do not reveal a connection between them. 
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 (a) (b) (c) 

POD mode 1 

and 

its effect at 

a1=±1200 

   

POD mode 2  

and 

its effect at 

a2=±1000 

   

POD mode 3  

and 

its effect at 

a2=±600 

   

  
 

Figure 6.7 (a) The POD mode; (b-c) the velocity fields reconstructed using POD mode 0 and the examined POD mode at a large positive and negative coeffi-

cients, respectively. The solid line shows the trajectory of the highest velocities in the reconstructed fields; the dashed line is the mean main-stream centerline. 
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 (a) (b) (c) 

POD mode 4  

and 

its effect at 

a2=±500 

   

POD mode 5  

and 

its effect at 

a2=±450 

   

POD mode 6  

and 

its effect at 

a2=±400 

   

  
 

Figure 6.8 (a) The POD mode; (b-c) the velocity fields reconstructed using POD mode 0 and the examined POD mode at a large positive and negative coeffi-

cients, respectively. The solid line shows the trajectory of the highest velocities in the reconstructed fields; the dashed line is the mean main-stream centerline.
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.9 Frequency spectra of the POD coefficients of (a) POD mode 1, (b) POD mode 2, (c) POD 

mode 3, (d) POD mode 4, (e) POD mode 5, (f) POD mode 6. The frequencies of the three highest en-

ergy contributions are marked. 
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Figure 6.9 shows the frequency spectra of the POD coefficient time series of modes 1-6 highlight-

ing the characteristic frequencies of the three highest power contributions. Although the characteristic 

frequencies of none of the examined POD modes are identic, POD modes 1 and 2 show a common 

characteristic frequency, which suggests to examine the impact of POD mode 2 explicitly. 

In order to visualize the role of POD mode 2, the raw velocity fields have been compared with ve-

locity fields reconstructed using POD modes from 0 to 2, denoted here as POD modes 0-2. Figures 

6.10 and 6.11 contain the raw and the reconstructed velocity fields of the same exemplary interval that 

was studied in the previous section, which allows the comparison of these results with the sequence of 

velocity fields reconstructed using POD modes 0-1. 

Figures 6.10 and 6.11 reveal that POD mode 2 plays a significant role in reconstructing the large 

flow structure entering the measurement field at tIII. It can be seen in Figures 6.10 and 6.11 that the 

reconstructed flow field is modified by POD mode 2 at different time steps depending on the flow 

structure position. At the time steps where the flow structure is entering the measurement field (tIII-tV) 

high flow velocities are produced in the upstream part of the flow field on the left-hand side of the 

main stream, which is achieved by negative POD coefficients of POD mode 2. At time steps where the 

flow structure travels along the main stream (tVII-tIX) high flow velocities are produced in the down-

stream part of the flow field on the left-hand side of the main stream, which is achieved by positive 

POD coefficients of POD mode 2. 

This sequence reveals how POD modes can be used to reconstruct individual time steps; the flow 

velocities are increased at the needed positions by combining POD modes 1 and 2 at appropriate val-

ues of the coefficients a1 and a2.  

Essential for the reconstruction of the individual time steps is the combination of POD modes at 

appropriate values of the coefficients. Figure 6.12 gives an overview of meaningful velocity fields that 

can be generated using POD modes 0-2 by combining large positive, zero and large negative values of 

the coefficients a1 and a2. Note that the values of the coefficients have been selected based on typical 

large values for the examined POD modes. It can be recognized that the process observed in the ex-

emplary sequence (Figures 6.10 and 6.11) can be roughly described by the velocity fields in Figure 

6.12 starting from the velocity field at (a1>0, a2=0), followed by (a1>0, a2<0), and then continued with 

the remaining velocity fields in anti-clockwise direction. The velocity field at (a1=0, a2=0) has not 

been used in the exemplary sequence. Notable in this representation is that some of the velocity fields 

in Figure 6.12, like (a1>0, a2<0) or (a1<0, a2>0), do not show up when examining the POD modes sep-

arately, like in Figures 6.7 and 6.8. 

Although the connection between POD modes 1 and 2 has been discovered based on a common 

characteristic frequency in the frequency spectra of the corresponding POD coefficients, a further effi-

cient method for revealing connections between POD modes representing subsequent flow events is 

shown and explained in next section. 
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 (a) (b) 

tI=76,100 s 

 

 
  

tII=76,400 s 

 

 
  

tIII=76,700 s 

 

 
  

tIV=77,000 s 

 

 
  

tV=77,300 s 

 

 
  

 
 

Figure 6.10 Sequence of velocity fields between t=76.1-77.3 s in (a) the dataset reconstructed using 

POD modes 0-2 (b) the raw dataset. The bar graphs show the values of the POD coefficients. 
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 (a) (b) 

tVI=77,600 s 

 

 
  

tVII=77,900 s 

 

 
  

tVIII=78,200 s 

 

 
  

tIX=78,500 s 

 

 
  

tX=78,800 s 

 

 
  

 
 

Figure 6.11 Sequence of velocity fields between t=77.6-78.8 s in (a) the dataset reconstructed using 

POD modes 0-2 (b) the raw dataset. The bar graphs show the values of the POD coefficients. 
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 a2=-1000 a2= 0 a2=+1000 

a1=+1200 

   

a1= 0 

   

a1=-1200 

   

 
 

Figure 6.12 Possible velocity fields using POD modes 0-2 by meaningful combinations of the POD coefficients a1 and a2. 
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6.1.3 Determining the sequential occurrence of flow events represented by 

POD modes 

In terms of flow events the exemplary sequence presented before (Figures 6.10 and 6.11), which is 

regarded as a sample sequence in the following, can be illustrated using Figure 6.13: 

1. a transversal current from the left-hand side of the main stream pushes the main stream to the 

right, 

2. a flow structure entering the measurement field from upstream does not follow the new main-

stream trajectory but leaves the main stream to the left-hand side of the main stream, 

3. the flow structure travels along the left side of main stream, thereby pulling the main stream to 

the left-hand side and becoming less and less distinguishable from the main stream, 

4. the flow structure leaves the measurement field, while the main stream returns to its original 

position. 

  

  

  

Figure 6.13 The flow events of the sample sequence represented by POD modes 0-2. The dashed line 

represents the position of the main stream in the previous frame; the solid line represents the new posi-

tion of the main stream; the block arrow represents further flow events relevant for the process 

In terms of POD the sample sequence of flow events shown in Figure 6.13 can be substantially rep-

resented by the simplified temporal evolution of the coefficients a1 and a2 as shown in Figure 6.14. 

The sequence consists of a characteristic process: (I) a2 becomes negative at some point in time where 
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a1 is positive, and a1 starts to decrease; (II) a2 reaches negative maximum and somewhat later a1 too; 

(III) a2 becomes positive while a1 is negative; (IV) a1 gets positive, then a2 reaches a positive maxi-

mum and becomes finally zero. 

 

 

 

 

Figure 6.14 The sample sequence described using POD coefficients a1 (dashed line) and a2 (solid line). 

The detailed examination of the time series of coefficients a1 and a2 resulting from the measure-

ment (Figure 6.15) reveals that the sample sequence (described by Figures 6.13 and 6.14) occurs re-

peatedly in the measured dataset. Although every occurrence is somewhat different, the sample se-

quence can be clearly recognized in the intervals marked by dark grey rectangles and less similar oc-

currences of the sample sequence can be recognized in the intervals marked by light grey rectangles. 

These occurrences are typically initiating by a2 turning to negative followed by a significant decrease 

of a1. This demonstrates that the sample sequence is occurring repeatedly in the majority of time, so 

that it appears to be the fundamental process of the measured flow. 

 

 

Figure 6.15 Time series of POD coefficients a1 (dashed line) and a2 (solid line) resulting from the 

measured dataset. The dark grey rectangles show more obvious and the light grey rectangles show less 

obvious occurrences of the sample sequence. 

Tarrade et al. (2011) have not identified these processes using the temporal sequences of the POD 

coefficients, but their description based on visual observation of the instantaneous velocity fields is 

very similar to the one in this work. They explained the observed process as a combined result of ve-

locity bursts arriving from the upstream pool and fluid exchange between the recirculation regions and 
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the main stream. Further, they also found POD modes 1 and 2 to be connected, but contrary to present 

results they identified the connection based on the similar energy contributions of these POD modes. 

The sample sequence described above practically confirms the existence of repeating sequences of 

flow events as required by the second condition of predictability described at the beginning of this 

chapter. Although the sample sequence never occurs identically, the different occurrences are essen-

tially the same. Crucial for the present examination is that there is a sequential occurrence of flow 

events, i.e. the flow events represented by POD mode 2 precede the events represented by POD 

mode 1, namely that a1 starts to increase after the negative peak of a2, and the positive peak of a1 oc-

curs after the positive peak of a2. 

A usual method to find a time lag between time series is the cross-correlation function. The cross-

correlation function of the coefficients a1 and a2 of present data shows a significant positive peak at a 

time lag of t=1.185 s and a similarly large negative time lag at t=-0.620 s (Figure 6.16). Considering 

the sample sequence in Figure 6.14 one can recognize that the positive peak denotes accordance with 

matching signs and the negative peak accordance with opposite signs. Although the correlation factor 

of about 0.4 seems to be low, it is significant compared to the standard deviation of the cross-

correlation function. Besides, the relatively low peak correlation factor is to a large extent due to the 

fact that a1 and a2 denote different processes (a1 represent the main-stream oscillation and a2 represents 

flow further flow events), which leads to different time-series characteristics. Note that the absence of 

further large peaks in the normalized correlation can be seen as an evidence of aperiodicity. 

 

 

 

Figure 6.16 Cross-correlation function of the POD-coefficient time-series a1 and a2. The dashed lines 

denote the standard deviation of the function. 

Since the time lags between flow events within the repeating sequence show variability (Figure 

6.15), the time lag resulting from the cross-correlation function (Figure 6.16) is just a statistical time 

lag and should be handled with caution. Note that the individual time lags might be required to be 

measured synchronously to the fish-behavior experiments in the future, in order to correctly evaluate 

the correlation between fish-behavior and the occurrences of flow events during the experiments. 

It has to be highlighted that the cross-correlation functions of POD coefficients (e.g. Figure 6.16) 

appear to be an efficient tool to identify connections between POD modes as aimed in Section 6.1.2. 

These results confirm that the first and the second conditions of predictability are fulfilled by the 

present measurements. Subsequently occurring repeating flow events, i.e. repeating sequences of flow 

events, exist in the flow.  



 

90 

6.2 On identifying a connection between supplementary flow 

features and repeating flow events represented by POD 

modes 

In the previous section it has been presented how repeating sequences of flow events can be detect-

ed in the measurement field based on POD. By using POD, however, only flow events are detected 

that occur inside the measurement field and that are represented by POD modes. If a supplementary 

flow feature not represented by a POD mode is considered to be relevant for predictability, it has to be 

involved supplementary into the examination. The supplementary flow feature can be relevant for fish 

behavior, if its change describes a flow situation that is advantageous or disadvantageous for fish. 

Such supplementary flow feature could be in case of the present measurement, for example, the flow 

velocity in the upstream slot (because it is not covered by the PIV measurement field, hence POD 

modes) or the curl of the velocity at any location (because single POD modes are not suitable to repre-

sent the curl as demonstrated in Section 5.3.2). The flow velocity in the slot would be relevant for fish 

behavior, since its temporal change describes an advantageous or disadvantageous flow situation de-

pending on whether flow velocities in the slot are temporally low or high. 

Since it can be expected that predictability is valuable for fish only if some advantageous or disad-

vantageous flow situation becomes predictable based on the repeating sequences of flow events, a 

connection is needed between the occurrences of advantageous or disadvantageous flow situation and 

the repeating sequence of flow events. In this section it is demonstrated how a connection can be iden-

tified between the occurrences of repeating flow events discussed in previous sections and the occur-

rences of advantageous or disadvantageous flow situations represented by the temporal change of the 

supplementary flow feature. Since both can be expected to occur non-periodically, a connection 

searched for based on the time series that represent their occurrences. 

  

 

 

Figure 6.17 The mean velocity field with the locations of the used supplementary flow feature 

It has to be highlighted that at the present stage of the work only a hypothetically advantageous 

flow situation has been used for several reasons. On the one hand, findings of fish-behavior experi-

ments addressing flow situation with unsteady character are very limited. On the other hand, regions 

of the pool near the slot that are expected to be relevant for fish behavior were neither included in the 

measurement field of the present study, nor measured synchronously by a supplementary system. 
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However, although this demonstration is done based on a supplementary flow feature describing just a 

hypothetical advantageous flow situation, the following scheme can be adapted to other flow features 

based on future findings on fish-behavior. 

The following demonstration uses the time series of the u velocity component in two different grid 

points at the upstream edge of the measurement field (Figure 6.17) as supplementary flow features. 

The hypothetical advantageous flow situation is represented by low flow velocities in points P7 and 

P22, as this enable fish to approach to slot using less energy while swimming upstream. Note that low 

flow velocities are represented by negative values of the velocity fluctuations in this example. 

A usual method to reveal the relationship between different time series is scatter plot. Scatter plots 

of velocity time series of highly turbulent flows, however, usually show high variance, which prohibits 

the clear recognition of a relationship (Figure 6.18). The variance can be reduced by applying low-pass 

frequency filters to the velocity time series. When selecting the cutoff frequency of the filter it should 

be taken into consideration that the characteristic frequencies relevant for the studied connection re-

main preserved after the filtering (Figure 6.19). 

 

(a) (b) 

Figure 6.18 Correlation scatter plots of the time series of POD coefficient a1 and of the u velocity 

component in (a) P7 and (b) P22 

 

Figure 6.19 Low-pass frequency filtering of the u time series in P22 using different frequency cutoffs: 

raw data (dotted line), frequency cutoff of 1 Hz (dashed-dot-line) and 0.5 Hz (solid line) 



 

92 

Figure 6.20 shows the scatter plots based on the low-pass filtered velocity fluctuation time series 

using a frequency cutoff of 0.5 Hz. While the u’ velocity appears to be almost not influenced from 

POD mode 1 in P7 (Figure 6.20 a), it depends on the coefficient a1 in P22 as follows (Figure 6.20 b). 

The connection between POD mode 1 and the u’ velocity in P22 can be formulated as follows: at high-

er values of the coefficient a1 the values of the u’ velocity tend on average to become lower. If low u’ 

velocities in P22 are considered advantageous for fish, such a flow condition would be given with 

higher probability in periods when the coefficient a1 has high values, i.e. the main stream is located at 

low y-positions, hence more on the right-hand side in main flow direction (see also Section 6.1.1). 

 

(a) (b) 

Figure 6.20 Correlation scatter plots of POD coefficient a1 and of the low-pass filtered u’ velocity 

component in (a) P7 and (b) P22 

It has to be noted that, since the velocity time series in P7 and P22 used in this example were part of 

the input dataset for POD, this connection is already largely included in POD mode 1. 
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6.3 On detecting repeating flow events by means of point 

measurement techniques 

Essential for the applicability of the presented methodology for evaluating fish behavior is that the 

occurrences of the predictable flow events have to be correlated with the behavior of fish. This re-

quires measurements that are performed simultaneously with the fish-behavior observations, because 

predictable flow events can occur non-periodically. However, due to technical limitations and special 

requirements of the PIV technique (e.g. limited camera resolutions, no objects in the flow obstructing 

the illumination) it is hardly possible to perform PIV measurements during fish-behavior experiments 

in full-scale facilities. Since the only critical requirement of the presented methodology is that the flow 

has to be measured simultaneously in the whole flow field, the measurement is, in principle, also pos-

sible using simultaneous point measurements. In the present section it is demonstrated that the occur-

rences of the predictable flow events can be detected by means of point measurements, provided that 

the POD modes relevant for the predictability have been determined first using PIV. 

For this demonstration the results presented in previous sections are compared with results obtained 

from a very-low-resolution dataset that is generated by keeping every 8
th
 time step and every 16

th
 grid 

point of the originally available velocity dataset. This yields a sampling frequency of 25 Hz and a spa-

tial resolution of 80x80 mm providing 35 grid points. 

 

 

Figure 6.21 Contributions and cumulated contributions of the 70 POD modes of the low-resolution 

dataset to the ensemble turbulent kinetic energy 

 

Figure 6.22 Distributions of the ensemble turbulent kinetic energies among the POD modes of the 

low-resolution dataset (dashed line) and the original dataset (solid line) 
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The POD of the low-resolution dataset resulted in 70 POD modes. Their contributions to the en-

semble turbulent kinetic energy are displayed in Figure 6.21. The comparison of the contributions 

resulting from the two datasets is displayed in Figure 6.22. This reveals that only POD modes 1-3 have 

nearly the same percentual energy contributions in the two datasets; the remaining POD modes have 

larger contributions in the low-resolution dataset than in the original dataset. 

The direct comparison of POD modes and POD coefficients resulting from datasets of different 

resolutions is not meaningful, because POD modes are normalized as represented by Eq. (3.1). There-

fore, the magnitudes of the vectors in the POD modes using a lower grid resolution become generally 

larger. This can be observed well in Figure 6.23, where the vector fields of the POD modes 1 resulting 

from the original and the low-resolution datasets can be compared. 

  

(a) (b) 

Figure 6.23 POD mode 1 resulting from: (a) the original and (b) the low-resolution dataset 

It has to be reminded that the vector magnitudes in the POD modes and the amplitudes of the corre-

sponding POD coefficients are related to each other. The velocity contribution of a POD mode is ob-

tained as the product of the vectors of the POD mode and the values of the corresponding POD coeffi-

cient. Consequently, the product is unchanged if the increase in the vectors is compensated by the 

decreased values of the corresponding POD coefficient. 

For the comparison of the POD results arising from the different datasets, the POD results of the 

low-resolution dataset were rescaled as follows. The vectors of the low-resolution POD modes were 

divided by a scale factor, while the values of the corresponding POD coefficients were multiplied by 

the same scale factor, so that the velocities reproduced by the POD modes remain unchanged. The 

scale factor was calculated for each POD mode i based on the standard deviations of the corresponding 

POD coefficients arising from the different datasets as: 

𝑠𝑓𝑖 = 
𝜎𝑎𝑖

𝑂

𝜎𝑎𝑖
𝐿   (6.1) 

where ai
O
 denotes the standard deviation of ai resulting from the original dataset and ai

L
 denotes 

the standard deviation of ai resulting from the low-resolution dataset. The scale factor yielded 

sf1 = 14.94 for POD mode 1 and sf2 = 14.27 for POD mode 2 in the present datasets. 

After rescaling the POD results of the low-resolution dataset as described above, the vector fields 

of POD modes 1 and 2 resulting from the different datasets (Figure 6.24) and the time series of POD 
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coefficients a1 and a2 resulting from the different datasets (Figures 6.25 and 6.26) can be compared. It 

can be recognized that the POD results of the different datasets yield to the same magnitudes both in 

the vector fields of the POD modes and in the values of the POD coefficients. 

  

(a) (b) 

(c) (d) 

 

Figure 6.24 POD modes 1 and 2 after rescaling the low-resolution POD results: 

(a) POD mode 1 of the original dataset, (b) POD mode 1 of the low-resolution dataset, 

(c) POD mode 2 of the original dataset and (d) POD mode 2 of the low-resolution datasets. 

 

Figure 6.25 Time series of the POD coefficients a1 resulting from the original dataset (thick black line) 

and from the low-resolution dataset after rescaling (thin blue line) 
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Figure 6.26 Time series of the POD coefficients a2 resulting from the original dataset (thick black line) 

and from the low-resolution dataset after rescaling (thin blue line) 

(a) (b) 

(c) (d) 

Figure 6.27 Amplitude distributions of the POD coefficients after rescaling the low-resolution POD 

results: (a) POD mode 1 of the original dataset, (b) POD mode 1 of the low-resolution dataset, 

(c) POD mode 2 of the original dataset and (d) POD mode 2 of the low-resolution datasets. 

In Figures 6.25 and 6.26 it can be further recognized that the time series of POD coefficients a1 and 

a2 resulting from the different datasets are essentially the same; minor differences arise from the small-

scale fluctuations present in the coefficients of the low-resolution datasets. While these small-scale 

fluctuations affect the characteristic amplitudes of the time series to some extent (Figure 6.27), they do 

not have an effect on the characteristic frequencies of the POD coefficients (Figure 6.28). 
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Further, it can be observed that the cross-correlation function of the POD coefficients a1 and a2 re-

sulting from the low-resolution dataset essentially yield the same time lags as the original dataset 

(Figure 6.29). 

  

(a) (b) 

(c) (d) 

Figure 6.28 Characteristic frequencies of the POD coefficients: 

(a) POD mode 1 of the original dataset, (b) POD mode 1 of the low-resolution dataset, 

(c) POD mode 2 of the original dataset and (d) POD mode 2 of the low-resolution datasets. 

  

(a) (b) 

Figure 6.29 Cross-correlation functions of the POD coefficients a1 and a2 resulting from 

(a) the original dataset and (b) the low-resolution dataset. 

The dashed lines denote the standard deviation of the function. 
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It has to be highlighted that it has not been investigated explicitly how grid the resolution or the 

placement of the grid points affect the POD results arising from the low-resolution dataset. Though, it 

is reasonable to assume that the results become different if the patterns within the POD modes are not 

sufficiently represented by the low-resolution grid points. In return, the number of grid points is prob-

ably further reducible, provided that the grid points are optimally placed with respect to the patterns 

within the POD modes of interest. 

It has to be pointed out that, although the time series of the POD coefficients a1 and a2 are well re-

produced by the low-resolution dataset used in this example, the flow processes represented by the 

corresponding POD modes are hardly comprehensive using solely the low-resolution POD modes. As 

the grid spacing of the vectors is too large, neither the processes can be well interpreted nor the loca-

tion of the main-stream centerlines can be determined in the reconstructed velocity fields. Thus, the 

correct interpretation of the low-resolution POD modes requires prior knowledge of the high-

resolution POD modes, which, however, can originate from a separate measurement of the same flow 

that can also be carried out in a scale model. 
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6.4 Summary 

In this chapter, the methodology has been presented that is suitable for detecting predictable flow 

events and their occurrences. Leaning on the fundamental assumption described at the beginning of the 

chapter, the presented methodology detects repeating sequences of large-scale flow events and their 

occurrences based on POD results. The methodology essentially consists of the detailed examination 

of POD modes of high energy contributions, which proved to be deterministic in representing process-

es of the flow (see Section 5.3.3). 

The methodology has been demonstrated in this chapter on the PIV measurement performed in the 

scale model of a vertical-slot fish pass and has shown that: 

 POD modes 1 and 2 represent large-scale flow events that occur repeatedly in the flow 

 the occurrences of flow events represented by POD modes 1 and 2 can be identified in the 

POD-coefficient time series due to the compact description of processes provided by POD 

 a connection between POD modes 1 and 2 could be identified based on both the cross-

correlation function and the frequency spectra of their time series 

 the temporal occurrences of flow events represented by POD modes 1 and 2 reveals that they 

occur sequentially. 

In terms of flow processes, POD modes 0-1 essentially reproduce the non-periodically oscillating 

main stream, and POD mode 2 complements this by the appearance and position change of further 

flow structures connected with the oscillation. 

In terms of flow events, POD modes 1 and 2 form a repeating sequence of following flow events 

(see Figure 6.13): 

1. a transversal current from the left-hand side of the main stream pushes the main stream to the 

right, 

2. a flow structure entering the measurement field from upstream does not follow the new main-

stream trajectory but leaves the main stream to the left-hand side of the main stream, 

3. the flow structure travels along the left side of main stream, thereby pulling the main stream to 

the left-hand side and becoming less and less distinguishable from the main stream, 

4. the flow structure leaves the measurement field, while the main stream returns to its original 

position. 

The sequential occurrence of these flow events proves that both the first and the second conditions 

of predictability formulated at the beginning of the chapter are fulfilled, i.e. there exist repeating se-

quences of flow events in the flow. 

This sequence of flow events is repeating in non-periodic intervals in the measured dataset. Alt-

hough the repeating sequence of flow events remains essentially the same, each of the occurrences is 

somewhat different. This implies that the time lag between the occurrences of flow events within the 

repeating sequence varies to some extent at different occurrences of the repeating sequence, which has 

to be considered in later fish-behavior experiments. Though, an average time lag between the occur-

rences of flow events within the repeating sequence can be provided using the cross-correlation func-

tion of the involved POD-coefficient time series, which gave about 1.2 s in the present measurement. 



 

100 

Although the trigger of the process cannot be ultimately identified, it is reasonable to assume that 

the subsequent occurrence of the two following flow events generates the oscillation. These are the 

transversal current from the left-hand side of the main stream that pushes the main-stream trajectory to 

the right (1), and the flow structure arriving with the main stream in form of a burst that does not fol-

low the new main-stream trajectory (2). This interpretation is strengthened by the additional POD 

modes of high energy contributions that apparently also represent repeating bursts arriving from up-

stream (Figure 6.8), but do not cause main-stream displacements. 

In this chapter, it has also been demonstrated how a supplementary flow feature not represented by 

a POD mode can be involved into the examination or, in other words, how a connection between the 

repeating sequence of flow events represented by POD modes and the change of a supplementary flow 

feature can be identified. This can be required if such a supplementary flow feature is relevant for fish 

behavior, i.e. it describes flow situations that are advantageous or disadvantageous for fish. Since the 

occurrences of both the flow events and the examined flow situations are repeating non-periodically, it 

is reasonable to look for the connection based on their time series. Although demonstration used only 

a hypothetically advantageous flow situation, the presented scheme can be enhanced in the future us-

ing other flow situations or flow features based on results of fish-behavior studies. 

Finally, it has been demonstrated that the occurrences of predictable flow events can be detected by 

low-resolution measurements that are feasible by means of point measurement techniques in full-scale 

facilities, provided that the POD modes relevant for the predictability had been determined first by 

PIV. This is essential for the applicability of the methodology for evaluating fish behavior, because the 

measurement has to be performed simultaneously to fish-behavior observations in the full-scale facili-

ty, where PIV is hardly possible. 

For this demonstration a low-resolution velocity dataset has been generated from the high-

resolution PIV measurement, then POD modes and POD coefficient obtained from the high- and the 

low-resolution datasets have been compared. The results have confirmed that the temporal sequences 

of flow events represented by POD modes 1 and 2 could be well identified in the POD-coefficient 

time series obtained from the low-resolution dataset. In turn, although the POD modes 1 and 2 of the 

low-resolution dataset were essentially the same as the ones in the original dataset, the POD modes of 

the low-resolution dataset are difficult to interpret without the POD results of the original dataset. For 

this reason, the high-resolution dataset is required as a reference for the analysis of the low-resolution 

dataset. 

These considerations suggest that the predictable flow events have to be determined first based on a 

PIV measurement, which can also be performed in a scale model of the facility; then grid point posi-

tions and measurement frequency of the low-resolution measurement have to be determined and opti-

mized based on the POD of the PIV measurement; and finally the low-resolution measurement can be 

performed simultaneously with the fish-behavior experiments. 
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7 Conclusions and outlook 

One of the features determining the influence of turbulence on fish behavior is, according to an ear-

lier publication, the predictability of turbulence, which has been interpreted in this work as the exist-

ence of turbulent flow events in the flow field whose occurrences are predictable. Here, the term flow 

event is used to denote changes in the flow associated with the appearance of turbulent flow structures 

or their change of position, such as the appearance of a turbulent eddy at a location or the trajectory 

displacement of an unsteady main stream. The term occurrence denotes instances of times at which 

the particular flow event happens, e.g. when a particular turbulent eddy appears at a given location. 

This work has developed a flow-analysis methodology for detecting predictable flow events in ver-

tical-slot fish passes, even if they occur non-periodically. The fundamental assumption of the present 

approach is that repeating flow events are the basis for predictability, because repetition facilitates 

their recognition by experience on the fish’ part. Leaning on this assumption, the following require-

ments for predictability have been formulated: 

1. flow events occurring repeatedly in the flow exist; 

2. repeating sequences of different flow events exist in the flow. 

If these conditions are fulfilled, the flow events occurring later within the repeating sequence can 

be considered predictable in the sense of short-term predictability, even if the sequence itself is repeat-

ing non-periodically. It has to be reminded that the feature of predictability refers to the flow alone. 

The methodology presented here is accordingly based on the analysis of the flow. 

In the following, the summary and conclusions concerning the results are followed by recommen-

dations for the future work. 

7.1 Summary and conclusions 

The methodology developed in this thesis has been applied to a measurement performed with Parti-

cle Image Velocimetry (PIV) in a scale model of a vertical-slot fish pass. The following main issues 

have been discussed in details concerning the methodology: 

1. The interpretation of POD results (Section 5.3) and the presentation of the methodology (Sec-

tion 6.1). This included whether POD results are suitable for representing flow structures, how 

to detect flow events based on the POD results, how to identify a temporal sequence of con-

nected flow events and their occurrences. 

2. The involvement of supplementary flow features into the examination (Section 6.2) 

3. Considerations on performing the measurements by means of point measurement techniques 

during fish-behavior experiments (Section 6.3). 
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7.1.1 The developed methodology under consideration of the interpretation of 

POD results 

The presented methodology is based on POD (see Section 2.5). Briefly explained, POD creates a 

set of orthonormal basis functions for the input velocity dataset in form of single vector fields called 

POD modes. This implies, firstly, that the instantaneous velocity fields of the input dataset can be 

reconstructed at each time step as a linear combination of the POD modes, and secondly, that the coef-

ficients corresponding to a given POD mode at all time steps can be expressed as a time series. A POD 

mode multiplied by the coefficient value at a given time step produces a single vector field, which is 

called in this work velocity contribution of the POD mode at the given time step. Further, the variance 

of the coefficient’s time series gives the variance contribution of the POD mode, which is proportional 

to the kinetic-energy contribution of the POD mode. 

The discussion on the interpretation of POD modes (Section 5.3) pointed out that POD modes form 

in combination with the coefficient time series – periodic or non-periodic – spatial oscillations, which 

can be used to reconstruct the input dataset. While the vortical structures observed in the vector fields 

of the POD modes are not real flow structures by themselves, POD modes can represent flow struc-

tures. Whether POD modes do represent real flow structures and can be used to detect flow events, has 

to be examined individually. 

The detailed examination of the POD modes calculated from the PIV measurement performed in 

this work (Section 6.1) proved that POD modes 1 and 2 do represent significantly flow events that 

occur repeatedly. While POD mode 1 describes the non-periodically oscillating main stream, POD 

mode 2 represents additional repeating flow events within the measurement field. Further, the time 

series of coefficients corresponding to POD modes 1 and 2 can be used to identify the occurrences of 

such repeating flow events. 

From the point of view of representing flow structures, the following conclusions can be deduced 

on POD modes. 

 Large flow structures that occur repeatedly at exactly the same location – like eddies shed be-

hind a fixed obstruction – are expected to be represented well at that location by one (or two) 

POD modes having high energy contributions. Consequently, such flow structures are recon-

structed well at that location by those POD modes at each time step, so that the occurrences of 

the flow events associated with such flow structures can be detected based on the coefficient 

time series of the involved POD modes 

 Large flow structures that occur repeatedly at nearly but not exactly the same location – like 

eddies separating at somewhat variable locations, or a main stream with an oscillating center-

line – are expected to generate more POD modes of high energy contributions as follows. A 

single POD mode having a very high energy contribution contains a kind of spatial intersec-

tion of the individual occurrences. Additional POD modes having lower energy contributions 

contain the difference between that spatial intersection and the specific vector pattern at the 

individual occurrences. Therefore, the specific vector pattern of such a flow structure at a giv-

en occurrence can be reconstructed by adding the contribution of the single POD mode con-

taining the intersection and additional POD modes that modulate the first one at the given oc-

currence. While the single POD mode containing the spatial intersection is not sufficient to re-

construct such flow structures at each individual occurrence exactly, this POD mode is re-



 

103 

quired for the reconstruction at any particular occurrence. Therefore, the single POD mode 

containing the intersection can be used to identify all the occurrences of such flow structures. 

For example, in the case of the oscillating main stream in the presented measurement, POD 

mode 0 (the mean velocity field) can be regarded as the single POD mode containing the spa-

tial intersection of the individual occurrences, while POD mode 1 provided the vector patterns 

of the main stream at different times. 

As mentioned earlier, the occurrences of the flow structure represented by a POD mode is can be 

detected based on the time series of the corresponding POD coefficient. In this study, the examination 

of the coefficient time series corresponding to POD mode 1 and 2 (Section 6.1) showed that the flow 

events represented by these POD modes do occur sequentially. This confirms that both the first and 

the second conditions of predictability formulated at the beginning are fulfilled; i.e. repeating sequenc-

es of flow events in the flow do exist. The coefficient time series of the involved POD mode can also 

be used to detect the time lags between occurrences of the subsequent flow events. 

Therefore, it can be concluded that repeating flow events, arising from large-scale flow structures 

can be efficiently identified in a velocity dataset using POD. For the detection of such flow events it is 

sufficient that a POD mode represents the underlying flow structure to a significant extent, even when 

this does not occur at exactly the same location. The occurrences of flow events associated with such 

flow structures can be detected based on the time series of the POD coefficients, which describes the 

history of occurrences compactly. The coefficient time series of different POD modes can then be used 

to determine sequences of occurrences. 

It has to be pointed out that, in principle, any of the POD modes is a possible basis for the present-

ed methodology, so long as it significantly represents flow events. However, as lower order POD 

modes are expected to represent large flow events occurring frequently, they are expected to be more 

suitable for the methodology. The results of Tarrade et al. (2011) suggest, in particular, that in the 

pools of vertical-slot fish passes there might be other flow events that are relevant for predictability. 

Although they did not investigate repeating flow events using the time series of the POD coefficients, 

based on the vector field patterns of POD modes they deduced two additional POD modes to be con-

nected with POD mode 1. Since the vector field of those POD modes produced significant velocity 

contributions in areas not covered by the present measurement field, they could not be captured here. 

7.1.2 The involvement of supplementary flow features into the examination  

By using POD, only flow events can be detected that occur inside the measurement field and that 

are represented by POD modes. If a flow feature not represented by a POD mode is considered rele-

vant for predictability, it has to be involved supplementary into the examination. Such a supplemen-

tary flow feature is in case of this work, for example, the flow velocity in the slot, since it is outside 

the measurement field and is certainly relevant for fish, as fish inevitably have to swim across the slot. 

The temporal change of the flow velocity in the slot (the velocity time series) describes a flow situa-

tion that can be advantageous or disadvantageous for fish depending on whether flow velocities at the 

slot are temporally low or high. Since it can be expected that the predictability of such advantageous 

or disadvantageous flow situations is relevant for fish, the inclusion of supplementary flow features 

describing such flow situations into the examination is reasonable. 
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The example of Section 6.2 has shown how to establish a connection between a repeating sequence 

of flow events and a supplementary flow feature describing advantageous or disadvantageous flow 

situations. Since repeating flow events occur non-periodically, it is reasonable to look for such a con-

nection based on the time series of the specific flow feature and of the POD coefficient. 

It has to be highlighted that: 

 the examined flow feature can be any arbitrary unsteady parameter of the flow (e.g. flow ve-

locity, velocity gradient, size of a region with particular flow velocity or other flow features, 

etc.) so long as a time series of it can be formed. 

 the location of the flow situation that is advantageous or disadvantageous for fish can be out-

side of the measurement field of the whole-field measurement used for the POD analysis. 

However, in this case the separate measurement of the flow feature describing the flow situa-

tion has to be simultaneous with the whole-field measurement. 

Although it has not been explicitly discussed in this study, there might also be a time lag between 

the occurrences of a repeating flow event and the occurrences of the supplementary flow feature de-

scribing a relevant flow situation. In such cases a further analysis of the two time series should be con-

sidered, e.g. as one with the POD coefficients in Figures 6.15and 6.16. In addition, the correlation 

scatter plots (Figure 6.20) can be drawn after applying a time shift to one of the time series. Such a 

time lag has to be considered during the evaluation of fish-behavior experiments. 

7.1.3 Considerations on performing the measurements by means of point 

measurement techniques 

It has to be reminded that the feature of predictability refers to the flow alone. It will have to be as-

certained using fish-behavior experiments in the future whether fish are actually able to recognize and 

use predictable flow events of given characteristics (e.g. size of flow structures associated with the 

flow events relevant for predictability, time lags between flow events). This implies a future need to 

correlate fish behavior and the occurrences of predictable flow events. 

The flow measurement and the fish-behavior observations will have to be performed simultaneous-

ly considering that the repeating sequences of flow events relevant for predictability occur non-

periodically, and also that, for each occurrence of the repeating sequence, the time lag between the 

flow events within the sequence will vary somewhat. Moreover, since fish-behavior experiments have 

to be carried out in full-scale facilities (due to the scale dependence of the influence of turbulence, see 

Section 1.1), measurements using PIV are hardly possible. 

For this reason, it has been demonstrated in this study that the occurrences of the repeating flow 

events can be detected by very-low-resolution “whole-field” measurements that are, in principle, fea-

sible by means of point measurement techniques (Section 6.3). The presented demonstration has, how-

ever, also shown that the POD modes relevant for predictability must have been determined based on a 

high-resolution dataset prior to the low-resolution measurements. Although this hypothesis has not 

been investigated explicitly, it is reasonable to assume that the POD results obtained from the low-

resolution datasets will depend on the layout of the low-resolution grid points. That is to say, the lay-

out of the low-resolution grid has to reproduce the pattern in the vector fields of relevant POD modes 

sufficiently. As a consequence, the layout of the low-resolution grid has to be optimized based on the 
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POD modes obtained from a high-resolution dataset, which, thus, has to be available prior to the low-

resolution measurements. 

Taking into account that PIV measurements are usually not possible in a full-scale facility, the con-

sequence of the above considerations is that the primary PIV measurements providing the high-

resolution dataset must be performed in a scale model of the full-scale facility. 

7.2 Recommendations for the future work 

As a conclusion, a plausible methodology for detecting predictable flow events in fish-behavior ex-

periments may consist of the following steps: 

1. Perform a primary high-resolution PIV measurement in the facility of interest. If PIV is not 

possible in the facility (e.g. due to its size, turbidity), the measurement must be performed in a 

scale model of it. Further, those flow features not captured by the PIV measurement but rele-

vant for fish behavior (supplementary flow feature describing advantageous or disadvanta-

geous flow situations) need to be measured simultaneously by an additional measurement sys-

tem. 

2. Identify repeating sequences of flow events based on POD of the PIV measurement as de-

scribed in Section 6.1: 

a. Identify POD modes representing repeating flow events 

b. Identify connections between POD modes, i.e. connected repeating flow events 

c. Determine the sequence of the connected repeating flow events, i.e. the repeating se-

quence of flow events 

3. Identify the connection between the repeating sequence of flow events represented by POD 

modes and supplementary flow features describing advantageous or disadvantageous flow sit-

uations (Section6.2). 

4. Determine the grid layout and the measurement frequency required to obtain the time series of 

POD-coefficient needed to detect the predictable flow events with low-resolution measure-

ments (Section 6.3). 

5. Perform the low-resolution measurements in the full-scale facility in order to identify occur-

rences of repeating flow events. If a scale model has been used for the PIV measurements, 

compare the characteristics of the POD coefficients obtained from the two different facilities 

in order to exclude modeling effects (Figure 6.27). 

During the evaluation of fish-behavior experiments, the following temporal aspects have to be con-

sidered: 

 the repeating sequence of the flow events relevant for predictability occurs non-periodically, 

hence at irregular time intervals (Section 6.1.3). 

 although each repeating sequence remains essentially the same, each occurrence is somewhat 

different, which implies that the time lag between the flow events within the sequence varies 

to some extent from occurrence to occurrence (Section 6.1.3). 

 if an advantageous or disadvantageous flow situation is given by a supplementary flow fea-

ture, then a time lag might exist between the occurrences of the repeating flow events being 
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part of the repeating sequence and the occurrences of the advantageous or disadvantageous 

flow situations. 

Based on the conclusions of this study, the following recommendations can be made for improving 

the methodology for investigations in vertical-slot fish passes: 

 in order to capture all flow events possibly connected with the main-stream oscillation, the 

PIV measurements should cover as large an area of the pools as possible, and especially the 

regions near the slot. 

 the flow at the upstream slot should be captured with supplementary measurements and simul-

taneously with the PIV measurements, in order to examine whether also the flow changes in 

the slot are predictable. 

 the instantaneous water levels should be measured at several locations in the pools simultane-

ously with the PIV measurements, in order to examine whether the main-stream displacements 

can be determined by water level measurements. Since the oscillation appears to be partly 

caused by fluid exchange between the recirculation and the main-stream regions, it is specu-

lated that the oscillation has a significant influence on the instantaneous water levels. 

While the presented methodology provides a practical framework for investigating the predictabil-

ity of non-periodically repeating flow events, the following aspects of the methodology need further 

clarification. 

The 2D-2C PIV system used in the present work provided two-dimensional velocity vectors, and 

the flow events relevant for the predictability have been detected based on two-dimensional velocities. 

Since these flow events represented a relative high turbulent kinetic energy (see the TKE contributions 

of POD modes 1 and 2 in Figures 5.9 and 6.5), and since according to the literature (Section 3.3) the 

turbulent kinetic energy has been found to be independent of the distance from the bottom, it can fairly 

safely be assumed that such large-scale flow events occupy the whole water depth and are, conse-

quently, well characterized using the horizontal velocity components in vertical-slot fish passes. How-

ever, it should be verified whether the measurement errors caused by discarding the vertical compo-

nent of the velocity (see Section 4.3.5) are negligible for the results. This should also be considered for 

further flow events relevant for predictability not included in the limited measurement field. 

The results presented in this work have shown that the flow in the present fish pass model has pre-

dictable components. It remains to be confirmed whether other pool geometries also generate predict-

able flow events, and it should also be investigated whether the characteristics of the predictable flow 

events (e.g. location of the relevant flow events, time lags) are dependent on the pool geometry. Alt-

hough the quantitative comparison of the characteristics of POD modes measured in different geome-

tries is possible by simple means as shown in e.g. Figures 6.27 and 6.286.28, a more sophisticated 

comparison can be performed using the Common Base POD (Kriegseis et al. 2010). 

It should also be noted that the main-stream oscillation, which plays an essential role in the predict-

ability for the present measurement, has not been measured in a real fish pass yet. This is, to a large 

extent, due to the lack of a whole-field measurement method that is applicable to the case. By using 

low-resolution measurements as suggested in this work (Section 6.3), the main components of the 

oscillation can be determined also in field. Based on such measurements it should be ascertained 

whether this oscillation is also present in real facilities, and whether it has the same characteristics as 

in the corresponding scale models. The latter point for attention is important in order to exclude that, 
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in the laboratory apparatus, the filling process and the size of the inflow tank influence the oscillation. 

The characteristics of the oscillation components measured in the prototype can then be compared 

with those measured in the scale model by using the quantitative characteristics of the relevant POD 

modes as shown in e.g. Figures 6.27 and 6.28. 

The low-resolution measurements performed simultaneously with fish-behavior observations are 

expected to disturb fish to some extent. On the one hand, this disturbance can be obviously reduced by 

decreasing the used number of measurement devices, hence the number of grid points. On the other 

hand, the disturbance of the measurement device is expected to be reduced by placing the point meas-

urement devices in regions where they cause fewer disturbances for fish, which should be considered 

in step 4 above. 

In case of vertical-slot fish passes, where large-scales repeating flow events are assumed to occupy 

the whole water depth, the placement of the measurement devices near the water surface has to be 

considered as follows. Firstly, further investigations should ascertain that the predictable flow events 

detected by the present methodology actually occupy the whole water depth. Secondly, it has to be 

examined at which distance from the water surface they are still detectable, in order to exclude near-

surface influences. Moreover, the number of measurement devices, hence of grid points, might be 

further reduced, if the main-stream displacements could rather be detected by water level measure-

ments as speculated before. 

The conclusive proof of the suitability of this methodology for the investigation of predictable flow 

events can be only obtained by applying the methodology in a fish-behavior experiment. Thereby, it 

could be ascertained whether fish are able to recognize and use repeating flow events and the repeating 

sequences as assumed in the presented study. 

The predictability is of particular importance in vertical-slot fish passes, because such facilities 

consist of several dozens of pools, which implies that fish encounter almost the same flow again and 

again in such facilities. Accordingly, a pattern learned at the beginning of such a facility is applicable 

again and again further upstream. The main-stream oscillation, observed both in the present work and 

in two previous studies (Sections 3.3 and 6.1.1), certainly increases the chance that predictable flow 

events exist. Nonetheless, the adaptation of the present methodology to other hydraulic structures than 

vertical-slot fish passes deserves separate considerations. 
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