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Abstract Heavy-quark form factors are calculated at Sgoes ~
1 to all orders in ¢ at the first order in 1/ 8. Using the inver-
sion relation generalized to vertex functions, we reduce the
massive on-shell Feynman integral to the HQET one. This
HQET vertex integral can be expressed via a » F; function;
the nth term of its & expansion is explicitly known. We con-
firm existing results for n IL o L terms in the form factors (up
to L = 3), and we present results for higher L.

1 Introduction

Quark form factors are building blocks for various production
cross sections and decay widths in QCD. Massive quark form
factors are known up to two loops [1]; recently they have been
calculated at three loops in the large N, limit [2].

We shall consider heavy-quark form factors in the large By
limit, where Boogy ~ 1, and 1/ is an expansion parameter
(see the reviews [3-5]). A bare form factor can be written as

oo L—1

2 L
F=1+3"Y aw.p; (@45%) . )

L=1n=0

Keeping terms with the highest degree of S in each order of
perturbation theory, we get

_ b Bogs 1
F_1+ﬂ0 ((4n)d/2)+0<5g>' )

The leading coefficients az, ;—; can easily be obtained from

nffl terms (Fig. 1). We shall consider only the first 1/8¢

order.!

! In some cases it is possible to obtain results for 1/ ﬂg corrections;
see, e.g. [6-8].

2e-mail: A.G.Grozin@inp.nsk.su

2 Heavy-quark bilinear currents

We consider the QCD currents

Jo = 0ol Qo = Z(a™ (w)J (w).

where Qg is a bare heavy-quark field. The antisymmetrized
product of n y matrices has the property
Y Ty, = n(d —2mT, 7= (=1)". )
All results for form factors of this current will explicitly
depend on n and 7.

In situations when the initial heavy-quark momentum p
and the final one p, can be written as p| 2 = mv2+ki 2 (m
is the on-shell mass, vlz’2 = 1) with small residual momenta

k1,2 < m, these currents can be expanded in HQET ones [9,
10]:

2
J(w) =Y Hi(w, t)J: (i)
i=0

1 = 1
+%;Gi<u,u>oi<u)+0<m), )
where the leading HQET currents are

Jio = huyolihuo = Z (@ () Ji (1),
=T, 01T +Thy, 01T, (6)

and the éi are local and bilocal dimension-4 HQET oper-
ators with appropriate quantum numbers. Here hy, ,o are
two (unrelated) bare fields describing HQET quarks with
the velocities v 2 having small (variable) residual momenta;
the HQET Lagrangian explicitly contains v; >. These refer-
ence velocities can be changed by arbitrary small vectors
of order k;/m (reparametrization invariance). The HQET
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Fig. 1 Diagrams producing the highest degree of n s in each order of
perturbation theory

current renormalization constant Z does not depend on the
Dirac structure and is a function of the Minkowski angle ¥
V1 - vp =cosh = w.

For our purpose it is convenient to choose vy 2 = p1.2/m,
i.e., both residual momenta k; » = 0. Then the matrix ele-
ments of O; vanish: non-zero expressions for these matrix
elements (having dimensionality of energy) cannot be con-
structed, because we have no non-zero dimensionful param-
eters. The coefficients H; in (5) can be obtained by matching
the on-shell matrix elements (k; 2 = 0) in QCD and HQET:

2
(Q(p2 = mv2)|JolQ(p1 = mv))) = Y Friialiuy,
i=0

F=1,
7

(Qka = 0)|Jio| Q(ky = 0)) = F; itaTiuy,

where u are the Dirac spinors of the initial quark and
the final one (all loop corrections to F; vanish because they
contain no scale). Therefore the bare matching coefficients
(in the relation similar to (5) but for the bare currents) are
Hl.O = F;/ F, = F;. The renormalized matching coefficients
are

Z@" () F
Hi(p, p) = HY === = == 8
o=t z@" () FZ ®

UV divergences cancel in the ratio F; /Z as well as in the ratio
F, i/ Z.Both F; and 1:", contain IR divergences which cancel in
theratio F;/ F, because HQET is constructed to reproduce the
IR behaviour of QCD (F; have no loop corrections because
their UV and IR divergences cancel each other).

The dependence of H; (i, ') on u and p/ is determined
by the RG equations. Their solution can be written as

o i”.f)

) yao/ @B
() ()
) Ky (@ ()

Hi(u, 1) = H (
(nyg)
ay (o)

(ny)

), o\ —T0/CBy )

as (')

’ ( o, ) K @)
as (o)

©)
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Fig. 2 On-shell massive self-energy integrals and off-shell HQET ones

where for any anomalous dimension y («g) = ypos/(4m) +

yi(as/(@m)? 4 - - we define
_ o do V(as) _ ﬁ
Ky (as) = eXp/(; o (2/8(05?) 2/80)
vw (v B\ o
=1 - — — — ) — - 10
- 2B <)/0 ,30> 47 + (10)

Matrix elements of the currents with n = 0, 1 can be
written via smaller numbers of form factors:

(Qmvo)|J|Q(mvy)) = Fiiiauy,
FS = Fy+2F 4+ Qw — 1) F3, (11)

where F; withn = 0, n = 1 are used, and

(Qmu)|J*1Q(mvy)) = (F + Y )itay*uy

n
U )
F/ = Fy+2F — Qw —3)F,
F) = —4(F\ + Fy), (13)
where F; withn = 1, n = —1 are used.

3 Inversion relations

On-shell massive self-energy integrals with one massive line
and any number of massless ones in some cases can be
expressed via similar off-shell HQET integrals. Suppose all
massless lines can be drawn at one side of the massive
one and the resulting graph is planar (e.g., the diagram in
Fig. 2a). Lines of such a diagram subdivide the plane into
a number of polygonal cells (plus the exterior); with each
cell we can associate a loop momentum (flowing counter-
clockwise). Then outer massless edges of the diagram corre-
spond to the denominators —kl.2 —i0; inner massless edges to
—(k; — kj)2 —i0; and massive edges to m? — (kj +mv)? —i0
(Table 1). The corresponding HQET diagram (Fig. 2b) has
HQET denominators —2k; - v — 2w — i0 instead of massive
ones. First we perform a Wick rotation of all loop momenta
kio — ik;o (in the v rest frame). Then, in Euclidean momen-
tum space, we invert each loop momentum [11]:
ki > —. 14
P (14)
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Table 1 Inversion relations

Minkowski Euclidean Inversion
i 2 i
Outer massless ki —i0 k;
k2
1
ki — kj)?
Inner massless —(ki — kj)2 —i0 (ki — kj)2 %
kik;
—2w — 2ik;
Massive _ki2 —2mv - ki —i0 ki2 — 2imk;q m%
i
) ) _ kP = 2ikig
HQET —2w — 2k; - v —i0 —2w — 2ikjo m— - 2
i
d?k;
Measure dk; idk Tl
(k)4
Fig. 3 Examples of on-shell massive diagrams which cannot be trans- mivy < mava
formed to off-shell HQET ones by inversion relations k
Inversion transforms massive denominators to HQET ones
. . . . k-vi+w, k-vy+ @y
(and vice versa) if we identify
—2w=m"", (15) o <— >

see Table 1. As a result, a massive on-shell diagram (Fig. 2a)
becomes m~ 2" (the sum runs over all massive line seg-
ments, n; are their indices, i.e. the powers of the denom-
inators) times the off-shell HQET diagram (Fig. 2b) with
w = —(2m)~ ! (15). The indices of all inner massless edges,
as well as of all massive edges (which become HQET ones),
remain intact (see Table 1). From the same table it is clear
that the index of an outer massless edge becomes d — Y n;,
where the sum runs over all edges of the cell to which this
outer edge belongs (they can be all massless, or one of them
can be massive). If there is a cell k; bounded only by inner
massless edges, and maybe one massive one, then the denom-
inator (kiz)”’_Z "j will appear (Fig. 3). This denominator does
not correspond to any line, and hence the resulting integral is
not a Feynman integral at all; in this case, the discussed rela-
tion becomes rather useless (though formally correct). The
inversion relations [11] were used, e.g., in [12—14]).

The inversion relations can be generalized to similar vertex
integrals; the masses of the initial particle and the final one
may differ. At one loop (Fig. 4), the integrals
My, ny, n; 95 my, mo) =/dd7k

i JTd /2
1
“Tok2 — 2myvy -k — 01" [—K2 — 2mavy - k — i0J2 (—k2 — {O)"’

; . [ ddk
(n1,n2,n; 95 0y, w3) = ey}

(16)

Fig. 4 One-loop vertex integrals

1
“[=2k - v1 — 201 — 01" [—2K - v3 — 25 — 10172 (—k2 — i0)"
(17)

are related by

. . —ni —ny
M(ny,na,n; 9;my,my) =my " 'm,

xI(ny, na, d—ny—ny —n; 95 — (2m1) "', —2ma) ™).
(18)
The integrals I (17) have been investigated in [15]. Here
we need only the integrals M (16) withm| = my; they reduce

to the integrals I (17) with w; = wy, which are especially
simple [15]:

[(n1, 2, 15 05 @, ) = (=20) "7 [ (ny 4 ny, n)

d
ni,ny,5—n | 1 —coshv
<o (Lt |5 ) (19)
2 2
where
I'(—d 2m)I'(d/2 —
Tnyon) = (=d +n; +2n)I'(d/2 —n) 20)

[(n)I(n)

@ Springer
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mpvy k+m)v2 mayvy —q Vv k+myv, @2v2 —¢q
k\L Tk—kq Tk-l—q
mivy k+myvy myvy—q 01V] k+mpv, o1vi—¢q

Fig. 5 Box diagrams

is the one-loop HQET self-energy integral. We only need
integer 111 2; in this case all I reduce by IBP to 2 master inte-
grals [15]: 1(1, 0, n) (trivial) and I (1, 1, n) (given by (19)).
Inversion relations can be generalized to diagrams with
more external legs. For example, the one-loop massive box
diagram with two on-shell legs and the corresponding off-
shell HQET one (Fig. 5)
2 d’k
M(ny, ny,n3, ng; 03my,ma;q°, g -vi,q - v2) = / Py
1

K= 2my v - R (=K = 2mgu; - KR (—(k+ )2 (kD)
2D

) d?k
I(ny,na,n3,n4; 0501, 02,47, -v1,q-v2) = | —
imd/2
1
X
(=2k - vp — 201)" (—=2k - v2 — 2w2)™2 (—(k + q)?)"3 (—k?)
(22)

are related by

M(ny, no,n3,ng; O5my, ma; g%, q - v, q - v2)
=m;"'my"(—gH" 1 (n1, na, n3,
d—ny—ny—n3 —n4; 0
—@m)~", —@m2) 7" 1/,
q-vi/(=¢), q-v2/(=q%). (23)

4 Large-fo limit

We need only terms with the highest degree of n ; therefore,
there is no need to distinguish betweenn s andn; = ny — 1,
or any n s + const. The gluon propagator can be written as

D, (k) = ; ( — @) (24)
= a2y ST ke )
where the gluon self-energy is
2
2N 80 _ye D(e) 2\ —¢
03 = o g yme 7= R (25)
_ 201 —
D(e) = e”* d-and +28)F =o _, + 2 + oo
(1=2&)(1 = 58)(1 - 2¢) 3

@ Springer

At this leading large By order, the coupling constant renor-
malization is simple:

2
8 _
Pogmyre " = bZa™,
g (1) 1
b= , = . 26
Po 47 “ T 14b/e (26)

The bare QCD matrix elements can be written in the
form [6,16]

=0t 5> 0 nemy o (%) e

Bo = g

It is convenient to write the functions f;(e, u) in the form
usual for on-shell massive QCD problems (see [5])

e’ T(1 =21 +u)

Jie ) = S T TG —u—o)

Ni (e, u). (28)

We calculate the vertex function (Fig. 1) and multiply it by
Z ‘és with the 1/ accuracy (see [5]). Reducing on-shell mas-
sive QCD integrals to off-shell HQET ones by the inversion
relation (18) and then to the master integrals by IBP [15], we
obtain

No(e,u) = [—nu%
—u(nu +4(w + 1)8)(n -2)
+22 — u)(w + (w + l)u)
—(6w + 2u + nu2)8

—2(w + Du(n —2)*

—|—2(w —(w+ l)u)sz]F

-2
T2 0 — 22 4 4e(n — 2)
—6(1 —u?) +2(1 —u)(5 + 2u)e
—2(1 — 2u)&?,
n—2+e¢
Ni(e,u) = u|:77w—1 —nun—2)—24u+e
W —
-2
—nus]F—nu—n +8,
w—1
-2
N2(8, u) — nuw
w—1
x[1 =0+ (w—Du)F], (29)
where
,L14+u|l—w
Pean (13S0 (30)

(the same function appears also in the one-loop self-energy
integral with arbitrary masses m > and arbitrary p?, where
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both indices are equal to 1 [17]). At = O this result agrees
with the result of [18] at m; = ma; see also [5].2

Re-expressing the bare form factors (27) via the renormal-
ized coupling we obtain

(e, L e p "
F—s,o+—2f(s 2 [D()(%) m} .

We should have (see (8))

log Fo = log(Z (es (10))/ Z (et ())) +log H (. 1) = (32)

negative degrees of & go to log(Z/Z), non-negative ones to
log H. The function

fole,)D(e)"/* ( ) Z Fume"u™ (33)
n,m=0

is regular at the origin; expanding (b/ (¢ +b))" in b, we obtain

a quadruple sum. In the coefficient of e~! all f,, except

fno cancel; differentiating this coefficient in log b (and using

the fact that F (30) at u = 0 is ¥/ sinh ¢) we obtain the

anomalous dimension corresponding to Z/Z [6,16]:

b 1
Vo=V ="2—fo(=b,0) +O| = ). (34)
Bo B3
These anomalous dimensions at the 1/8¢ order are [19,20]
B b (1+ 2b)I'(2+2b)
T A T P2+ HTA L T —b)
1
x(n=1D)@B-n+20)+0\|—], (35)
Bo
b 14 22+ 2b
y =4Cr L+ 5O ) (¥ coth 9 — 1)

Bo (1 +B)T3(1 + )T (1 — b)

|
+ 0O 36
(/30) G0

Our results satisfy this requirement ( f1,2(—5, 0) = Obecause
the QCD current J does not mix with currents with other
Dirac structures).

2 There are a few typos in Sect. 8.8 of [5]. The unnumbered formula
below (8.93) should read

sinh[(1 — 2u)L/2]

Ro = cosh(Lu), Ry = -
0 =cosh(Lu), Ry sinh(L/2)

In the second formula in (8.95), the coefficient of Ry should contain an
extra factor 3. In both formulae in (8.96), their right-hand sides should
be 1 + ag correction.

In the coefficient of £° all fnm except fro and fo,, cancel.
The coefficients f,o form K, _; (a5 (1)), see (9); we have [6]

1
,_5,0+—f due ™’S;(u) + O , (37)
8
where the Borel images of the perturbative series for H; are
1 S3 % Mo
Si(u) = - fz(O u) — £i(0,0)|. (38)

The integral (37) is not well defined because of poles at the
integration contour. The leading renormalon ambiguities are
given by the residues at u = 1/2 [21] (see also [5]). It is easy
to calculate these residues because F (30) at u = 1/2 is just
2/(w+1):

4 AA 1 AA
AHy=——-3)=—, AH = ——

w+1 2m w+12m’
AHy =0, (39)
where
- C
AA = —2ﬂ—Fe5/6AM—S. (40)
0

As demonstrated in [21], matrix elements of the QCD cur-
rents between ground-state mesons (pseudoscalar or vector)
are unambiguous: the IR renormalon ambiguities of the lead-
ing matching coefficients H; are compensated by the UV
renormalon ambiguities in the matrix elements of the 1/m
suppressed HQET operators 0; in (5) (see also [5]).

The hypergeometric function F (30) has been expanded in
u to all orders [17], the coefficients are expressed via Nielsen
polylogarithms S, (x). The result [17] is written for the
case of an Euclidean angle3; its analytical continuation to
Minkowski angles is

B 1 |:sinh(1?u)
" sinh 9 (2 cosh(ﬂ/2))2u

z?uzu Z( 2)"" mSmn m+1(—e )

m=1

u

e ¢]

e u

n=1

Z( )" " Spn—my1(— eﬂ’)} (41)

It is possible to re-express this expansion in terms of Nielsen
polylogarithms of just one argument, see [23], but then the
symmetry ¥ — —¢* will not be explicit.

3 M. Yu. Kalmykov has informed me that there is a typo: the power of
cos ¥ in (2.7) should be 1 + 2¢. This typo has been corrected in [22].

@ Springer
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Appendix A: Anticommuting ys and ’t Hooft—Veltman y5

For flavour-nonsinglet currents one may use the anticommut-
ing ys without encountering contradictions; they are related
to the currents with the ’t Hooft—Veltman y;5 by a finite renor-
malization [24-26]:

GV Tatq)y = Zan @ () @GysV Tatg)p, (ALl
where 7 is a flavour matrix with Tr t = 0. The currents with
ySAC ', have anomalous dimensions y;,, because they can be
obtained from the case of massless quarks; ySHVF,, is just
I'4—, with reshuffled components. Equating the derivatives
in d log u we obtain

Zo ) = KD (@), (A2)
where the anomalous dimensions y,, and y4_, differ starting
from two loops. In particular, Zy(c;) = 1. In HQET currents
with ;/SAC and with ySHV have the same anomalous dimension
y, and the finite renormalization factor similar to (A.2) is 1.
In the large Bp limit (see (35))

8n
Z,(og) = exp [—%
(1+ 302 +2b)

b
x/ db
o (14+b2Q+bmI31+b)I (1 —b)

(@)}

At the leading 1/ order we may use these formulae for
flavour singlet currents, too. The matrix ySAC I';, has the same
property (4) but with n = —(—1)". From our results (27)—

(29) we see that, indeed,

(A3)

H}’SACFn = Hr, = HV5HVFn = Hr,_,. (A4)

n—-n

Matrix elements of the currents with ys"*c andn = 0, 1
can be written via smaller numbers of form factors:

(Q(mv)|J|Q(muvy)) = FPiayfuy,

FP = Fy—2F — Qw+ DF,, (A5)

@ Springer

where F; withn = 0, n = —1 are used, and

(Q(mv)|J*Q(mvy)) = FitiaydCyu,

(v2 —v)#

—
F{ = Fo+2F + Qu — DF,,

A-_ _AC
+F5 uys uj

F' = 4(F) — Fy), (A.6)
where F; withn = 1, n = 1 are used.
The divergence of the axial current is
18, (Qovs “¥" Qo) = 2mo Qoys'“ Qo (A7)

where the bare mass mo = Z,>m. Taking the matrix element
of this equation we obtain

w—1

F + Fp = Z72FP.

(A.8)

The on-shell mass renormalization constant Z)> at the first
1/Bo order is given by the formula similar to (27), (28) with
Np(e,u) = =23 — 2e)(1 — u); see, e.g., [5]. And indeed,
from (29), (A.5)—-(A.6) we obtain

w—1

N + Ni = NP + N,,. (A.9)

5 Appendix B: Expansion of the hypergeometric
function F

We can also find several terms of this expansion using

the Mathematica package HypExp [27,28] (which uses

HPL [29,30]). This results in

F =

1 2
— [ﬁ — Hos (O = (Hoyo (1) = 2H_ (0D 5

3
~(Ho(0) = 2H_ ()] + 2Hy (D) -

— <H_+___(r) —2H_ (1) +2H_, (1)l

4H ( )l3 u?
R — _ ‘E JE—
30T 4

— <H_+____(t) —2H_ 4 _ (D) +2H___(0)I?

fu (o 2 ( )z4>£
BN S A I
<H+ ,,,,, (1) —2H_ (D)l +2H____(0)I?

4 2 4 6
—gH—+——(T)l3 + §H—+—(1’)l4 - —H—+(T)15>%

15

(B.10)
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where

s 1 D
t=tanh —, [ = -H_(tr) =logcosh —,
2 2 2
Hi(t) =19, (B.11)

and H...(t) are harmonic polylogarithms (see [29-31]). Only
one new polylogarithm appears at each order.

In order to compare the expansion coefficients in (41) and
in (B.10), we need to transform them to harmonic polyloga-
rithms of the same argument, which we choose as x = e~
In (41), we first rewrite S, (—x ') via Sy, (—x) using the
formula from [23]; then we rewrite S,,,,,(—x) via H...(—x)
and then via H..(x); we rewrite logcosh(/2) (B.11) via
H...(x); and finally we re-express products of harmonic poly-
logarithms via their linear combinations. In (B.10) we rewrite
harmonic polylogarithms with = indices [30] via normal ones
with indices 0, £1; substitute t = (1 — x)/(1 + x) and
re-express via H...(x); and finally convert products of har-
monic polylogarithms to sums. All these steps are done in
Mathematica using HPL [29,30]. We have checked that
all the coefficients presented in (B.10) agree with (41).

Appendix C: Vector form factors

The vector form factors F , (13) can be written in the
form (27), (28); from (29), (13) we obtain

NY (s, u) = 22w 4 u — 3u* — 3we + 2wue — (w — 3)u’e
+we? — (w + l)uez]F
—2[24u — 3u® — 3¢ + 2ue
+2u’e + &% — 2ue?], (C.12)
NY (e, u) = 4u(l + u — 2ue)F. (C.13)

All loop corrections to F' IV vanish at % = 0, and hence N 1V =
Oatw = 1.

The form factor F1V = HIV /Z, where Z at the 1/8
order is determined by the anomalous dimension (36), and
Hlv contains only non-negative powers of &. We choose
w=pu = puy = m. H]V at ¢ = 0 is given by the coef-
ficients f,o (which produce K_; (10)) and fo, (which pro-
duce H ]V (37)); &" terms (n > 0) require all f;,,,. Writing the
expansion (B.10)as F = fo— fiu— fou>/2— fsu’ /3 —- -
we obtain up to four loops

HY —1 +cF%{—2wfl - Gu+ 1) f—4
72 n?
—(wf2+(3w+l)f1 - (?_’_8) u)fo—i—?—i—S)s

2 3 2
—<§wf3 w+1f2+<n6 8) wfi

[\S]

2

N

_|_
W N
&
g
|
|
g
|
|
|
>
g
S—

fo— 2 6
0 353 3 €

1 72 4
f4+( §>f3+<6+ )wfz

72 n? 16w ) f
w——w— — — 16w
= 4 12 !

N
—_

Wi N8
S
_|_

I
%

A/—\/—\/—\

o
(e

2
w— 3w — —§3 + §n2w + 32w> fo

Oltlb

2
- —§3+ 371 +32)

| 1 209 l
) 53

(2wt i (Twis) ot (2rtws 2w L)y
w —| —w —JT-w —w -
3 72 9 3) 7!

72

131 3 5813 203
] ) S o 2ol
<§3w+367t +4n+108 )fo
180+ a2 4 B0,
ST 27
103
( wfs + = (Tw+7) f3
19 , 317
- w1
+3 <4 w+ 3 w+ )fz
1 271 19 6677 203
46 ~nlw+ —n? -
3( R T TR 6)1
199 , +31 e 163 o5
—= | ——7T w — (3w — 7T —TT
3\ 80 & 5t 36 12
129389 6563)
+ —

+
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The form factor F2V = HZV is finite at & = O (this require-
ment explains why N2V (C.13) vanishes at u = 0). We obtain

(C.14)

b
F) = CF%{Zfo —2(f1 — 4fo)e

2
(f2+8f1 (”—+16> fo> £2

2

-2 <f3 +6f2+ (ﬂT + 24) fi+ (g5-m2—48) fo> =

25 961
—b[2f1 -5 fot <3f2+ fi—= (3 2+ 5 )fo)s
1 19 1105
3(14]‘3—i-86f2—i- ( 2 n + T) h
(4653 223”2 N 23545) f0> }

50 1 317
—bz[zfz-l-?fl ~3 (4 +—) Jo
149 912
+(8f3+7f2+ (77‘[ +—> fi
521 18451
44 —x
( g3+ 18 + ) )fo)e—i— :|
317

b [4]‘3 +25f6 + <4712 + T) fi

50 , 8609
— 2485+ +5—4 Jo+

3 ]+} (C.15)

@ Springer

Using HPL [29,30] we have successfully reproduced all

nf "ol terms with L = 1,2, 3 in F’, from [2].

References

1. W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T.
Leineweber, P. Mastrolia, E. Remiddi, Two-loop QCD corrections
to the heavy quark form-factors: the vector contributions. Nucl.
Phys. B 706, 245 (2005). arXiv:hep-ph/0406046

2. J.M. Henn, A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Massive
three-loop form factor in the planar limit. JHEP 01, 074 (2017).
arXiv:1611.07535 [hep-ph]

3. M. Beneke, Renormalons.
arXiv:hep-ph/9807443

4. M. Beneke, V.M. Braun, Renormalons and power corrections, in
At the Frontier of Particle Physics: Handbook of QCD, ed. by
M.A. Shifman (World Scientific, Singapore, 2001), vol 3, p. 1719.
arXiv:hep-ph/0010208

5. A.G. Grozin, Heavy quark effective theory. in Springer Tracts
in Modern Physics, vol 201, Chap 8 (Springer, Berlin, 2004).
arXiv:hep-ph/0311050

6. D.J. Broadhurst, Large N expansion of QED: asymptotic photon
propagator and contributions to the muon anomaly, for any number
of loops. Z. Phys. C 58, 339 (1993)

7. A.G.Grozin, J.M. Henn, G.P. Korchemsky, P. Marquard, The three-
loop cusp anomalous dimension in QCD and its supersymmetric
extensions. JHEP 01, 140 (2016). arXiv:1510.07803 [hep-ph]

8. A.G. Grozin, Leading and next-to-leading large-n s terms in the
cusp anomalous dimension and quark—antiquark potential. PoS LL
2016, 053 (2016). arXiv:1605.03886 [hep-ph]

9. AF. Falk, B. Grinstein, Heavy meson pair production in eTe™
annihilation from the static quark effective theory. Phys. Lett. B
249, 314 (1990)

10. M. Neubert, Short distance expansion of heavy quark currents.
Phys. Rev. D 46, 2212 (1992)

11. D.J. Broadhurst, A.G. Grozin, Multiloop calculations in heavy
quark effective theory, in New Computing Techniques in Physics
Research, ed. by B.H. Denby, D. Perret-Gallix (World Scientific,
Singapore, 1995), p. 217. arXiv:hep-ph/9504400

12. A. Czarnecki, K. Melnikov, Threshold expansion for heavy light
systems and flavor off diagonal current correlators. Phys. Rev. D
66, 011502 (2002). arXiv:hep-ph/0110028

13. A.G. Grozin, Lectures on multiloop calculations. Int. J. Mod. Phys.
A'19, 473 (2004). arXiv:hep-ph/0307297

14. A.G. Grozin, Lectures in QED and QCD, Chap 10 (World Scien-
tific, Singapore, 2007)

15. A.G. Grozin, A.V. Kotikov, HQET heavy-heavy vertex diagram
with two velocities. arXiv:1106.3912 [hep-ph]

16. A.Palanques-Mestre, P. Pascual, The 1/N ; expansion of the y and
B functions in QED. Commun. Math. Phys. 95, 277 (1984)

17. A.L Davydychev, M. Yu. Kalmykov, New results for the ¢ -
expansion of certain one-, two- and three-loop Feynman diagrams.
Nucl. Phys. B 605, 266 (2001). arXiv:hep-th/0012189

18. M. Neubert, Higher order perturbative corrections to b —
¢ transitions at zero recoil. Phys. Lett. B 341, 367 (1995).
arXiv:hep-ph/9409453

19. D.J. Broadhurst, A.G. Grozin, Matching QCD and HQET heavy-
light currents at two loops and beyond. Phys. Rev. D 52, 4082
(1995). arXiv:hep-ph/9410240

20. M. Beneke, V.M. Braun, Power corrections and renormalons
in Drell-Yan production. Nucl. Phys. B 454, 253 (1995).
arXiv:hep-ph/9506452

Phys. Rep. 317, 1 (1999).


http://arxiv.org/abs/hep-ph/0406046
http://arxiv.org/abs/1611.07535
http://arxiv.org/abs/hep-ph/9807443
http://arxiv.org/abs/hep-ph/0010208
http://arxiv.org/abs/hep-ph/0311050
http://arxiv.org/abs/1510.07803
http://arxiv.org/abs/1605.03886
http://arxiv.org/abs/hep-ph/9504400
http://arxiv.org/abs/hep-ph/0110028
http://arxiv.org/abs/hep-ph/0307297
http://arxiv.org/abs/1106.3912
http://arxiv.org/abs/hep-th/0012189
http://arxiv.org/abs/hep-ph/9409453
http://arxiv.org/abs/hep-ph/9410240
http://arxiv.org/abs/hep-ph/9506452

Eur. Phys. J. C (2017) 77:453

Page 9 of 9 453

21.

22.

23.

24.

25.

M. Neubert, C.T. Sachrajda, Cancellation of renormalon ambigu-
ities in the heavy quark effective theory. Nucl. Phys. B 438, 235
(1995). arXiv:hep-ph/9407394

A.lL Davydychev, M. Yu. Kalmykov, Massive Feynman dia-
grams and inverse binomial sums. Nucl. Phys. B 699, 3 (2004).
arXiv:hep-th/0303162

A. Devoto, D.W. Duke, Table of integrals and formulae
for Feynman diagram calculations. Riv. Nuovo Cim. 7N6, 1
(1984), formulas (2.1.7)—(2.1.9). http://functions.wolfram.com/
ZetaFunctionsandPolylogarithms/PolyLog3/17/01/

S.A. Larin, J.A.M. Vermaseren, The ag corrections to the Bjorken
sum rule for polarized electroproduction and to the Gross-
Llewellyn Smith sum rule. Phys. Lett. B 259, 345 (1991)

S.A. Larin, The renormalization of the axial anomaly in dimen-
sional regularization, in Quarks-92, ed. by D.Yu. Grigoriev,
V.A. Matveev, V.A. Rubakov, P.G. Tinyakov (World Scientific,
Singapore, 1993), p. 201. arXiv:hep-ph/9302240

26.
217.

28.

29.

30.

31.

S.A. Larin, Phys. Lett. B 303, 113 (1993)

T. Huber, D. Maitre, HypExp, a mathematica package for expand-
ing hypergeometric functions around integer-valued parameters.
Comput. Phys. Commun. 175, 122 (2006). arXiv:hep-ph/0507094
T. Huber, D. Maitre, HypExp 2, expanding hypergeometric func-
tions about half-integer parameters. Comput. Phys. Commun. 178,
755 (2008). arXiv:0708.2443 [hep-ph]

D. Maitre, HPL, a mathematica implementation of the har-
monic polylogarithms. Comput. Phys. Commun. 174, 222 (2006).
arXiv:hep-ph/0507152

D. Maitre, Extension of HPL to complex arguments. Comput. Phys.
Commun. 183, 846 (2012). arXiv:hep-ph/0703052

E. Remiddi, J.A.M. Vermaseren, Harmonic polylogarithms. Int. J.
Mod. Phys. A 15, 725 (2000). arXiv:hep-ph/9905237

@ Springer


http://arxiv.org/abs/hep-ph/9407394
http://arxiv.org/abs/hep-th/0303162
http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/PolyLog3/17/01/
http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/PolyLog3/17/01/
http://arxiv.org/abs/hep-ph/9302240
http://arxiv.org/abs/hep-ph/0507094
http://arxiv.org/abs/0708.2443
http://arxiv.org/abs/hep-ph/0507152
http://arxiv.org/abs/hep-ph/0703052
http://arxiv.org/abs/hep-ph/9905237

	Heavy-quark form factors in the large β0 limit
	Abstract 
	1 Introduction
	2 Heavy-quark bilinear currents
	3 Inversion relations
	4 Large-β0 limit
	Acknowledgements
	Appendix A: Anticommuting γ5 and 't Hooft–Veltman γ5
	5 Appendix B: Expansion of the hypergeometric function F
	Appendix C: Vector form factors
	References




