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Antibiotic resistance constitutes one of the most serious threats to the global public
health and urgently requires new and effective solutions. Bacteriophages are bacterial
viruses increasingly recognized as being good alternatives to traditional antibiotic
therapies. In this study, the efficacy of phages, targeting different cell receptors, against
Pseudomonas aeruginosa PAO1 biofilm and planktonic cell cultures was evaluated over
the course of 48 h. Although significant reductions in the number of viable cells were
achieved for both cases, the high level of adaptability of the bacteria in response to
the selective pressure caused by phage treatment resulted in the emergence of phage-
resistant variants. To further investigate the genetic makeup of phage-resistant variants
isolated from biofilm infection experiments, some of these bacteria were selected for
phenotypic and genotypic characterization. Whole genome sequencing was performed
on five phage-resistant variants and all of them carried mutations affecting the galU
gene as well as one of pil genes. The sequencing analysis further revealed that three of
the P. aeruginosa PAO1 variants carry large deletions (>200 kbp) in their genomes.
Complementation of the galU mutants with wild-type galU in trans restored LPS
expression on the bacterial cell surface of these bacterial strains and rendered the
complemented strains to be sensitive to phages. This provides unequivocal evidence
that inactivation of galU function was associated with resistance to the phages that uses
LPS as primary receptors. Overall, this work demonstrates that P. aeruginosa biofilms
can survive phage attack and develop phage-resistant variants exhibiting defective LPS
production and loss of type IV pili that are well adapted to the biofilm mode of growth.

Keywords: biofilms, bacteriophages, P. aeruginosa, bacterial resistance

INTRODUCTION

Pseudomonas aeruginosa is a versatile opportunistic pathogen, which is considered one of the
leading causes of hospital-acquired infections by gram-negative bacteria (Driscoll et al., 2007;
Mesaros et al., 2007). Infections caused by P. aeruginosa are generally difficult to treat because
this pathogen displays low susceptibility to a wide range of antibiotics as a result of intrinsic,
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adaptive and acquired resistance mechanisms (Wagner et al.,
2008; Breidenstein et al., 2011). Furthermore, this bacterium also
has an ability to adhere to surfaces and form biofilms, which
makes it particularly difficult to eradicate due to the fact that the
biofilm architecture forms a shell around a microbial community
and confers to the microorganisms a protective environment
(Drenkard, 2003; Mah et al., 2003; Høiby et al., 2010).

The antibacterial activity of phages against P. aeruginosa
has been studied by various groups (Pires et al., 2015b).
Results from in vitro (Fu et al., 2010; Pires et al., 2011;
Torres-Barceló et al., 2014) and in vivo (Heo et al., 2009;
Hawkins et al., 2010; Alemayehu et al., 2012; Fukuda et al.,
2012) studies have shown that phage therapy constitutes an
effective strategy to fight P. aeruginosa infections. Despite
these encouraging results, phages and their bacterial hosts
are constantly mingled in co-evolutionary processes and the
bacteria have developed multiple strategies to survive despite the
phage predation. These strategies include prevention of phage
adsorption to the bacterial hosts, prevention of phage DNA
entry by superinfection exclusion systems, cleavage of phage
nucleic acids by restriction-modification systems or CRISPR-Cas
systems, and death of the infected cell by abortive systems (Labrie
et al., 2010). Consequently, the emergence of phage-resistant
bacterial variants within a few hours after phage infection is
almost unavoidable. Studies involving phage interaction with
biofilms have reported a regrowth in the biofilm population after
phage infection, which have been attributed to the development
of phage-resistant variants (Fu et al., 2010; Pires et al., 2011).
Nonetheless, few reports to date have focused on the study
of phage-resistant populations within biofilms (Hosseinidoust
et al., 2013b; Le et al., 2014). Oechslin et al. sequenced two
phage-resistant P. aeruginosa strains and found mutations in
genes encoding phage receptors, namely pilT and galU genes
(Oechslin et al., 2016), but the mechanisms of phage resistance
at a molecular level have not been well studied.

In this work, phages phiIBB-PAA2, vB_PaeM_CEB_DP1 and
LUZ19 were tested, either individually or as a cocktail, to
assess their interactions with P. aeruginosa PAO1 biofilms and
planktonic cells. The emergence of phage-resistant variants was
tracked during the course of the 48-h treatment. Based on phage
susceptibility profiles, ten P. aeruginosa PAO1 variants isolated
from the biofilm infection with the phage cocktail were selected
for motility analysis, and the genomes of five of these variants
were completely sequenced to understand their genetic profile.

MATERIALS AND METHODS

Bacterial Strains, Bacteriophages and
Culture Conditions
The reference strain P. aeruginosa PAO1 (DSM22644) is from
the German Collection of Microorganisms and Cell Cultures.
The bacterial strain was grown at 37◦C in lysogeny broth (LB,
also commonly called Luria Bertani medium), LB agar or LB soft
agar overlays containing 0.6% (w/v) of agar. The three phages
used in this work include phiIBB-PAA2 (Pires et al., 2014),
vB_PaeM_CEB_DP1 (Pires et al., 2015a), and LUZ19 (Lavigne

et al., 2013) (LUZ19 was kindly provided by Professor Rob
Lavigne, KU Leuven, Belgium).

Phage Production and Concentration
Phages were propagated using the double agar overlay technique
(Azeredo et al., 2014). Briefly, 10 µL of isolated phage lysate was
added to LB agar plates containing the host bacterial lawn and
spread using a paper strip. The Petri dishes were then incubated at
37◦C for 16–18 h. After incubation, 3–5 mL of saline magnesium
buffer (SM buffer) (5.8 g/L NaCl, 2 g/L MgSO4 7H2O, 50 mL/L
1 M Tris-HCl pH 7.5) were added to the lysate from a clear
Petri dish and the plates were placed under agitation at 4◦C
for 18 h. Subsequently, the SM buffer with the eluted phages
was collected, centrifuged (9,000 × g, 4◦C, 10 min) and filtered
(0.22 µm). Phage concentration was performed using established
protocols described elsewhere (Azeredo et al., 2014). Briefly,
58.4 g/L of NaCl were added to the phage lysates and incubated
at 4◦C for 1 h under agitation (90 rpm). After incubation,
this solution was centrifuged (9,000 × g, 4◦C, 10 min) and
the supernatant collected. Then, 100 g/L of PEG 8000 were
mixed with the supernatant and incubated at 4◦C for 16 h
with agitation (90 rpm). The suspension was centrifuged again
(9,000× g, 4◦C, 10 min), the supernatant discarded and the pellet
resuspended in 5 mL of SM buffer per 50 mL of centrifuged
sample. Chloroform was added in 1:4 (v/v) proportion and the
suspension was centrifuged (3,500× g, 4◦C, 5 min). The aqueous
phase (upper phase), which contained the phages was recovered,
filtered (0.22 µm) and stored at 4◦C until further use.

Phage Titration
Plaque forming unit (PFU) counting was performed using double
agar overlay technique (Kropinski et al., 2009). Serial dilutions
of phage stock solutions in SM buffer were performed. Then,
100 µL of the diluted phage solution was mixed with 100 µL
of the bacterial host and 3 mL of LB soft agar into a Petri dish
already containing a layer of LB agar. The plates were incubated
overnight at 37◦C and the PFUs were counted.

Biofilm Formation
Biofilms were formed on 96-well polystyrene microtiter plates
(Orange Scientific) using established protocols (O’Toole
and Kolter, 1998b; Friedman and Kolter, 2004) with minor
modifications. P. aeruginosa PAO1 cultures were first grown for
16 h at 37◦C and 120 rpm and then diluted 1:100 in LB. Each well
was inoculated with 200 µL of this bacterial suspension and the
microtiter plates were incubated in an orbital incubator for 24 h
at 37◦C and 120 rpm.

Biofilm Infection with Phages
Biofilm infection experiments with phages phiIBB-PAA2,
vB_PaeM_CEB_DP1 and LUZ19, individually or in three-phages
cocktail, were performed using a multiplicity of infection (MOI)
of 0.1 of each phage, according to a previously described protocol
(Pires et al., 2013), with minor modifications. After biofilm
formation for 24 h, the medium and planktonic bacteria were
removed, and the wells were washed with fresh LB medium.
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Afterward, 200 µL of LB already containing the phage, the phage
cocktail or the SM buffer (control) were added to each well. The
plates were incubated at 37◦C with agitation (120 rpm) and the
colony forming units (CFU) were evaluated after 2, 4, 6, 8, 10, 12,
24, and 48 h of biofilm infection, as described below. For each
time point three wells were surveyed.

Quantification of Biofilm Viable Cells
The number of viable cells present in the biofilms were
determined as previously described (Pires et al., 2013). Briefly,
after the removal of growth medium, the wells were washed with
saline [0.9% (w/v) NaCl]. Then, 200 µL of fresh saline was added
to each well. After that, biofilms were scraped off and samples
were collected and serially diluted in saline containing 5 mM of
ferrous ammonium sulfate (FAS), to prevent further infection of
bacteria by phage (McNerney et al., 2004; Swift et al., 2014; Alves
et al., 2015). One drop (10 µL) was placed on a Petri dish and
allowed to run down the plate, to obtain single colonies. CFU
counts were carried out after overnight incubation at 37◦C.

Phage Infection of Planktonic Cultures
A P. aeruginosa PAO1 culture grown for 16 h was diluted 1:100
in a final volume of 25 mL and incubated for 24 h at 37◦C and
120 rpm. After that time, cells were harvested by centrifugation
(6,000× g, 4◦C, 5 min) and resuspended in fresh LB medium with
phages or phage cocktail, at an MOI of 0.1. Control experiments
were done using SM buffer instead of the phage. The suspensions
were incubated at 37◦C with agitation (120 rpm) and CFU counts
were determined after 2, 4, 6, 8, 10, 12, 24, and 48 h, as for the
biofilm infection experiments.

Phage Susceptibility Assays
Nine single colonies from each time point were recovered in
each independent experiment of biofilm and planktonic cell
infection, and their susceptibility to the three phages was tested
as described by Moons et al. (Supplementary Figure S1; Moons
et al., 2013). The goal of this assay was to screen for bacterial
resistance to phage infection, and select phage-resistant variants
of P. aeruginosa, for posterior analysis. Phage susceptibility assays
were also performed on the complemented strains that have
restored galU function.

Motility Assays
Swimming, swarming and twitching motilities were analyzed
for ten P. aeruginosa PAO1 variants (isolated from 48-h
biofilm infection with phage cocktail) using different media and
protocols described elsewhere (Ha et al., 2014a,b; Turnbull and
Whitchurch, 2014).

Isolation of Bacterial Genomic DNA
Five P. aeruginosa PAO1 variants that displayed resistance to the
three phages used in this study were chosen for genomic DNA
isolation and subsequent sequencing. The P. aeruginosa cultures
were grown overnight at 37◦C and 1.5 mL of these bacterial
suspensions were centrifuged (9,000× g, 4◦C, 5 min). The pellets
were resuspended in 500 µL of extraction buffer (80 mM Tris pH

8.5, 200 mM NaCl, 0.5% SDS, 5 mM EDTA, 1 mg/mL Proteinase
K) and incubated overnight at 65◦C. After incubation, 500 µL of
phenol:chloroform:isoamyl alcohol (25:24:1, v/v) were added and
the tubes were placed under gently agitation for 10 min at room
temperature. The solution was then centrifuged (13,000× g, 4◦C,
10 min) and the supernatant was transferred into new tubes.
One volume of isopropyl alcohol 100% (v/v) was mixed with the
recovered supernatant and the solution was centrifuged again
(13,000 × g, 4◦C, 15 min). The supernatant was discarded and
the pellet was washed with ethanol 75% (v/v). After drying, the
pellets were resuspended in sterile water and stored at−20◦C.

Library Preparation and Illumina
Sequencing
DNA sequencing libraries were produced from 1 µg of genomic
DNA, following the recommendations of the TruSeq DNA
protocol (Illumina). Genomic DNA was sheared by sonication
using a Covaris S2 instrument. Sizes and concentrations of DNA
sequencing libraries were determined on a Bioanalyzer 2100
(DNA1000 chips, Agilent). Paired-end sequencing (2 × 50 bp)
was performed on one lane on a Hiseq1500 (Illumina) platform
using TruSeq PE Cluster KIT v3 – cBot – HS and TruSeq SBS
KIT v3 – HS. Cluster detection and base calling were performed
using RTAv1.13 and quality of reads assessed with CASAVA
v1.8.1 (Illumina). The sequencing resulted in at least 25 million
pairs of 50-nt long reads for each sample, with a mean Phred
quality score > 35. The raw genomic sequence data of the
individual samples is available from the European Nucleotide
Archive (ENA1) under the accession number PRJEB15059.

Genomic Analysis of Phage-Resistant
Variants
The read pairs resulting from sequencing were mapped to the
reference genome of P. aeruginosa PAO1 (RefSeq Accession No.
NC_002516) using the Bowtie 2 aligner (Langmead and Salzberg,
2012), resulting in an overall alignment rate of at least 95% for
each of the samples. Small sequence variations (SNPs and short
insertions/deletions) were detected using SAMtools (Li, 2011)
with a minimum read depth of five reads covering a putative
variation site. Candidate sequence variations were inspected
manually using Integrative Genomics Viewer (Thorvaldsdóttir
et al., 2013) and compared with previously reported intra-strain
variations in the P. aeruginosa PAO1 genome sequence (Dötsch
et al., 2009; Klockgether et al., 2011) to identify and validate
variations that are specific to the phage-resistant strains. Large
deletions were detected by de novo genome assembly of the reads
using IDBA-UD (Peng et al., 2012) in hybrid mode with the
reference sequence of PAO1 as a template, and subsequently
aligning the resulting contigs with the reference genome using
Mauve (Darling et al., 2004).

Preparation of LPS
The samples of bacterial LPS were prepared according to the
protocol described by Hitchcock and Brown (H&B) (Hitchcock
and Brown, 1983).

1http://www.ebi.ac.uk/ena
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SDS–PAGE and Western Immunoblotting
of Bacterial LPS
Acrylamide running gels at 12% were prepared according to
a modified Laemmli procedure with resolving gels devoid
of SDS (Laemmli, 1970). Three microliter samples of H&B
LPS, except for the O6 B-band blot in which the sample
used was only 1 µL, were loaded on the acrylamide gel
and run at 120 V for 100 min. Blotting was performed
for 60 min at 200 mA. Skimmed milk (5%) in PBS was
used to block the nitrocellulose (NC) blots (Rocchetta and
Lam, 1997). Primary monoclonal antibodies (mAb) specific
against P. aeruginosa LPS were from cell lines of mouse
hybridoma, and the supernatants of the culture of these were
used undiluted as described previously (Emara et al., 1995) to
incubate with the NC blots overnight at room temperature.
The mAb used included MF15-4 (serotype O5 B-band specific),
MF83-1 (serotype O6 OSA specific), N1F10 (CPA specific),
5c-101 (outer-core specific), and 5c-7-4 (inner-core specific).
Secondary antibodies used were goat anti-mouse F(ab)2-alkaline
phosphatase conjugated and incubated at room temperature
for 60 min. The blots were developed with the BCIP/NBT as
per the manufacturer’s protocols (Sigma). The LPS banding
patterns were visualized using the ultrafast silver nitrate-
staining method that was described previously (Fomsgaard et al.,
1990).

TEM Observation
A single colony from a Tryptic Soy Agar plate was used to
inoculate 5 mL of LB, and grown statically at 37◦C for ∼68 h.
Using a sterile inoculum loop a small amount (∼5 µL) of the
pellicle that formed at the air-liquid interface was removed and
resuspended in 50 µL of 0.1 M HEPES buffer pH 7.4. To disperse
cellular clumps, the cell suspension was agitated/mixed by re-
pipetting repetitively. Five microliter of the clarified suspensions
were removed and applied to 200-mesh carbon-coated copper
grids. The liquid was wicked away using filter paper (#1
Whatman) and stained with 5 µL of 2% (w/v) uranyl acetate (UA)
for 30 s. The UA was wicked away and the grid was imaged using a
single-tilt holder on an FEI Tecnai G2 F20 transmission electron
microscope operating at an accelerating voltage of 200 kV and
equipped with a bottom-mount Gatan 4k charge-coupled-device
(CCD) camera.

Construction of Complementation
Strains
The galU gene was amplified by PCR from P. aeruginosa PAO1
genomic DNA using the primers 5′ CATGTCGAAGAATTCAT
GATCAAGAAATGTCTTTTC and 5′ CTTCATCGGGAACGG
AAGCTTTCAGTGAGCCTTGCC. The resulting PCR product
was digested with the restriction enzymes EcoRI/HindIII and
ligated into the vector pHERD26T. The resulting construct
pHERD26T::galU was verified by sequencing.

Chemically competent P. aeruginosa PAO1 (wild-type and
phage-resistant variants) were prepared using the rubidium
chloride method (Green and Rogers, 2013) with mid-log (OD600
0.5-0.6) grown cells. Competent cells were stored at−80◦C prior

to use. Transformation of pHERD26T::galU into P. aeruginosa
PAO1 occurred via heat shock at 42◦C for 90 s followed by
incubation in SOC media at 37◦C with shaking at 200 rpm,
for 1 h. Transformed cells were isolated on tryptic soy agar
containing tetracycline at 100 µg/mL.

Statistical Analysis
The statistical analysis of biofilm and planktonic cells infection
experiments was done using two-way ANOVA with Bonferroni’s
multiple comparisons test using GraphPad Prism 6. All tests were
performed with a confidence level of 99%.

RESULTS

Phage Infection of Biofilms and
Planktonic Cells
Phage infection of P. aeruginosa PAO1 biofilms and planktonic
cultures was performed over the course of 48 h with
phages phiIBB-PAA2, vB_PaeM_CEB_DP1 and LUZ19, either
individually or in a cocktail composed by the three phages.
Samples for determining the number of CFU were taken every
2 h during the first 12 h of phage infection. After that, two
more samples were taken at 24 and 48 h post biofilm treatment.
This was performed to help us better understand the dynamics
of phage infection and bacterial resistance over the course of
experiment. We hypothesized that at the later time points the
population is mostly comprised of P. aeruginosa phage-resistant
variants.

Overall, in the biofilm infection experiments (Figure 1A),
phage LUZ19 was most effective among the phages tested in
its ability to eliminate biofilm cells, followed by phages phiIBB-
PAA2 and vB_PaeM_CEB_DP1. The latter two had similar levels
of activity in depletion of P. aeruginosa biofilms. When the
cocktail of the three phages was used, the results achieved during
the first 8 h of biofilm infection were very similar with the ones
obtained with phage LUZ19 alone. However, beyond 8 h, the
phage cocktail was significantly more efficient (p < 0.01) than the
other treatments with a particular phage in eliminating biofilm
cells.

Although phage LUZ19 was able to significantly reduce the
number of cells present in P. aeruginosa PAO1 biofilms, achieving
a maximum reduction of ∼1.5 orders-of-magnitude after 6 h of
treatment compared to the control (p < 0.01), a gradual increase
in the number of biofilm cells was observed in subsequent time
points (Figure 1A), which might indicate the fast proliferation
of phage-resistant variants toward this phage. The use of the
phage cocktail for biofilm treatment apparently resulted in
two reduction phases: there is a reduction of ∼1.8 orders of
magnitude within 4 h followed by a short period of regrowth,
and then a maximum reduction of ∼2.1 orders-of-magnitude in
the number of biofilm cells is achieved between 10 and 12 h of
biofilm treatment versus the control (p < 0.01). This biphasic
behavior might be a consequence of the early development of
variants that get resistant to phage LUZ19, which has a shorter
latent period and a higher burst size than the other two phages
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FIGURE 1 | Infection of Pseudomonas aeruginosa PAO1 biofilms (A) and
planktonic cultures (B) with phages phiIBB-PAA2, vB_PaeM_CEB_DP1 and
LUZ19, individually or in cocktail. Both experiments were performed using a
MOI of 0.1. Error bars represent standard deviations from three independent
experiments performed in triplicate.

and consequently replicates faster in the first period of infection
(Ceyssens et al., 2011; Pires et al., 2015a).

Although an increase in the number of biofilm cells was
observed in the last time points, the number of viable cells present
in biofilms 24 and 48 h after treatment with phage cocktail
remained significantly low compared to the control (∼1.9 and
∼0.8 orders-of-magnitude reduction, respectively; p < 0.01)
(Figure 1A).

The individual use of phages phiIBB-PAA2 and
vB_PaeM_CEB_DP1 revealed to be the less effective treatments.
The maximum reductions of biofilm cells achieved with those
phages were ∼1.2 and ∼1.4 orders-of-magnitude after 12 and
24 h of biofilm infection, respectively (Figure 1A). Forty-eight
hours post-infection of the biofilm, no statistic differences in the
number of biofilm cells could be discerned when compared to
the control.

In planktonic cells infection experiments, greater reductions
in P. aeruginosa PAO1 cell counts were observed for all
treatments when compared to that of the biofilm infection
experiments (Figure 1B). Regarding planktonic cultures
infection with phage LUZ19, a similar behavior as in biofilm
infection experiments was observed: the maximum reduction of
planktonic cells was achieved 6 h after phage treatment, showing
a reduction of ∼3.2 order-of-magnitude vs. control (p < 0.01).
Then, a gradual increase in the number of planktonic cells was
observed in subsequent time points and no statistic differences
were observed between the treatment with phage LUZ19 and the
control after 24 and 48 h of infection (Figure 1B).

The application of a phage cocktail against planktonic
cultures resulted in a fast reduction of cells in the first 6 h
of infection followed by a slower reduction until a maximum
reduction of ∼4.3 order-of-magnitude vs. control (p < 0.01)
within 12 h. This reduction was followed by an increase in
the number of planktonic cells and 48 h after treatment, no
statistic differences comparatively with the control were detected
(Figure 1B).

The individual treatment of planktonic cultures with phages
phiIBB-PAA2 and vB_PaeM_CEB_DP1 resulted in a reduction
of ca. 1.5 orders-of-magnitude vs. control (p < 0.01), which was
obtained 24 h post-treatment. Although a slight increase in the
number of planktonic cells was observed in the last time point
for both treatments, the number of planktonic cells remained
significantly lower comparatively with the control (p < 0.01)
(Figure 1B).

Phage Susceptibility of the P. aeruginosa
PAO1 Variants
To determine the amount of time required post-treatment for
the number of phage-resistant variants to begin to increase, ten
colonies were isolated from each independent experiment, at each
time point of biofilm and planktonic cells infection experiments
and the isolates were characterized, particularly regarding their
susceptibility to the phages.

The percentages of phage-resistant variants isolated at each
time point of the experiment were depicted in Figure 2.
According to these results, the first phage-resistant variants
were isolated from biofilm and planktonic cultures infected with
phage LUZ19. P. aeruginosa PAO1 variants resistant to phage
LUZ19 were isolated as early as 6 h after biofilm treatment with
LUZ19 both individually (Figure 2A) and in cocktail (Figure 2B).
In planktonic cultures, phage-resistant variants emerged within
4 h post-infection with LUZ19 (Figure 2C). However, when
planktonic cultures were infected with phage cocktail, LUZ19-
resistant variants were isolated 10 h post-treatment (Figure 2D).
The emergence of resistant variants toward phages phiIBB-PAA2
and vB_PaeM_CEB_DP1 was significantly later compared to
infection with phage LUZ19, i.e., between 12 and 24 h post-
treatment of the biofilm (Figures 2A,B) and between 24 and
48 h post-infection of the planktonic cultures (Figures 2C,D).
It noteworthy to point out that in both planktonic and
biofilm infection experiments, the use of the cocktail of the
three phages resulted in a lower percentage of phage-resistant
variants than infection of the PAO1 cultures with individual
phage.

Ten of the P. aeruginosa PAO1 variants, isolated after 48 h
of biofilm treatment with the phage cocktail were selected for
further characterization.

The susceptibility profiles of the ten P. aeruginosa variants to
each phage are indicated in Table 1. P. aeruginosa PAO1 variants
1, 2, 8, and 9 showed resistance to phage LUZ19 but remained
susceptible to phages phiIBB-PAA2 and vB-PaeM_CEB_DP1,
whereas variants 3, 4, 5, 6, 7, and 10 were resistant to the
three phages. These variants were streaked several times and
their susceptibility profiles were maintained throughout the
generations.
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FIGURE 2 | Percentage of P. aeruginosa PAO1 colonies isolated in each time point of infection experiments that were resistant to phages phiIBB-PAA2,
vB_PaeM_CEB_DP1 and LUZ19. (A) Percentage of phage-resistant colonies isolated from biofilm infection experiments with each phage individually. (B) Percentage
of phage-resistant colonies isolated from biofilm infection experiments with phage cocktail. (C) Percentage of phage-resistant colonies isolated from planktonic
cultures infection experiments with each phage individually. (D) Percentage of phage-resistant colonies isolated from planktonic cultures infection experiments with
phage cocktail. Error bars represent standard deviations from three independent experiments.

It was further observed that the colonies of variants 6, 7,
and 10, all resistant to the three phages, had a brown color
(data not shown), which is indicative of the production of a
brown pigment, called pyomelanin, in the surrounding agar
(Hosseinidoust et al., 2013b).

Bacterial Motility
Overall, all ten of the selected P. aeruginosa PAO1 variants
exhibited reduced twitching (p < 0.01) compared to the wild-
type strain, which might indicate mutations in type IV pili of
these variants. The swimming motility of all variant strains was
also significantly inferior (p < 0.01) than the wild-type strain
(Table 2). Concerning swarming motility, although all variant
strains were statistically different from the wild-type strain, it
increased in some cases and decreased in others. Therefore it
was not possible to infer about the impact of phage resistance in
swarming motility.

Sequencing of Bacterial Genomic DNA
The genomes of five P. aeruginosa PAO1 variant strains, which
displayed resistance to the three phages used in this study and
defects in motility were sequenced and compared to the wild-
type genome in order to identify genetic variations specific to the
resistance phenotype (Figure 3 and Supplementary Table S1).

All variant strains were found to carry mutations in one of
the pil genes involved in the synthesis of type IV pili: variants
3 and 4 carry a nonsense mutation in pilE gene, which encodes
a pilin-like protein called “minor” pilin (Giltner et al., 2010;
Kuchma et al., 2012); variant 6 carries a nonsense mutation in
pilO gene, a gene required for pilin glycosylation (Castric, 1995);
and variants 7 and 10 carry frameshift mutations in pilC and pilM,
respectively, which encode a probable transmembrane protein
PilC required to pilus biogenesis (Nunn et al., 1990; Li et al.,
2013), and the cytoplasmic actin-like protein PilM that is likely
anchored to the inner membrane by binding to the cytoplasmatic
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TABLE 1 | Susceptibility of the Pseudomonas aeruginosa PAO1 wild-type and
variant strains (1–10) to the phages phiIBB-PAA2, vB_PaeM_CEB_DP1 and
LUZ19.

phiIBB-PAA2 vB_PaeM_CEB_DP1 LUZ19

Wild-type + + +

Variant 1 + + −

Variant 2 + + −

Variant 3 − − −

Variant 4 − − −

Variant 5 − − −

Variant 6 − − −

Variant 7 − − −

Variant 8 + + −

Variant 9 + + −

Variant 10 − − −

+, Phage is able to induce plaque formation; −, Phage is not able to induce plaque
formation.

TABLE 2 | Motility assays of P. aeruginosa PAO1 wild-type (wt) and variants (1–10)
[avg. (±SD)] (three independent experiments were performed).

Swimming
motility (mm)

Swarming
motility (mm)

Twitching
motility (mm)

Wild-type 24.44 (2.55) 13.67 (1.00) 23 (2.65)

Variant 1 18.78 (2.78)∗ 11.00 (4.16)∗ 5.89 (0.51)∗

Variant 2 18.67 (2.03)∗ 21.11 (2.59)∗ 5.44 (0.38)∗

Variant 3 16.11 (3.29)∗ 10.11 (0.39)∗ 5.44 (0.19)∗

Variant 4 12.22 (1.90)∗ 8.00 (1.20)∗ 5.22 (0.69)∗

Variant 5 11.78 (0.39)∗ 18.78 (1.26)∗ 5.22 (0.84)∗

Variant 6 5.00 (0.33)∗ 5.78 (0.51)∗ 4.78 (0.51)∗

Variant 7 12.22 (0.77)∗ 8.00 (0.33)∗ 4.78 (0.51)∗

Variant 8 13.68 (0.33)∗ 17.89 (0.69)∗ 5.78 (0.69)∗

Variant 9 15.22 (0.84)∗ 17.89 (0.84)∗ 4.67 (0.88)∗

Variant 10 8.44 (1.35)∗ 7.11 (0.69)∗ 4.67 (0.33)∗

∗Statistically different (p < 0.01) from the control (wild-type). All tests were
performed using a confidence level of 99%.

tail of PilN (Li et al., 2013; Tammam et al., 2013). Since there
is an extended genomic diversity among P. aeruginosa PAO1
laboratory strains (Klockgether et al., 2010) and to confirm that
these mutations were not a specification of the wild-type strain
used in this study, the genes pilE, pilO, pilC, and pilM of wild-
type strain were amplified and sequenced. The Sanger sequencing
confirmed that all the mutations found in pil genes of variant
strains were not already present in the wild-type strain, thus being
acquired during the experiment (data not shown).

Pseudomonas aeruginosa variants 3 and 4 further revealed a
point mutation in the galU gene, while in the other variants
(6, 7, and 10), this gene was absent from the genome due to
large deletions of 486, 317, and 214 kbp, respectively. Sanger
sequencing of the wild-type galU confirmed that it is devoid of
mutation when compared to that of the P. aeruginosa genome
database (data not shown). Due to the size of these deletions,
a large number of genes were lost from the genotypes of these
strains (420, 266, and 179 genes, respectively, Supplementary
Table S1).

Type IV pili are frequently described to play an important
role in the initial stage of biofilm formation (O’Toole and Kolter,
1998a; Giltner et al., 2006, 2012; Barken et al., 2008), and thus
the biofilm formation capability of P. aeruginosa PAO1 variant
strains 3, 4, 6, 7, and 10 that were isolated from phage infection
was analyzed. Nonetheless, the number of viable cells present in
biofilms formed by those variants was similar to the numbers
obtained with the parental strain and no statistical differences
were observed (Supplementary Figure S2).

LPS Analysis and TEM Visualization of
P. aeruginosa PAO1 and Phage-Resistant
Variants
Differences in the phenotype of LPS between the P. aeruginosa
PAO1 wild-type strain and the phage-resistant variant strains
were apparent (Figure 4). Comparing to the SDS–PAGE LPS
banding profile of the wild-type P. aeruginosa PAO1 control,
a fast-migrating core oligosaccharide band is observed in the
five phage-resistant variants, indicating that all of these variant
bacteria synthesize a truncated LPS core. Consequently, neither
Common Polysaccharide Antigen (CPA) nor O-Specific Antigen
(OSA) polysaccharide could be assembled onto the core and
all variant strains also demonstrated a lack the long chain
of LPS bands. This was verified by SDS–PAGE and Western
immunoblotting using mAb N1F10 (specific for CPA) and MF15-
4 (specific for OSA).

Electron micrographs obtained by TEM of the wild-type
and variant strains, which were grown under static conditions,
showed the presence of pili on the bacterial cells of the wild-
type strain, but none could be discerned among the P. aeruginosa
PAO1-derived phage-resistant variants (Figure 5).

Complementation of galU Gene
To confirm that the loss of galU function was responsible
for the acquisition of phage resistance by the variant strains,
complementation of the galU gene in these variants was
performed by transforming the P. aeruginosa PAO1 wild-type
control and phage-resistant variants with pHERD26T::galU in
trans. The susceptibility of the complemented bacterial strains to
the three phages was evaluated. As anticipated, the susceptibility
of the P. aeruginosa variant strains to phages phiBB-PAA2 and
vB_PaeM_CEB_DP1 was restored but they remained resistant
to phage LUZ19 (Table 3). Although these variants were
complemented with galU, they still carry mutations in one of
the pil genes and phage LUZ19 is reported to use type IV pili as
primary receptors.

The LPS-banding profiles of the complemented strains were
analyzed by SDS–PAGE and silver staining and they were
practically identical to that of LPS prepared from the wild-type
PAO1 strain (Supplementary Figure S3)

DISCUSSION

The efficacy of phages against biofilms has been widely studied
and many research groups have reported on interesting results
(Azeredo and Sutherland, 2008; Sillankorva et al., 2008, 2010;
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FIGURE 3 | Location of the genomic variations of five phage-resistant strains derived from P. aeruginosa. The image displays the PAO1 wild-type chromosome with
variant loci indicated by triangles (single nucleotide variants) or bars (large deletions). The location of the pil genes are additionally marked by red lines on the
chromosome. The image was created using circos (Krzywinski et al., 2009).

Donlan, 2009; Fu et al., 2010; Pires et al., 2011; Alemayehu et al.,
2012; Alves et al., 2015). However, one of the major drawbacks of
the application of phage therapy is associated with the relatively
rapid emergence of phage-resistant variants. In many cases, after
the initial reduction of bacterial cells caused by phage treatment,
there is a gradual increase in the numbers of phage-resistant
bacteria. For instance, the fast proliferation of phage-resistant
variants after phage treatment of biofilms has been observed by
Fu et al. (2010), who studied the effect of a pre-treatment of
hydrogel-coated catheters with phages on the colonization by
P. aeruginosa biofilms. In that study, hydrogel-coated catheters
were first exposed to the P. aeruginosa phage M4 for 2 h followed
by bacterial inoculation. Although a reduction of 2.8 orders of
magnitude in the number of biofilm cells was observed after
24 h of biofilm formation in phage-treated catheters compared
with untreated catheters, a regrowth of biofilms on phage-treated
catheters was observed between 24 and 48 h of biofilm formation.

This regrowth was attributed to the emergence of resistant
variants to phage M4 in the pre-treated catheters (Fu et al.,
2010). In a study by Hosseinidoust et al. (2013a), P. aeruginosa
biofilms formed in microtiter plates pre-treated with phage E79
maintained levels of biomass significantly lower than the control
for up to 24 h. After that time, an increase in biofilm biomass
above the levels of the control was observed and the majority of
the colonies isolated from biofilms showed resistance to phage
E79. Nonetheless, this phenomenon has not been fully explored.
In the present work, P. aeruginosa phage-resistant colonies were
isolated as early as 6 h after biofilm treatment with phage LUZ19,
which indicates the fast proliferation of phage-resistant cells after
biofilm challenge.

One of the explanations to the development of phage
resistance by bacteria is related to phage receptors. Bacteria can
avoid phage predation by preventing phage adsorption (the initial
step of phage infection) to their host receptors. This may happen
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FIGURE 4 | SDS–PAGE and Western immunoblots (probed with mAB 5c-7-4) of LPS from P. aeruginosa PAO1 wild-type (WT) and five phage-resistant variant
strains (V3, V4, V6, V7, and V10).

due to changes in the structure of bacterial cell surface receptors
or in their three-dimensional conformation (Labrie et al., 2010).
It is known that type IV pili serve as primary receptors for LUZ19
phage (Lavigne et al., 2013), while the receptors of phage phiIBB-
PAA2 and phage vB_PaeM_CEB_DP1 are believed to be in the
LPS (Garbe et al., 2010; Pires et al., 2013). Thus, it is expected that
phage-resistant variants suffered alterations in the composition of
LPS and type IV pili, due to mutations or deletions of the genes
encoding for such receptors.

In order to understand if the ten selected P. aeruginosa
PAO1 variant strains, which were isolated from biofilm infection
experiments with phage cocktail, were carrying mutations in
genes encoding phage receptors, their motility profiles were
analyzed. It is known that P. aeruginosa is able to perform
different types of movement, including swimming, swarming,
and twitching. Although it was not possible to understand
the influence of phage resistance in swarming motility, all
variant strains exhibited decreased swimming and twitching
motilities as compared to the wild-type strain (Table 2). Similar
results were observed in a study developed by Hosseinidoust
et al. (2013b), where all P. aeruginosa variants obtained from
different phage treatments showed decreased twitching motility.
Swimming and swarming are flagellum-mediated motilities in
which the first takes place as individual cells moving in liquid
environments (Kearns, 2010) and the second is mediated by
hyperflagellation of bacteria that thus move in a coordinated
manner (Rashid and Kornberg, 2000; Harshey, 2003; Kearns,
2010). Although no genetic variations were observed in genes
connected to the synthesis of flagella, the observed reduced
swimming motility might be a secondary effect of the truncation
of LPS core in phage-resistant variants. Some authors have

reported that swarming is a rather complex type of motility
since it is influenced by a large number of different genes
(Overhage et al., 2007, 2008). For example, it was already
shown that swarming of P. aeruginosa is dependent on both
flagella and type IV pili (Kohler et al., 2000), and in addition
influenced by the presence of rhamnolipids (Caiazza et al., 2005).
Twitching motility is a flagellum-independent mode of surface
translocation that requires type IV pili (Merz et al., 2000; Mattick,
2002). Consequently, the results obtained from motility analysis
suggested possible mutations in genes encoding type IV pili,
which could indeed be identified in each of five phage-resistant
P. aeruginosa PAO1 variants that were analyzed by whole genome
shotgun sequencing (Figure 3).

The sequencing results also revealed mutations or deletions of
the galU gene, which is described to play an important role in
the core synthesis of LPS (Dean, 2002). Therefore, galU mutants
are devoid of O-antigen and have a truncated outer LPS core
(Dean, 2002; Priebe et al., 2004), which is consistent with the
results of the LPS analysis (Figure 4), confirming a functional
inactivation of galU by deletion or point mutation in each of
the analyzed variants. As confirmed by the complementation
experiments, the inactivation or loss of galU gene was the cause
of resistance acquisition by the variant strains to phages phiIBB-
PAA2 and vB_PaeM_CEB_DP1, likely due to the function of
LPS as a surface receptor for these phage particles. A similar
observation was reported by Oechslin et al. (2016) who analyzed
the genomic profile of two P. aeruginosa phage-resistant strains.
When compared to the parental strain CHA, one of the mutant
strains displayed a 15-bp deletion at the 3′ end of pilT gene, while
the other mutant had a 362-kb deletion at a locus that include a
gene such as galU (Oechslin et al., 2016).
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FIGURE 5 | TEM observation of the P. aeruginosa PAO1 wild-type and five
phage-resistant variant strains. A black arrow indicates the pili in the wild-type
strain.

Three of the P. aeruginosa variants lost the galU gene due
to large deletions alongside many other genes. One of these
genes is hmgA, which encodes the enzyme homogentisate-1,2-
dioxygenase (Rodríguez-Rojas et al., 2009). The absence of this

TABLE 3 | Susceptibility of the P. aeruginosa PAO1 wild-type and phage-resistant
variant strains (3, 4, 6, 7, and 10) complemented with galU gene to the phages
phiIBB-PAA2, vB_PaeM_CEB_DP1 and LUZ19.

phiIBB
-PAA2

vB_PaeM
_CEB_DP1

LUZ19

Wild-type + pHERD26T + + +

Wild-type + pHERD26T::galU + + +

Variant 3 + pHERD26T::galU + + −

Variant 4 + pHERD26T::galU + + −

Variant 6 + pHERD26T::galU + + −

Variant 7 + pHERD26T::galU + + −

Variant 10 + pHERD26T::galU + + −

+, Phage is able to induce plaque formation; −, Phage is not able to induce plaque
formation.

gene in variants 6, 7, and 10 corroborates the observation, already
mentioned, that the colonies of these variants produced the
brown pigment pyomelanin as a result from the accumulation,
oxidation, and polymerization of homogentisic acid (Rodríguez-
Rojas et al., 2009). The overproduction of pyomelanin by
colonies subjected to phage challenge was already observed
in other studies (Hosseinidoust et al., 2013b; Le et al., 2014),
and has also been associated to the inactivation of the hmgA
gene in P. aeruginosa (Rodríguez-Rojas et al., 2009; Le et al.,
2014). Some of the roles described for pyomelanin include
bacterial surface attachment, extracellular electron transfer, iron
reduction/acquisition, induction of virulence factor expression,
heavy metal binding and protection from environmental stress
(Hunter and Newman, 2010; Hosseinidoust et al., 2013b). Thus,
the arising of brown-pigmented colonies in this context is
probably another consequence of the stress caused by phage
treatment.

The fact that phage-resistant variants were observed earlier
in biofilms than in planktonic cultures (Figure 2) remains to be
explained. Resistance to antibiotics in a biofilm phenotype can
be partially explained by the presence of hypermutable strains
(Driffield et al., 2008; Oliver and Mena, 2010). The main cause
of hypermutation in P. aeruginosa strains is the inactivation of
the mismatch repair system, which mostly affects the antimutator
genes mutS, mutL, and uvrD (Oliver et al., 2002; Rodriguez-
Rojas et al., 2011). We hypothesized that the faster emergence
of resistant variants in biofilms compared to planktonic cultures
could benefit from the presence of hypermutable P. aeruginosa
strains. Nonetheless, the genome analysis of the five P. aeruginosa
variants did not reveal any mutation in those genes. Thus,
the mutations observed in biofilms are probably a consequence
of the endogenous oxidative stress, which results from the
exposure of cells to reactive oxygen species (e.g., hydrogen
peroxide and superoxide) generated as by-products of aerobic
metabolism (Poole, 2012; Moyano et al., 2014). The oxidative
stress leads to DNA damage within biofilms resulting in the
development of genetic variants with high adaptability to external
conditions (Boles and Singh, 2008), which might explain the
results obtained.

Overall, strategies that could limit the rise of phage-resistant
bacterial strains should be addressed, such as the combination
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of phages with other antimicrobial agents. Some works already
demonstrated synergistic effects between phages and antibiotics
(Ryan et al., 2012; Kamal and Dennis, 2015; Oechslin et al., 2016).
Furthermore, in the studies reported by Oechslin et al. (2016), the
emergence of phage-resistant mutants in vitro was prevented by
combination treatment with ciprofloxacin and phage; although
phage-resistant mutants were observed in in vitro studies, the
same did not occur in vivo.

CONCLUDING REMARKS

The high genomic plasticity of bacteria confers great ability of
rapid adaptation to changing environmental conditions. Thus, it
is possible to find a great genetic and phenotypic diversity within
a bacterial population and, when a selective pressure is applied,
bacterial variants that are better adapted to the environmental
changes may outcompete other variants.

In this work, although the emergence of phage-resistant
bacterial cells was observed in phage infection experiments both
in biofilm and planktonic cultures, in most cases, the arising
of P. aeruginosa-resistant variants occurred faster in biofilms,
possibly due to the increased genetic variability of biofilm cells.
Additionally, the use of a phage cocktail resulted in a lower
percentage of phage-resistant variants than the individual use of
each phage because different phages are able to target different
bacterial receptors.

It was further observed in this work that all phage-resistant
P. aeruginosa variants isolated from biofilm infection with the
phage cocktail exhibited reduced motilities compared to wild-
type strain. The genomic analysis of five variant strains, which
were resistant to the three phages used in this study, revealed
mutations or deletions in genes that are essential for the synthesis
of both receptor types associated with phages: the pil genes and
galU, which are involved in the synthesis of the type IV pilus
and the LPS core, respectively. Moreover, these phage-resistant
variant strains are as well fully adapted to the biofilm phenotype
as the wild-type strain and the selective pressure of phages toward
biofilms did not jeopardize their biofilm formation ability.
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FIGURE S1 | Phage susceptibility assays. (A) One drop of phage suspension is
placed on the Petri dish and allowed to run down the plate (vertical line). (B) Once
dry, several bacterial colonies are picked and streaked against the phage
(horizontal line). (C) After overnight incubation, the susceptibility of the bacterial
strains to the phage is evaluated. (D) Example of a phage susceptibility assay
using phage LUZ19.

FIGURE S2 | Number of viable cells present in 24-h biofilms of P. aeruginosa
PAO1 wild-type (WT) and phage-resistant variant strains (V3, V4, V6, V7, and V10).

FIGURE S3 | SDS–PAGE of LPS-banding profiles of P. aeruginosa PAO1
wild-type and phage-resistant variant strains (3, 4, 6, 7, and 10) complemented
with galU gene.
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