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Abstract. The article presents a validation method for computationally determined 
glulam strength values. Using numerically modelled glulam, featuring brittle tensile 
failure, different load configurations were examined in a computationally per-
formed study. The corresponding bending tests show variations in the bending 
strength depending on the applied configuration. From physical perspective, these 
strength variations are caused by the interaction between the actual natural strength 
variability, changes in the load configuration and/or the member volume and the 
brittle material behaviour. A targeted comparison between the apparent strength 
variations, obtained from the computational procedure on the one hand and a related 
analytical method on the other hand, leads to almost identical results. The compar-
ison proves therefore that the computational approach reflects the principles of the 
size effect according to the Weibull theory with sufficient accuracy. The study gen-
erally exemplifies that related analytical methods, if available, are a beneficial tool 
to verify and validate computational procedures. 

1 INTRODUCTION 

1.1 General 

Mechanical properties of timber products, determined by means of computer simula-
tions, need to be suitably validated prior to actual application for structural purposes. 
The origin for this demand is evident. The development of a code for a complex com-
puter simulation is accompanied by minor and major errors. It is almost inevitable to 
commit errors during the transfer of a conceptual model (that is the idea to achieve 
an aim by abstract steps) to a computational model. Beside of this, it is possible that 
a computational model, although correctly programmed, finally does not really com-
ply with the intended physical event to be represented. 
The complexity of the code increases with the number of its commands. Hence, 
errors may occur during the computational modelling of the structure and the me-
chanical behaviour of an engineered wood product (as close to reality as possible 
or necessary), the simulation of a virtual test (for different configurations in order 
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to obtain certain mechanical properties) and the determination of the desired prop-
erties (particularly strength and modulus of elasticity). During code development 
and ongoing amendments in the code, those errors have to be detected, identified 
and eliminated systematically. After these steps, contradictory, not plausible or il-
logical outcomes of the computational model must not exist. 

1.2 Aim of the study 

The article focuses therefore on a validation method rather than on the description of 
the computational model used and would like to connect the “engineering demand” 
for validated simulation results with the concept of verification and validation in 
scientific computing or computational science and engineering. In doing so, the ar-
ticle carefully and cautiously intends – as the author does not claim to be very fa-
miliar with the theoretical framework of verification and validation in scientific 
computing – linking intuitive ideas of checking the computational model used in 
the present study and former studies (Frese et al. 2009/2010a/2010b/2012) with the 
general concept of verification and validation in scientific computing. Therewith, it 
is the aim to increase the credibility in the computational model and its algorithms 
and to establish finally confidence in its results. This article recapitulates and refines 
ideas from recent publications on size and load configuration effects in glulam 
structures (Frese and Blaß 2015; Frese 2016a/b). 

1.3 Verification & Validation in scientific computing 

According to definitions in textbooks and publications on the fundamentals of ver-
ification and validation in scientific computing, in software-based structural analy-
sis or other areas of simulation (Schlesinger 1979; Roache 1998; Babuska and Oden 
2004; Rabe et al. 2008, Oberkampf and Roy 2010; VDI 2014; Dijkstra 1970) one 
has to distinguish between the meaning of verification and validation. Verification 
means the activities which prove correctness (within certain limits) of the calcula-
tions constituting the way from a conceptual model to a computational model. The 
right programming is a crucial point in this regard. Validation means those activities 
showing that the computational model complies with the reality of a physical event 
with sufficient or user-specified accuracy; thereby, validation concerns the question 
whether a computational model is suitable for a certain exercise to be solved. Com-
parisons between computational and experimental results play an important role in 
the validation. Verification and validation can be seen as a process creating ongoing 
confirmations about the accuracy of computational results. However, the sum of 
such confirmations will never be a waterproof evidence for the correctness of a 
computational model (Dijkstra 1970). 

1.4 Concept and structure of the study 

The idea for this study arose from the attempt to show whether computationally de-
termined load configuration factors agree with analytically determined ones, which 
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are already published (Isaksson 2003; Johnson 1953; Colling 1986a/b). In general, 
such factors consider the influence of the manner of loading of a structural member 
on the apparent strength while the material quality does not change. As both ap-
proaches, computational and analytical, reflect the behaviour of brittle materials, an 
agreement between corresponding factors would actually have to exist. 
In order to show this assumed agreement by means of computational and ana-
lytical approaches the following concept was determined: Based on an availa-
ble set of load configurations, already analytically solved and prepared for 
evaluation by the above-mentioned authors, four different configurations were 
selected and one of them was taken as reference. This reference case is the 
standard four point bending test according to the testing standard EN 408 
(2010). The remaining three configurations constitute suitable variations ful-
filling also conditions for a sensitivity analysis. 
Glulam with a specifically modelled strength is the material basis for the computer 
simulations and the analytical considerations. Varying the volume of a modelled 
glulam member, seventy thousand tension tests were first simulated to create a 
database for the determination of the shape parameter k and the exponent of the 
Weibull distribution, respectively. It is used for the calculation of the analytical 
load configuration factors. Three thousand computer simulations were conducted 
on each modelled bending member of the four load configurations. Therewith, 
computational configuration factors were determined. The study closes with a 
comparison between the computational and analytical factors. 
An important feature of the applied method is that the absolute strength level is not 
validated by means of experimental results. Such kind of validation was already 
stated in Blaß et al. 2008. The strength level may remain unknown in the present 
study since the final comparison between computational and analytical results is 
based on relative variations. In this context, the analytically calculated variations 
are a kind of objective and unerring reference (Oberkampf and Roy 2010). 

2 COMPUTATIONAL METHODS, MATERIALS AND RESULTS 

2.1 Computational model 

The modelling of the glulam material and the test simulation were performed with 
a computational model, the so-called Karlsruhe Rechenmodell. This computational 
model enables in general simulations of bending, tension and compression tests on 
glulam specimens and structures, respectively. In this study, the programme con-
figurations – in its latest version – for bending and tension tests are relevant for the 
computational analysis. The code of the computational model is composed of AN-
SYS commands that are available in the corresponding ANSYS processors. 
The glulam structure is discretised and a matrix of strength and stiffness values 
empirically represents the reality of the actual physical and mechanical properties 
as precisely as possible. Physical uncertainties influencing probabilistic distribution 
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functions of the response variables are minimised. However, they can not com-
pletely be removed. The finite element method is used for computing the stress 
states in the discretised glulam structure. A local brittle tensile failure in the outer-
most laminations constitutes the failure of the complete loaded structure. After 
structural failure, the programme automatically evaluates the load carrying capacity 
and a corresponding strength value. 
 
2.2 Virtual material used for the simulations and the analytical approach 

The elementary principle in the concept of modelling glulam with the Karlsruhe 
Rechenmodell are discretised stiffness and strength values. These mechanical prop-
erties are constant within a volume of a 150 mm long lamination section. The main 
influencing factors on the glulam bending (fm,g) and tensile strength (ft,g), respec-
tively, are the discretised tensile strength of the boards (ft) and the tensile strength 
of the finger joints (ft,j) connecting single boards to laminations. Fig. 1 exemplifies 
this influence for the ultimate bending capacity. Fig. 2 conveys the technical back-
ground of the discretised strength values and its original experimental examination; 
ft,min denotes the minimum tensile strength inside a modelled board. 
 

 

Figure 1: Leading influencing factors on the bending capacity of glulam: discretised tensile 
strength of board sections (ft) and of finger joints (ft,j) which are effective in the tension zone 
 

 

Figure 2: Conceptual modelling of the discretised tensile strength along a lamination; single ten-
sile strength values are originally obtained from actual tension tests as exemplified for the board 
sections 2 and i+2 and the adjacent finger joint 
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The material, used throughout the study, features certain distributions of the discre-
tised minimum tensile strength for board sections (ft,min) and of the finger joint ten-
sile strength. Table 1 contains the corresponding statistics and Fig. 3 shows the 
cumulative frequency distributions in detail.  

Table 1: Statistics of the modelled tensile strength values 

Section type N Symbol Min 5th P. Median Max Mean SDc CVd 
N/mm²    %

Board section 2000a ft,min 13.7 32.2 47.3 94 48.2 11.0 22.8 

Finger joint 2000b ft,j 24.5 30.5 43.3 94.9 44.7 10.4 23.2 

a Number of minimum values of 2000 modelled boards 
b Number of modelled finger joints 
c Standard deviation 
d Coefficient of variation 

Based on these two frequency distributions, the 5th percentiles (5th P.) amount to 
32.2 N/mm² for board sections and 30.5 N/mm² for finger joints. On average, the 
ratio of modelled finger joint sections to modelled board sections (m) is 1/mmean = 
1/29.84. Therewith, the total number of the discretised tensile strength values, nec-
essary for two thousand boards with finger joints, amounts to 
2000∙(29.84+1) = 61680 ≈ 61687. Fig. 4 shows the histogram of all discretised ten-
sile strength values representing the virtual material for the simulations and the 
thereof depending analytical approach. This representation conveys an imagination 
of the capabilities of the Karlsruhe Rechenmodell in continuously generating timber 
specific properties for Monte Carlo simulations. 

Figure 3: Cumulative frequency distribution of the discretised tensile strength ft,min and ft,j 
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Figure 4: Relative frequency of the discretised strength of sections for two thousand boards and 
corresponding finger joints 

2.3 Load configurations 

Fig. 5 shows four relations between the selected load configurations, the correspond-
ing moment diagrams and the formulas for the effective bending strength (fm,eff); 
therein, W denotes the section modulus. These four cases are the basis for the com-
putational examination and the analytical determination of load configurations. Case 
0 is the reference case and cases I to III represent the variations. These load configu-
rations were selected in agreement with the analytical calculation procedure which 
was already available. The corresponding formulas for the analytical approach were 
published by Isaksson (2003) and Johnson (1953). Testing the numerical outcome of 
the computational model against the results of the analytical approach is, therefore, a 
valuable comparison to support the credibility of the computational model and the 
confidence in its outcome. 
 

 

Figure 5: Load configurations, moment diagrams and calculation of the effective bending strength 
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Case III should reflect a bending member with fixed supports at both ends and 
uniformly distributed load. However, due to the restricted possibilities of incor-
porating model amendments in the Karlsruhe Rechenmodell an alternative was 
chosen. Instead of fixed supports at both ends, short spans were added at both 
member ends and two pairs of reaction forces, each including a distance of ℓ/8, 
are realising the fixation. 
 
2.4 Size effects according to Weibull theory 

Equation (1) shows the ratio between two different strengths expressed by the ratio 
of its unequal volumes to the power of k. The equation corresponds to the Weibull 
theory. 1 refers to V1, 2 to V2 and 1/k is the exponent of the Weibull distribution. 
 

2 1

1 2

k
V

V




 
  
 

 (1) 

 
Fig. 6 describes the meaning of equation (1): both tension members feature the same 
failure probability Pf although the stress level and the volumes, respectively, are 
different from each other (1>2, V1<V2). This connection enables describing 
strength variations analytically. 
 

 

Figure 6: Equal failure probabilities Pf in different volumes under individual and constant stresses 

2.5 Preliminary computer simulations 

The knowledge of the k-value is essential for the analytical calculation of apparent 
strength differences for deviating load configurations. The k-value has an affinity 
with the coefficient of variation for the strength. From equation (1), it is evident 
that a very small k-value leads to a 2/1-ratio of almost 1; hence, a changing vol-
ume hardly affects the apparent strength. However, a high k-value leads to a pro-
nounced 2/1-ratio in case of changing volumes. 
For this study, the k-value is determined with simulated tension tests on modelled 
glulam (Fig. 7). In doing so, the modelled members experience constant tensile stress. 
The virtual material used, already characterised in section 2.2, features a characteris-
tic tensile strength of about 28 N/mm²; this value refers to the tensile strength of a 
5400 mm long member with reference size V1. This size is given with  =  = 1 and 
is constantly valid for usual lamination widths (100 - 160 mm). By increasing the 
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volume in the computational procedure – effectively by increasing the member length 
and hardly by the member depth – from about 1/36 up to 10 times the reference 
length, corresponding tensile strength values were determined; an analysis of the re-
sults showed that the independent variation of between the two limits 1/5 and 1) 
does not really influence the strength level. The simulation results of the five inde-
pendently examined depths were, therefore, merged resulting in five thousand 
strength values for each examined length. Table 2 contains the statistics of the 
strength values for the limit configurations V2/V1 = 1/36 and 10/1 and the reference 
case V2/V1 = 1/1; Fig. 8 shows the corresponding cumulative distribution functions of 
the simulated strength values; the equations (2) to (4) exemplify the calculation of the 
corresponding 2/1-ratios. While the smallest volume shows a ratio of 1.41, the larg-
est examined volume leads to a ratio of 0.806. According to equation (5), the V2/V1-
ratio could also be replaced by a ratio of different lengths (ℓ).  
 
 

 

Figure 7: Constantly stressed member (top) and computational model (bottom) 

 
 

Table 2: Statistics of the tensile strength obtained from simulated tests represented in Fig. 7 

V2/V1 Number Min 5th P. Median Max Mean SD CV 
    N/mm²   % 

1/36 5000 20.5 40.0 55.0 132 56.1 11.2 20.0 

1/1 5000 13.2 28.3 36.3 54.1 35.9 4.19 11.7 

10/1 5000 11.4 22.8 29.4 36.2 28.9 3.28 11.3 
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Figure 8: Selected cumulative frequency distributions of the tensile strength 
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2.6 Determination of the k-value 

Fig. 9 shows the smooth course which averages all of the computationally obtained 
2/1-ratios. This course features a k-value given by equation (6). Since this k-value is 
based on 5th percentiles for the tensile strength, it is valid for a failure probability of 5 %. 
 

1 /10.8 0.0926k    (6) 
 
2.7 Computationally determined load configuration factors 
2.7.1 Finite element models and computer simulations 

Fig. 10 depicts simplified representations of the finite element models (cf. Fig. 7 
below) for the reference case 0 and the variations I to III. These models correspond 
with the load configurations in Fig. 5. Specific ANSYS commands were used to 
work these models into the modular system of the Karlsruhe Rechenmodell accord-
ingly. The load transfer, originally caused by a stepwise displacement (∆u) onto the 
modelled glulam body, is realised by a purposeful arrangement of link (vertical 
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Figure 9: Strength ratios depending on the volume in terms of Equation (1) 

members) and beam elements (horizontal members if unloaded). Thereby, lateral 
supports ensure horizontal stability of the modelled loading equipment. The uni-
formly distributed load (cases I and III) is reproduced with sufficient accuracy by 
six concentrated single loads. 

Figure 10: Finite element models used for representation of the selected load configurations 
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2.7.2 Simulation results 

Table 3 contains the statistics of the strength results. The 5th percentiles (5th P.) 
amount to 32.85 (case 0), 33.80 (I), 38.00 (II) and 42.60 N/mm² (III). Fig. 11 
shows a comparison between the corresponding cumulative frequency distribu-
tions. Judging these results in the sense of a sensitivity analysis, the Karlsruhe 
Rechenmodell possesses a technical sensitivity for marginal variations regarding 
the stressed volume and the stress distribution within this volume. The four 
strength results are plausible from empirical view: The lowest values are achieved 
for modelled glulam bodies with wide areas of high stressed outermost lamina-
tions (case 0: between the two concentrated single loads and case I: around the 
vertex of the quasi-parabolic moment diagram). The highest values were realised 
for bodies where only single points of the outermost laminations are highly 
stressed in tension. Even the ascending order of the 5th percentiles is logic since 
the stressed volume decreases with increasing case number. 

Table 3: Statistics of the bending strength from simulated tests represented in Fig. 10 

Case Number Min 5th P. Median Max Mean SD CV 
    N/mm²    % 

0 3000 14.8 32.85 44.2 68.8 44.2 6.82 15.4 

I 3000 18.9 33.80 45.9 68.1 45.7 6.93 15.1 

II 3000 16.1 38.00 52.5 82.7 52.4 8.72 16.7 

III 3000 24.6 42.60 58.1 86.7 57.8 8.89 15.4 

 

 

Figure 11: Comparison between the cumulative frequency distributions for the examined cases 
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2.7.3 Calculation of the load configuration factors 

Based on the computationally determined 5th percentiles (Table 3) and case 0 as 
reference, the numerical load configuration factors f0/I,comp, f0/II,comp and f0/III,comp 
amount to 1.027, 1.16 and 1.29 for the cases I, II and III, respectively. The equations 
(7) to (9) exemplify its calculations. 

m,eff,I
0/I,comp

m,eff,0

33.8
1.027

32.9

f
f

f
    (7) 

m,eff,II
0/II,comp

m,eff,0

38.0
1.16

32.9

f
f

f
    (8) 

m,eff,III
0/III,comp

m,eff,0

42.6
1.29

32.9

f
f

f
   (9) 

2.8 Analytically determined load configuration factors 
2.8.1 Calculation with Isaksson’s formulas: Cases I and II 

Considering the fullness parameters  tabulated in Isaksson (2003), the following 
analytical load configuration factors f0/I,ana and f0/II,ana were found for the cases I and 
II. In agreement with the calculation of the computationally determined load config-
uration factors, case 0 is also taken as reference. 

0

3 1
0.3898

3( 1)

k

k
 

 


 (10) 

3 2

I 2

0.345 0.027 0.0013
0.2724

( 1)

k k k

k k
   
 


(11) 

1/10.8

0
0/I,ana

I

0.3898
1.034

0.2724

k

f



         
  

(12) 

II 0.08475
1

k

k
  


 (13) 

1/10.8

0
0/II,ana

II

0.3898
1.152

0.08475

k

f



         
  

(14) 

2.8.2 Calculation with Johnson’s formulas: Case III 

Using the corresponding graphical courses in Johnson (1953, p. 72), the analytical 
load configuration factor f0/III,ana for case III could be estimated as follows. 

0
0/III,ana

III

1.37 /1.09 1.26
k

f



 
    

 
 (15) 
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2.9 Comparison between the load configuration factors 

The ratios (16) to (18) feature values of almost 1. Hence, no evident contradiction 
exists between the computational and analytical approach. The larger deviation of the 
ratio in case III (1.02 > 1.0) may be caused by the difference between the model used 
for the computational approach and the model used by Johnson (1953). While the 
computational approach uses a fixation realised by short spans and a pair of reaction 
forces at both ends of the bending member (Fig. 5 and 10, respectively), Johnson’s 
analytical model represents a bending member fully fixed at both ends. This has not 
only a consequence for the moment diagram but also on the stressed volume. 
 

0/I,comp

0/I,ana

1.027
0.99

1.034

f

f
   (16) 

0/II,comp

0/II,ana

1.16
1.01

1.15

f

f
   (17) 

0/III,comp

0/III,ana

1.29
1.02

1.26

f

f
   (18) 

 
3 CONCLUSIONS 

Relative strength variations were quantified for purposefully selected load configu-
rations with a computational procedure, already employed in former studies for de-
termining the glulam bending strength. These strength variations were confirmed by 
an analytical procedure based on the size effect according to the Weibull theory. As-
suming that the resulting analytical load configuration factors state more or less an 
objective and unerring reference, the agreement proves, to a certain extent, the suita-
bility of the computational model for determining the glulam bending strength. 
Hence, the study and the following comparison between analytical and computational 
results strengthen the credibility of the computational model and the confidence in its 
outcome. Furthermore, marginal differences between the computationally examined 
load configurations 0 and I conditioned by minimum variations of the moment dia-
gram also lead to a corresponding minor and logical change in the apparent strength. 
The study generally exemplifies that linking computational and analytical procedures 
may be a beneficial means to check the suitability of computational methods. Such 
checks should be applied if possible and corresponding means are available. 
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