
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 129.13.72.197

This content was downloaded on 26/07/2017 at 15:53

Please note that terms and conditions apply.

Nanotomography endstation at the P05 beamline: Status and perspectives

View the table of contents for this issue, or go to the journal homepage for more

2017 J. Phys.: Conf. Ser. 849 012056

(http://iopscience.iop.org/1742-6596/849/1/012056)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

String Theory and the Real World: Perspectives

G Kane

The nanotomography endstation at the PETRA III Imaging Beamline

M Ogurreck, F Wilde, J Herzen et al.

Scanning Transmission X-ray Microscopy with X-ray Fluorescence Detection at the XUV Beamline P04,

PETRA III, DESY

K Andrianov, L Lühl, T Nisius et al.

Merkel opens PETRA III hall

Nanodiffraction at MINAXS (P03) beamline of PETRA III

C Krywka, J Keckes, S Storm et al.

Addendum: The hard X-ray Photon Single-Shot Spectrometer of SwissFEL—initial characterization

J. Rehanek, M. Makita, P. Wiegand et al.

Induced Absorption in X-ray-Irradiated CdS-Doped Glass

Tadaki Miyoshi, Keita Ushigusa, Masakatsu Tamechika et al.

Time-resolved soft X-ray microscopy of magnetic nanostructures at the P04 beamline at PETRA III

P Wessels, J Ewald, M Wieland et al.

The BALDER Beamline at the MAX IV Laboratory

K Klementiev, K Norén, S Carlson et al.

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/849/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/book/978-1-6817-4489-6/chapter/bk978-1-6817-4489-6ch8
http://iopscience.iop.org/article/10.1088/1742-6596/425/18/182002
http://iopscience.iop.org/article/10.1088/1742-6596/849/1/012007
http://iopscience.iop.org/article/10.1088/1742-6596/849/1/012007
http://iopscience.iop.org/article/10.1088/2058-7058/25/11/19
http://iopscience.iop.org/article/10.1088/1742-6596/425/7/072021
http://iopscience.iop.org/article/10.1088/1748-0221/12/07/A07001
http://iopscience.iop.org/article/10.1143/JJAP.46.5313
http://iopscience.iop.org/article/10.1088/1742-6596/499/1/012009
http://iopscience.iop.org/article/10.1088/1742-6596/712/1/012023


1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

X-Ray Microscopy Conference 2016 (XRM 2016)  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 849 (2017) 012056  doi :10.1088/1742-6596/849/1/012056

 
 
 
 
 
 

Nanotomography endstation at the P05 beamline: 
Status and perspectives 

I Greving1, M Ogurreck1, 4, F Marschall2, A Last3, F Wilde1, T Dose1, H Burmester1, 
L Lottermoser1, M Müller1, C David2 and F Beckmann1 
 

1Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Germany 
2Paul Scherrer Institut, Laboratory for Micro- and Nanotechnology, PSI, Switzerland 
3Karlsruhe Institute of Technology, Institute of Microstructure Technology, Germany 
4Diamond Light Source Ltd, Didcot, UK 

imke.greving@hzg.de 

Abstract. The Imaging Beamline IBL/P05 at the DESY storage ring PETRA III, operated by 
the Helmholtz-Zentrum Geesthacht, has two dedicated endstations optimized for micro- and 
nanotomography experiments [1-3]. Here we present the status of the nanotomography 
endstation, highlight the latest instrumentation upgrades and present first experimental results. 
In particular in materials science, where structures with ceramics or metallic materials are of 
interest, X-ray energies of 15 keV and above are required even for sample sizes of several 
10 µm in diameter. The P05 imaging beamline is dedicated to materials science and is designed 
to allow for imaging applications with X-ray energies of 10 to 50 keV. In addition to the full 
field X-ray microscopy setup, the layout of the nanotomography endstation allows switching to 
cone-beam configuration. Kinematics for X-ray optics like compound refractive lenses (CRLs), 
Fresnel zone plates (FZP) or beam-shaping optics are implemented and the installation of a 
Kirkpatrick Baez-mirror (KB mirror) system is foreseen at a later stage of the beamline 
development. Altogether this leads to a high flexibility of the nanotomography setup such that 
the instrument can be tailored to the specific experimental requirements of a range of sample 
systems. 

1.  Introduction 
X-ray imaging is a vital tool to study the structure of materials for a wide range of sciences e. g. 
medicine, biology, archaeology and geology [1,7,8]. Also for engineering materials this technique is 
important, allowing for a better knowledge of the inner structure, the material porosity or crack 
propagation, helping to understand failure mechanisms and thus optimizing the production process. 
Standard micro CT routinely allows resolutions down to about 1 µm.  

A range of scientific questions however, require a higher spatial resolution in order to resolve 
structures in the nanometer range. Scanning electron microscopy allows imaging in this size regime, 
but is limited to surface analysis. Transmission electron microscopy (TEM) however requires very thin 
samples of a few hundred nanometres in thickness and only gives very limited information about the 
bulk structure of a material. Focused Ion Beam (FIB) tomography on the other hand can offer 
resolutions of better than 5 nm [8] and offers 3D information. Issues like curtaining effects and long-
term stability however limit this technique to sample diameters of below 10 µm. In addition no in situ 
measurements of the sample can be performed and the sample is destroyed during the layer – by –
 layer decomposition.  

X-ray microscopy in contrast is a non-destructive method to acquire 3D information of the bulk 
sample with resolutions down to below 50 nm in the hard X-ray regime. In addition, the high flux at 
synchrotron sources enables good time resolution and the high coherence opens up a range of phase 
contrast methods for x-ray microscopy or holotomography for cone – beam setups. Choosing the right 
set of optics, also sample environments can be used for in situ investigations at the nanometer scale. 

http://creativecommons.org/licenses/by/3.0
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Here we present the status and perspectives of the nanotomography setup at the P05 / Imaging 
Beamline IBL operated by the Helmholtz Zentrum Geesthacht (HZG) at PETRA III storage ring at 
DESY in Hamburg (Germany). 

2.  Experimental Setup  

2.1.  Layout of the Imaging Beamline IBL / P05 
The beamline is dedicated to materials science and allows visualizing structural properties in the range 
of several micrometers down to the nanometer regime [1-4]. It comprises of two experimental stations: 
A micro – and a nanotomography station, a sketch of the beamline is given in figure 1 (left). The 
optics hutch of the IBL beamline is equipped with two monochromators: A Double Chrystal 
Monochromator (DCM) and a Double Multilayer Monochromator (DMM) both allowing for an 
energy range of 5 – 50 keV. The DCM has an energy bandwidth of ΔE/E ~ 10-4 while the installed 
DMM which is currently under commissioning, will allow for higher flux at an energy bandwidth of 
ΔE/E ~ 10-2 with multilayer coatings produced inhouse by HZG [5].  

 

 
Figure 1. Left: Beamline IBL/P05 overview [2]. Right: Photograph of the experimental hutch with 
two optics stations and high precision sample rotation stage in between. The four granite slabs can 
move independently from each other. On the 4th slab a detector system can be mounted.  

2.2.  Nano Tomography Endstation  
The nanotomography endstation shown in figure 1 (right) is a highly flexible setup [1-3] dedicated to 
full field nano imaging. On top of the 6.8 m long granite substructure four granite slabs are mounted 
on air bearings and can be moved independently. On the first slab, closest to the source (right hand 
side in figure 1, A) a six – axis optics kinematics stage is mounted and the extension arm is fitted with 
high precision apertures. This extension arm can be moved in and out of the beam path e. g. for 
switching between X – ray microscopy and cone beam geometry. The second slider (B in figure 1, 
right) holds the sample stage, consisting of a high precision rotation stage and a linear axis to move the 
sample perpendicular to the incoming beam. The air – bearing rotation stage itself is mounted on three 
pods allowing for height as well as tip/tilt alignment of the sample stage. Overall a wobble and axial 
error of less than 30 nm (RMS) is achieved for the sample rotation. The sample itself is mounted on a 
six – axis kinematics in the center of the rotation stage allowing for precise alignment of the sample in 
the center of rotation. On the third slider (C in figure 1, right) a second optics station is installed, 
mirroring the stage on the first slider (A). It is also equipped with a six – axis kinematics and a set of 
high precision apertures (e.g. used as order selecting apertures for X – ray microscopy using FZP). 
The extension arm can be varied in length depending on the requirements of the experiment. For 
precise alignment of the X – ray optics a second camera system (PixeLink) is installed at 300 mm 
behind the optics stage on the third slider (C in figure 1, right). This alignment camera can be moved 
remotely in and out of the beam path and is equipped with a 100 µm thick CdWO4 scintillator crystal 
and yields a 10x light optical magnification, thus achieving an effective pixel size of ~ 0.6 µm. The 
detector system for the tomography setup is mounted on the last slider (D in figure 1, right).  
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Currently a pco.edge 4.2 is installed with a LuAG scintillator of 30 µm thickness. The sCMOS chip is 
cooled to 0 °C, consists of 2048 x 2048 pixels with a pixel size of 6.4 µm. Different magnifications of 
the visible light optics can be chosen M=7 – 12, yielding effective pixel sizes between 0.54 μm and 
0.92 μm with an numerical aperture of 0.34.  

3.  Experimental Results 

An X – ray microscope for different energies has been installed at the nanotomography endstation. 
Two different sets of optics were chosen depending on energy: For the lower energy regime 
(< 15k eV) a Fresnel zone plate (FZP) was installed as an objective lens and a diffractive beamshaper 
as condenser optics, both manufactured at the PSI. The design energy for the FZP is 14 keV with an 
outermost zone width of 80 nm and a working distance of 70 mm. The fields of the beamshaper are 
50 µm x 50 µm in size, covering a field of 1.8 mm x 1.8 mm. For the higher energy regime (>15 keV) 
polymer compound refractive lenses (CRLs) were used as objective lenses and a rolled prism lens as 
condenser optics [6,9]. The optics were fabricated at the Institute of Microstructure Technology (IMT) 
at the Karlsruhe Institute of Technology in Karlsruhe (KIT) using X – ray lithography. These CRLs 
allow for resolving line widths below 100 nm and the VHVHV – design of alternating vertical and 
horizontal lens elements ensures minimal astigmatism [6]. The working distance of these lenses is 
around 100 mm. 
 

   
Figure 2. XRM images of Xradia test pattern. Inner circle 50 – 100 nm lines, 2nd circle 100 – 200 nm 
lines: Left: using CRL setup at 17.4 keV and a rolled prism lens as a condenser; Right: using FZP 
setup at 14 keV with a mosaic lens as condenser optics. Middle: SEM image of the test pattern, 
revealing that the 50 nm structures in the center are collapsed. 
 
Performing a resolution test using an Xradia test pattern shows that with both setups the 100 nm lines 
of the Siemens star are well resolved (Figure 2). It has to be noted, that the image from the CRL setup 
was acquired with a pco.4000 CCD camera combined with an LSO scintillator with a thickness of 
16 µm. For the FZP setup the pco.edge 4.2 was used (see section 2.2) in combination with the 30 µm 
LuAg scintillator. The reconstructed data shown in figure 3 have been acquired using the FZP setup at 
14 keV. The nano porous gold sample was prepared by Focused Ion Beam (FIB) and the sample 
cross – section is 8 µm x 8 µm. The SEM image of the sample reveals the nano structure, which is also 
clearly visible in the reconstructed volume shown in figure 3 on the right hand side. The gold 
filaments are in the order of 400 nm in width and are clearly resolved in the three dimensional image. 
 

  

Figure 3. Nano porous gold. Left: SEM image; 
Right: Rendering of reconstructed volume. The 
experiment was performed using the FZP setup at 
an energy of 14 keV (eff. pixel size 17.4 nm). The 
square column has an edge length of about 
8 µm x 8 µm and was prepared by FIB milling. 
The filament sizes of the NPG sample are in the 
range of 400 nm in width and are nicely resolved. 
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4.  Future Perspectives  

In the future better image statistics will be reached by implementing a new visible – light optics design 
with a higher numerical aperture. This new camera system will house up to three cameras permanently 
mounted and aligned with respect to the sample stage. A movable mirror will allow for switching in 
between the different cameras. This way the alignment of the experimental setup and the optics can be 
done using a fast camera, e. g. a scientific CMOS and the tomography will then be performed using a 
CCD with high statistics. Another increase in image quality and decrease in scan time will be reached 
by using the newly installed DMM, once it is fully commissioned.  

Furthermore it is planned to commission a cone beam setup and make it available to users. In contrast 
to X-ray microscopy geometry the cone beam technique offers a higher flexibility, e.g. the FoV 
depends on the chosen sample to detector distance and not on the chosen objective lens. The technique 
also allows for the implementation of sample environments, since in X-ray microscopy setups the 
space around the sample is often very limited. A specifically designed in vacuum six-axis kinematics 
is installed in the vacuum tank in the optics hutch such that a pre – focusing device can be 
implemented there. In order to align these pre – focusing optics an additional camera system equipped 
with a scintillator will also be installed in the vacuum tank and is currently in the design state. This in 
combination with the DMM will offer a very flexible cone beam setup at the instrument in the future. 
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