KIT | KIT-Bibliothek | Impressum
Open Access Logo

Anomaly Detection in Industrial Networks : An Introduction : Technical Report IES-2016-05

Meshram, Ankush

With the advent of 21st Century, we stepped into the fourth industrial revolution of cyber physical systems. The industrial components are modular and capable of taking decentralized decisions in real time. The
processes can be virtualized and automated through inter-operable service oriented components connected in a network. Therefore, there is need of secured network systems and intrusion detection systems in order to detect
network attacks. Use of machine learning for anomaly detection in industrial networks faces challenges which restricts its large-scale commercial deployment. A roadmap is proposed to overcome the challenges. Real world
network traffic for an industrial production is generated by IT Security Laboratory at Fraunhofer IOSB. The various attack vectors can be implemented under these circumstances and an adaptive hybrid analysis would reduce
the errors of an intrusion detection system. Alarm correlation could be performed for semantic descriptions of detected results to network operator.

Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Jahr 2017
Sprache Englisch
Identifikator ISBN: 978-3-7315-0678-2
ISSN: 1863-6489
URN: urn:nbn:de:swb:90-723516
KITopen ID: 1000072351
Erschienen in Proceedings of the 2016 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision an Fusion Laboratory. Ed.: J. Beyerer
Verlag KIT Scientific Publishing, Karlsruhe
Seiten 59-70
Serie Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe ; 33
URLs Gesamtwerk
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page