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1. Referentin: Prof. Dr. Maria Axenovich

2. Referent: Jun.-Prof. Dr. Yury Person

3. Referent: Prof. Dr. Dieter Rautenbach

Extremal and Ramsey Type Questions

for Graphs and Ordered Graphs



This document is licensed under a Creative Commons  
Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):  
https://creativecommons.org/licenses/by-sa/4.0/deed.en



Contents

1 Introduction 1

1.1 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Ordered Graphs: Chromatic Number and Local Constraints . . . . . 2

1.3 Chromatic Number of Graphs and Local Constraints: A Summary . 6

1.4 Ramsey Theory for Graphs: Ramsey Equivalence . . . . . . . . . . . 9

1.5 Ramsey Theory for Ordered Graphs: Minimal Ordered Ramsey Graphs 16

1.6 Definitions, Notation, and Basic Facts . . . . . . . . . . . . . . . . . 19

2 Chromatic Number of Ordered Graphs 27

2.1 Forbidden Ordered Subgraphs . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 The Greedy Embedding Fails . . . . . . . . . . . . . . . . . . 28

2.1.2 The Main Results . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.3 Connections to Other Parameters . . . . . . . . . . . . . . . . 31

2.2 Local Constraints: A General Framework . . . . . . . . . . . . . . . 32

2.3 Structural Lemmas and Reductions . . . . . . . . . . . . . . . . . . . 36

2.4 Proofs of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Summary for Small Forests . . . . . . . . . . . . . . . . . . . . . . . 52

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Ramsey Equivalence 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1 Previous Results . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.2 The Main Question . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.3 The Main Results . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Preliminary Observations and Results . . . . . . . . . . . . . . . . . 63

3.3 Proofs of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Small Distinguishing Graphs . . . . . . . . . . . . . . . . . . . . . . 95

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 Minimal Ordered Ramsey Graphs 101

4.1 Introduction and Main Results . . . . . . . . . . . . . . . . . . . . . 101

4.2 Proofs of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Further Observations and Constructions . . . . . . . . . . . . . . . . 124

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

i



ii CONTENTS

List of Figures 137

List of Tables 139

Notation 141

Index 143

Bibliography 145



Abstract

In this thesis we study graphs and ordered graphs from an extremal point of view.

Our main concern are the following three questions.

First, we study the chromatic number of ordered graphs, where an ordered graph

is an ordinary graph equipped with a linear ordering of its vertex set. We find infinite

families of χ-avoidable ordered forests H, where an ordered graph H is χ-avoidable

if there are ordered graphs of arbitrarily large chromatic number not containing

H as an ordered subgraph. This is in contrast to the unordered setting where for

each unordered forest H on k vertices it is known that any graph which contains no

subgraph isomorphic to H has chromatic number at most k − 1.

Second, we study Ramsey equivalence of graphs. Two graphs are Ramsey equiv-

alent if they have exactly the same sets of Ramsey graphs. Fox et al. [67] ask whether

there are non-isomorphic connected graphs that are Ramsey equivalent. While it is

known that the only connected graph that is isomorphic to a complete graph is this

graph itself, not much is known in general. We prove that graphs of different chro-

matic number are not Ramsey equivalent provided some additional clique splitting

property holds. Under stronger assumptions, we give more pairs of graphs that are

not Ramsey equivalent. Our results show that the question above has a negative

answer for all pairs of connected graphs involving a graph on at most five vertices.

Finally, we initiate the study of minimal ordered Ramsey graphs. We give a

full characterization of pairs of ordered graphs having a forest as a Ramsey graph.

Further, we study the question which pairs of ordered graphs have infinitely many

minimal ordered Ramsey graphs. The answer to this question is known in the

unordered setting except for certain pairs involving 2-connected graphs. We prove

that, like in the unordered setting, any ordered graph containing a cycle is Ramsey

infinite, while a pair of a monotone matching and any other ordered graph is Ramsey

finite. Here, a monotone matching is an ordered matching where for each pair of

edges the endpoints of one edge precede both endpoints of the other edge. The

existence of χ-avoidable ordered forests breaks the application of a central argument

from the unordered setting for pairs of ordered forests. We reduce the question for

χ-unavoidable ordered trees to pairs of ordered stars and so-called almost increasing

caterpillars. Our results show that there are Ramsey finite pairs of ordered stars and

ordered trees of arbitrarily large diameter, which is in stark contrast to unordered

graphs where any Ramsey finite pair of forests involves a matching or is a pair of

star forests.
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Introduction

1.1 Outline of the Thesis

This thesis contributes to the chromatic theory and to Ramsey theory for graphs

and ordered graphs.

Chromatic Theory A large part of research in graph theory is devoted to many

different variants of colorings of graphs, where the vertices, the edges, or larger

subgraphs are colored according to some rules. On the one hand colorings provide

an easy way to express various properties of a graph in an accessible form. For

example decompositions of the vertices into independent sets (sets which do not

induce any edges) correspond to proper colorings of the vertices, that is, colorings

where adjacent vertices receive distinct colors. This particular kind of coloring alone

has many applications where the edges represent conflicts and the vertices shall

be arranged into groups avoiding conflicts within the groups. Also many other

applications naturally come with a graph coloring or labeling. For an overview

on this field we refer to the book of Jensen and Toft [88]. Often, it is easy to

achieve a desired type of coloring using a large amount of colors and, naturally,

one is interested in the smallest number of colors that is needed. In this case it is

particularly interesting to ask for which classes of graphs this number is bounded by

an absolute constant. A frequently studied class of graphs in this area is formed by

the t-degenerate graphs, for some given positive integer t. This class consists of all

graphs that admit an ordering of their vertices such that each vertex is adjacent to

at most t of its predecessors in the ordering. In Chapter 2 we study generalizations

of this type of graph class by means of restricted vertex orderings with respect to

the proper colorings mentioned above (see Sections 1.2 and 1.3 for an introduction).

Ramsey Theory Ramsey type results guarantee that a given (small and quite re-

stricted) structure necessarily appears as a substructure of any other structure, pro-

vided this other structure is just sufficiently large. In terms of colorings this usually

means that any large colored structure of some type needs to contain monochromatic

substructures of certain kinds. Also Ramsey type results come in many different vari-

ants and with various applications. We refer to the book of Graham, Rothschild,

1



2 CHAPTER 1. INTRODUCTION

and Spencer [75] and to a survey by Rosta [130]. While the fundamental results

in this area establish the pure existence of some threshold for the “largeness”, it is

an interesting task to explore the boundary between “sufficiently large” and “still

too small” in more detail. In this thesis we follow this line of research in two ways,

both concerned with (small) monochromatic subgraphs appearing in edge-colorings

of (sufficiently large) graphs. Chapter 3 is concerned with pairs of (small) graphs

that have exactly the same set of graphs which are “sufficiently large” (see Sec-

tion 1.4 for an introduction). We provide several results supporting our intuition

that such a behavior is quite rare. In Chapter 4 we consider graphs that carry a

linear ordering of their vertices and study the question for which (small) ordered

graphs there are only finitely many smallest ordered graphs that are “sufficiently

large” (see Section 1.5 for an introduction).

Results from Articles and Preprints Large parts of Chapter 2 and Chapter 3

appear as joined work with Maria Axenovich and Torsten Ueckerdt [8, 9, 7]. In

particular all the main results of these two chapters are shared with these articles.

Outline of the Remaining Introduction In Section 1.2 we introduce our results

from Chapter 2 on the chromatic number of ordered graphs under local constraints,

together with an introduction to ordered graphs in general. A summary of similar

results for (unordered) graphs is given in Section 1.3. Section 1.4 gives a brief

overview of Ramsey theory, focusing on structural results. This includes the notion of

Ramsey equivalence and our contribution to this field, which is studied in Chapter 3

in detail. In Section 1.5 we consider Ramsey theory for ordered graphs and present

the results of Chapter 4 on minimal ordered Ramsey graphs. Finally Section 1.6

contains basic graph theoretic definitions, notations, and facts.

1.2 Ordered Graphs:

Chromatic Number and Local Constraints

A large part of this thesis is concerned with ordered graphs. Such graphs appear

at many places in graph theory and computer science either implicitly or explicitly.

Implicitly, many inductions and algorithms on graphs work along an arbitrary or

carefully chosen ordering of the vertices. Moreover many concepts like (generalized)

coloring numbers [92, 145], bandwidth [37], or graceful labelings [15] are defined in

terms of vertex orderings, but a systematic study seems not at hand. Some overview

is given in [55] from a computer science point of view and in [21, 72] with only some

part devoted to labelings in the sense of linear order. Ordered graphs also appear

naturally in many applications, for instance in biology [52] and archeology [82, 91].

Here, we define an ordered graph as a graph equipped with a linear order of its vertex

set. See Figure 1.1 for an illustration of ordered graphs.
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Figure 1.1: All pairwise non-isomorphic ordered 5-cycles. The ordered matching on
the right is an ordered subgraph (bold edges) of all but two of these ordered cycles.

Recently, extremal properties of ordered graphs were studied with respect to their

chromatic number [8, 7, 57], extremal number [57, 95, 121], and Ramsey number [11,

46]. The results of these articles show similarities but also significant differences

between graphs and ordered graphs. In the following paragraph we introduce the

results of our work from [8] and [7] which are discussed in Chapter 2 in detail. The

results on extremal numbers are briefly outlined afterwards and the results of [11, 46]

are presented in Section 1.5. Some other research on ordered graphs includes growth

rates of hereditary properties of ordered graphs [12, 18], characterizations of classes

of graphs by forbidden ordered subgraphs [51, 74], and the study of perfectly ordered

graphs [41].

Our Contribution In Chapter 2 we study the chromatic number of ordered

graphs from an extremal point of view. Here the chromatic number of an ordered

graph G is the smallest number of color among colorings of the vertices of G where

adjacent vertices receive different colors. Specifically we investigate for which or-

dered graphs H any ordered graph not containing H as a subgraph has bounded

chromatic number. In Chapter 4 we initiate the study of minimal ordered Ramsey

graphs. In particular we identify several classes of Ramsey finite as well as several

classes of Ramsey infinite ordered graphs. While we give a brief outline of the results

from Chapter 2 next, we refer to Section 1.5 for an introduction to the latter results.

Given an (unordered) forest H on k vertices it is well known that the chromatic

number of any graph not containing H as a subgraph is at most k−1. Similar results

also hold for hypergraphs [101] and directed graphs [25]. A summary of results of

this kind for (unordered) graphs is given in Section 1.3. Surprisingly, the situation is

different for ordered graphs. Call an ordered graph H χ-avoidable if for each integer

k there is an ordered graph of chromatic number at least k which does not contain H

as an ordered subgraph. It is easy to see that any ordered graph containing a cycle

is χ-avoidable. However, we also describe infinite families of χ-avoidable ordered

forests, called bonnets and tangled paths. We refer to Figure 1.2 for some examples

of such ordered graphs and to Section 2.1 for proper definitions. Specifically we

prove the following theorem.
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Figure 1.2: Some χ-avoidable ordered forests. The first row shows all bonnets, the
second row shows some tangled paths.

Theorem 2.1. If an ordered graph H contains a cycle, a bonnet, or a tangled path,

then H is χ-avoidable.

On top of that, these ordered forests are fairly simple to describe, the smallest

ones on four or five vertices with only three edges. This clearly opens the search for

a characterization of χ-avoidable ordered forests.

We characterize all so-called non-crossing ordered graphs that are χ-avoidable.

The minimal χ-avoidable non-crossing ordered graphs are exactly the five bonnets

(shown in the first row of Figure 1.2) and an ordered complete graph on three

vertices. Note that any ordered supergraph of some χ-avoidable ordered graph is

χ-avoidable itself. For crossing and connected ordered graphs we reduce the problem

of characterizing such χ-avoidable ordered graphs to a well behaved class of trees,

called monotonically alternating. Despite many insights, a full characterization of

χ-avoidable ordered forests remains open.

For an ordered forest H that is not χ-avoidable we are also interested in the

largest chromatic number of ordered graphs not containing H as an ordered sub-

graphs. We give several results in this direction. For non-crossing and connected

such ordered forests H on k vertices this number is at most linear in k, while for

non-crossing disconnected such H it is at most exponential. We do not have any

upper bound for arbitrary such H and no good lower bounds in general.

Our results also have implications for other areas. In Section 1.5 we show some

consequences for Ramsey theory of ordered graphs.

Extremal Numbers Some of the results mentioned in the previous paragraph rely

on methods or results for extremal numbers of ordered graphs. The ordered extremal

number ex<(n,H), for an ordered graph H and a positive integer n, is the largest

number of edges in an ordered graph on n vertices that does not contain a copy of H.

Pach and Tardos [121] study the general behavior of ordered extremal numbers in

detail. An interval of an ordered graph G is a set I of consecutive vertices of G, that

is, for any u, v ∈ I, z ∈ V (G) with u 6 z 6 v we have z ∈ I. The interval chromatic

number χ<(G) is the smallest number of intervals, each inducing an independent set,

needed to partition the vertices of an ordered graph G. The following statement for

the extremal number ex<(n,G) of ordered graphs is analogous to the Erdős-Stone-
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Simonovits theorem [65], where the chromatic number is replaced by the interval

chromatic number.

Theorem 1.1 ([121]). Let G be an ordered graph. Then

ex<(n,G) = (1− 1
χ<(G)−1)

(
n
2

)
+ o(n2).

For ordered graphs with interval chromatic number 2, Pach and Tardos find a

tight relation between the ordered extremal number and pattern avoiding matrices.

For an ordered graph H with χ<(H) = 2 let A(H) denote the 0-1-matrix where the

rows correspond to the vertices in the first color and the columns to the vertices in

the second color of a proper interval coloring of H in 2 colors and let A(H)u,v = 1 if

and only if uv is an edge in H. A 0-1-matrix B avoids another 0-1-matrix A if there

is no submatrix in B which becomes equal to A after replacing some ones with zeros.

For a 0-1-matrix A let ex(n,A) denote the largest number of ones in an n×n matrix

avoiding A. In [121] it is shown that for each ordered graph H with χ<(H) = 2

there is a constant c such that ex(
⌊
n
2

⌋
, A(H)) 6 ex<(n,H) 6 c ex(n,A(H)) log n.

Some of the extensive research on forbidden binary matrices and extremal func-

tions for ordered graphs can be found in [22, 57, 71, 94, 95, 104].

Algorithmic Observations In order to decide whether two ordered graphs are

isomorphic it is sufficient to check for each pair of positions in the vertex order

whether the corresponding vertices form an edge or a non-edge in both ordered

graphs. This clearly leads to an algorithm running in polynomial time (actually

linear time in the number of edges).

Observation 1.1. Whether two ordered graphs are isomorphic can be decided in

polynomial time. In particular, for each fixed ordered graph H there is an algorithm

that checks whether an ordered graph G contains a copy of H in time polynomial in

the order of G.

It is still not known whether for (unordered) graphs the graph isomorphism

problem is in P or not. Recently, Babai [10] announced an algorithm that checks

isomorphism of two graphs on n vertices in time exp(log(n)c) for some constant c

(called quasi polynomial time). A common approach in this area is the computation

of so-called canonical labelings (that is, a canonical vertex ordering), such that

isomorphic graphs have the same canonical labeling [106]. This is the crucial part

of such algorithms, as Observation 1.1 shows that checking whether two canonical

labelings are equal is clearly polynomial.
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Figure 1.3: A 4-uniform hypergraph where hyperedges are formed by the four corners
of any axis-aligned rectangle. One can see that for any 2-coloring (small disks and
boxes) of the points there is a hyperedge with all its vertices of the same color (left),
while the 3-coloring (small disks, boxes, and crosses) on the right is proper. So the
chromatic number of this hypergraph is 3.

1.3 Chromatic Number of Graphs and Local Constraints:

A Summary

In Chapter 2 below we consider the chromatic number of ordered graphs under

local constraints. Since this type of question is studied extensively for (unordered)

graphs we summarize some of the results from this area in this section. Recall that

the chromatic number χ(H) of a (hyper)graph H is the smallest number of colors

needed to color the vertices of H such that each edge of H contains at least two

vertices of distinct colors. See Figure 1.3 for an illustration of this so-called proper

colorings. Further, a local constraint means some property that is determined by

the structure of subgraphs of constant size. The general question is whether some

given constraints imply any upper bound on the chromatic number of the graph. Of

course, the answer heavily depends on the constraints.

Forbidden Subgraphs First, we study graphs that do not contain subgraphs of

some given kind. To begin with, a universal upper bound on the degrees of the

vertices is strong enough to give an upper bound on the chromatic number. Indeed,

it is easy to see that any graph of maximum degree d has chromatic number at

most d + 1. On the other hand consider some integer g and graphs of girth more

than g, that is, graphs that do not contain any cycle of length at most g. Each set

of g vertices of such a graph induces not more than a tree, which is easily colored

with two colors in a proper way. A prominent result of Erdős [61] shows that there

are such graphs of arbitrarily large chromatic number, that is, this constraint does

not give any upper bound on the chromatic number.

For a set of graphsH let Forb(H) denote the set of graphs that do not contain any

member of H as a subgraph. Now the question is whether there is a constant k that

depends onH only such that χ(G) 6 k for eachG ∈ Forb(H). If such a number exists

then call H χ-unavoidable and let κ(H) = max{χ(G) | G ∈ Forb(H)}, otherwise

call H χ-avoidable and let κ(H) = ∞. In case H = {H} we shall write Forb(H),

κ(H), and call H itself χ-avoidable or χ-unavoidable respectively. The results above
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state that κ(K1,d+1) 6 d+ 1 and κ(H) =∞ for any family H of graphs that contain

a cycle each. More generally it is known that for each positive integer k we have

κ(H) = k if and only H is a forest on k + 1 vertices. In particular we have the

following observation.

Observation 1.2. A graph H is χ-avoidable if and only if H contains a cycle.

This statement generalizes to uniform hypergraphs due to results of [64, 101],

see also [79]. A similar statement also holds for directed graphs H, with a similarly

defined function κdir(H) being finite if and only if the underlying (undirected) graph

of H is acyclic. A result of Addalirio-Berry et al. [2], see also [25], implies that

κdir(H) 6 k2/2−k/2−1 whenever H is a directed k-vertex graph whose underlying

graph is acyclic. Dujmović and Wood [57] study a similar question for certain classes

of χ-unavoidable ordered matchings. In Section 2.1 we study which ordered graphs

are χ-avoidable. As mentioned above we shall present χ-avoidable ordered forests.

Forbidden Induced Subgraphs Another well studied constraint are forbidden

induced subgraphs. Consider the family of all graphs not containing a given non-

complete graph H as an induced subgraph. This family contains all complete graphs

and hence has unbounded chromatic number. To overcome this problem one is

interested how much the chromatic number of a graph G in such a family deviates

from the order of the largest clique in G, denoted by ω(G). If for some family G of

graphs there is a function fG such that for each G ∈ G we have χ(G) 6 fG(ω(G)),

then G is called χ-bounded . That is, a family G is χ-bounded if there is an upper

bound on the chromatic number for each G ∈ G that depends only on G and ω(G).

For example, the famous strong perfect graph theorem [38] states that if a graph G

contains neither an induced odd cycle nor an induced copy of a complement of an

odd cycle, then χ(G) 6 ω(G). So the family of such graphs is χ-bounded. On the

other hand, the family of graphs with no induced cycle of length g is not χ-bounded,

as it contains all graphs of girth at least g+ 1. A famous conjecture of Gyárfás and

Sumner states that for any forest H the family of graphs with no induced copies

of H is χ-bounded. Recently Chudnovsky, Scott, and Seymour [39] made some

progress towards this and many related conjectures. Observe that a family Forb(H)

is χ-bounded if and only if H is χ-unavoidable, as Forb(H) does not contain large

cliques.

Other Types of Constraints There are many other types of constraints known

that give bounds on the chromatic number. We mention two such constraints here

which are based on vertex orderings. We consider an ordered vertex set laid out

along a horizontal line from left to right such that a vertex u is to the left of a

vertex v if and only if u < v. The coloring number col(G) of a graph G is the

smallest integer t such there is an ordering of the vertices of G where each vertex
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Figure 1.4: A 7-chain.

has at most t − 1 neighbors to the right. It is easy to see that χ(G) 6 col(G).

Zhu [145] gives tight relations between many other coloring parameters (specifically

low tree-depth colorings) and generalized coloring numbers of graphs.

A k-chain is a (not necessarily uniform) hypergraph P with vertices u1 < · · · < un

and edges E1, . . . , Ek such that each edge forms an interval in the ordering of P and

|Ei ∩ Ei+1| = 1, i ∈ [k − 1]. See Figure 1.4 for an example. Similar to the Gallai-

Hasse-Roy-Vitaver Theorem, Pluhár [124] shows that for each k > 2 an (unordered,

not necessarily uniform) hypergraph admits a proper k-coloring of its vertices if and

only if it admits an ordering of its vertices without any copy of a k-chain. We include

a proof here for completeness. If a hypergraph H is k-colorable consider a partition

V (H) = V1∪̇ · · · ∪̇Vk such that no Vi contains an edge of H, i ∈ [k]. Then each

ordering of V (H) where the vertices in Vi precede the vertices in Vi+1, i ∈ [k − 1],

does not yield any copy of a k-chain. The other way round assume that the vertices

of H are ordered without any copy of a k-chain. Color each vertex u ∈ V (H) that

is rightmost in some edge of H with the largest integer c such that u is rightmost in

some copy of a c-chain in H. Color all other vertices in color 0. This coloring uses

at most k colors since there is no copy of a k-chain. Moreover it is proper, since for

each edge in H the colors of the leftmost and the rightmost vertex are distinct.

Observe that this proof gives a proper k-coloring for any ordered hypergraph

(that is, a hypergraph with a fixed linear ordering of its vertices) which does not

contain any copy of a k-chain. This is exactly the kind of constraint which we

consider in Section 2.1, that is, a forbidden ordered subgraph. Besides excluding

some ordered subgraphs, other local constraints for ordered graphs exist that are

based on the ordering. For example we might require that there are no short edges

or any six vertices induce either two edges ab and cd with a < c < b < d or two edges

uv and xy with u < x < y < v, but not both. We consider a general framework to

model many different constraints in Section 2.2.

Other Types Of Colorings Recently several groups of authors build on a uni-

form way to model different kinds of vertex colorings of hypergraphs [23, 36, 58].

The general idea is to prescribe for each edge of the hypergraph a set of admissible

partitions into color classes. For instance, for the usual chromatic number any par-

tition with at least two non-empty parts is admissible. It turns out that for many

kinds of colorings there are hypergraphs which do not admit any coloring of this

kind in any number of colors. Among many interesting results and questions in this

area, Bujtás and Tuza [24] show that there are such kinds of colorings where it is

NP-complete to decide whether a given hypergraph is colorable, even for interval
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Figure 1.5: This interval hypergraph has no vertex-coloring where each edge of size
two contains two vertices of different colors, the dashed edges contain at most two
different colors, and each of the remaining edges contains at least three vertices of
distinct colors.

hypergraphs (that is, there is an ordering of the vertices such that each edge forms

an interval). See Figure 1.5 for an example of an uncolorable interval hypergraph.

Note that “being an interval hypergraph” is clearly a local constraint in the sense

as considered in Chapter 2, provided that the vertex ordering is fixed. Note further

that many kinds of colorings in this area require edges of size more than 2, since

they become trivial or do not exist for graphs.

1.4 Ramsey Theory for Graphs:

Ramsey Equivalence

The origins of Ramsey theory date back to two theorems of Ramsey [126] from 1930,

although some earlier results are nowadays called to be of “Ramsey type” as well.

Theorem A from [126] states that no matter how the r-subsets of an infinite set A

are colored using k colors, there will be an infinite subset A′ of A such that all the

r-subsets of A′ are of the same color. Theorem B from [126] is a finite version of

this statement. We give a formulation of Theorem B in terms of hypergraphs here.

Theorem 1.2 ([126]). For any positive integers k, n, and r there is an integer N

such that for each k-coloring of the edges of a complete r-uniform hypergraph K on

N vertices, there is a copy of a complete r-uniform hypergraph on n vertices in K

with all edges of the same color.

While Ramsey was motivated by logic (he studied the question whether any

sufficiently large logical expression of certain kind can be verified by a small so-

called canonical model), this phenomenon quickly attracted lots of attention on

its own. In particular when a few years later Erdős and Szekeres [60] reproved

Ramsey’s theorem along with Ramsey type results for integer sequences and points

in the plane. For a broad introduction to the field we refer to the books of Graham,

Rothschild, and Spencer [75] and Prömel [125], and to a recent survey of Conlon,

Fox, and Sudakov [48]. See Figure 1.6 for an example of a Ramsey type result for

points in the Euclidean plane and an example of a Ramsey type result for graphs.

In this thesis we shall not consider such geometric type of questions but focus on

graphs instead.

Naturally one might ask for the smallest N that satisfies Theorem 1.2 for given k,

n, and r. Determining this number, called the Ramsey number , is a famous problem
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Figure 1.6: In any two coloring of the points on the left side there is a convex 5-gon
with all corners of the same color. In any two coloring of the edges of the complete
bipartite on the right side there is a 4-cycle with all edges of the same color. In both
cases we actually find several such monochromatic objects.

in (graph) Ramsey theory. Here we focus on graphs and two colors, that is the case

k = r = 2, and denote the Ramsey number by r(Kn). In this case the Ramsey

number is known exactly only for n 6 4, and for larger n standard bounds of the

form 2n/2 6 r(Kn) 6 22n were improved only slightly so far [45, 138]. Over the years

Ramsey numbers and related concepts were studied for various classes of graphs, like

degenerate graphs [100], bipartite graphs [44], or geometric graphs [63, 89], just to

name a few.

Ramsey Graphs Ramsey’s theorem implies that for any graph H there is a graph

F such that for any coloring of the edges of F in two colors there is a monochromatic

copy of H, that is, one with all edges of the same color. In this case we call the

graph F a Ramsey graph of H and write F → H to indicate this fact1.

Question 1.1. How does R(H) = {F | F → H} look like for a given graph H?

A full characterization of all Ramsey graphs is known for few classes of graphs like

small matchings or stars [20, 31]. For example R(2K2) = {F | 3K2 ⊆ F or C5 ⊆ F}
and R(K1,2) = {F | ∆(F ) > 3 or χ(F ) > 3} [31]. Therefore particular properties

of the set R(H) and its members are studied. This line of research was initiated

by fundamental work of Nešetřil and Rödl [113] and Burr, Erdős, and Lovász [31].

Observe that the Ramsey number itself is the smallest order of graphs in R(H).

Apart from the order we may study any other graph parameter for graphs in R(H).

We shall summarize some of the known results for different parameters later in this

section. Before that we outline our contribution to this area.

Ramsey Equivalence Only recently, Szabó et al. [139] observe that there are

graphs having exactly the same set of Ramsey graphs and coined the term Ramsey

equivalence for this phenomenon. So two graphs G and H are Ramsey equivalent

if R(G) = R(H). We write G
R∼ H if G is Ramsey equivalent to H, and write

G 6R∼ H otherwise. A series of papers [16, 67, 139] is concerned with graphs that

1Some authors use this notation with the arrow pointing from H to F
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are Ramsey equivalent to complete graphs. They prove that any graph G which is

Ramsey equivalent to a complete graph Kt, for some t > 3, is a vertex disjoint union

of Kt and some graph of smaller clique number. While it is quite easy to find non-

isomorphic Ramsey equivalent graphs in general (adding some isolated vertices to a

graph usually yields a Ramsey equivalent graph, see Observation 3.1), it is not clear

at all whether there is a Ramsey equivalent pair of non-isomorphic connected graphs.

The result above shows that there is no such pair involving a complete graph. We

give a more detailed discussion of these results in the beginning of Chapter 3.

Question 1.2 ([67]). Are there two non-isomorphic connected graphs G and H with

G
R∼ H?

Our Contribution In Chapter 3 we identify many pairs of graphs that are not

Ramsey equivalent. To this end we find graph parameters ρ such that ρ(G) 6= ρ(H)

implies that G and H are not Ramsey equivalent. Here, the difference in ρ helps to

find a Ramsey graph of one of G or H that is not a Ramsey graph of the other. For

example it is known that for each graph G there is F ∈ R(G) with the same clique

number as G [116]. Clearly, such F is not a Ramsey graph graph for any graph H

of larger clique number than G and hence such H is not Ramsey equivalent to G.

The only other structural parameter with this property that we know is the odd

girth [115].

We prove that graphs of different chromatic number are not Ramsey equiva-

lent, provided some additional clique splitting property holds. A graph is called

clique-splittable if its vertex set can be partitioned into two subsets, each inducing

a subgraph of smaller clique number.

Theorem 3.3. If G and H are graphs, G is clique-splittable, and χ(G) < χ(H),

then G 6R∼ H.

Additionally we also handle graphs of the same chromatic number, although we

require stronger assumptions on the graphs in this case. Our results show that for

each connected graph G on at most five vertices there is no connected graph that is

Ramsey equivalent to G and not isomorphic to G itself. So our results provide some

evidence for a negative answer to Question 1.2, while a full answer remains open.

We also relate the notion of Ramsey equivalence to other Ramsey type results,

like multicolor Ramsey numbers. If H is a subgraph of G and there is a graph F

which is a Ramsey graph in k colors for H but not for G, for some k > 2, then

G and H are not Ramsey equivalent (in two colors). Whether this also holds for

graphs that are not in subgraph relation remains open. We discuss this and further

open questions in the conclusions in Section 3.5.

Finally we include a result on Ramsey numbers of cycles with pendant or inde-

pendent edges (which is not part of [9]).
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Figure 1.7: A 2-coloring (in bold and dashed) of the edges of a 9-chromatic graph
where each color induces a subgraph of chromatic number at most 3 (left), and
a 2-coloring of the edges of a 5-chromatic graph without monochromatic triangles
(right). In both graphs encircled vertices form independent sets.

Properties of Ramsey Graphs In the remaining paragraphs of this section we

summarize several structural results on the set of Ramsey graphs which are related

to our results in Chapter 3 or Chapter 4. For a given graph parameter ρ that maps

graphs to real numbers let rρ = min{ρ(F ) | F ∈ R(H)}, if this minimum exists. We

shall summarize some of the known results for different parameters ρ next.

The size Ramsey number [62] is re(H) = min{|E(F )| | F ∈ R(H)}. An argument

contributed to Chvátal shows that re(Kt) =
(
r(Kt)

2

)
while it is known that the size

Ramsey number of any tree and any cycle is linear in the number of vertices [81].

Rödl and Szemerédi [129] show that for larger degrees any upper bound on re(H)

needs to depend on the order of H. Indeed, they provide for each n a construction

of a graph H on at least n vertices of maximum degree 3 with re(H) > cn(log n)α,

for some absolute constants c, α > 0. Kohayakawa et al. [97] announce a proof of a

conjecture from [129], namely that for each d there are constants c, ε > 0 such that

for each n-vertex graph H of maximum degree d we have re(H) 6 cn2−ε. Regarding

the maximum degree ∆ the authors of [93] ask whether r∆(H) is bounded from

above by a function depending on the maximum degree ∆(H) only. They prove

that if H is a tree, then 2∆(H) − 1 6 r∆(H) 6 4(∆(H) − 1). We observe that

for a non-bipartite graph H, r∆(H) > 2∆(H), see Lemma 3.2.16. Burr et al. [31]

prove that for any graph H with χ(H) = k we have (k − 1)2 + 1 6 rχ(H) 6 r(Kk).

See Figure 1.7 for an illustration of the lower bound (left) and the tightness of the

upper bound for complete graphs (right). While the upper bound is tight for any

perfect graph H (it contains Kk), they conjecture that for each k > 2 there is a

graph H with χ(H) = k and rχ(H) = (k − 1)2 + 1. Results of Zhu [146] and

Paul and Tardif [123] show that this conjecture holds. Rödl and Ruciński [128] (see

Theorem 1.4 below) give a threshold tH for any graph H that is not a forest of

stars or paths on three edges, such that almost all graphs with density larger than

tH are Ramsey graphs for H and almost all with smaller density are not, where

the density of a graph G is m(G) = max{|E(G′)|/|V (G′)| | G′ ⊆ G}. Remarkable

results of Nešetřil and Rödl show that for each graph H we have rω(H) = ω(H) [116]
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and r−girtho
(H) = girtho(H) [115], provided girtho(H) 6= ∞ (here we consider the

negative odd girth, denoted −girtho, since we are interested in the largest odd

girth among graphs in R(H)). For example one can see that F ∈ R(K3) with

ω(F ) = ω(K3) where F is a graph obtained from K3,5 by adding a triangle in the

part of size 3 and a 5-cycle in the part of size 5. Similarly it is known that if H

does not contain a copy of Ka,b, a, b > 3 or 1 = a 6 b 6 2, then there is F ∈ R(H)

such that F does not contain a copy of Ka,b [118]. It is an open question whether

this also holds for r−girth, that is, whether for each graph H there is F ∈ R(H) with

girth(H) = girth(F ) [111].

These results, among others, lead to the notion of Ramsey classes. We describe

this concept only for the very special case of edge colorings of graphs here, although

it leads to far reaching generalizations and deep results, see [86, 110]. A class F of

graphs is a Ramsey class if for any of its members G ∈ F there is a Ramsey graph of

G in F , that is R(G)∩F 6= ∅. The results above show that for any integer k, k > 3,

the families {G | ω(G) < k} and {G | girtho(G) > k} are Ramsey classes. Many

results on Ramsey classes deal with induced subgraphs or ordered graphs [112, 117].

Minimal Ramsey Graphs Observe that any supergraph of a Ramsey graph is a

Ramsey graph itself. Therefore, in order to describe R(H) it is sufficient to describe

the minimal Ramsey graphs of H, that is, the graphs in R(H) where each proper

subgraph is not in R(H) anymore. A fundamental question asks whether for a given

graph H there are infinitely many minimal Ramsey graphs. A series of several results

establishes the following theorem.

Theorem 1.3 ([27, 66, 114, 127, 128]). A graph H has only finitely many minimal

Ramsey graphs if and only if H is a vertex disjoint union of a star with an odd

number of edges, a matching, and isolated vertices.

Besides the number of minimal Ramsey graphs we may again study any graph

parameter for these graphs. Observe that all the parameters ρ considered in the

previous paragraph are subgraph monotone in the sense that ρ(H ′) 6 ρ(H) if H ′ is

a subgraph of H. Moreover, if rρ(H) exists for some graph H and some subgraph

monotone parameter ρ, then there is a minimal Ramsey graph F of H with ρ(F ) =

rρ(H). Furthermore observe that for parameters ρ that are not subgraph monotone,

rρ might be trivial. For example it is easy to see that every graph H has a Ramsey

graph of minimum degree 0 by adding an isolated vertex to some graph in R(H).

To overcome this issue we modify the definition of rρ and, slightly abusing notation,

let rρ = min{ρ(F ) | F ∈ R(H), F minimal}. As argued above this does not make

any difference for the parameters considered in the previous paragraph. A number

of results are known for the minimum degree δ. We have rδ(Kt) = (t− 1)2, [31, 69],

rδ(Ka,b) = 2 min{a, b} − 1, [69], rδ(H) = 1 if H is a tree, [139], or when H is Kt,t

plus a pendant edge, [67], and rδ(Cn) = 3 for even n > 4, [139]. Further results deal
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with minimum degrees of minimal Ramsey graph for more colors [68] and of minimal

Ramsey hypergraphs [43]. Besides the results already stated, Burr et al. [31] also

consider the smallest maximum degree of Ramsey graphs, as well as the largest

maximum degree and the smallest connectivity of minimal Ramsey graphs. Finally

let us state an observation on the largest order of minimal Ramsey graphs.

Observation 1.3. A graph H has infinitely many minimal Ramsey graphs if and

only if the order of minimal Ramsey graphs of H is unbounded, that is, for each

integer n there is a minimal Ramsey graph F of H with |V (F )| > n.

Ramsey Finite Graphs A graph is called Ramsey finite if it has only finitely

many non-isomorphic minimal Ramsey graphs, otherwise it is Ramsey infinite. Here

we summarize known results on Ramsey finite pairs of graphs. We study Ramsey

finite pairs of ordered graphs in Chapter 4 (see Section 1.5 for an introduction). For

some of the results below we find similar results in the ordered setting, while others

do not have a corresponding result for ordered graphs.

The following results are due to to Rödl and Ruciński [127, 128], see also Ne-

nadov and Steger [109] for an alternative proof. The 2-density of a graph G is

m2(G) = max
{
|E(H)|−1
|V (H)|−2 | H ⊆ G, |V (H)| > 3

}
. Let G(n, p) denote a random graph

on n vertices that contains each edge with probability p independently from the

other edges.

Theorem 1.4 ([128]). Let H be a graph that is not a forest of stars or paths on

three edges. Then there are positive constants c = c(H) and C = C(H) such that

lim
n→∞

Prob(G(n, p)→ H) =





0, if p 6 c n−1/m2(H),

1, if p > C n−1/m2(H).

Lemma 1.4.1 ([127]). Let F and H be graphs with m2(H) > 1. If max
F ′⊆F

(
|E(F ′)|
|V (F ′)|

)
6

m2(H), then F 6→ H.

Note that m2(H) > 1 if and only if H contains a cycle. Combining these two

results one can show that for each graph H containing a cycle and each integer t

there is a constant c′ such that with high probability (probability tending to 1 as

n→∞) a random graph G = G(n, c′n−1/m2(H)) is a Ramsey graph for H while each

subgraph of G on t vertices is not Ramsey (Corollary 4(a) [128]). Observation 1.3

yields the following corollary (see [102]).

Corollary 1.5 ([127, 128]). If a graph G contains a cycle, then G is Ramsey infinite.

An analog of Theorem 1.4 in the asymmetric case is not known in general.

Kohayakawa and Kreuter [96] conjecture that Theorem 1.4 holds for any pair of

graphs (H1, H2) with m2(H1) 6 m2(H2) using an asymmetric version of the 2-

density given by m2(H1, H2) = max
{

|E(H′)|
|V (H′)|−2+1/m2(H1) | H ′ ⊆ H2, |E(H ′)| > 1

}
.
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H, H ′

cyclic
H 6= H ′

partial results
H = H ′

⇒ infinite

H cyclic
H ′ forest

H, H ′

forests
otherwise

finite ⇔ H, H ′ special star forests

otherwise
infiniteH ′ matching

⇒ finite

Table 1.1: Summary of results on Ramsey finiteness for graphs H and H ′.

The 1-statement of this conjecture, that is, the case p > C n−1/m2(H1,H2), holds for

(H1, H2) under certain conditions on H1 and H2 [80, 98, 103], while the 0-statement,

that is, the case p 6 c n−1/m2(H1,H2), is wide open [78, 103].

Nešetřil and Rödl [114] prove that (H,H ′) is Ramsey infinite if both H and H ′

are 3-connected or both are of chromatic number at least 3. Results in [32] show

that it is sufficient to consider 2-connected graphs. Bollobás et al. [19] prove that

(H,Ck) is Ramsey infinite for each cycle Ck if H is 2-connected and contains no

induced cycles of length at least `, provided k > ` > 4.

Each pair of a forest and a graph containing a cycle is handled by one of the

following two theorems.

Theorem 1.6 ([29]). If H is a matching, then (H,H ′) is Ramsey finite for each

graph H ′.

Theorem 1.7 ([102]). If H is a forest that is not a matching and H ′ is a graph

that contains a cycle, then (H,H ′) is Ramsey infinite.

Based on several previous results [27, 28, 114], Faudree [66] gives a characteri-

zation of all Ramsey finite pairs of forests, up to the value of some parameter n0.

Note that a pair (G,G′) of graphs is Ramsey finite if and only if (G + K1, G
′) is

Ramsey finite. Hence it is sufficient to consider graphs without isolated vertices. A

summary of all the results stated here is given in Table 1.1.

Theorem 1.8 ([66]). Let H, H ′ be forests without isolated vertices. Then there is n0

such that (H,H ′) is Ramsey finite if and only if one of the following statements holds.

(a) At least one of H or H ′ is a matching.

(b) Both H and H ′ are vertex disjoint unions of a matching and a star with an

odd number of edges.

(c) One of H or H ′ is a vertex disjoint union of a matching and at least two stars

with m1 respectively m2 edges, while the other is a vertex disjoint union of

a matching on n edges and a star with n1 edges. Moreover m1, n1 are odd,

m1 > n1 +m2 − 1, and n > n0.
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H

F
F̃

H̃

F ′

Figure 1.8: An ordered matching H and an ordered Ramsey graph F of H (left).
An (unordered) 5-cycle F ′ is a Ramsey graph of the underlying graph H̃ of H, but
no ordering of the vertices of F ′ yields an ordered Ramsey graph of H (right). Here
we show just a few possible orderings of F ′. In Section 4.3 we show that any ordered
Ramsey graph of H contains a copy of F (which is not possible for orderings of F ′).

1.5 Ramsey Theory for Ordered Graphs:

Minimal Ordered Ramsey Graphs

To some extent orderings are part of Ramsey theory from the very beginnings where

results on colorings of the integers were discovered, most prominent by Schur and

Van der Waerden [135, 141]. Also many proofs rely on choosing the vertices in a

suitable order, including the original proof of Ramsey [126] and the results by Erdős

and Szekeres [60]. Later on, explicit results for ordered graphs, and more general

ordered structures, were obtained which we will summarize later in this section.

First, we shall observe some basic connections between ordered and unordered

Ramsey graphs. Then we summarize our contribution to this field and some of

the results known so far. Let R<(H) denote the set of ordered Ramsey graphs of

an ordered graph H. Note that the existence of ordered Ramsey graphs follows

immediately from the existence of Ramsey graphs for complete graphs.

Observation 1.4. Let H be an ordered graph and let H̃ be its underlying graph. If

F ∈ R<(H), then the underlying graph of F is in R(H̃). If H is a complete graph,

then also the reverse statement holds, otherwise it may fail.

See Figure 1.8 for an example of an ordered graph H and a Ramsey graph F ′ of

H̃ which does not form an ordered Ramsey graph of H in any ordering.

Our Contribution In Chapter 4 we initiate the study of (minimal) ordered Ram-

sey graphs. First we characterize all pairs of ordered graphs that have an ordered

Ramsey graph that is a forest. In the unordered setting it is easy to see that this

holds if and only if both graphs are forests, one of which is a star forest. For ordered

graphs there are even stronger restrictions and for many pairs of ordered star forests

each Ramsey graph contains a cycle.

Our main concern is the question which ordered graphs have infinitely many

minimal ordered Ramsey graphs. Here, like in the unordered setting, an ordered

graph F is a minimal ordered Ramsey graph of some ordered graph G if F is an

ordered Ramsey graph of G and each proper ordered subgraph of F is not an ordered
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Ramsey graph of G. Similarly, an ordered graph G is Ramsey finite if there are only

finitely many minimal ordered Ramsey graphs of G and Ramsey infinite otherwise.

An introduction to Ramsey finite and infinite (unordered) graphs is given at the end

of the previous section (see Table 1.1).

We identify wide classes of Ramsey finite respectively Ramsey infinite pairs of

ordered graphs. For ordered graphs containing cycles we obtain results similar to

those known for (unordered) graphs. Indeed, similar to Corollary 1.5 we prove that

every ordered graph that contains a cycle is Ramsey infinite. Our proof of this result

follows a recent approach due to Nenadov and Steger [109] using the hypergraph

container method.

Theorem 4.2. Each ordered graph that contains a cycle is Ramsey infinite.

Moreover, similar to Theorem 1.6 we prove that any pair of some so-called mono-

tone matching and an arbitrary ordered graph is Ramsey finite. An ordered match-

ing with vertices u1 < · · · < u2k is monotone if its edges are of the form u2i−1u2i,

1 6 i 6 k.

Corollary 4.4. If H ′ is a monotone matching, then (H,H ′) is Ramsey finite for

each ordered graph H.

We conjecture that also an analog of Theorem 1.7 holds for ordered graphs, that

is, each pair of an ordered forest that is not a monotone matching and an ordered

graph that contains a cycle is Ramsey infinite.

Contrary to the previous results, we show results for pairs of ordered forests that

differ significantly from the unordered setting. Recall from Theorem 1.8 that any

Ramsey finite pair of (unordered) graphs involves a matching or is a pair of star

forests (of special kind). In contrast to this, we find Ramsey finite pairs of ordered

stars and ordered trees of arbitrarily large diameter.

Any pair of (unordered) forests that are both not star forests is Ramsey infinite

due to a result by Nešetřil and Rödl [114]. As their result is based on the fact

that each (unordered) forest is not χ-avoidable, this approach does not work for χ-

avoidable ordered forests. We give some more details of the approach from [114] in

Chapter 4. So far we have only few results for χ-avoidable or disconnected ordered

forests. On the other hand we can easily adopt the approach from [114] to prove

Ramsey infiniteness for any pair of χ-unavoidable ordered forests which does not

have forests as Ramsey graphs. Extending this result, we show that any Ramsey

finite pair of χ-unavoidable connected ordered forests is a pair of an ordered star

and a so-called almost increasing caterpillar.

Ordered Ramsey Numbers Many results in Ramsey theory for ordered graphs

deal with ordered Ramsey numbers, denoted r<. We summarize known bounds on

ordered Ramsey numbers next. Again we start with some basic relations between
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ordered and unordered Ramsey numbers. Let H be an ordered graph and H̃ its

underlying graph. Due to Observation 1.4 we have r(H̃) 6 r<(H) and equality holds

ifH is a complete graph. There are other cases where ordered and unordered Ramsey

numbers coincide. For example r<(Pmon
s ,Kt) = r(Ps,Kt) = (s − 1)(t − 1) + 1 [46],

where Pmon
s is an ordered path v1 · · · vs with v1 < · · · < vs and Ps is an (unordered)

path on s vertices.

Due to several applications, mostly geometric Erdős-Szekeres type results, Ram-

sey numbers of monotone (hyper)paths received particular attention [108]. For given

positive integers ` and r a monotone r-uniform `-hyperpath is an ordered r-uniform

hypergraph with edges E1, . . . , Et, where each edge forms an interval in the vertex

ordering and Ei ∩ Ei+1 consists of the ` rightmost vertices in Ei and the ` left-

most vertices in Ei+1, i ∈ [t − 1]. Building on previous results of Moshkovitz and

Shapira [107], Cox and Stolee [50] prove that the ordered Ramsey number of such

paths P grows like a tower of height ∆(P )− 2 as a function in the number of edges

of P (note that the maximum degrees of all sufficiently large monotone r-uniform

`-hyperpaths coincide for fixed ` and r). In contrast to this, the Ramsey numbers of

unordered hyperpaths, and more general of any hypergraph of bounded maximum

degree, are linear in the size. Indeed for any uniformity r and any positive integer

d there is a constant c(r, d) such that for each (unordered) r-uniform hypergraph H

on n vertices and of maximum degree at most d we have r(H) 6 c(r, d)n [40, 47]. In

an even more striking contrast to this result, Conlon et al. [46] and independently

Balko et al. [11] prove the existence of ordered matchings with superpolynomial

Ramsey numbers.

Theorem 1.9 ([11, 46]). There exists a constant c > 0 such that for each even

n > 2 there is an ordered matching M on n vertices with r<(M) > n
c

log(n)
log log(n) .

In fact, Conlon et al. [46] prove that this lower bound holds for almost all ordered

matchings on n vertices. Both papers present several results and open problems

concerned with Ramsey numbers of sparse ordered graphs. We just present the

following upper bound.

Theorem 1.10 ([46]). There exists a constant c > 0 such that for any d-degenerate

ordered graph H on n vertices we have r<(H) 6 2cd log2(2n/d).

The authors note that this bound is almost tight for very small or very large d.

This shows that for dense graphs the ordered Ramsey numbers behave similar to

the unordered Ramsey numbers. Another line of research is concerned with gener-

alizations of Ramsey numbers for graphs with partially ordered vertex sets [49].

Ramsey Theory for Induced Ordered Graphs Finally we state the follow-

ing result on induced ordered Ramsey graphs, due to Nešetřil and Rödl [117] and

independently Abramson and Harrington [1].
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Theorem 1.11 ([1, 117]). Let k denote a positive integer and let A and H be ordered

graphs. Then there is an ordered graph F such that for any k-coloring of the induced

copies of A in F there is an induced copy of H in F with all its induced copies of A

of the same color.

This results is in stark contrast to the unordered setting were an analogous

statement holds if and only if A is a complete or an empty graph [112]. Dellamonica

and Rödl [53] present a strengthening of Theorem 1.11 to distance preserving copies

of ordered graphs. See also [125] for an introduction to this type of results.

1.6 Definitions, Notation, and Basic Facts

Here we give a self contained summary of the concepts and notations used in this

thesis. Readers familiar with basic knowledge of graph theory may easily skip this

section as any less common notion will be introduced at appropriate places in the

text. References to the definitions can be found in the indices. For a general intro-

duction to graph theory we refer to the books of Diestel [56] and West [143].

General

For finite sets U and V let 2V denote the set of all subsets of V , let U ∪̇V denote the

disjoint union of U and V , and let U × V = {(u, v) | u ∈ U, v ∈ V }. For a positive

integer n let [n] = {1, . . . , n}, let Sn denote the set of permutations of [n], and let

Zn = {(z1, . . . , zs)
> | zi ∈ Z, i ∈ [n]}. For a positive integer n and two vectors x,

y ∈ Zn, x+ y denotes the componentwise addition, and x 6 y and x > y denote the

standard componentwise comparability of x and y. The vector (p, . . . , p)> ∈ Zn is

denoted by p.

Graphs and Hypergraphs

A hypergraph is pair G = (V, E) where V is the set of vertices and E ⊆ 2V is the

set of edges of G, where |E| > 2 for each E ∈ E . Two hypergraphs G and G′ are

isomorphic if there is a bijection f : V (G)→ V (G′) such that E ⊂ V (G) is an edge

in G if and only if f(E) is an edge in G′. For a hypergraph G let V (G) denote its

vertex set and let E(G) denote its edge set. The order of a hypergraph G is |V (G)|
and its size is |E(G)|. All (hyper)graphs considered here are finite (that is, V is

finite) and do not contain loops (edges of size 1) or parallel edges (as E is not a

multiset). Two vertices that are contained in the same edge are called adjacent and

neighbors of each other.

A subhypergraph2 of a hypergraph G is a hypergraph G′ with V (G′) ⊆ V (G)

and E(G′) ⊆ E(G′). A subhypergraph G′ of G is induced if E(G′) = E(G) ∩
2Sometimes it is only required that each edge of G′ is contained in some edge of G. Here we

shall use this more restrictive notion.
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2V (G′). A proper subhypergraph is a subhypergraph G′ of G such that V (G′) 6=
V (G) or E(G′) 6= E(G). A copy of a some hypergraph G′ in a hypergraph G is a

subhypergraph of G isomorphic to G′. If U ⊆ V (G), F ⊆ E(G) let G[U ], G − U ,

and G − F denote the hypergraphs (U,E(G) ∩ 2U ), (V (G) \ U,E(G) ∩ 2V (G)\U ),

and (V (G), E(G) \ F ), respectively. In particular if u, v ∈ V (G) then G − {u, v}
is the hypergraph obtained by removing u and v from G, not the edge uv only. If

u ∈ V (G), e ∈ E(G), then let G− u = G− {u} and let G− e = G− {e}.
A vertex disjoint union G+H of hypergraphs G and H is a hypergraph F such

that there is a partition V (F ) = V1∪̇V2 where F [V1] is isomorphic to G, F [V2] is

isomorphic to H, and each edge of F is contained in V1 or in V2. For a hypergraph

G and a positive integer n let nG denote a vertex disjoint union of n copies of G.

A hypergraph is r-uniform if all its edges are of size r. A graph is a 2-uniform

hypergraph, and the terms subgraph and copy of a graph are defined accordingly.

We write G′ ⊆ G if G′ is a subgraph of G′ and call G a supergraph of G′. For

convenience we write uv = vu = {u, v} for the edges of a graph. The Cartesian

product G×H of graphs G and H is a graph with vertex set V (G)×V (H) and edge

set {{(u, v), (x, y)} | u = x, vy ∈ E(H) or v = y, ux ∈ E(G)}.
The degree d(u) = dG(u) of a vertex u in a hypergraph G is the total number of

edges in G that contain u and we usually omit the subscript. A vertex of degree 1

is called a leaf . A vertex u of a hypergraph is isolated if it is not contained in any

edge and an edge uv is isolated if all its vertices are leafs. A pendant edge is an edge

incident to a leaf and some vertex of degree at least 2 . The minimum degree δ(G)

is the smallest and the maximum degree ∆(G) is the largest degree of vertices in G.

A hypergraph is r-regular if all its vertices are of degree r and it is t-degenerate if

each subhypergraph of G has a vertex of degree at most t.

Observation 1.5. A hypergraph G is t-degenerate if and only if there is an order of

V (G) such that each vertex is adjacent to at most t of its predecessors in the order.

A hypergraph G is k-partite if there is a partition V (G) = V1∪̇ · · · ∪̇Vk such that

|E ∩ Vi| 6 1 for each E ∈ E(G) and i ∈ [k]. A 2-partite hypergraph is also called

bipartite. A vertex coloring of a hypergraph is proper if each edge contains at least

two vertices of distinct colors. The chromatic number χ(G) of a hypergraph G is

the smallest number of colors among all proper of colorings of G.

Observation 1.6. If a hypergraph G is k-partite then χ(G) 6 k. The reverse

statement holds for graphs, but may fail for hypergraphs with larger edges.

The independence number α(G) of a hypergraph G is the size of a largest set

of vertices not containing any edge of G completely. The clique number ω(G) of

an r-uniform hypergraph G is the size of a largest set X of vertices such that each

subset of X of size r is an edge in G. Observe that ω(G), α(G) > min{|V (G)|, r−1}
for any r-uniform hypergraph G.
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A path of length n, n > 0, is a graph with n + 1 vertices and n edges e1, . . . , en

such that ei ∩ ej 6= ∅ if and only if |i− j| = 1. For a path P with vertices v0, . . . , vn

and edges vi−1vi, i ∈ [n], we write P = v0 · · · vn. For vertices u and v in some

graph G, a u-v-path P is a path in G starting with u and ending with v, i.e., a path

v1 · · · vn with u = v1, v = vn. Given a path P = v1 · · · vn and some i ∈ [n] let viP

= vi . . . vn and Pvi = v1 · · · vi. Similarly for a neighbor v 6∈ V (P ) of v1 in G let

vP = vv1 · · · vn. A graph G is connected if there is a u-v-path for any two distinct

vertices u and v in G. The distance of two vertices u, v of a connected graph G is

the length of a shortest u-v-path in G. The diameter of a connected graph G is the

largest distance among pairs of vertices from G.

A cycle of length n, n > 2, is a hypergraph that consists of n distinct hyperedges

E0, . . . , En−1, such that there are n distinct vertices v0, . . . , vn−1 with {vi, vi+1} ⊆
Ei, 0 6 i 6 n − 1 (indices taken modulo n). The girth, denoted girth(G), of a

hypergraph is the shortest length of a cycle in G. In particular if two edges of a

hypergraph share two vertices then the girth is 2. If G contains no cycles then G

is called acyclic or forest and we write girth(G) =∞. A tree is a connected forest.

Similarly the odd girth, denoted girtho(G), of a hypergraph is the shortest length of

a cycle of odd length in G. If no such cycle exists then we write girtho(G) =∞.

Observation 1.7. Let G be a hypergraph. We have girth(G) =∞ if and only if G

is a forest, and girtho(G) =∞ if and only if G is bipartite.

Let Kn denote a complete graph on n vertices, let Kn,m denote a complete

bipartite graph with parts of size n and m, let Mn denote a (perfect) matching with

n edges, and let Pn and Cn denote a path respectively a cycle on n vertices. Let

Ht,d denote a graph on t+1 vertices such that one vertex has degree d and the other

vertices induce a copy of Kt.

Ordered Graphs

An ordered graph is a graph equipped with a linear ordering of its vertex set. For

vertices u and v of an ordered graph G where u precedes v in the ordering of G

we write u 6 v and, if u 6= v, we write u < v. We consider the vertices of an

ordered graph laid out along a horizontal line from left to right such that a vertex

u is to the left of a vertex v if u < v, and to the right if v < u. We refer to the

(unordered) graph G̃ = (V (G), E(G)) as the underlying graph of an ordered graph G.

An (ordered) subgraph of an ordered graph G is a subgraph of G̃ that inherits the

ordering of vertices from G. Two ordered graphs G and G′ with V (G) = (u1, . . . , un)

and V (G′) = (v1, . . . , vm) are isomorphic if n = m and uiuj is an edge in G if and

only if vivj is an edge in G′ for all i, j ∈ [n]. A copy of an ordered graph H in some

ordered graph G is an ordered subgraph of G that is isomorphic to H. For two sets

U , U ′ ⊆ V (G) we write U � U ′ (U ≺ U ′) if u 6 u′ (u < u′) for all u ∈ U and u′ ∈ U ′.
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G1 G2 G3

I V1 V2

Figure 1.9: Three ordered graphs with exactly three segments each (gray bubbles),
where G1 is intervally and segmentally connected, G2 is segmentally but not inter-
vally connected, and G3 is neither intervally nor segmentally connected. Here G2 is
not intervally connected since there is no edge between I and the remaining vertices,
and G3 is not segmentally connected since there is no edge between V1 and V2.

For two subgraphs of G′, G′′ of G we write G′ � G′′ (G′ ≺ G′′) if V (G′) � V (G′′)

(V (G′) ≺ V (G′′)). A vertex v is between vertices u and w if u 6 v 6 w.

An interval of an ordered graph G is a set I of consecutive vertices of G, i.e.,

for any u, v ∈ I, z ∈ V (G) with u 6 z 6 v we have z ∈ I. A segment of an ordered

graph G is a maximal induced subgraph G′ of G such that V (G′) forms an interval

in V (G) and for each z ∈ V (G′) that is neither leftmost nor rightmost in G′ there

is an edge uv in G′ with u < z < u. An inner cut vertex of an ordered graph G is a

vertex that is contained in precisely two segments. See Figure 1.9.

Observation 1.8. An ordered graph G is the union of its segments where two seg-

ments are either vertex disjoint or share exactly one inner cut vertex of G. In

particular, the number of inner cut vertices of G is exactly one less than the number

of its segments.

We say that an inner cut vertex v of an ordered graph G splits G into ordered

graphs G1 and G2, where G1 is induced by all vertices u with u 6 v in G and G2 is

induced by all vertices u with v 6 u.

An ordered graph G with at least two vertices is segmentally connected if for any

partition V1∪̇V2 = V (G) of the vertices of G into two disjoint intervals V1 and V2

there is an edge with one endpoint in V1 and the other endpoint in V2. An ordered

graph G is intervally connected if for each nonempty interval I of vertices of G, that

does not contain all vertices of G, there is an edge in G with one endpoint in I and

one endpoint not in I. See Figure 1.9.

Observation 1.9. Let G be an ordered graph on at least two vertices. Then the

following properties hold.

(a) If G is connected, then G is intervally connected.

(b) If G is intervally connected, then G is segmentally connected.

(c) G is segmentally connected if and only if each segment of G contains at least

one edge.

Two edges uv and u′v′ of an ordered graph cross if u < u′ < v < v′. An

ordered graph G is called non-crossing if it contains no crossing edges and crossing
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G G′ G G′

G tG′ G ◦G′

G G

3⊕2 G

Figure 1.10: Three different types of unions of ordered graphs.

otherwise. Two distinct ordered subgraphs G1 and G2 of the same ordered graph

G cross each other if there is an edge in G1 crossing an edge in G2. A vertex in an

ordered graph G is called reducible, if it is of degree 1 in G, is leftmost or rightmost

in G, and has a common neighbor with the vertex next to it.

Any ordinary graph parameter like chromatic number, clique number, or girth

is determined by the underlying graph of an ordered graph. The interval chromatic

number χ<(G) of an ordered graph G is the smallest size of a partition of V (G)

into intervals that are independent sets in G. For an ordered graph H let Forb<(H)

denote the set of ordered graphs that do not contain H as a subgraph. For a positive

integer n and an ordered graphH, let ex<(n,H) denote the ordered extremal number ,

i.e., the largest number of edges in an ordered graph on n vertices in Forb<(H). An

ordered graph is called χ-avoidable if for each integer k there is G ∈ Forb<(H) with

χ(G) > k, and χ-unavoidable otherwise.

We shall frequently use the following unions of ordered graphs G and G′. The

intervally disjoint union GtG′ of ordered graphs G and G′ is a vertex disjoint union

of G and G′ where all vertices of G are to left of all vertices of G′. The concatenation

G ◦G′ is obtained from GtG′ by identifying the rightmost vertex in the copy of G

with the leftmost vertex in the copy of G′. For an integer b > 0 we shall write tbG
and ◦bG for an intervally disjoint union respectively a concatenation of b copies of

G. Moreover a ⊕b G denotes the ordered graph obtained from ta+1K1 t (tbG) by

connecting the leftmost vertex of this union with the first a vertices next to it and

the leftmost vertex of each of the b copies of G. See Figure 1.10 for an illustration.

The reverse G of an ordered graph G is the ordered graph obtained by reversing the

ordering of the vertices in G.

The length of an edge xy, x < y, of an ordered graph G is the number of vertices

v ∈ V (G) such that x 6 v < y. A shortest edge among all the edges incident to a

vertex x is referred to as a shortest edge incident to x. Note that there is either one

or two shortest edges incident to a given vertex in a connected ordered graph on at

least two vertices. Let U be a set of vertices of an ordered tree T , such that each

vertex in U has exactly one shortest edge incident to it. For such a set U , let S(U)

be the set of edges eu such that eu is a shortest edge incident to u, u ∈ U . We call

an ordered tree T monotonically alternating if there is a partition V (T ) = L∪̇R,

with L ≺ R, such that L and R are independent sets in T , E = S(L) ∪ S(R), and

neither S(L) nor S(R) contains a pair of crossing edges. See Figure 1.11.
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vu

L }

Figure 1.11: The ordered path on the left is monotonically alternating. The path in
the middle contains crossing edges in S(L) and the edge uv on the right is neither
shortest incident to u nor to v. So both paths are not monotonically alternating.

}

d4

}
d1

}

d2

}

d3

Figure 1.12: A right star (left), a right caterpillar with defining sequence d1 = 4,
d2 = 3, d3 = 2, d4 = 4 (middle), and a monotone path (right).

A bonnet is an ordered graph on four or five vertices u1 < u2 6 u3 < u4 6 u5

with edge set {u1u2, u1u5, u3u4}, or on vertices u1 6 u2 < u3 6 u4 < u5 with edge

set {u1u5, u4u5, u2u3}. See Figure 1.2 (first row). An ordered path P = u1 · · ·un is

a monotone path if u1 < · · · < un. An ordered path P = u1 · · ·un is a tangled path if

for a vertex ui, 1 < i < n, that is either leftmost or rightmost in P there is an edge in

the subpath u1, . . . , ui that crosses an edge in the subpath ui . . . un. See Figure 1.2

(second row). A monotone k-matching is an ordered matching with vertices u1 <

· · · < u2k and edges u2i−1u2i, 1 6 i 6 k. An all crossing k-matching is an ordered

matching with vertices u1 < · · · < u2k and edges uiui+k, 1 6 i 6 k, for some k > 2.

A nested k-matching is an ordered matching with vertices u1 < · · · < u2k and edges

uiu2k+1−i, 1 6 i 6 k, for some k > 2. A right star ~Sk is an ordered star with k

leafs to the right of the center. A right or a left star with two edges is also called a

bend . A right caterpillar is an ordered tree consisting of segments Si � · · · � S1, for

some i > 1, where each segment is a right star with at least one edge. The defining

sequence of a right caterpillar with segments Si � · · · � S1 is |E(S1)|, . . . , |E(Si)|.
Similarly we define left caterpillars. See Figure 1.12 for an illustration.

Ramsey Theory

Given graphs H1, . . . ,Hr a graph F is a Ramsey graph3 of (H1, . . . ,Hr) if for any

r-coloring of the edges of F there is for some i ∈ [r] a monochromatic copy of Hi in

color i, that is, one with all edges of color i. In this case we write F
r→ (H1, . . . ,Hr) to

indicate this fact. Then let R(H1, . . . ,Hr) = {F | F r→ (H1, . . . ,Hr)}. The Ramsey

number of (H1, . . . ,Hr) is r(H1, . . . ,Hr) = min{|V (F )| | F ∈ R(H1, . . . ,Hr)}. In

case r = 2 we write F → (H1, H2) and if H1 = H2 = H we write F → H, R(H)

= R(H,H), r(H) = r(H,H). For t > 2 we write r(t) = r(Kt). For graphs F ,

3In some articles a Ramsey graph is graph with no large cliques and independent sets, corre-
sponding to a 2-coloring of Kn with no monochromatic copies of small cliques.
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G and for ε > 0 we write F
ε→ G if for any set S ⊆ V (F ) with |S| > ε|V (F )|,

we have F [S] → G. A graph F ∈ R(H1, . . . ,Hr) is a minimal Ramsey graph if

F ′ 6∈ R(H1, . . . ,Hr) for each proper subgraph F ′ of F .

We state the same definitions for ordered graphs and introduce separate notations

to avoid confusion. Given ordered graphs H1, . . . ,Hr an ordered graph F is an

ordered Ramsey graph of (H1, . . . ,Hr) if for any r-coloring of the edges of F there

is for some i ∈ [r] a monochromatic copy of Hi in color i, that is, one with all

edges of color i. In this case we write F
r→ (H1, . . . ,Hr) to indicate this fact. Then

let R<(H1, . . . ,Hr) = {F | F r→ (H1, . . . ,Hr)}. The ordered Ramsey number of

(H1, . . . ,Hr) is r<(H1, . . . ,Hr) = min{|V (F )| | F ∈ R<(H1, . . . ,Hr)}. In case r = 2

we write F → (H1, H2) and if H1 = H2 = H we write F → H, R<(H) = R<(H,H),

r<(H) = r<(H,H). A graph F ∈ R<(H1, . . . ,Hr) is a minimal ordered Ramsey

graph if F ′ 6∈ R<(H1, . . . ,Hr) for each proper ordered subgraph F ′ of F .





2

Chromatic Number of Ordered Graphs

In this chapter we study the chromatic number of ordered graphs under local con-

straints. First we consider forbidden ordered subgraphs in Section 2.1. As already

mentioned in the introduction the behavior is very different compared to (unordered)

graphs. We start with a discussion why the the main tool in the aforementioned

results for graphs as well as for directed graphs, the greedy embedding method,

does not work for ordered graphs. Then we present our main results concerned with

χ-avoidable and χ-unavoidable ordered graphs.

In Section 2.2 we present a general framework to model local constraints for or-

dered graphs. First we show how to model different constraints, including forbidden

ordered subgraphs, using this framework. Then we show how to use the abstract,

algebraic setting of this framework to deduce bounds on the chromatic number of

ordered graphs. For more specific results of this kind we refer to [7].

Section 2.3 contains some structural lemmas and provides several reductions that

are used in the proofs of the main results and that might be of independent interest.

Then we give the proofs of Theorems 2.1–2.4 and 2.6 in Section 2.4. A summary

of our results for forbidden ordered forests with at most three edges is presented in

Section 2.5. Finally, Section 2.6 contains conclusions and open questions.

2.1 Forbidden Ordered Subgraphs

In this section we consider the behavior of the chromatic number of ordered graphs

with forbidden ordered subgraphs. For an ordered graph H on at least two vertices1

Forb<(H) is the set of all ordered graphs that do not contain a copy of H. We

consider the function κ<(H) = sup{χ(G) | G ∈ Forb<(H)} and callH χ-unavoidable

if κ< 6=∞ and χ-avoidable otherwise.

Recall Observation 1.2 in Section 1.3 which states that an (unordered) graph

H is χ-avoidable if and only if H contains a cycle. The case when H contains a

cycle was settled by the existence of graphs of arbitrarily large chromatic number

and girth [61]. Any ordering of such a graph yields an ordered graph of arbitrarily

1If H has only one vertex, then Forb<(H) consists only of the graph with empty vertex set
and one can think of κ<(H) as being equal to 0. However, we will avoid this pathological case
throughout.

27
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T

u v uu

v
H

u

v

Figure 2.1: Left: A copy of H − v (bold edges) in a directed graph where (the
copy of) u has many outgoing edges. We see that we can embed v and find a copy
of H. Right: A copy of an ordered tree T − v (bold edges) in some ordered graph
where (the copy of) u has many neighbors to the right but there is no possibility to
embed v in order to obtain a copy of T .

large chromatic number and girth. Hence any ordered graph containing a cycle

is still χ-avoidable, see Theorem 2.1 below. Here we show that it is no longer

true that an ordered graph H is χ-unavoidable if H is acyclic. Specifically we

present χ-avoidable ordered forests in Theorem 2.1. When H is connected, we

reduce the problem of determining whether H is χ-avoidable to a well behaved class

of trees, which we call monotonically alternating trees. We completely classify non-

crossing χ-avoidable ordered graphs H. In case of non-crossing χ-avoidable H, we

also provide specific upper bounds on κ<(H) in terms of the number of vertices in

H. Note that κ<(H) > |V (H)|−1 for any ordered graph H, since a complete graph

on |V (H)| − 1 vertices is in Forb<(H).

2.1.1 The Greedy Embedding Fails

Next we shall have a closer look at a proof of χ-unavoidability for directed graphs

whose underlying graph is acyclic [25], and see why this approach fails for ordered

graphs. Let H be such a directed graph on k vertices and let G be a directed graph

of chromatic number at least k2. We prove that G contains a copy of H by induction

on k. If k 6 2 this is easy to see. So suppose that k > 3 and let uv be an edge

in H where v is a leaf in (the underlying forest of) H. Say uv is oriented from

u to v. Let O denote the set of vertices of G with at most k − 1 outgoing edges.

Then the subgraph of G induced by O is 2(k − 1)-degenerate and hence (2k − 1)-

colorable. Thus the vertices in V (G) \ O induce a graph of chromatic number at

least k2 − (2k − 1) = (k − 1)2. Inductively, this graph contains a copy H ′ of H − v.

Consider the vertex corresponding to u in H ′. Since it has k outgoing edges in G

and |V (H ′)| = k−1, we can extend H ′ to a copy of H in G. See Figure 2.1 (left). An

even simpler approach can be used in the undirected, unordered setting. A graph G

of chromatic number at least k contains a subgraph G′ of minimum degree k − 1.

Now one can embed any forest on k vertices in G′ greedily. We refer to this approach

as the greedy embedding .

Now, when mimicking this approach for an ordered tree T we fail in the last step

(the greedy embedding). Indeed, consider an ordered tree T on k vertices and an
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u1 u2 u4 u5 u1 u2u3 u4u5 u1 u2 u3 u5

u1 u2 u4 u5 u1u2 u3u4 u5 u1 u3 u4 u5

ui unu1 ui u1 un

Figure 2.2: All bonnets (first two rows), two tangled paths (last row, left and middle),
and a crossing path that is not tangled (last row, right).

edge uv in T where v is a leaf in T and to the right of u. Say we found a copy of

T − v where the copy of u has k neighbors to the right. Then there still might be

no copy of T , as shown in Figure 2.1 (right).

Observation 2.1. The greedy embedding fails for ordered forests.

2.1.2 The Main Results

In order to state our main result we recall some definitions. Two edges uv and u′v′

of an ordered graph cross if u < u′ < v < v′ and an ordered graph H is called non-

crossing if it contains no crossing edges. The bonnets are exactly those five ordered

graphs given in the first two rows of Figure 2.2. An ordered path P = u1 · · ·un is

tangled if for a vertex ui, 1 < i < n, that is either leftmost or rightmost in P there

is an edge in the subpath u1 · · ·ui that crosses an edge in the subpath ui · · ·un. See

Figure 2.2 (last row, left and middle). Note that there are crossing paths which are

not tangled, see for example Figure 2.2 (last row, right).

Theorem 2.1. If an ordered graph H contains a cycle, a bonnet, or a tangled path,

then H is χ-avoidable.

Next we describe the structure of ordered trees that neither contain a bonnet

nor a tangled path. Recall that a segment of an ordered graph G is a maximal

induced subgraph G′ of G such that V (G′) forms an interval in V (G) and for each

z ∈ V (G′) that is neither leftmost nor rightmost in G′ there is an edge uv in G′

with u < z < u. See Figure 2.3. Note that the segments of an ordered graph

G are uniquely determined and each segment has at least two vertices, provided

|V (G)| > 2. So, G is the union (more precisely the concatenation) of its segments

where two segments are either vertex disjoint or share exactly one vertex which is

an inner cut vertex of G. For a set of vertices U the set S(U) denotes the set of

edges eu such that eu is a shortest edge incident to u, u ∈ U . Recall that an ordered

tree T is monotonically alternating if there is a partition V (T ) = L∪̇R, with L ≺ R,

such that L and R are independent sets in T , E = S(L) ∪ S(R), and neither S(L)

nor S(R) contains a pair of crossing edges. See Figure 2.4.
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Figure 2.3: Segments of an ordered graph. The bold vertices are either inner cut-
vertices, leftmost, or rightmost.

L R

Figure 2.4: A monotonically alternating tree. Each edge on top is the shortest edge
incident to a vertex in R and each edge at the bottom is the shortest edge incident
to a vertex in L.

Theorem 2.2. An ordered tree T contains neither a bonnet nor a tangled path if

and only if each segment of T is monotonically alternating. In particular if H is a

connected χ-unavoidable ordered graph, then each segment in H is a monotonically

alternating tree.

Note that a non-crossing graph does not contain tangled paths. We characterize

all non-crossing χ-avoidable ordered graphs in the following theorem.

Theorem 2.3. Let T be a non-crossing ordered graph on k vertices, k > 2. Then

T is χ-unavoidable if and only if T is a forest that does not contain a bonnet.

Moreover, if T is χ-unavoidable then k − 1 6 κ<(T ) 6 2k. If, in addition

T is connected, then κ<(T ) 6 2k − 3. Finally, for each k > 4 there is an χ-

unavoidable non-crossing ordered tree T with κ<(T ) > k, while for k = 2, 3 we have

κ<(T ) = k − 1.

For certain classes of ordered forests we prove better upper bounds on κ<. The-

orem 2.4 below summarizes several results on ordered forests which are either not

covered by Theorem 2.3 or improve the upper bound from Theorem 2.3 significantly.

A monotone k-matching is an ordered matching with vertices u1 < · · · < u2k and

edges u2i−1u2i, 1 6 i 6 k, a nested k-matching is an ordered matching with vertices

u1 < · · · < u2k and edges uiu2k+1−i, 1 6 i 6 k, and an all crossing k-matching is

an ordered matching with vertices u1 < · · · < u2k and edges uiui+k, 1 6 i 6 k. See

Figure 2.5 We may omit the parameter k if it is not important. A generalized star

is a union of a star and isolated vertices. Finally we introduce a special family of

star forests called tuple matchings. For positive integers m and t and a permutation

π of [t], an m-tuple t-matching M = M(t,m, π) is an ordered graph with vertices

v1 < · · · < vt(m+1), where each edge is of the form vivt+j+m(π(i)−1) for 1 6 i 6 t,

1 6 j 6 m. So an m-tuple t-matching is a vertex disjoint union of t stars on m

edges each, where v1, . . . , vt are the centers of the stars that are to the left of all

leaves and the leaves of each star form an interval in M , so that these intervals are
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Figure 2.5: A monotone matching (left), a nested matching (middle), and an all
crossing matching (right).

ordered according to the permutation π. The third item in the following theorem

is an immediate corollary of a result by Weidert [142] who provides a linear upper

bound on the extremal function for M . The other results are based on linear upper

bounds for the extremal functions of nestings due to Dujmović and Wood [57], on

the extremal function of crossings due to Capoyleas and Pach [35] and lower bounds

for ordered Ramsey numbers due to Conlon et al. [46] and independently Balko et

al. [11].

Theorem 2.4. Let T be an ordered forest on k vertices, k > 2.

(a) If each segment of T is either a generalized star, a nested 2-matching, or an

all crossing 2-matching, then κ<(T ) = k − 1.

(b) If each segment of T is either a nested matching, an all crossing matching, a

generalized star, or a non-crossing tree without bonnets, then k−1 6 κ<(T ) 6

2k − 3.

(c) If T is an m-tuple t-matching for some positive integers m and t, then k−1 6

κ<(T ) 6 210k log(k).

(d) There is a positive constant c such that for each even integer k > 4 there is a

matching M on k vertices with κ<(M) > 2
c

log(k)2

log log(k) .

2.1.3 Connections to Other Parameters

Connection to Extremal Numbers In order to prove that some ordered forest

is χ-unavoidable we can use the following connection between the extremal number

ex<(n,H) and the function κ<(H) for ordered graphs. If there is a constant c such

that ex<(n,H) < cn for every n, then

κ<(H) 6 2c. (2.1)

In particular κ<(H) is finite. Indeed, if ex<(n,H) < cn then any G ∈ Forb<(H) has

less than c |V (G)| edges, and hence has a vertex of degree less than 2c. Moreover,

if G ∈ Forb<(H), then each subgraph of G is in Forb<(H). Thus each subgraph

has a vertex of degree less than 2c and so G is (2c − 1)-degenerate. Therefore

χ(G) 6 2c. Recall that ex<(n,H) can be linear in n only if χ<(H) 6 2, due to

Theorem 1.1. Recall also that when ex(n,A(H)) is linear in n, one can guarantee

that ex<(n,H) ∈ O(n log n), but this is not enough to claim that κ<(H) 6= ∞.
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For some ordered graphs H with interval chromatic number 2, one can show that

ex<(n,H) is indeed linear [104, 121, 142]. This in turn, implies that κ<(H) is finite

as argued above. On the other hand, we see that there is no equivalence between

κ<(H) being finite and ex<(n,H) being linear in n because there are dense ordered

graphs avoiding H for some ordered graphs H with small κ<(H). A specific example

for such a graph H is an ordered path u1u2u3, with u1 < u2 < u3. One can see from

Theorem 2.4 that κ<(H) = 2 but ex<(n,H) = n2/4+o(n2) by Theorem 1.1. Here a

complete bipartite ordered graph G on n vertices with all vertices of one bipartition

class to the left of all other vertices does not contain H and has n2/4 edges.

Connection to Ordered Ramsey Numbers There are also connections be-

tween the Ramsey numbers r<(H) for ordered graphs and the function κ<(H). If

the edges of Kn, n = r(H) − 1, are colored in two colors without monochromatic

copies of H, then both color classes form ordered graphs G1 and G2 not containing

H as an ordered subgraph. Then G1 or G2 has chromatic number at least
√
n, since

a product of proper colorings of G1 and G2 yields a proper coloring of Kn. Therefore

κ<(H) >
√
r<(H)− 1. This leads to the lower bound in Theorem 2.4(d) for certain

ordered matchings. An overview of ordered Ramsey numbers is given in Section 1.5.

2.2 Local Constraints: A General Framework

In this section we present a general framework to model local constraints for ordered

graphs. In order to formulate the framework we need to introduce a slightly different

notion of ordered graphs. An integer graph is a graph (V,E) with V ⊆ Z. Note

that an integer graph has an ordered set of vertices and hence is an ordered graph

in the sense of the previous section. On the other hand, any ordered graph is clearly

isomorphic to infinitely many integer graphs (as ordered graphs). Two integer graphs

G andG′ are isomorphic if V (G) = V (G′) and they are isomorphic as ordered graphs.

A discussion on the differences between ordered and integer graphs is given in the

conclusions in Section 2.6. There we show that the notion of integer graphs is mainly

for technical reasons.

We shall define local constraints on integer graphs based on so-called conflicts of

edges that can be expressed as linear inequalities in the coordinates of the endpoints

of the edges. To make this precise we need to introduce some notation. For a fixed

integer graph G = (V,E), each edge e ∈ E is associated with the (ordered) tuple

(u, v) where e = uv and u < v. Recall that for a positive integer s and two vectors

x, y ∈ Zs, x+ y denotes the componentwise addition, and x 6 y and x > y denote

the standard componentwise comparability of x and y. Further p denotes the vector

(p, . . . , p)> ∈ Zn. For s, t ∈ Z, s, t > 1, a matrix M ∈ Zs×2t, and a permutation

π ∈ St of [t], let π(M) denote the matrix where for each i ∈ [t] the (2i − 1)st and
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Figure 2.6: An integer graph G and its conflict graph M1(G) for M = ( + 0 0 − ).

the (2i)th column of M are permuted to positions 2π(i)− 1 respectively 2π(i). For

example if M = (1, 2, 3, 4, 5, 6) and π = 321, then π(M) = (5, 6, 3, 4, 1, 2).

For integers s and t with s > 1, t > 2, a matrix M ∈ Zs×2t, and a vector p ∈ Z2t

the conflict hypergraph Mp(G) of an integer graph G with respect to M and p is the

t-uniform hypergraph with

V (Mp(G)) = E(G),

E(Mp(G)) = {E ⊆ E(G) | |E| = t, E = {(u1, v1), . . . , (ut, vt)},
∃π ∈ St : π(M)(u1, v1, . . . , ut, vt)

> > p}.

We say that E ⊆ E(G) is conflicting if E ∈ E(Mp(G)). Observe that the labeling of

the edges in E does not affect the definition of a conflict hypergraph, since Mp(G) =

π(M)p(G) for each π ∈ St. Similarly, permuting the rows of M and p (with the

same permutation) does not affect conflicts. Now we shall give constraints on an

integer graph by restricting the structure of the conflict hypergraph. When writing

matrices we shall write “+” instead of +1 and “−” instead of −1 for convenience.

For example consider the matrix ( + 0 0 − ). Then two edges (u1, v1) and (u2, v2)

are in conflict if and only if u1 − v2 > 1 or u2 − v1 > 1. That is, one of the edges

has both endpoints to the right of the endpoints of the other edge. See Figure 2.6

for an example.

Forbidden Subgraph Given an ordered graph H (without isolated vertices2) we

can model the fact that an integer graph is in Forb<(H) as follows. Let t = |E(H)|
and let E(H) = {(a1, b1), . . . , (at, bt)}. For distinct i, j ∈ [2t] let r(i, j) denote the

vector in Z2t that equals −1 in coordinate i, equals 1 in coordinate j, and is 0

otherwise. Observe that for any vector x = (x1, . . . , x2t)
> ∈ Z2t we have r(i, j)>x =

xj − xi > 1 if and only if xi < xj , and r(i, j)>x, r(j, i)>x > 0 if and only if xi = xj .

Let (x1, . . . , x2t) = (a1, b1, . . . , at, bt), let A = {(i, j) | i, j ∈ [2t], i < j, xi = xj}, and

let B = {(i, j) | i, j ∈ [2t], i < j, (i, j) 6∈ A}. Further let s = 2|A| + |B|. We define

a matrix M ∈ Zs×2t and a vector p ∈ Zs as follows3. Let M (1), . . . ,M (s) denote

the rows of M and let p = (p1, . . . , ps)
>. Then for any pair (i, j) ∈ A there are σ,

σ′ ∈ [s] such that M (σ) = r(i, j), M (σ′) = r(j, i), and pσ = pσ′ = 0. Further for

any pair (i, j) ∈ B there is σ ∈ [s] with M (σ) = r(i, j) and pσ = 1. Moreover there

2The model is based on conflicting edges, so isolated vertices cannot be handled.
3For convenience we include several rows in the definition of M which are unnecessary by tran-

sitive relations between vertices.
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u1 u2 v2=u3 v3 v1
x1 x3 x4=x5 x6 x2

M =

x1 x2 x3 x4 x5 x6

− 0 + 0 0 0
0 + 0 0 0 −
0 0 − + 0 0
0 0 0 − + 0
0 0 0 + − 0
0 0 0 0 − +

p = ( + + + 0 0 + )
>

e1 e2 e3 e4 e5 e6
e7

e7
e1

e2

e3e4

e5

e6

G

H

Mp(G)

Figure 2.7: An ordered graph H, a matrix M , and a vector p such that Mp(G) is
empty if and only if G does not contain a copy of H. Here we do not state rows of
M which are unnecessary due to transitive relations between vertices.

are no other rows in M . See Figure 2.7 for an example. We claim that an integer

graph G contains a copy of H if and only if Mp(G) is not empty. Indeed if H̄ is a

copy of H in G then label its edges (ā1, b̄1), . . . , (āt, b̄t) such that the edge (āi, b̄i)

in H̄ corresponds to the edge (ai, bi) in H, i ∈ [t]. Then M(ā1, b̄1, . . . , āt, b̄t)
> > p

and thus Mp(G) is not empty. The other way round assume that Mp(G) is not

empty. Then there is a set of edges Ē = {(ā1, b̄1), . . . , (āt, b̄t)} in G such that

M(ā1, b̄1, . . . , āt, b̄t)
> > p. We see that the subgraph formed by Ē is isomorphic to

H (as an ordered graph).

Some ordered matchings can be modeled in another way. Recall the definitions

of monotone, nested, and all crossing matchings from Figure 2.5. Let

Mmon = ( + 0 0 − ) , Mnest =
(

+ 0 − 0
0 − 0 +

)
, M cross =

(− 0 + 0
0 + − 0
0 − 0 +

)
.

Note that for each of these three matrices M the conflict hypergraph is a graph. One

can easily check that an integer graph G does not contain a monotone, a nested, re-

spectively an all crossing matching on w+1 edges if and only if ω(M1(G)) 6 w, where

M = Mmon, Mnest, M cross respectively. Ordered graphs not having a large such

matching appear in the literature under the names arch, queue, respectively stack

layouts [57] (the latter is also called book or page embedding). We remark that the

edges of an ordered graph that contains no monotone (respectively nested) match-

ing on w+ 1 edges can be decomposed into w sets, each not containing a monotone

(respectively nested) pair of edges, while for an all crossing matching θ(w log(w))

such sets are required in the worst case [57]. For a matrix M , a vector p, and an

integer w > t− 1 let κω(M,p,w) = max{χ(G) | G integer graph, ω(Mp(G)) 6 w} if

this maximum exists and κω(M,p,w) =∞ otherwise.

Theorem 2.5. For each integer w > 1

(a) κω(Mmon,1, w) = 2w + 1 (Theorem 2.4),

(b) 2w + 1 6 κω(Mnest,1, w) 6 4w [57],

(c) 2w + 1 6 κω(M cross,1, w) 6 4w [35].
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Interestingly, nested and all crossing matchings behave very similar from this

point of view. Some insight is given by Ozsvárt [119] with enumerations of Forb<(H)

for all ordered graphs H on two edges without isolated vertices. In particular there

is an order (meaning the number of vertices) and size preserving bijection between

Forb<(H1) and Forb<(H2) where H1 is a nested and H2 is an all crossing 2-matching.

Other constraints In [7] we consider conflicting pairs of edges, that is, matrices

M ∈ Zs×4 and conflict graphs. Here we generalize some of our results to conflict

hypergraphs. For a matrix M ∈ Zs×2t, a vector p ∈ Zs, and an integer a > t − 1

let κα(M,p, a) = max{χ(G) | G integer graph, α(Mp(G)) 6 a} if this maximum

exists and κα(M,p, a) =∞ otherwise. Note that Mp(G) is a t-uniform hypergraph

and hence has independence number and clique number at least min{|E(G)|, t− 1}.
Further note that κω(M,p,w) = Xcli(M,p,w) and κα(M,p, a) = Xind(M,p, a) in

the notation of [7]. For x > 0 let4 b(x) be the largest integer k with
(
k
2

)
6 x. Since

α(Mp(K)), ω(Mp(K)) 6
(
k
2

)
for any complete integer graph K on k vertices we have

for all matrices M , vectors p, and integers a, w, with a, w > t− 1, that

κα(M,p, a) > b(a), κω(M,p,w) > b(w). (2.2)

We call a matrix M translation invariant if M1 = 0. Observe that a matrix

M ∈ Zs×2t is translation invariant if and only if for each τ ∈ Z and all vectors

x ∈ Z2t, p ∈ Zs we have Mx 6 p if and only if M(x+τ ) 6 p. That is, whether or not

a set of edges is conflicting does not depend on the absolute coordinates of the edges

but on their relative positions to each other. The first part of Theorem 2.6 below

shows that for many matrices M that are not translation invariant κω(M,p,w) =

κα(M,p, a) =∞ for all values of a, p, and w.

Theorem 2.6. Let a, s, t, w ∈ Z, with s > 1, t > 2, a, w > t− 1, let p ∈ Zs, and

let M ∈ Zs×2t. If M is not translation invariant, then κω(M,p,w) =∞. Moreover,

if M1 > 0 or M1 < 0, then κα(M,p, a) =∞.

If s = 1 and M = (m1, . . . ,m2t) is translation invariant, then the following holds.

(a) If
∑t

i=1m2i > max{p, 0}, then κα(M,p, a) =∞ and κω(M,p,w) = b(w).

(b) If
∑t

i=1m2i < p and for each i ∈ [t] we have m2i−1 +m2i = 0, m2i 6 0, then

κα(M,p, a) = b(a) and κω(M,p,w) =∞.

(c) If
∑t

i=1m2i > 0 or (
∑t

i=1m2i = 0 and there are i, j ∈ [t] with m2i,m2j−1 6= 0),

then κα(M,p, a) =∞.

(d) If for each i ∈ [t] we have m2i 6 0 and |m2i| > m2i−1 and for some i ∈ [t] we

have m2i < 0, then κω(M,p,w) =∞.

4For x > 1 we have
(√

2x
2

)
< x <

(√
2x+1
2

)
. Thus b(x) =

⌊√
2x
⌋

if x <
(b√2xc+1

2

)
and b(x) =⌊√

2x
⌋

+ 1 otherwise.
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In all cases above the vertices of any complete graph can be embedded into Z such

that the conflict hypergraph is either empty or complete t-uniform.

In case M and p do not satisfy any of the requirements of Theorem 2.6, the exact

behavior of κα(M,p, a) and κω(M,p,w) can be non-trivial. In [7] we determine

κα(M,p, a) and κω(M,p,w) exactly for all M ∈ {−1, 0, 1}1×4 and a, p, w ∈ Z, a,

w > 1. We also consider the matrix Mnest defined above and generalize the results

of Dujmović and Wood [57] for this matrix to arbitrary p. We state the results

from [7] in Table 2.1 without proof.

2.3 Structural Lemmas and Reductions

In this section we first analyze the structure of ordered trees without bonnets and

tangled paths. This leads to a proof of Theorem 2.2 in Section 2.4. Afterwards we

establish several cases when κ<(H) can be upper bounded in terms of κ<(H ′) for a

subgraph H ′ of H. This allows us to reduce the problem of whether κ<(H) 6=∞ to

the problem of whether κ<(H ′) 6=∞. These reductions are the crucial tools in the

proof of Theorem 2.3 in Section 2.4.

Lemma 2.3.1. Let T be an ordered tree that does not contain a tangled path and

let u < v < w be vertices in T . If uw is an edge in T , then all vertices of the path

connecting u and v in T are between u and w.

Proof. Let P be the path in T that starts with v and ends with the edge uw. Let `

denote the leftmost vertex in P . Assume for the sake of contradiction that ` < u.

Then the path vP` contains neither u nor w and therefore crosses the edge uw.

Hence the paths P` and `P cross and P is tangled, a contradiction. Therefore

` = u. Due to symmetric arguments w is the rightmost vertex in P . Hence all

vertices in P are between u and w.

Lemma 2.3.2. Let T be an ordered tree that contains neither a bonnet nor a tangled

path and that has only one segment. Deleting any leaf from T yields an ordered tree

that contains neither a bonnet nor a tangled path and that has only one segment.

Proof. Let uv be an edge in T incident to a leaf u and let T ′ = T − u. Then clearly

T ′ is an ordered tree that contains neither a bonnet nor a tangled path. For the sake

of contradiction assume that T ′ has at least two segments and let x be an inner cut

vertex in T ′. Then x 6= u,v and is between u and v in T , since x is not an inner cut

vertex in T . By reversing T if necessary we may assume that v < x < u. Let P be

the v-x-path in T ′. All vertices in P are between v and u by Lemma 2.3.1 applied

to u, v and x. In addition no vertex in P is to the right of x since x is an inner cut

vertex in T ′. So all vertices in P are between v and x. Let vw denote the first edge

of P and let xy denote an edge in T ′ with x < y. Such an edge xy exists since the



2.3. STRUCTURAL LEMMAS AND REDUCTIONS 37

M p κα(M,p, a) κω(M,p,w)

M1 6= 0 p ∈ Z ∞ ∞

(0000)
p 6 0 ∞ b(w)

p > 0 b(a) ∞

(+0−0)
p 6 0 ∞ b(w)

(−0+0)
(0+0−)

p > 0 a+ 1 pw + 1.
(0−0+)

(−+00) p 6 1 ∞ b(w)

(00−+) p > 1 ∞ b(w − 1) + p− 1

(+−00) p 6 0 b(a)− p ∞
(00+−) p > 0 b(a) ∞

(−+−+)
p 6 2 ∞ b(w)

p > 2 ∞ b(w − p mod 2) +
⌈
p−2
2

⌉
(+−+−)

p 6 −1 b(a− (1− p) mod 2) +
⌈
−(p+1)

2

⌉
∞

p > −1 b(a) ∞

(+−−+) p 6 0 ∞ b(w)

(−++−) p > 0 ∞ pw + 1

(++−−) p 6 0 ∞ b(w)

(−−++) p > 0 ∞
⌊
pw+3

2

⌋

(+00−) p 6 0
⌊√

4a+ 3
⌋
− p w + 1

(0−+0) p > 0
⌊√

4a+ 7
⌋
− 1 (p+ 1)w + 1

(−00+) p 6 1 ∞ b(w)

(0+−0) p > 2 ∞ b(w) + p− 2

(
+ 0 − 0
0 + 0 −

) p 6 0 2(1− p)a+ 1 6 · 6 4(1− p)a
⌊
w+3
2

⌋

p > 0 a+ 1 pw + 1

(
+ 0 − 0
0 − 0 +

)
p 6 0 (1− p)a+ 1 w + 1

= Mnest p > 0
⌊
a+3
2

⌋
2pw + 1 6 · 6 4pw

Table 2.1: Summary of results from [7] on values of κα(M,p, a) and κω(M,p,w) for
a, p, w ∈ Z, a, w > 1, and matrices M . The first row covers all non-translation
invariant M ∈ Z1×4, rows 2 to 11 cover all translation invariant M ∈ {−1, 0, 1}1×4,
and the last two rows cover two M ∈ {−1, 0, 1}2×4. Gray entries also from Theo-
rem 2.6 here.
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H2H1

v u v
H − {u, v}

u

H − u

Figure 2.8: An inner cut vertex v splitting an ordered graph into ordered graphs H1

and H2 (left), an isolated edge uv in an ordered graph H (middle), and a reducible
vertex u (right).

inner cut vertex x is not rightmost in T ′ and T ′ is connected. If u < y, then uvPxy

is a tangled path in T . If y < u, then u, v, w, x and y form a bonnet in T . In both

cases we have a contradiction and hence T ′ has only one segment.

Lemma 2.3.3. If T is an ordered tree that contains neither a bonnet nor a tangled

path and that has only one segment, then χ<(T ) 6 2.

Proof. We prove the claim by induction on k = |V (T )|. If k 6 2, then clearly

χ<(T ) 6 2. So assume that k > 3. Let u denote a leaf in T , v its neighbor in T , and

let T ′ = T − u. Then T ′ has only one segment and contains neither a bonnet nor a

tangled path due to Lemma 2.3.2. Inductively χ<(T ′) 6 2, i.e., there is a partition

L∪̇R = V (T ′), with L ≺ R, such that all edges in T ′ are between L and R. By

reversing T if necessary we assume that v ∈ L. For the sake of contradiction assume

that χ<(T ) > 2. Then u < ` for the rightmost vertex ` in L, possibly ` = v. Let

w ∈ R denote one fixed neighbor of v in T ′. Then all vertices of the path connecting

` and v in T ′ are between v and w due to Lemma 2.3.1. In particular ` is incident

to an edge `x, x ∈ R, with x 6 w. Hence u < v, since otherwise there is a bonnet

on vertices v, u, `, x, and w in T . If there is a vertex y, u < y < v, then all vertices

of the path connecting y and u in T are between u and v due to Lemma 2.3.1. But

this is not possible since y, v ∈ L and all the neighbors of y are in R. Hence u is

immediately to the left of v in T . Note that u is not leftmost in T , since otherwise

v is an inner cut vertex in T . Consider the path P connecting a vertex left of u to

` in T . This path contains distinct vertices p, q ∈ L, r ∈ R, such that pr and rq are

edges in P and p < u < v 6 q < r. Hence there is a bonnet, a contradiction. This

shows that χ<(T ) 6 2.

We now present several reductions. Let us mention that some of the following

arguments are similar to reductions used for extremal numbers of matrices [121, 140].

Recall, that an inner cut vertex v of an ordered graph H splits H into ordered

graphs H1 and H2, where H1 is induced by all vertices u with u 6 v in H and H2

is induced by all vertices u with v 6 u. See Figure 2.8 (left).

Reduction Lemma 2.1. If an inner cut vertex v splits an ordered graph H into

ordered graphs H1 and H2 with κ<(H1), κ<(H2) 6=∞, then

κ<(H) 6 κ<(H1) + κ<(H2).
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Proof. Consider an ordered graph G ∈ Forb<(H). Let V1 denote the set of vertices

in G that are rightmost in some copy of H1 in G. Further let V2 = V (G) \ V1.

Then G[V2] ∈ Forb<(H1) by the choice of V1. Moreover G[V1] ∈ Forb<(H2), since

otherwise the leftmost vertex u in a copy of H2 in G[V1] is also a rightmost vertex

in a copy of H1 and hence plays the role of v in a copy of H in G. Thus χ(G) 6

χ(G[V1]) + χ(G[V2]) 6 κ<(H2) + κ<(H1) and since G ∈ Forb<(H) was arbitrary we

have κ<(H) 6 κ<(H1) + κ<(H2).

Reduction Lemma 2.2. If v is an isolated vertex in an ordered graph H with

|V (H)| > 3 and κ<(H − v) 6=∞, then κ<(H) 6 2κ<(H − v).

Proof. Consider an ordered graph G ∈ Forb<(H). If v is not leftmost or rightmost

in H, then let V1 be the set of vertices of G that are odd in the ordering of G

and let V2 = V (G) \ V1. Then G[V1], G[V2] ∈ Forb<(H − v), since for any two

vertices u < w in Vi there is a vertex v ∈ V3−i with u < v < w, i = 1, 2. Hence

χ(G) 6 χ(G[V1])+χ(G[V2]) 6 2κ<(H−v). If v is the leftmost or the rightmost in H,

assume without loss of generality the former. Then clearly G−u ∈ Forb<(H−v) for

the leftmost vertex u of G. Thus χ(G) 6 1+χ(G−u) 6 1+κ<(H−v) 6 2κ<(H−v).

Since G ∈ Forb<(H) was arbitrary we have κ<(H) 6 2κ<(H − v) in both cases.

Reduction Lemma 2.3. Let u and v be the leftmost and rightmost vertices in an

ordered graph H, |V (H)| > 4. If uv is an isolated edge in H and κ<(H−{u, v}) 6=∞,

then

κ<(H) 6 2κ<(H − {u, v}) + 1.

Proof. See Figure 2.8 (middle). Let H ′ = H − {u, v} and consider an ordered

graph G ∈ Forb<(H). If G does not contain a copy of H ′, then χ(G) 6 κ<(H ′) 6

2κ<(H ′) + 1. So, assume that G contains a copy of H ′. Let V1∪̇ · · · ∪̇Vp denote a

partition of V (G) into disjoint intervals with V1 ≺ · · · ≺ Vp, vi being the leftmost

vertex in Vi, 1 6 i 6 p, such that G[Vi] ∈ Forb<(H ′), 1 6 i 6 p, and G[Vi ∪ {vi+1}]
contains a copy of H ′, 1 6 i < p. Note that one can find such a partition greedily by

iteratively choosing a largest interval from the left that does not induce any copy of

H ′ in G. If p > 3, there are no edges xy with x ∈ Vi and vi+2 < y, since otherwise

xy together with a copy of H ′ in G[Vi+1 ∪ {vi+2}] forms a copy of H, 1 6 i 6 p− 2.

Choose a set Φ of 2κ<(H ′) + 1 distinct colors. Let Φ1, . . . ,Φp ⊂ Φ denote

subsets of colors such that |Φi| = κ<(H ′), 1 6 i 6 p, Φi ∩ Φi+1 = ∅, 1 6 i < p,

and, if p > 3, Φi+2 \ (Φi ∪ Φi+1) 6= ∅, 1 6 i 6 p − 2. Note that such sets Φi can

be chosen greedily from Φ. Since G[Vi] ∈ Forb<(H ′) we can color G[Vi] properly

with colors from Φi, 1 6 i 6 p, such that, if i > 3, vi is colored with a color in

Φi \ (Φi−1 ∪ Φi−2). This yields a proper coloring of G using colors from the set Φ

only. Hence χ(G) 6 2κ<(H ′) + 1. Since G ∈ Forb<(H) was arbitrary we have

κ<(H) 6 2κ<(H − {u, v}) + 1.
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Recall, that a vertex in an ordered graph H is called reducible, if it is a leaf in

H, is leftmost or rightmost in H and has a common neighbor with the vertex next

to it. See Figure 2.8 (right).

Reduction Lemma 2.4. Let H denote an ordered graph with |V (H)| > 3. If u is

a reducible vertex in H and κ<(H − u) 6=∞, then

κ<(H) 6 2κ<(H − u).

Moreover, for each G ∈ Forb<(H) there is G′ ⊆ G such that G′ is 1-degenerate and

deleting the edges of G′ from G yields a graph from Forb<(H − u).

Proof. By reversing H if necessary we may assume that the reducible vertex u is

leftmost in H. Let G ∈ Forb<(H). Let E denote the set of edges in G consisting

for each vertex w in G of the longest edge to the left incident to w in G, if such an

edge exists.

Assume that there is a copy H ′ of H−u in G−E. Let v denote the vertex in H ′

corresponding to the vertex immediately to the right of u in H and let w denote the

vertex in H ′ corresponding to the neighbor of u in H. Then v is leftmost in H ′ and

there is an edge between v and w in H ′. Thus, there is an edge xw in E incident

to w in G with x < v. Hence H ′ extends to a copy of H in G with the edge xw, a

contradiction. This shows that G− E ∈ Forb<(H − u).

Finally observe that the graph G′ with the edge-set E is 1-degenerate and hence

2-colorable. This shows that χ(G) 6 χ(G′)χ(G − E) 6 2κ<(H − u) and since

G ∈ Forb<(H) was arbitrary we have κ<(H) 6 2κ<(H − u).

Having Reduction Lemma 2.4 at hand, we are now ready to prove that every

non-crossing monotonically alternating tree T satisfies κ<(T ) 6=∞.

Lemma 2.3.4. If T is a non-crossing monotonically alternating tree with at least

two vertices, then

κ<(T ) 6 2|V (T )| − 3.

Proof. Let k = |V (T )| and G ∈ Forb<(T ). We shall prove that G can be edge-

decomposed into (k − 2) 1-degenerate graphs by induction on k.

If k = 2, then T consists of a single edge only. Hence G has an empty edge-set

and there is nothing to prove.

So consider k > 3 and assume that the induction statement holds for all smaller

values of k. Assume for the sake of contradiction that the leftmost vertex u and the

rightmost w in T are of degree at least 2. Then the longest and the shortest edge

incident to w do not coincide. Let e be the longest edge incident to w. Since in

a monotonically alternating tree each edge is the shortest edge incident to its left

or right endpoint, e is the shortest edge incident to its left endpoint. In particular,

e 6= uw because u is incident to another edge e′, shorter than uw. Thus e and e′
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cross since χ<(T ) 6 2, a contradiction. Hence the leftmost or the rightmost vertex

is a leaf in T .

By reversing T if necessary we assume that u is of degree 1. We shall show

that u is a reducible leaf. To do so, we need to show that the vertex x that is

immediately to the right of u is adjacent to the neighbor v of u. Assume for the sake

of contradiction that x is not adjacent to v. Note that v is adjacent to a leaf, so it

is not a leaf itself. Let e′′ be an edge incident to v, e′′ 6= uv. Then an edge incident

to x crosses either uv or e′′ since χ<(T ) 6 2, a contradiction. Thus x is adjacent to

v and u is a reducible leaf in T .

Therefore, by Reduction Lemma 2.4, there is a 1-degenerate subgraph G′ of G

such that removing the edges of G′ from G yields a graph G′′ ∈ Forb<(T − u).

Observe that the tree T − u is non-crossing and monotonically alternating with

k > |V (T − u)| = k − 1 > 2. Hence G′′ can be edge-decomposed into (k − 3)

1-degenerate graphs G1, . . . , Gk−3 by induction. Thus the graphs G1, . . . , Gk−3, G
′

decompose G into (k − 2) 1-degenerate graphs, proving the induction step.

If k = 2, we know that G has no edges and χ(G) = 1 6 2|V (T )| − 3. So assume

that k > 3. Since G is a union of (k−2) 1-degenerate graphs, each subgraph of G is a

union of (k−2) 1-degenerate graphs, so each subgraph G∗ of G on at least one vertex

that has at most (k−2)(|V (G∗)|−1) edges, and thus has a vertex of degree at most

2(k−2)−1. ThereforeG is (2(k−2)−1)-degenerate, so χ(G) 6 2(k−2) 6 2|V (T )|−3.

Since G ∈ Forb<(H) was arbitrary we have κ<(H) 6 2|V (T )| − 3.

Reduction Lemma 2.5. Let T denote an ordered matching with at least two edges.

If uv is an edge in T , u and v are consecutive, and κ<(T − {u, v}) 6=∞, then

κ<(T ) 6 3κ<(T − {u, v}).

Proof. Let G ∈ Forb<(T ) with vertices v1 < · · · < vn. We shall prove that χ(G) 6

3κ<(T − {u, v}) by induction on n = |V (G)|. If n 6 3κ<(T − {u, v}), then the

claim holds trivially. So assume that n > 3κ<(T − {u, v}) > 3. If there are

two consecutive vertices x, y in G that are not adjacent, then let G′ denote the

graph obtained by identifying x and y. Then G′ ∈ Forb<(T ) and χ(G) 6 χ(G′).

Hence χ(G) 6 χ(G′) 6 3κ<(T − {u, v}) by induction. If each pair of consecutive

vertices in G forms an edge, then consider a partition V (G) = V0∪̇V1∪̇V2 such that

Vi = {vj ∈ V (G) | j ≡ i (mod 3)}. Observe that for each pair of vertices x, y ∈ Vi
there are at least two adjacent vertices from V (G) \ Vi between x and y. Hence

G[Vi] ∈ Forb<(T − {u, v}), i = 0, 1, 2, since any copy of T − {u, v} in G[Vi] extends

to a copy of T in G. Hence χ(G) 6 3κ<(T − {u, v}) and since G ∈ Forb<(T ) was

arbitrary we have κ<(T ) 6 3κ<(T − {u, v}).
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V· · · · · ·
U1 Ui UM

· · ·
Vi

· · ·

Figure 2.9: A graph Gk obtained by Tutte’s construction from a graph Gk−1. Here
Gk[Ui] = Gk−1, 1 6 i 6M .

Remark. We do not use Reduction Lemma 2.5 for proving our theorems. Instead,

it is only used to derive upper bounds on κ<(T ) for some small ordered forests T on

three edges in Section 2.5.

2.4 Proofs of Theorems

Proof of Theorem 2.1

We shall prove that if an ordered graph H contains a cycle, a tangled path or a

bonnet then for each positive integer k there is an ordered graph G ∈ Forb<(H) with

χ(G) > k. In case of cycles we shall use graphs of high girth and large chromatic

number, while for bonnets and tangled paths we shall provide ordered versions of

classical constructions of graphs of large chromatic number. Specifically we use

Tutte’s construction in case of tangled paths and shift graphs in case of bonnets.

First assume that H contains a cycle of length `. Fix a positive integer k and

consider a graph G of girth at least ` + 1 with χ(G) > k that exists by [61]. Then

no ordering of the vertices of G gives an ordered subgraph isomorphic to H. This

shows that for any positive integer k, κ<(H) > k and hence H is χ-avoidable.

A tangled path is minimal if it does not contain a proper subpath that is tangled.

Next we shall show that for each minimal tangled path P and each k > 1 there is

an ordered graph Gk ∈ Forb<(P ) with χ(Gk) > k.

By reversing P if necessary we assume that in P the paths Pu and uP cross

for the rightmost vertex u in P . We will prove the claim by induction on k. If

k 6 3 let Gk = Kk that has no crossing edges and thus no tangled paths. Consider

k > 4 and let Gk−1 denote an n-vertex graph of chromatic number at least k − 1

that does not contain a copy of P . Such a graph exists by induction. The following

construction is due to Tutte (alias Blanche Descartes) for unordered graphs [54].

Let N = (k− 1)(n− 1) + 1 and M =
(
N
n

)
. Consider pairwise disjoint sets of vertices

U1, . . . , UM , V such that |Ui| = n, i = 1, . . . ,M , |V | = N and U1 ≺ · · · ≺ UM ≺ V .

Let V1, . . . , VM be the n-element subsets of V . Let each Ui, i = 1, . . . ,M , induce a

copy of Gk−1. Finally let there be a perfect matching between Ui and Vi such that

the jth vertex in Ui is matched to the jth vertex in Vi, i = 1, . . . ,M . See Figure 2.9.

First we shall show that χ(Gk) > k. If there are at most k − 1 colors assigned

to the vertices of Gk, then by Pigeonhole Principle there are n vertices of V of the

same color, i.e., there is a set Vi with all vertices of the same color, say color 1. Since
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uyxUi Uj V

Figure 2.10: A path in Gk with rightmost vertex u ∈ V is not tangled if Pu and uP
are not tangled.

each vertex of Ui is adjacent to a vertex in Vi, no vertex in Ui is colored 1, so if the

coloring is proper, then G[Ui] uses at most k − 2 colors. Hence the coloring is not

proper, since χ(G[Ui]) = χ(Gk−1) > k − 1. Therefore χ(Gk) > k.

Next, we shall show that Gk does not contain a copy of P . Assume that there

is such a copy P ′ of P in Gk with rightmost vertex u of P ′. Let x and y be the

neighbors of u in P ′, i.e., P ′ is a union of paths P ′yu and uxP ′. Then u ∈ V and

x, y 6∈ V , since G[Ui] does not contain a copy of P and there are no edges in Gk[V ].

Let x ∈ Ui and y ∈ Uj . Note that i 6= j because the edges between Ui and V form

a matching. The path uxP ′ is a proper subpath of P ′ and hence is not tangled.

Recall that for each edge zw with z ∈ Ui, w ∈ V , and w < u, we have z < x due to

the construction of the matching between Ui and Vi. Hence the path uxP ′ does not

contain any vertex w ∈ V with w < u, since otherwise the path uxP ′w has a vertex

left of x contradicting Lemma 2.3.1 applied to u, x and w. Hence V (xP ′) ⊆ Ui,

because there are no edges between Ui’s and u is rightmost in P ′. See Figure 2.10.

Similarly, all vertices of P ′y are contained in Uj . Thus P ′u and uP ′ do not cross.

However, P ′ is a copy of P with respective subpaths crossing, a contradiction. Hence

Gk ∈ Forb<(P ).

Now, if an ordered graph H contains a tangled path, then it contains a minimal

tangled path. Thus H is χ-avoidable.

Next, let B be a bonnet. By reversing B if necessary, we assume that B has

vertices u < v 6 x, y 6 w and edges uv, uw, xy. A shift graph S(n) is defined on

vertices {(i, j) | 1 6 i < j 6 n} and edges {{(i, j), (j, t)} | 1 6 i < j < t 6 n}. We

will show that some ordering of S(n) does not contain B. Let G = S(n) be a shift

graph with vertices ordered lexicographically, i.e., (x1, x2) < (y1, y2) if and only if

x1 < y1, or x1 = y1 and x2 < y2. Assume that G contains vertices u = (u1, u2),

v = (v1, v2), x = (x1, x2), y = (y1, y2) and w = (w1, w2) that form a copy of B with

u < v 6 x, y 6 w and edges uv, uw, xy. Then u2 = v1, u2 = w1, x2 = y1. Thus

v1 = w1. However, since v 6 x, y 6 w, we have that v1 6 x1, y1 6 w1, so x1 =

y1 = v1 = w1. But x2 = y1, thus x2 = x1, a contradiction. Thus G ∈ Forb<(B).

We claim that χ(G) > log(n) > c log |V (G)|. Indeed consider a proper coloring φ

of G using χ(G) colors and sets of colors Φi = {φ(i, j) | i < j 6 n}, 1 6 i 6 n.

Then φ(i, j) 6∈ Φj , since a vertex (i, j) is adjacent to all vertices (j, t), j < t 6 n.

Therefore Φi 6= Φj for all j < i. Hence all the sets of colors are distinct. This shows

that 2χ(G) > n, since there are at most 2χ(G) distinct subsets of colors. This proves

that χ(G) > log(n). Thus, for any k, there is an ordered graph of chromatic number
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at least k in Forb<(B). So, if an ordered graph H contains a bonnet, then H is

χ-avoidable..

Proof of Theorem 2.2

Let T ′ be a segment of an ordered tree that does not contain a bonnet or a tangled

path. We shall prove that T ′ is monotonically alternating by induction on k =

|V (T ′)|. Every ordered tree on at most two vertices is monotonically alternating.

So suppose k > 3. We have χ<(T ′) = 2 due to Lemma 2.3.3.

Claim. The leftmost or the rightmost vertex in T ′ is of degree 1.

Proof of Claim. As T ′ is a segment of an ordered tree, the subgraph induced by

V (T ′) is connected and thus both the leftmost vertex u and the rightmost vertex v

in T ′ are of degree at least 1. For the sake of contradiction assume that both u and

v are of degree at least 2. If u and v are adjacent then the edge uv, another edge

incident to u and another edge incident v form a tangled path since χ<(T ′) = 2, a

contradiction. If u and v are not adjacent let P denote the path in T ′ connecting

u and v. It uses at most one of the edges incident to u. Then any other edge zu

incident to u crosses the edge in P that is incident to v since χ<(T ′) = 2. Hence

zP forms a tangled path, a contradiction. This shows that at least one of u or v is

a leaf in T ′. 4

By reversing T ′ if necessary we assume that the leftmost vertex u is a leaf in T ′.

The ordered tree T ′−u is monotonically alternating by induction and Lemma 2.3.2.

Consider the partition V (T ′) = L∪̇R, with L ≺ R and L and R being independent

sets. Such a partition is unique since T ′ is connected. Let v be the neighbor of u in

T ′. Since χ<(T ′) = 2, v ∈ R. Since T ′ is connected, k > 3 and u is leftmost in T ′,

the edge uv is not the shortest edge incident to v. Hence uv 6∈ S(R) and therefore

S(R) has no crossing edges by induction. Clearly uv ∈ S(L) since uv is the only

edge incident to u and thus it is the shortest edge incident to u. If uv crosses some

edge xy in T ′, x < y, then all vertices in the path connecting v and x are between

x and y due to Lemma 2.3.1 applied to x, y and v. Therefore xy is not the shortest

edge incident to x and hence xy 6∈ S(L). This shows that S(L) has no crossing edges

and thus T ′ is monotonically alternating.

The other way round assume that each segment of an ordered tree T is mono-

tonically alternating. We need to show that each segment contains neither a bonnet

nor a tangled path. Let T ′ denote a segment of T , V (T ′) = L ∪ R, L ≺ R and

E(T ′) = S(L) ∪ S(R), so each edge is either a shortest edge incident to a vertex in

R or a shortest edge incident to a vertex in L. Then χ<(T ′) 6 2 and hence T ′ does

not contain a bonnet. We will prove that T ′ does not contain a tangled path by

induction on k = |V (T ′)|. If k 6 3, then there are no crossing edges in T ′ and hence

no tangled path. Suppose k > 4.
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Assume that the leftmost vertex u and the rightmost vertex w in T ′ are of

degree at least 2. If uw ∈ E(T ′) then uw 6∈ S(L) and uw 6∈ S(R), a contradiction.

So, uw 6∈ E(T ′). Consider the longest edge xw incident to w. Then x 6= u and

since xw 6∈ S(R), xw ∈ S(L). Then the shortest edge incident to u crosses xw, a

contradiction since S(L) does not contain crossing edges. Hence the leftmost or the

rightmost vertex is a leaf in T ′.

By reversing T ′ if necessary we assume that the leftmost vertex u is a leaf. We

see that T ′−u is monotonically alternating, thus by induction it does not contain a

tangled path. Hence if T ′ has a tangled path P , then P contains an edge uv crossing

some other edge in P , where v is the neighbor of u in T ′. Then the rightmost vertex

r in P is of degree 2 and to the right of v, since P is tangled and u is leftmost and

of degree 1 in T ′. Let x and y, x < y, be neighbors of r in P . Then xr is the

shortest edge incident to x, since any shorter edge forms a tangled path with r and

y in T ′ − u. This is a contradiction since uv and xr cross and T ′ is monotonically

alternating. Thus T ′ has no tangled path.

Finally we prove the last statement of the theorem. If H is a connected χ-

unavoidable ordered graph, then H is a tree that contains neither a bonnet nor a

tangled path due to Theorem 2.1. Hence each segment of H is a monotonically

alternating tree.

Proof of Theorem 2.3

Let T be a non-crossing χ-unavoidable ordered graph. Then T is acyclic, contains

no tangled path and no bonnet by Theorem 2.1. Hence T is a non-crossing ordered

forest with no bonnet.

On the other hand let T be a non-crossing forest with no bonnet. Recall that

κ<(H) > k − 1 for each ordered k-vertex graph H because Kk−1 ∈ Forb<(H). We

shall prove that T is χ-unavoidable. Let k = |V (T )| and consider any ordered graph

G ∈ Forb<(T ). We will prove by induction on k that χ(G) 6 2k and χ(G) 6 2k− 3

if T is a tree. If k = 2, then clearly χ(G) = 1. So consider k > 3.

If T is a tree, then each segment of T is a monotonically alternating tree, by

Theorem 2.2. If there is only one segment in T , then κ<(T ) 6 2k−3 by Lemma 2.3.4.

If there is more than one segment in T , then there is an inner cut vertex splitting T

into two trees T1 and T2 that are clearly also non-crossing and contain no bonnet.

Thus by Reduction Lemma 2.1 and induction we have κ<(T ) 6 κ<(T1) + κ<(T2) 6

2|V (T1)| − 3 + 2|V (T2)| − 3 = 2(|V (T )|+ 1)− 6 = 2k − 4.

If T is a forest we consider several cases. If T has more than one segment, then

there is an inner cut vertex splitting T into two forests T1 and T2 that are clearly also

non-crossing and contain no bonnet. Thus by Reduction Lemma 2.1 and induction

we have κ<(T ) 6 κ<(T1) + κ<(T2) 6 2|V (T1)| + 2|V (T2)| = 2t + 2k+1−t 6 2k with

t = |V (T1)| > 2. If T has an isolated vertex u, then by Reduction Lemma 2.2
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Kk−2 Kk−2 }
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Figure 2.11: An ordered graph G with chromatic number k not containing a non-
crossing ordered tree T on k vertices without bonnets on the right, k = 6.

and induction we have κ<(T ) 6 2κ<(T − u) 6 2 · 2k−1 = 2k. Finally, if T has no

isolated vertices and exactly one segment, then consider the leftmost and rightmost

vertices u and v of T . Since u and v are not isolated in this case, and T is non-

crossing with no inner cut vertices, uv is an edge. If uv is isolated, then k > 4

(since there is no isolated vertex) and by Reduction Lemma 2.3 and induction we

have κ<(T ) 6 2 · κ<(T − {u, v}) + 1 6 2 · 2k−2 + 1 6 2k. If uv is not isolated, then

either u or v, say u, is a leaf of T , since T is non-crossing and does not contain a

bonnet. Let xv denote the longest edge incident to v in T − u. Note that x exists

since the edge uv is not isolated. Then there is no other vertex between u and x,

since such a vertex would be isolated in the non-crossing forest T without bonnets.

Thus, u is a reducible vertex, so by Reduction Lemma 2.4 and induction we have

κ<(T ) 6 2κ<(T − u) 6 2 · 2k−1 = 2k.

Next, we provide a k-vertex non-crossing χ-unavoidable ordered tree with no

bonnet such that κ<(T ) > k. Let T be a monotonically alternating path on k > 4

vertices with leftmost vertex of degree 1, as in Figure 2.11 (right). Then T is

non-crossing and contains no bonnet, and hence is χ-unavoidable by Theorem 2.3.

Further let G denote a graph on vertices u < x1 < · · · < xk−2 < y1 < · · · <
yk−2 < x < y such that xy is an edge and {u, x1, . . . , xk−2}, {u, y1, . . . , yk−2},
{x, x1, . . . , xk−2}, and {y, y1, . . . , yk−2} induce complete graphs on k − 1 vertices

each. See Figure 2.11 (left).

We shall show that G ∈ Forb<(T ) and χ(G) > k. Consider a proper vertex

coloring of G using colors 1, . . . , k−1. Without loss of generality u has color 1. Then

all colors 2, . . . , k−1 are used on the vertices x1, . . . , xk−2 as well as on y1, . . . , yk−2.

Hence both x and y are of color 1, a contradiction. Thus χ(G) > k.

Assume that there is a copy P of T in G. Let v be the leftmost and w be the

rightmost vertex in P . Note that vw is an edge and that there are k vertices between

v and w (including v and w). Therefore vw is one of the edges uyi, 1 6 i 6 k − 2,

xjx, 1 6 j 6 k − 2, or y1y. In the first case V (P ) ⊆ {u, y1, . . . , yk−2}, in the

second case V (P ) ⊆ {x1, . . . , xk−2, x} and in the last case either P = y1, y, x or

V (P ) ⊆ {y, y1, . . . , yk−2}. Since T has at least 4 vertices, P 6= y1, y, x. So in any

case P has at most k − 1 vertices, a contradiction since T has k vertices. Hence

G ∈ Forb<(T ).

Finally it is easy to see that κ<(T ) = k − 1 for any ordered tree T on at most 3

vertices using Reduction Lemmas 2.1 and 2.4.
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Proof of Theorem 2.4

(a) Let T be an ordered forest on k vertices where each segment is a generalized

star, a nested 2-matching, or an all crossing 2-matching. Let T1, . . . , Ts denote the

segments of T and ki = |V (Ti)|, 1 6 i 6 s. Let T ′ be a segment of T . If T ′ is a

generalized star on k′ vertices, then the center of the star is leftmost (or rightmost)

in T ′. Let G ∈ Forb<(T ′). Then each vertex in G has at most k′−2 neighbors to the

right (or to the left). Thus each such graph can be greedily colored from right to left

(or left to right) with at most k′ − 1 colors. This shows that κ<(T ′) 6 |V (T ′)| − 1.

If T ′ is a nested 2-matching, then κ<(T ′) = 3 = |V (T ′)| − 1 due to [57] (Lemma 9).

If T ′ is an all crossing 2-matching, then κ<(T ′) = 3 = |V (T ′)| − 1, since any graph

not containing T ′ is outerplanar and outerplanar graphs have chromatic number

at most 3. We apply Reduction Lemma 2.1 and the results above which yield

κ<(T ) 6
∑s

i=1 κ<(Ti) 6
∑s

i=1(ki − 1) = k − 1.

(b) Let T be an ordered forest on k vertices where each segment is a generalized

star, a non-crossing tree without bonnets, an all crossing or a nested matching. Let

T1, . . . , Ts denote the segments of T and ki = |V (Ti)| > 2. Let T ′ be a segment of T .

If T ′ is a nested or all an all crossing k′-matching, k′ > 2, then κ<(T ′) 6 4(k′− 1) 6

2|V (T ′)|−3 due to equation (2.1), since any graph G ∈ Forb<(T ′) contains less than

2(k′ − 1)|V (G)| edges due to Dujmović and Wood [57] (for nestings), respectively

Capoyleas and Pach [35] (for crossings), see also Theorem 2.5. Further κ<(T ′) 6

2|V (T ′)|− 3 if T ′ is a non-crossing tree without bonnets due to Theorem 2.3. Hence

Reduction Lemma 2.1 yields κ<(T ) 6
∑s

i=1 κ<(Ti) 6
∑s

i=1(2ki − 3) 6 2k − 3.

(c) Let T = M(t,m, π) for some positive integers m and t and a permutation π of

[t]. If t = 1, then κ<(T ) = m due to the results above, since M(1,m, π) is a star on

m + 1 vertices. Weidert [142] proves that ex<(n,M(t, 1, π)) 6 ex<(n,M(t, 2, π)) 6

11t4
(

2t2

2t

)
n < t4(2t2)2tn for any positive integer t > 2 and any permutation π of [t].

Moreover if m > 2, then

ex<(n,M(t,m, π)) 6 2t(m−2)ex<(n,M(t, 2, π))

due to a reduction by Tardos [140]. Therefore ex<(n,M(t,m, π)) < 2tmt4+4tn.

Thus, using the fact that |V (T )| = k = tm + t and equation (2.1) we have that

κ<(M(t,m, π)) 6 2tm+9t log(t) 6 210k log k.

(d) Conlon et al. [46] and independently Balko et al. [11] prove that that there is a

positive constant c such that for any sufficiently large positive integer k there is an

ordered matching on 2k vertices with ordered Ramsey number at least 2
c

log(k)2

log log(k) . If,

for some ordered graphH, the edges of a complete ordered graphG onN = r<(H)−1

vertices are colored in two colors without monochromatic copies of H, then both

color classes form ordered graphs G1 and G2 in Forb<(H). Then one of the Gi’s
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has chromatic number at least
√
N , since a product of proper colorings of G1 and

G2 yields a proper coloring of G using χ(G1)χ(G2) > χ(G) = N colors. This shows

that there is a positive constant c′ such that for all positive integers k and ordered

matchings H on k vertices with κ<(H) > 2
c′ log(k)2

log log(k) .

Proof of Theorem 2.6

Let a, s, t, w ∈ Z, with s > 1, t > 2, a, w > t− 1, p ∈ Zs, and M ∈ Zs×2t.

First of all assume that M is not translation invariant. Consider some arbitrary

integer k, k > 2, and let G be any integer graph with χ(G) > k, |E(G)| > t. For an

integer τ , let Gτ denote the ordered graph obtained from G by adding τ to every

vertex (so Gτ contains an edge (x + τ, y + τ) if and only if (x, y) is an edge in G).

Clearly, we haveM(x+τ ) = Mx+Mτ = Mx+τ(M1) for any vector x ∈ Z2t. Hence,

since M1 6= 0, there is a large or small enough τ = τ(G,M, p) such that for some row

M (σ) of M and any u1, v1, . . . , ut, vt ∈ V (Gτ ) we have M (σ)(u1, v1, . . . , ut, vt)
> < p,

i.e., the conflict graph Mp(Gτ ) is empty and its clique number is t− 1 6 w. Since k

was arbitrary, we have κω(M,p,w) =∞.

If additionally M1 > 0 (respectively M1 < 0), then there is a large (respectively

small) enough τ = τ(G,M, p) such that Mp(Gτ ) is a complete t-uniform hypergraph.

Thus α(Mp(Gτ )) = t− 1 6 a, implying that κα(M,p, a) =∞.

Now assume that s = 1 and M = (m1, . . . ,m2t) ∈ Z1×2t is translation invariant.

Let mo =
∑t

i=1m2i−1 and me =
∑t

i=1m2i. Then me+mo = 0 since M is translation

invariant and for each vector (u1, v1, . . . , ut, vt)
> ∈ Z2t we have

∑

π∈St

π(M)(u1, v1, . . . , ut, vt)
> =

∑

π∈St

t∑

i=1

(
m2π(i)−1ui +m2π(i)vi

)

=
t∑

i=1

(
ui
∑

π∈St

m2π(i)−1 + vi
∑

π∈St

m2π(i)

)

=
t∑

i=1


ui(t− 1)!

t∑

j=1

m2j−1 + vi(t− 1)!
t∑

j=1

m2j




=(t− 1)!mo

t∑

i=1

ui + (t− 1)!me

t∑

i=1

vi. (2.3)

Consider some arbitrary integer k, and let G be an arbitrary fixed integer graph

with χ(G) > k and |E(G)| > t. Note that there is an edge between any two color

classes in an optimal proper coloring of G and hence

|E(G)| >
(
k
2

)
. (2.4)

We shall prove that in each of the cases below the conflict hypergraph Mp(G) is

either empty or complete t-uniform.
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(a) We assume that me =
∑t

i=1m2i > max{p, 0}. Consider a set of t distinct edges

E = {(u1, v1), . . . , (ut, vt)} in G. Then
∑t

i=1 vi >
∑t

i=1(ui + 1) = t+
∑t

i=1 ui and

∑

π∈St

π(M)(u1, v1, . . . , ut, vt)
> (2.3)

= (t− 1)!mo

t∑

i=1

ui + (t− 1)!me

t∑

i=1

vi

> (t− 1)!mo

t∑

i=1

ui + (t− 1)!me

t∑

i=1

ui + t!me

= (t− 1)! (me +mo)︸ ︷︷ ︸
=0

t∑

i=1

ui + t!me

> t! p.

Hence we have π(M)(u1, v1, . . . , ut, vt)
> > p for some π ∈ St. Therefore E is conflict-

ing and Mp(G) is a complete t-uniform hypergraph on |E(G)| > t− 1 vertices with

α(Mp(G)) = t− 1 6 a. This implies that κα(M,p, a) =∞ since G was arbitrary.

Secondly, as χ(G) > k, we have ω(Mp(G)) = |E(G)|
(2.4)

>
(
k
2

)
. Thus if ω(Mp(G)) 6

w, then k 6 b(w). This shows that κω(M,p,w) 6 b(w). Thus κω(M,p,w) = b(w),

by Inequality (2.2).

(b) We assume that me =
∑t

i=1m2i < p and for each i ∈ [t] we have m2i−1 +m2i =

0, m2i 6 0. Due to the last assumption we have for any edge (u, v) in G that

m2iv 6 m2i(u+ 1) for each i ∈ [t]. Hence for any set E = {(u1, v1), . . . , (ut, vt)} of t

distinct edges in G we have

M(u1, v1, . . . , ut, vt)
> =

t∑

i=1

m2i−1ui +
t∑

i=1

m2ivi

6
t∑

i=1

m2i−1ui +

t∑

i=1

m2i(ui + 1)

=

t∑

i=1

(m2i−1 +m2i)︸ ︷︷ ︸
=0

ui +
t∑

i=1

m2i

<p.

This shows that π(M)(u1, v1, . . . , ut, vt)
> < p for each π ∈ St, since the labeling

of E is arbitrary. Hence E is not conflicting and Mp(G) is an empty hypergraph

on |E(G)| vertices. So α(Mp(G)) = |E(G)|
(2.4)

>
(
k
2

)
and ω(Mp(G)) = t − 1 6 w.

Similarly to the first item κα(M,p, a) = b(a) and κω(M,p,w) = ∞ since G was

arbitrary.
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(c) We assume that me =
∑t

i=1m2i > 0 or (me =
∑t

i=1m2i = 0 and m2i−1 6= 0 for

some i ∈ [t]). Fix some integer q with

q > max{2, |p|+∑2t
i=1 |mi|} (2.5)

and let V = {qa | a ∈ Z, a > 2}. We claim that if V (G) ⊂ V , then Mp(G) is a

complete graph. Indeed, consider a set E = {(qa1 , qb1), . . . , (qat , qbt)} of t distinct

edges in G with ai < bi, i ∈ [t]. If me > 0, then me > 1 and

∑

π∈St

π(M)(u1, v1, . . . , ut, vt)
> (2.3)

= (t− 1)!mo

t∑

i=1

qai + (t− 1)!me

t∑

i=1

qbi

> (t− 1)!mo

t∑

i=1

qai + (t− 1)!me

t∑

i=1

qai+1

> (t− 1)!mo

t∑

i=1

qai + (t− 1)!me

t∑

i=1

(qai + q)

= (t− 1)! (mo +me)︸ ︷︷ ︸
=0

t∑

i=1

qai + t! q me

= t! q me > t! q
(2.5)

> t! p.

Thus π(M)(qa1 , qb1 , . . . , qat , qbt)> > p for some π ∈ St.

Now suppose that me =
∑t

i=1m2i = 0 and there are i, j ∈ [t] with m2i,m2j−1 6=
0. Then mo =

∑t
i=1m2i−1 = 0 since M is translation invariant. We distinguish

two further cases. First suppose that bi 6= bj for some distinct i, j ∈ [t]. Without

loss of generality assume that b1 6 · · · 6 bt and m2 6 m4 6 · · · 6 m2t (otherwise

relabel the edges or permute the columns of M). Let j denote the smallest integer

in [t] such that bj = bt (that is, there are t − j + 1 edges in E having qbt as right

endpoint). Then j > 1 since not all the bi are equal. Moreover
∑t

i=jm2i > 1 (since

m2i 6= 0 for some i ∈ [t] and me = 0) and

M(qa1 , qb1 , . . . , qat , qbt)> =

t∑

i=1

m2i−1q
ai +

t∑

i=1

m2iq
bi

=

t∑

i=1

m2i−1q
ai +

j−1∑

i=1

m2iq
bi +

t∑

i=j

m2iq
bt

> −
t∑

i=1

|m2i−1|qbt−1 −
j−1∑

i=1

|m2i|qbt−1 + qbt

= qbt−1
(
q −

t∑

i=1

|m2i−1| −
j−1∑

i=1

|m2i|
)

(2.5)

> qbt−1|p| > p.



2.4. PROOFS OF THEOREMS 51

Finally suppose that bi = bj for any i, j ∈ [t]. Then
∑t

i=1m2iq
bi = 0 and all the

ai are distinct (as all edges have the same right endpoint). We assume without loss

of generality that a1 6 · · · 6 at and m1 6 m3 6 · · · 6 m2t−1 (otherwise relabel

the edges or permute the columns of M). Then ai 6 at − 1 for each i ∈ [t − 1],

m2t−1 > 1, and

M(qa1 , qb1 , . . . , qat , qbt)> =

t∑

i=1

m2i−1q
ai +

t∑

i=1

m2iq
bi

︸ ︷︷ ︸
=0

=

t−1∑

i=1

m2i−1q
ai +m2t−1q

at

> −
t−1∑

i=1

|m2i−1|qai +m2t−1q
at

> qat −
t−1∑

i=1

|m2i−1|qat−1

= qat−1
(
q −

t−1∑

i=1

|m2i−1|
)

(2.5)

> qat−1|p| > p.

This shows that any set of t edges with endpoints in V is in conflict. ThereforeMp(G)

is a complete t-uniform hypergraph if V (G) ⊂ V . This shows that κα(M,p, a) =∞
since G was arbitrary..

(d) We assume that for each i ∈ [t] we have m2i 6 0 and |m2i| > m2i−1 and for some

i ∈ [t] we have m2i < 0. Fix some integer q with q > max{2, |p|+m1, . . . , |p|+m2t−1}
and let V = {qa | a ∈ Z, a > 1}. Then for each i ∈ [t] we have

m2i−1 +m2iq 6 0. (2.6)

Moreover by the choice of q we have for any i ∈ [t] with m2i < 0 that

m2i−1 +m2iq 6 m2i−1 − q < −|p|. (2.7)

We claim that if V (G) ⊂ V , then Mp(G) is an empty graph. Indeed, consider a set

E = {(qa1 , qb1), . . . , (qat , qbt)} of t distinct edges in G with ai < bi, i ∈ [t]. Then

M(qa1 , qb1 , . . . , qat , qbt)> =

t∑

i=1

m2i−1q
ai +

t∑

i=1

m2iq
bi

6
t∑

i=1

m2i−1q
ai +

t∑

i=1

m2iq
ai+1
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(2.6)

6
t∑

i∈[t],m2i<0

(m2i−1 +m2iq)

(2.7)
< −

t∑

i∈[t],m2i<0

|p| 6 p.

This shows that π(M)(u1, v1, . . . , ut, vt)
> < p for each π ∈ St, since the labeling of

E is arbitrary. Thus no set of t edges with vertices in V is in conflict. Therefore

Mp(G) is empty if V (G) ⊂ V . Similarly to above we have κω(M,p,w) =∞.

2.5 Summary for Small Forests

In this section we evaluate our results from Section 2.1 for the function κ< for all

ordered forests on at most three edges and without isolated vertices. Recall that Pk

denotes a path on k vertices, Mk a matching on k edges, and Sk a star with k leaves

(note that M1 = S1 = P2 and P3 = S2). Then the set of all (unordered) forests

without isolated vertices and at most three edges is given by

{P2, S2,M2, S3, P4, S2 + P2,M3}.

Let G denote a graph on n vertices and a automorphisms. Then the number

ord(G) of non-isomorphic orderings of G equals ord(G) = n!
a . Hence

ord(P2) = 2!
2 = 1, ord(S2) = 3!

2 = 3, ord(M2) = 4!
8 = 3, ord(S3) = 4!

3! = 4,

ord(P4) = 4!
2 = 12, ord(S2 + P2) = 5!

2·2 = 30, ord(M3) = 6!
6·4·2 = 15.

Recall that the reverse T of an ordered graph T is the ordered graph obtained

by reversing the ordering of the vertices in T . Note that κ<(T ) = κ<(T ) for any

ordered graph T since G ∈ Forb<(T ) if and only if G ∈ Forb<(T ). Table 2.2 shows

all ordered forests T without isolated vertices and at most three edges and their κ<

values, where only one of T and T is listed. When T and T are not isomorphic

ordered graphs the entry in the table is marked with an ∗. For example there are

only two instead of three entries for S2 and similarly for the other graphs.

2.6 Conclusions

In this chapter we consider ordered graphs, that is, graphs equipped with a linear

ordering of their vertices. We consider several local constraints and study whether

they provide upper bounds on the chromatic number.

Forbidden Ordered Subgraphs The first part deals with forbidden ordered

subgraphs. An ordered graph H (on at least two vertices) is χ-unavoidable if
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T

κ< 1 2 ∗ 2 3 3 3
(Thm. 2.4) (Thm. 2.4) (Thm. 2.4) (Thm. 2.4) (Thm. 2.4) (Thm. 2.4)

T

κ< 3 ∗ 3 ∗ 3 ∞ ∗ ∞ ∗
(Thm. 2.4) (Thm. 2.4) (Thm. 2.4) (bonnet) (tangled)

T

κ< 3 ∗ ∞ ∞ 4 ∗ 6 4
(Thm. 2.4) (bonnet) (tangled) (Lem. 2.3.4, Fig. 2.11) (Red. 2.4)

T

κ< 4 ∗ 6 6 ∗ ? ∗ 6 6 ∗ 6 6 ∗
(Thm. 2.4) (Red. 2.4) (Red. 2.3) (Lem. 2.3.4)

T

κ< ? ∗ 6=∞ ∗ ∞ ∗ ? ∗ 4 ∗
(Thm. 2.4) (bonnet) (Thm. 2.4)

T

κ< 4 ∗ 4 ∗ ? ∗ 6 6 4 ∗ ?
(Thm. 2.4) (Thm. 2.4) (Red. 2.3) (Thm. 2.4)

T

κ< 5 5 ∗ 5 ∗ 6 9 ∗ 6 7
(Thm. 2.4) (Thm. 2.4) (Thm. 2.4) (Red. 2.5) (Red. 2.3)

T

κ< ? 6=∞ ∗ 6 9 6 8 6 7 6 8
(Thm. 2.4) (Red. 2.5) (Thm. 2.4) (Red. 2.3) (Thm. 2.4)

Table 2.2: All ordered forests T on at most three edges without isolated vertices and
their κ< value.
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u1 u2 u3 u4 u5
u1 u2 u3 u4 u5 u6

Figure 2.12: Ordered graphs for which we don’t know whether they are χ-avoidable.

κ<(H) = sup{χ(G) | G ∈ Forb<(H)} is finite, and χ-avoidable otherwise. We

prove that there are χ-avoidable ordered forests, in contrast to unordered and di-

rected graphs. To this end we explicitly describe several infinite classes of minimal

χ-avoidable ordered forests, called bonnets and tangled paths. A full characteriza-

tion of χ-avoidable ordered graphs remains open.

Question 2.1. Which ordered forests are χ-avoidable?

We completely answer Question 2.1 for non-crossing ordered graphs H. The-

orem 2.3 states that a non-crossing ordered graph H is χ-avoidable if and only if

it contains a cycle or a bonnet. For crossing connected ordered graphs, we reduce

Question 2.1 to monotonically alternating trees.

Question 2.2. Are there χ-avoidable monotonically alternating trees?

We do not have an answer to Question 2.2 even for some monotonically alter-

nating paths. A smallest unknown such path is u5u1u3u2u4, where u1 < · · · < u5.

See Figure 2.12 (left). The situation becomes even more unclear for crossing discon-

nected graphs. From Theorem 2.4 we see that each ordered matching with interval

chromatic number 2 is χ-unavoidable. For many other ordered matchings H we

do not know whether they are χ-unavoidable. A smallest such matching has edges

u1u3, u2u5, and u4u6 where u1 < · · · < u6. See Figure 2.12 (right).

Given a χ-unavoidable ordered graph also the actual value of the function κ< is

of interest. Recall that for any (unordered) forest H ′ we have κ(H ′) = |V (H ′)| − 1.

Suppose that H is a non-crossing χ-unavoidable ordered graph on k vertices. We

prove that, if H connected, then k− 1 6 κ<(H) 6 2k− 3 and, if H is disconnected,

then k − 1 6 κ<(H) 6 2k. Let

κ<(k) = max{κ<(H) | |V (H)| = k, κ<(H) 6=∞}.

The value and the asymptotic behavior of this function remain open, even when

restricted to non-crossing graphs. Our results show that for connected non-crossing

ordered graphs κ<(H) is linear in |V (H)| while for general non-crossing ordered

graphs κ<(H) might be exponential. Specifically for each k > 4 we give ordered

graphs H on k vertices with κ<(H) = k − 1, as well as an χ-unavoidable ordered

graph H on k vertices with κ<(H) > k, see Theorems 2.3 and 2.4. The latter result

provides a lower bound of κ<(k) > k for k > 4, slightly improving the trivial lower

bound of k − 1. Again, this is in contrast to (unordered) graphs where max{κ(H) |
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H forest, |V (H)| = k} = k − 1 as we have seen before. Note that we do not know

whether the matchings in the last statement of Theorem 2.4 are χ-unavoidable.

Question 2.3. Is there a constant c such that κ<(k) 6 c k for each k ∈ Z, k > 2?

Note that Reduction Lemmas 2.1, 2.2, 2.3, 2.4, and 2.5 apply to crossing ordered

graph as well. We find a more precise version of Reduction Lemma 2.2 and other

types of reductions, similar to reductions for matrices in [140], but none of these

lead to significantly better upper bounds in Theorems 2.3 and 2.4 or a new class of

χ-unavoidable ordered forests.

All the results above are concerned with one ordered graph that is forbidden as

an ordered subgraph. We propose two variants of this problem. First one might

study several simultaneously forbidden ordered subgraphs. Clearly, if H is some

(unordered) graph and H is the set of all ordered graphs having H as their under-

lying graph, then Forb<(H) consists of all ordered graphs with underlying graph in

Forb(H). The problem becomes more interesting when several but not all orderings

of some graph are forbidden. Recall that the reverse of an ordered graph H is the

ordered graph obtained by reversing the order of vertices in H.

Question 2.4. Let B be a bonnet and let B be the reverse of B. Is κ<({B,B}) 6=∞?

Second, we are interested in forbidden induced ordered subgraphs. This leads

to the concept of χ-bounded classes of ordered graphs. For an ordered graph H

let Forbind
< (H) denote the set of ordered graphs not containing an induced copy

of H. Clearly Forb<(H) ⊆ Forbind
< (H). Hence Forbind

< (H) is not χ-bounded for any

χ-avoidable ordered graphs. In particular we are interested in the following ques-

tion. Note that the conjecture of Gyárfás and Sumner states that the corresponding

question for (unordered) graphs has a negative answer.

Question 2.5. Is there a χ-unavoidable ordered graph H such that Forbind
< (H) is

not χ-bounded?

Question 2.6. If G is a triangle-free ordered graph that contains no induced copy

of a monotone path with three edges, then χ(G) 6 3?

Besides the structural questions above, there are also interesting algorithmic

questions for ordered graphs. First of all, recall from Observation 1.1 in Section 1.2

that the problem of deciding whether two ordered graphs are isomorphic is clearly

in P. Also for each fixed χ-unavoidable ordered graph H we can check in time poly-

nomial in n whether some ordered graph G on n vertices contains H as a subgraph.

The following two problems seem more challenging. We are interested, first, in the

computational complexity of deciding whether an ordered graph H is χ-unavoidable

and, second, in computing proper colorings for graphs in Forb<(H) with at most

κ<(H) colors. Based on our structural observations for (so far known) χ-avoidable
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Figure 2.13: A nested matching (left) and an all crossing matching (right) where
left endpoints as well as the right endpoints are pairwise at distance at least 3 in Z.

ordered graphs, we think that recognizing χ-unavoidable ordered graphs might be

solvable in polynomial time. Of course, an answer to the following question heavily

depends on how the class of χ-avoidable ordered graphs looks like.

Question 2.7. Is there a polynomial time algorithm that decides for any given

ordered graph H whether H is χ-avoidable or χ-unavoidable?

Finding proper colorings for graphs in Forb<(H) is likely to be hard in general.

For several χ-unavoidable ordered graphs H, though, we prove that the graphs in

Forb<(H) are (κ<(H)−1)-degenerate. Then a proper coloring of any G ∈ Forb<(H)

with κ<(H) colors can be found in running time linear in the number of vertices

of G [105]. Moreover, the reductions in Section 2.3 can be used to actually compute

proper colorings. However, note that Reduction Lemma 2.1 is the only reduction

that yields a tight upper bound on κ< for each ordered graphs satisfying its assump-

tions.

The General Framework In Section 2.2 we present a generalization of a frame-

work from [7] to model local constraints for ordered graphs. This framework is based

on conflicting sets of t edges, t > 2, which are given as linear inequalities on the

coordinates of the endpoints of the edges. To this end we consider integer graphs,

that is ordered graphs whose vertex set is a subset of the integers. We show how

to describe conflicts in terms of pairs of a matrix M ∈ Zs×2t and a vector p ∈ Zs

and introduce the (t-uniform) conflict hypergraph Mp(G). Then restrictions on

the structure of the conflict hypergraph yield local constrains on the integer graph.

We consider two restrictions in detail, namely bounding either the independence

number or the clique number of Mp(G) from above. Note that this includes the

possibility to exclude any conflicting edges, since Mp(G) is empty if and only if

ω(Mp(G)) 6 t− 1, or any non-conflicting edges, since Mp(G) is complete t-uniform

if and only if α(Mp(G)) 6 t− 1.

In this framework many known constraints can be modeled as well as generalized.

For example we generalize results of Dujmović and Wood [57] on nested matchings

in [7]. We show that for all integers p, w > 0 and some integer graph G we have

χ(G) 6 4pw provided that G does not contain a nested matching on w + 1 edges

where for any pair a, b of left endpoints as well as of right endpoints we have

|a − b| > p. See Figure 2.13. So studying arbitrary translation invariant matrices
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M yields a unified way to study new constraints. Moreover we show in Theorem 2.6

that some extremal questions can be answered for a given pair of a matrix and an

integer vector based on the algebraic description only. However it seems that the

framework cannot be used to model forbidden induced ordered subgraphs.

We determine the exact values of κα(M,p, a) and κω(M,p,w) for all M ∈
{−1, 0, 1}1×4, a, p, w ∈ Z with a, w > 1 in [7] (see Table 2.1) and for infinite

classes of matrices M ∈ Z1×2t in Theorem 2.6. It remains open to determine the

values of κα(M,p, a) and κω(M,p,w) for other matrices M and parameters a, p,

w. Specifically it is an interesting challenge to determine the exact values for the

matrices Mnest and M cross, where Theorem 2.5 provides upper and lower bounds.

It is also not clear how operations on the matrix (like permutations of columns,

multiplication by constants, or addition of two matrices) affect the conflict hyper-

graph. We give some partial results of this kind in [7].

Finally we see that for fixed M and p in all known cases κα(M,p, x) and

κω(M,p, x) are of order θ(x1/2), θ(x), or equal ∞, as functions in x (see Table 2.1).

Question 2.8. Are there s, t ∈ Z, a matrix M ∈ Zs×2t, and p ∈ Zs, such that

κα(M,p, x) or κω(M,p, x) is superlinear as a function of x but not equal to infinity?

Ordered Graphs and Integer Graphs Recall that the framework uses integer

graphs instead of general ordered graphs. As it turns out this is condition is basically

for technical reasons only. At first glance, considering arbitrary matrices M leads

to some dubious constraints that solely rely on the vertices to be integers and have

no particular meaning for general ordered graphs. For example two edges are in

conflict with respect to the matrix (1010) ∈ Z1×4 and some p ∈ Z if and only if the

sum of their left endpoints is at least p. This constraint is easily achieved, as well

as avoided, for any pair of edges in a given integer graph by shifting the vertices

within Z. The first result of Theorem 2.6 shows that our extremal questions become

trivial for matrices that are not translation invariant. Therefore we only need to

consider translation invariant matrices, that is, matrices which yield conflicts that

are preserved by translations of the vertices.

Further note that adding isolated vertices to an integer graph has no affect on the

conflict hypergraph. For an integer graph G let Ḡ denote the integer graph obtained

by adding isolated vertices z ∈ Z to G whenever z 6∈ V (G) and there are u, v ∈ V (G)

with u < z < v. Two integer graphs G and G′ are indistinguishable whenever Ḡ

and Ḡ′ are isomorphic as ordered graphs. This establishes an equivalence relation

on integer graphs. Let [G] denote the set of integer graphs indistinguishable from

G. Clearly Mp(G
′) and Mp(G

′′) are isomorphic whenever G′, G′′ ∈ [G] and M is

translation invariant. Note that each equivalence class [G] contains a unique integer

graph with vertex set [n] for some n > 1. This establishes a 1-1-correspondence

between ordered graphs and equivalence classes of integer graphs. Intuitively speak-

ing, each integer graph corresponds to the ordered graph obtained by filling each
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M =
(

+ 0 0 − 0 0
0 + 0 0 − 0
0 0 + 0 0 −

)

E(G) = {(123), (145), (245), (345), (346), (357), (467), (567), (568), (569), (789)}

G p =
(

0
0
0

)

Figure 2.14: A 3-uniform shift chain that is not 2-colorable (due to Fulek, see [120]).

gap in its vertex set by an isolated vertex. Altogether we see that each translation

invariant matrix and any vector yield a local constraint for general ordered graphs.

One might argue that isolated vertices in an ordered graph should not affect

local constraints. To overcome this issue one might only consider connected ordered

graphs. We think that this does not make much difference for the constraints given

by our framework.

Question 2.9. Are there s, t ∈ Z, a matrix M ∈ Zs×2t, and p ∈ Zs, such that

κα(M,p, x) or κω(M,p, x) equals infinity for some x > t − 1, while the function

restricted to connected integer graphs is finite?

Generalizations Finally let us mention some possible generalizations of this

framework. First, other parameters than the independence or clique number of

the conflict hypergraph can be considered. For example it might be interesting to

study the affect of bounding the degrees or the chromatic number. Second, the

framework can be extended to (ordered) hypergraphs in a straightforward way by

considering conflicting sets of hyperedges. For example Pálvölgyi [122] and Pach

and Pálvölgyi [120] ask whether there is a sufficiently large r such that all r-uniform

ordered hypergraphs of the following kind are properly 2-colorable (that is, have

property B). A shift-chain G is an r-uniform hypergraph with linearly ordered ver-

tex set such that for any two hyperedges (u1, . . . , ur) and (v1, . . . , vr) we have either

ui 6 vi for each i ∈ [r] or ui > vi for each i ∈ [r]. In our (generalized) framework this

is equivalent to α(M0(G)) = 1 (that is M0(G) is a complete graph) for M ∈ Zr×2r

where for each i ∈ [r] and the ith row M (i) of M we have that M
(i)
i = 1, M

(i)
r+i = −1,

and M
(i)
j = 0, j ∈ [2r] \ {i, r + i}. See Figure 2.14 for an example in case r = 3.

Note that M0(G) is a graph in this example, since conflicts are defined for pairs of

hyperedges. Note further that in case r = 2 a graph is a shift chain if and only if it

does not contain a nested 2-matching.
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Ramsey Equivalence

3.1 Introduction

Two graphs G and H are Ramsey equivalent if R(G) = R(H), that is, they have

exactly the same set of Ramsey graphs. We write G
R∼ H if G is Ramsey equivalent

to H, and write G 6R∼ H otherwise. Note that this indeed establishes an equivalence

relation. Although many properties of Ramsey graphs are already studied for a long

time, as we have seen in Section 1.4, the notion of Ramsey equivalence of graphs

was raised only recently by Szabó et al. [139]. Of course each graph is Ramsey

equivalent to itself. However, it is quite easy to obtain Ramsey equivalent pairs of

non-isomorphic graphs.

Observation 3.1. For any graph G we have G
R∼ G + tK1 for any t with 0 6 t 6

r(G)− |V (G)|.

So for any graph G with r(G) > |V (G)| there is some Ramsey equivalent non-

isomorphic graph H. Note that K2 and K1,2 are the only graphs G without isolated

vertices and r(G) = |V (G)|, see Lemma 3.2.1. It is easy to see that each graph that

is a union of one of these two graphs and some isolated vertices is Ramsey equivalent

to itself only, see Lemma 3.2.2. We think that they are the only such graphs, so the

following question has a positive answer.

Question 3.1. Let G be a graph with G 6∈ {K2 + tK1 | t > 0}∪{K1,2 + tK1 | t > 0}.
Is there a graph H that is not isomorphic to G such that G

R∼ H?

Before summarizing our and previously known results we state two further simple

observations.

Observation 3.2. Let G and H be graphs with G ⊆ H. If G
R∼ H, then G

R∼ H ′

for each graph H ′ with G ⊆ H ′ ⊆ H.

Observation 3.3. For any graph G we have G 6R∼ G+G.

Observation 3.3 holds since for each graph G, each minimal Ramsey graph F

of G, and some edge e in F there is a coloring of F − e without no monochromatic

copies of H. Then, no matter which color is assigned to e, all monochromatic copies

of G in F contain e. So there is no monochromatic copy of G+G and F 6→ G+G.

See Figure 3.1 (right).

59
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no
mono.
G

G
G

G

e

Figure 3.1: A coloring of K6 without monochromatic copies of K3 +K2 (left) and a
coloring of a minimal Ramsey graph F of G where all monochromatic copies of G
contain a given edge e (right).

Outline In the following paragraphs we summarize known results on Ramsey

equivalent pairs of graphs. Most of these are concerned with the question which

graphs are Ramsey equivalent to complete graphs. In the last part of this section

we present our contribution to this field.

In Section 3.2 we present preliminary lemmas and observations, used in the

proofs of the main theorems in Section 3.3 or in Section 3.4 when we consider small

so-called “distinguishing” graphs. Finally concluding remarks and open questions

are stated in Section 3.5.

3.1.1 Previous Results

Szabó et al. [139], Fox et al. [67], and Bloom and Liebenau [16] give more results

which pairs of graphs of the form (G,G + H) are Ramsey equivalent. For given s

and t let p(t, s) denote the largest integer p such that Kt
R∼ Kt + pKs. The first two

items of the following theorem are due to Observations 3.1 and 3.3, and the coloring

in Figure 3.1 (left), which shows that K6 6→ K3 +K2.

Theorem 3.1. Let s and t be integers with t > 2, 1 6 s < t. Then

(a) p(t, 1) = r(Kt)− t [67],

(b) p(t, t) = p(3, 2) = 0 [67],

(c) p(t, t− 1) = 1 [16, 67],

(d) if s 6 t− 2, then p(t, s) > r(t,t−s+1)−2t
2s [139],

(e) if s > 3, then p(t, s) 6 r(t,t−s+1)−1
s [67],

(f) p(t, 2) 6 r(t,t)−t
2 [67].

As it turns out, for all Ramsey equivalent pairs of non-isomorphic graphs that

are known so far at least one the graphs is disconnected. In particular Fox et al.

prove the following result.

Theorem 3.2 ([67]). Let t > 1 and H be a graph. If Kt
R∼ H, then H = Kt + H ′

for some graph H ′ with ω(H ′) < t.

In particular the only connected graph that is Ramsey equivalent to Kt is Kt

itself.



3.1. INTRODUCTION 61

3.1.2 The Main Question

Fox et al. [67] formulate the question whether there are is a Ramsey equivalent pair

of connected graphs that are not isomorphic, which we already stated as Question 1.2

in Section 1.4. This is the main question for this chapter. Note that G 6R∼ H if and

only if there exists a graph Γ such that Γ → H and Γ 6→ G or Γ → G and Γ 6→ H.

In this case we call Γ a graph, distinguishing G and H. So in order to prove that

G 6R∼ H, it is sufficient to explicitly construct a distinguishing graph. Similarly it is

sufficient to show that rρ(G) 6= rρ(H) for some graph parameter ρ. In particular two

graphs of different Ramsey number are not Ramsey equivalent. Szabó et al. [139]

and Fox et al. [67] follow this approach with ρ being the minimum degree. They

prove rδ(Ht,1) = t− 1, [67, 139], where Ht,d is the graph with one vertex of degree d

and t other vertices forming a copy of Kt, d 6 t. We have rδ(Kt) = (t− 1)2 [31, 69]

and hence Kt 6R∼ Ht,1 for t > 3. Thus Kt 6R∼ H for any graph H containing Ht,1 by

Observation 3.2.

Another approach is to identify a graph parameter ρ, such that ρ(G) 6= ρ(H)

already implies that G 6R∼ H. In this case, we say that ρ is a Ramsey distinguishing

parameter . The only structural graph parameters that we know to be Ramsey

distinguishing are the clique number and the odd girth. Results of Nešetřil and

Rödl [115, 116] show that if ω(H) = ω and girtho(H) = g 6= ∞ then there are

Ramsey graphs G, G′ ∈ R(H) such that ω(G) = ω and girtho(G′) = g. Note

that if Question 1.2 has a negative answer, then any graph parameter is a Ramsey

distinguishing parameter for the class of connected graphs. Due to the result on the

clique number, Kt 6R∼ H if H does not contain a copy of Kt. This result together

with the result Kt 6R∼ Ht,1 from above proves Theorem 3.2.

3.1.3 The Main Results

We provide a supporting evidence for a negative answer to Question 1.2 by the

following theorems, focusing on another graph parameter, the chromatic number.

Observation 3.4. If G and H are graphs, χ(G) = 2, and χ(H) > 2 then G 6R∼ H.

Indeed, a sufficiently large complete bipartite graph is a Ramsey graph for any

fixed bipartite graph [14]. But it contains only bipartite graphs and thus is a Ramsey

graph for such graphs only. Here, we prove that for several large classes of connected

graphs, the chromatic number is a Ramsey distinguishing parameter. Recall that a

graph is called clique-splittable if its vertex set can be partitioned into two subsets,

each inducing a subgraph of smaller clique number. Note that any graph G with

χ(G) 6 2ω(G)− 2 is clique-splittable. In particular all cliques and all planar graphs

containing a triangle are clique-splittable. The triangle-free clique-splittable graphs

are precisely the bipartite graphs.
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Theorem 3.3. If G and H are graphs, G is clique-splittable, and χ(G) < χ(H),

then G 6R∼ H.

Corollary 3.4. If G and H are graphs, χ(G) 6 2ω(G) − 2, and χ(G) 6= χ(H),

then G 6R∼ H.

Theorem 3.3 distinguishes pairs of graphs of distinct chromatic number under

some splittability condition. The following theorem requires stronger assumptions

but also applies to graphs of the same chromatic number.

Theorem 3.5. Let a connected graph G satisfy the following two properties:

1) There is an independent set S ⊂ V (G) such that ω(G− S) < ω(G).

2) There is a proper χ(G)-vertex-coloring of G in which some two color classes

induce a subgraph of a matching.

Let H be a connected graph which is not isomorphic to G, such that either H ⊆ G

or χ(H) > χ(G). Then G 6R∼ H.

In Theorems 3.3 and 3.5 we distinguish pairs of graphs under certain properties.

Call a graph G Ramsey isolated if G 6R∼ H for any connected graph H not isomorphic

to G. Note that Question 1.2 asks whether every connected graph is Ramsey isolated

or not. We apply the previous results to identify large families of Ramsey isolated

graphs.

Theorem 3.6.

(a) If G is connected, χ(G) = ω(G), and there is a proper χ(G)-vertex-coloring of

G in which some two color classes induce a subgraph of a matching in G, then

G is Ramsey isolated.

(b) Each path and each star is Ramsey isolated.

(c) Each connected graph on at most five vertices is Ramsey isolated.

If F distinguishes G and H then F has at least min{r(G), r(H)} vertices. The

distinguishing graphs used in the proof of Theorem 3.6 are rather large, except for

stars. However in Section 3.4 we prove that for all but at most 16 pairs G, H of

non-isomorphic connected graphs on at most five vertices there is a distinguishing

graph on min{r(G), r(H)} vertices.

A tree T on k vertices is called balanced if deleting some edge splits T into

components of order at most dk+1
2 e each. The Erdős-Sós-Conjecture states that

ex(n, T ) 6 k−2
2 n for any tree T on k vertices. We remark that recently, Ajtai,

Komlós, Simonovits, and Szemerédi announce a proof of the conjecture for large

k [3, 5, 4]. We state here a much weaker conjecture.
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Conjecture 3.1. There is a positive ε and an integer nε such that ex(n, T ) 6 k−1−ε
2 n

for any tree on k vertices and n > nε.

Theorem 3.7. Let Tk and T` denote trees on k respectively ` vertices with k < `.

Then Tk 6R∼ T` if one of the following conditions holds.

(a) Conjecture 3.1 is true.

(b) The tree Tk is balanced.

The next theorem makes use of multicolor Ramsey numbers. We write G 6R∼k H
if G and H are not Ramsey equivalent in k colors, that is, there is a graph Γ such

that for any k-coloring of its edges there is a monochromatic copy of G, and there

is such a coloring avoiding monochromatic copies of H, or vice versa.

Theorem 3.8. If G and H are graphs then G 6R∼ H if one of the following conditions

holds.

(a) There is a graph F such that r(G,G,F ) < r(H,H,F ).

(b) G ⊆ H and there is k > 2 with G 6R∼k H.

Finally we start the investigation of cycles, denoted Cn. As a first step we

establish the following result on Ramsey numbers of cycles, see also Lemma 3.2.9.

Note that for large n one can add many chords to a cycle Cn without changing the

Ramsey number [137].

Theorem 3.9.

(a) Let n > 5 and let G be a graph obtained from Cn by adding a pendant edge.

Then r(G) > r(Cn).

(b) For each n > 2 we have r(C2n) < r(C2n+K2) and r(C2n−1) = r(C2n−1 +kK2)

if and only if 0 6 k 6 n
3 .

3.2 Preliminary Observations and Results

Graphs which are Ramsey Equivalent to Itself Only

Lemma 3.2.1. If G has no isolated vertex, then r(G) = |V (G)| if and only if

G ∈ {K2,K1,2}.

Proof. Consider a graph G on n vertices without isolated vertices. In particular

n > 2. If G is disconnected or not isomorphic to K1,n−1, then color a copy of K1,n−1

in Kn red and all other edges blue. Then there is no monochromatic G in Kn and

r(G) > n. So suppose G is isomorphic to K1,n−1. Due to [34], r(K1,n−1) = 2n − 2

if n is even, and r(K1,n−1) = 2n− 3 if n is odd. Hence r(G) = r(K1,n−1) = n if and

only if n ∈ {2, 3}, that is, G ∈ {K1,1,K1,2} = {K2,K1,2}.
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Lemma 3.2.2. If G ∈ {K2 + tK1 | t > 0} ∪ {K1,2 + tK1 | t > 0} and G
R∼ H, then

H is isomorphic to G.

Proof. First assume that G = K2 + tK1 for some t > 0. Then each Ramsey graph of

G contains an edge and t isolated vertices. Hence the only minimal Ramsey graph

of G is G itself. It is easy to see that G is a minimal Ramsey graph for G only

(either G is not Ramsey or G is not minimal). Hence G is not Ramsey equivalent

to any other graph.

Next assume that G = K1,2 + tK1 for some t > 0. Then K3 + tK1 has the same

number of vertices as G and it is easy to see that K3 + tK1 → G. Let G′ denote

a graph not isomorphic to G. If G′ ⊆ K2 + t′K1 for some t′ > 0, then G 6R∼ G′ by

the first part of the lemma. If G′ = K1,2 + t′K1 for some t′ 6= t, then r(G) 6= r(G′)

and hence G 6R∼ G′. In any other case G′ contains either two independent edges, a

copy of K1,3, or a copy of K3. In each case we see that K3 + tK1 6→ G′ and G′ 6R∼ G.

Altogether G is not Ramsey equivalent to any other graph.

Lemmas for the Main Proofs

The following lemma is an easy generalization of the Focusing Lemma in [67].

Lemma 3.2.3 (Focusing Lemma, [67]). Let (A ∪ B,E) be a bipartite graph with a

2-edge-coloring. Then there is a subset B′ ⊆ B, |B′| > |B|/2|A|, such that for each

a ∈ A all edges from a to B′ are of the same color.

Lemma 3.2.4 ([116]). For any graph G there is a graph F ∈ R(G) with ω(G) =

ω(F ).

Lemma 3.2.5 ([64]). For any integers r, g > 2 and any ε > 0 there is an integer

n and an r-uniform hypergraph on n vertices with girth at least g and independence

number less than εn.

From this lemma one easily derives the following well-known result.

Lemma 3.2.6 ([64]). For any integers r, g, k > 2 there is an r-uniform hypergraph

with girth at least g and chromatic number at least k.

Proof. Let ε < 1
k and let H denote an r-uniform hypergraph with girth at least g

and independence number at most ε|V (H)|, which exists by Lemma 3.2.5. In any

k-coloring of V (H) there is a set of at least 1
k |V (H)| > ε|V (H)| vertices of the same

color. Hence this color class induces an edge of H. Thus the coloring is not proper

and χ(H) > k.

Recall that for graphs F , G and for ε > 0 we write F
ε→ G if for any set S ⊆ V (F )

with |S| > ε|V (F )|, we have F [S]→ G.

Lemma 3.2.7 ([67]). For any ε > 0 and any graph H, there is a graph F with

ω(F ) = ω(H) and F
ε→ H.
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Proof. Let F ′ be a graph such that F ′ → H and ω(F ′) = ω(H). Such a graph

exists by Lemma 3.2.4. Further let H denote a |V (F ′)|-uniform hypergraph of girth

at least 4 and no independent set of size ε|V (H)|, which exists by Lemma 3.2.5.

Construct a graph F by placing a copy of F ′ on the vertices of each hyperedge of H.

Then F is a graph on |V (H)| vertices with ω(F ) = ω(F ′) = ω(H). Each vertex set

of size at least ε|V (H)| induces a hyperedge in H and thus a copy of F ′ in F which

arrows H.

We have the following corollary, since any graph which arrows H contains H.

Lemma 3.2.8. For any ε > 0 and any graph H, there is a graph F with ω(F ) =

ω(H) and each set of ε|V (F )| vertices in F containing a copy of H.

Lemma 3.2.9. Let G and H be graphs and let n be a positive integer. If ex(n,G) <

ex(n,H)/2 or if H is connected and ex(n,G) <
√
n ex(

√
n,H), then G 6R∼ H. In

particular, if G is a forest and H contains a cycle, then G 6R∼ H.

Proof. Assume first that ex(n,G) < ex(n,H)/2. Let F be a graph on n vertices

with ex(n,H) > 2 ex(n,G) + 1 edges without a copy of H. In any 2-coloring of the

edges of F one of the color classes contains at least ex(n,G) + 1 edges, and thus a

copy of G. Hence F → G, but F 6→ H.

Assume now that H is connected and ex(n2, G) < n ex(n,H). Let F be a graph

on n vertices and ex(n,H) edges not containing H. Let F ∗ = F×F be the Cartesian

product of F with itself, that is, V (F ∗) = V (F )×V (F ) and {(u, v), (x, y)} ∈ E(F ∗)

if and only if u = x and vy ∈ E(F ) or v = y and ux ∈ E(F ). Then F ∗ has n2

vertices and 2n ex(n,H) edges. In any 2-edge-coloring of F ∗ there is a color class

with at least n ex(n,H) edges. This color class contains a copy of G, thus F ∗ → G.

On the other hand, we can color the edges of F ∗ without creating monochromatic

copies of H by coloring an edge {(u, v), (x, y)} red if u = x and blue otherwise. Note

that each color class is a vertex disjoint union of n copies of F and thus does not

contain H, as H is connected. Thus F ∗ 6→ H.

For the second part of the statement let G be any forest and H be any graph

with a cycle C. We have ex(n,G) 6 |V (G)|n and due to [99] we have ex(n,H) >

ex(n,C) ∈ Ω(n
1+ 1
|V (C)|−1 ). Therefore, for sufficiently large n we have ex(n,G) <

ex(n,C)/2 and thus G 6R∼ H by the first part of the Lemma.

Next we state a few technical lemmas used in proving Theorem 3.6(c). Let

Z1 and Z4 denote the graphs obtained from C4 by adding two, respectively three,

pendant edges at some vertex, let Z5 denote the graph obtained from K2,3 by adding

a pendant edge at a vertex of degree 3, see Figure 3.2.

Lemma 3.2.10. rδ(Z4) = 1.
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Z1 Z2 Z3 Z4

Z5

Figure 3.2: The graphs Z1, Z2, Z3, Z4 and Z5.

Proof. Let Γ denote the graph obtained from K9 by adding 9 new vertices and a

matching between these and the vertices in K9. We have K9 6→ Z4, due to any

4-factorization, and we shall show Γ→ Z4. Then each minimal Ramsey graph of Z4

contained in Γ contains at least one of the vertices of degree 1 and thus rδ(Z4) = 1.

Consider the copy K of K9 in Γ and let c denote a 2-edge-coloring of K with no

monochromatic copy of Z4. We shall show that there is a red and a blue copy of Z1

in K with the same vertex x of degree 4, see Claim 2. Then there is a monochromatic

copy of Z4 in Γ no matter which color is assigned to the edge pendant at x. Thus

Γ→ Z4.

Claim 1. There is no vertex in K with 5 incident edges of the same color under c.

Proof of Claim 1. For the sake of contradiction assume u in K has 5 incident red

edges. Let N denote the 5 neighbors of u incident to these edges and x, y, z denote

the vertices in K not incident to these edges. Then there is at most one red edge

between N and each vertex in {x, y, z}, as otherwise there is a red copy of Z4 in

K. So there are two distinct vertices v, w in N such that there are only blue edges

between {v, w} and {x, y, z}. Since each vertex in {x, y, z} is incident to 4 blue edges

to N , each of the vertices in {x, y, z} is the degree 4 vertex in a blue copy of Z1

with another vertex from {x, y, z} and four vertices from N . Thus there are only

red edges between u and {x, y, z} and only red edges within {x, y, z}, as otherwise

there is a blue copy of Z4. But then {u, x, y, z} forms a red copy of C4 with 3 red

edges pendant at u (those to N), a monochromatic copy of Z4, a contradiction. This

proves Claim 1. 4

Claim 2. There is a vertex in K which is the vertex of degree 4 in a red and a blue

copy of Z1 under c.

Proof of Claim 2. By Claim 1 the red and the blue subgraph of K under c are 4-

regular. Consider a vertex u in K and let Nr and Nb denote the sets of neighbors

in K adjacent to u via red respectively blue edges. If there are vertices v ∈ Nb and

w ∈ Nr with two red edges between v and Nr and two blue edges between w and

Nb, then u is the degree 4 vertex in a red and in a blue copy of Z1 and we are done.

So we assume that there is at most one blue edge between Nb and each vertex in Nr.

Since |Nr| = 4 and the blue subgraph is 4-regular, each vertex in Nr sends at most

3 blue edges to the other vertices in Nr and at least one blue edge to Nb. Hence
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there is exactly one blue edge between Nb and each vertex in Nr and Nr forms a

blue copy of K4. If the blue edges between Nr and Nb form a matching, then Nb

induces a blue copy of C4 and two independant red edges. Then each vertex in Nb is

the vertex of degree 4 in a blue and in a red copy of Z1 and we are done. If the blue

edges between Nr and Nb do not form a matching then there is vertex v ∈ Nb with

exactly two blue and two red edges between v and Nr (three or four blue edges is

not possible). Hence v is contained in a blue copy of C4 with three vertices from Nr

and there are two blue edges pendant at v, one to u and one within Nb. Moreover v

is contained in a red copy of C4 with u and two vertices from Nr and there are two

red edges pendant at v within Nb. This proves Claim 2. 4

Altogether this proves the lemma.

Lemma 3.2.11. In any 2-edge-coloring of K3,13− e without a monochromatic copy

of Z5 the vertex of degree 2 is incident to exactly one red and one blue edge.

Proof. Let x be the vertex of degree 2 in K3,13−e, let B denote the vertices of degree

3 and A = V (K3,13− e) \ (B ∪{x}). Then |A| = 3, |B| = 12 and there is a complete

bipartite graph between A and B. Consider a 2-edge-coloring of K3,13 − e without

a monochromatic copy of Z5. We consider the edges between A and B first. Since

|A| = 3, each vertex in B is incident to at least 2 red or 2 blue edges by pigeonhole

principle. Let Br ⊆ B denote the set of vertices in B incident to at least 2 red edges

and Bb = B \ Br those incident to 2 blue edges. Without loss of generality assume

|Br| > |Bb|, thus |Br| > 6. For v ∈ Br let Av denote the vertices in A adjacent to v

via red edges. Then |Av| > 2. Assume there is a set A′ ⊆ A of size 2 and distinct

vertices v1, v2, v3 ∈ Br with A′ = Avi , 1 6 i 6 3. Then all edges between A′ and

B \{v1, v2, v3} are blue, as otherwise there is a red copy of Z5. But these edges form

a blue copy of K2,9 which contains a copy of Z5, a contradiction. Hence for each set

A′ ⊆ A of size 2 there are most two vertices v in Br with A′ = Av. Since |A| = 3

and |Br| > 6, there are exactly 2 vertices v ∈ Br with A′ = Av for each such A′

and thus |Br| = 6. Hence |Bb| = |B \ Br| = 6 and the same arguments applied to

Bb and the blue edges show that for each A′ ∈
(
A
2

)
there are exactly 2 vertices in

Bb adjacent to A′ with only blue edges too. Now consider the edges incident to x.

If there are 2 red edges, then together with the neighbors of x and some 3 vertices

from Br there is a red copy of Z5, a contradiction. The same argument holds for the

blue edges and hence there is exactly one red and one blue edge incident to x.

Lemma 3.2.12. rδ(Z5) = 1.

Proof. Consider the graph Γ obtained from a complete bipartite graph on partite

sets X = {x1, x2, x3} and W = {`1, `2, `3, r1, r2, w} by adding 3 new vertices and a

matching between these and the vertices in X. See Figure 3.3 for an illustration.

We construct a graph F as follows. Let C denote the complete bipartite graph on
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Figure 3.3: A graph F which is Ramsey for Z5.
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Figure 3.4: A red and a blue copy of K2,3 in a 2-edge-coloring of F with the same
degree 3 vertices.

parts A and B with |A| = 3 and |B| = 12. For each i, 1 6 i 6 3, take a copy Ci of

C and identify {w, `i} with two vertices in the smaller part of Ci. An illustration is

given in Figure 3.3. From now on `i and w refer to the identified vertices. We prove

F → Z5 next. Consider a 2-edge-coloring of F . Then each xj ∈ X together with

each Ci, 1 6 i 6 3, induces a copy of K3,13 − e. Hence there is a monochromatic

copy of Z5 by Lemma 3.2.11, if there are `i and xj such that both edges between xj

and {w, `i} are of the same color, 1 6 i, j 6 3. So assume that the edges between

xj and {w, `i} are of different colors, 1 6 i, j 6 3. By pigeonhole principle we may

assume that there are 2 vertices in X, say x1, x2, such that the edge between xj and

w is red, j = 1, 2. Then the edges xj`1, xj`2, xj`3 are blue for j = 1, 2. Thus there is

a blue copy of K2,3 between {x1, x2} and {`1, `2, `3}. Hence the edges xjr1, xjr2 are

red, or otherwise there is a blue copy of Z5. Thus there is a red copy of K2,3 between

{x1, x2} and {w, r1, r2}, see Figure 3.4. Altogether there is a monochromatic copy

of Z5 no matter which color is assigned to the edge pendant at x1. Thus F → Z5.

Let F ′ denote the graph obtained from F by removing the vertices of degree 1. It

remains to show that F ′ 6→ Z5. Then every minimal Ramsey graph of Z5 in F

contains at least one of the degree 1 vertices and hence rδ(Z5) = 1. Consider the

following coloring of F ′. Color all edges between {x1, x2} and {w, r1, r2} and all

edges between x3 and {`1, `2, `3} red. Color all other edges between X and W blue.

Finally color the edges of each Ci, 1 6 i 6 3, without a monochromatic copy of

K2,3. Such a coloring exists since K3,12 6→ K2,3 [69]. Next we show that there is no

monochromatic copy of Z5 under this coloring. Each copy of K2,3 in F ′ which does

not contain any vertex of X is contained in (exactly) one of the Ci and hence is not

monochromatic. Moreover each copy of K2,3 in F ′ which contains a vertex from X
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Figure 3.5: A red (solid lines) copy of W4 in some 2-edge-coloring of Γ.

and a vertex from V (Ci) \ {w, `i} for some i, contains w and `i and hence a red and

a blue edge. Thus the only monochromatic copies of K2,3 in F ′ are contained in

Γ. The part on 2 vertices of all monochromatic copies of K2,3 in Γ is contained in

X. Hence there is no monochromatic copy of Z5 because each x ∈ X is incident to

exactly 3 red and 3 blue edges.

The wheel W4 is the graph on 5 vertices obtained from a cycle C4 of length 4 by

adding a new vertex adjacent to all vertices of the cycle.

Lemma 3.2.13. If H is connected and has at least 6 vertices, then H 6R∼W4.

Proof. We assume ω(H) = 3 = ω(W4) due to Lemma 3.2.4. Then χ(H) > 3.

Let ε = 2−5 and let F be a graph with F
ε→ C4 and ω(F ) = 2, which exists by

Lemma 3.2.7. We construct a graph Γ by taking the vertex disjoint union of F and

a copy K of K5 and placing a complete bipartite graph between F and K. We shall

show that Γ→W4, but Γ 6→ H.

Color all edges within F and within K red and all other edges blue. Since

ω(F ) = 2 < ω(H), H 6⊆ F . Since |V (H)| > 6, H 6⊆ K. Since H is connected there

is no red copy of H. The blue subgraph is a complete bipartite graph and χ(H) > 3.

Thus there is no blue copy of H.

It remains to show that Γ → W4. Consider a 2-edge-coloring of Γ. By the

Focusing Lemma (Lemma 3.2.3) there is a set V of 2−5|V (F )| = ε|V (F )| vertices in

F such that between V and each vertex in K all edges are of the same color. Since

F
ε→ C4 there is a monochromatic copy C of C4 in F [V ]. Assume without loss of

generality that C is blue. If there is a vertex in K which sends a blue star to C

then there is a blue copy of W4 and we are done. So assume all vertices in K send

red stars to C. If there is no blue copy of W4 in K, then there are two adjacent red

edges e and f in K (since the complement of W4 in K5 is a maximum matching).

Then e, f and any two vertices from C form a red copy of W4, with the vertex of

degree 4 being the common vertex of e and f , see Figure 3.5. Hence Γ→W4.

Lemma 3.2.14. If H is connected and has at least 6 vertices, then H 6R∼ K2,3.

Proof. We assume that H is bipartite and contains a cycle by Observation 3.4 and

Lemma 3.2.9, respectively. Since K3,13 → K2,3 [69] we assume K3,13 → H, since

otherwise H 6R∼ K2,3. Hence one of the partite sets of H contains at most 2 vertices,

since otherwise coloring the edges of K3,13 with a red copy of K2,13 and an edge
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Figure 3.6: The graphs P4 + e, T1, T2, T3, and T4.

disjoint blue copy of K1,13 does not yield a monochromatic copy of H. So H is K2,b

with some edges pendant at the part of size 2 for some b ∈ N with b > 2.

Suppose H has at least 8 vertices. We claim r(H) > 10. Indeed, color the edges

of a copy of K5,5 in K10 red and all other edges blue. Then the blue edges form

vertex disjoint copies of K5 and do not contain copies of H since H is connected.

The red subgraph contains no copies of H as one of the bipartition classes of H has

at least 6 vertices (the other has only 2). Hence H 6R∼ K2,3 because r(K2,3) = 10 [84].

Suppose |V (H)| ∈ {6, 7}. Then H is isomorphic to one of the graphs Zi given in

Figure 3.2 or a supergraph of Z5. Note that Z5 contains K2,3. We have r(Z1) = 7,

r(Z2) = 8 by [26] and r(Z3) = 9, r(Z4) = 10 by [83]. Thus H 6R∼ K2,3 if H is

isomorphic to one of the graphs Zi, 1 6 i 6 3, because r(K2,3) = 10. Moreover H 6R∼
K2,3 if H is isomorphic to Z4 or Z5 because rδ(Z4) = rδ(Z5) = 1 by Lemma 3.2.10

respectively Lemma 3.2.12, but rδ(K2,3) > δ(K2,3) = 2. So assumeH is a supergraph

of Z5. Let F denote a minimal Ramsey graph of Z5 with δ(F ) = 1 and obtain a graph

F ′ by removing a vertex of degree 1 from F . Then F → K2,3 because K2,3 ⊆ Z5 and

F ′ → K2,3 (since F is not minimal Ramsey for K2,3). But F ′ 6→ Z5, thus F ′ 6→ H,

and hence H 6R∼ K2,3.

The following lemmas give results for the graphs in Figure 3.6.

Lemma 3.2.15. H5,2 → P4 + e.

Proof. Let u denote the vertex of degree 2 in H5,2 and let let e = vw denote the

edge incident to both neighbors of u. Let x, y, z denote the other vertices. Assume

there is a 2-edge-coloring of H5,2 without a monochromatic copy of P4 + e. Without

loss of generality assume the edge uv is blue.

Case 1 : The edge e and two more edges vx, vy incident to v are red. Then either

there is a red copy of P4 + e containing these edges or zx, zy, zw, and uw are blue.

Then these form a blue copy of P4 + e.

Case 2 : The edge e and at most one other edge incident to v is red. Then assume

vx, vy are blue. Then wx, wy, zx, zy, and uw are red and yield a copy of P4 + e.

Case 3 : The edges e and vx are blue. Then wy, wz, xy, and xz are red. Then the

edges vy, vz, and uw are blue, so the blue subgraph contains a copy of P4 + e.

Case 4 : The edge e is blue but all the edges vx, vy, vz are red. Then wx, wy, wz

are blue. Together with uv and vw there is a blue copy of P4 + e.
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Lemmas for Section 3.4

Lemma 3.2.16. If a graph H is not bipartite then rδ(H) > 2∆(H). The lower

bound is tight.

Proof. Let ∆ = ∆(H) and suppose F is a graph with ∆(F ) 6 2∆−1. It is sufficient

to prove that F 6→ H. Consider a partition V1∪̇V2 of V (F ) with the maximum

number of edges between V1 and V2. If there is a vertex v ∈ V1 with at least ∆

neighbors in V1, then v has at most ∆ − 1 neighbors in V2. Thus the partition

(V1 \{v})∪̇(V2∪{v}) has at least one more edge between the parts than the original

partition, a contradiction. Hence both F [V1] and F [V2] have maximum degree at

most ∆− 1. Color all edges between V1 and V2 red and all other edges blue. Then

the red subgraph is bipartite and the blue subgraph has maximum degree at most

∆− 1. Thus F 6→ H.

The lower bound is tight since K2∆+1 → H, ∆ > 3, where H is the graph of

maximum degree ∆ obtained from K1,∆ by adding an edge between two leaves.

Lemma 3.2.17. H5,3 → P5.

Proof. Assume there is a 2-edge-coloring of H5,3 without a monochromatic copy of

P5. Let u denote the vertex of degree 3 in H5,3, let x, y, z denote its neighbors and

v, w the remaining vertices. There are two edges of the same color incident to u,

assume ux, uy are red. Since there is no monochromatic copy of K2,3 (it contains a

copy of P5) there is at least one edge from {x, y} to {v, w, z} in red.

Case 1 : There are r, r′ ∈ {v, w, z} such that the edges xr, yr′ are red. Then r = r′

and all edges from {x, y} to {v, w, z} \ {r} are blue. But then the edge from r to

{v, w, z} \ {r} can be neither red nor blue.

Case 2 : Without loss of generality, x has only blue edges to {v, w, z}. Then yp is

red for some p ∈ {v, w, z} and all edges from p to {v, w, z}\{p} are blue. This yields

a blue copy of C4 on {x, v, w, z}. Since all edges which are incident to this C4 (but

not contained) are red we can find a red copy of P5.

Lemma 3.2.18. K5,5 → C4 + e.

Proof. Consider a 2-edge-coloring of the edges of K5,5 and a vertex v. First we shall

prove that there is a monochromatic copy of C4. Let V denote the partite set of

K5,5 containing v. Then v is incident to three edges vx, vy, vz of the same color, say

red. From each of the four vertices in V \ {v} at most one edge to {x, y, z} is red,

otherwise there is a red copy of K2,2. But then there are two vertices in {x, y, z} and

two vertices in V \ {v} forming a blue copy of K2,2 by pigeonhole principle. This

shows that there is a monochromatic copy K of C4, say in red. There is either a red

edge between K and the vertices not in K or all these edges are blue. In either case

there is a monochromatic copy of C4 + e.
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Figure 3.7: All possible 2-colorings of K6 without a monochromatic copy of T1, up
to isomorphism and swapping the colors.

Lemma 3.2.19. H6,5 → H3,1.

Proof. Consider a 2-edge-coloring of the edges of H6,5. Since H6,5 contains a copy

of K6 there is a monochromatic copy K of K3, say in red. Let U denote the vertices

of H6,5 not in K. If there is a red edge between K and U , then there is a red copy of

H3,1. Otherwise all edges between K and U are blue. If there a blue edge induced

by U , then there is a blue copy of H3,1. Otherwise U induces a red copy of H3,1.

Lemma 3.2.20. Figure 3.7 shows all 2-edge-coloring of K6 without a monochro-

matic copy of T1, up to isomorphism and renaming the colors.

Proof. Consider a 2-edge-coloring of K6 on vertices u, v, w, x, y, z without monochro-

matic copies of T1. We may assume that K = {u, v, w} forms a red copy of K3

since r(K3) = 6. Clearly there are no two independent red edges between K and

Kc = {x, y, z}. If there is a vertex in K incident to at least two red edges to Kc,

then all edges between the two other vertices in K and Kc are blue. Thus these blue

edges form a blue copy of K2,3, and hence no edge in Kc is blue. But if all edges in

Kc are red, then there is a red copy of K3 with two vertices in Kc and one vertex in

K and a pendant red edge in K and a pendant edge in Kc. So we may assume that

at most one vertex in Kc is adjacent to K in red, say z. Then {x, y} and K form

a blue copy of K2,3. This shows that xy is red. We consider the cases how many

edges between x, y and z are red.

Case 1 : The edge xy is the only red edge. Then {x, y} and {u, v, w, z} induce a

blue copy of K2,4 and any additional blue edge within this copy of K2,4 yields a blue

copy of T1. Hence the red edges form a copy of K4 plus disjoint copy of K2, which

corresponds to the rightmost coloring of Figure 3.7.

Case 2 : There are at least two red edges. Then z is not part of any red copy of

K3 on {u, v, w, z}, since this K3 would have a red pendant edge in K and another

one in Kc. Hence there is at most one red edge from z to K. Thus there is a blue

copy of K3,3− e between K and Kc. This shows that no edge in Kc is blue and the

coloring corresponds to the left or the middle coloring in Figure 3.7.

Let K and K′ denote the graphs given in Figure 3.8. Also recall the graphs T1,

T2, T3, T4 given in Figure 3.6.
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Figure 3.8: The graphs K (left) and K′ (right).

Lemma 3.2.21. K → T1.

Proof. Assume c is a 2-coloring of the edges of K, labeled like in Figure 3.8, without a

monochromatic copy of T1. Let K denote the copy of K6 in K. Due to Lemma 3.2.20,

c restricted to K is isomorphic to one of three colorings of K6 given in Figure 3.7.

We shall distinguish cases based on the coloring of K under c.

Case 1 : The red subgraph of K under c consists of two disjoint K3 and the blue

edges in K form a copy of K3,3. If one of these blue edges is contained in a blue

copy of K3 with a vertex from {x, y, z}, then there is a blue copy of T1. Note that

each vertex from {x, y, z} has four neighbors in K, these neighborhoods intersect

pairwise in exactly two vertices, and no vertex from K is contained in all three

neighborhoods. Therefore we can find three vertex disjoint copies of K3 each with

exactly one vertex from each of the red copy of K3 in K and exactly one vertex

from {x, y, z}. Since there is a red edge from K to {x, y, z} in each of these, one of

the red copies of K3 in K has two independent pendant red edges. This gives a red

copy of T1, a contradiction.

Case 2 : The red subgraph of K under c consists of two disjoint K3 connected by

a single edge e. Then all edges from K to {x, y, z} are blue if not adjacent to e.

Then there are two vertices in K, not incident to e, each having two blue edges to

{x, y, z} but only one common neighbor in {x, y, z}. Since they are connected by a

blue edge in K, this gives a blue copy of T1, a contradiction.

Case 3 : The red subgraph of K6 consists of a copy of K4 and a vertex disjoint edge

e. Then all edges from this copy of K4 to {x, y, z} are blue. The blue edges in K

form a copy of K2,4. Again, if one of these blue edges in K forms a blue triangle

with a vertex from {x, y, z}, then there is a blue copy of T1. Thus all edges from e

to {x, y, z} are red. If e 6∈ {v1v2, u1u2, w1w2}, then e together with {x, y, z} forms a

red copy of T1. So assume e = w1w2. If the edge xy is blue, then {x, y, u1, u2, v1}
gives a blue copy of T1. If it is red, then {x, y, z, w1, w2} gives a red copy of T1, a

contradiction.

Altogether we proved that there is no 2-edge-coloring of K without a monochro-

matic copy of T1.
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Figure 3.9: All possible 2-colorings of K6 without a monochromatic copy of T3.

Lemma 3.2.22. Figure 3.9 shows all 2-edge-coloring of K6 without a monochro-

matic copy of T3, up to isomorphism and renaming the colors.

Proof. Consider a 2-edge-coloring of K6 on vertices u, v, w, x, y, z without monochro-

matic copies of T3. We may assume that K = {u, v, w} forms a red copy of K3.

If all edges from K to Kc are blue, then no edge among Kc is blue. Thus the

coloring corresponds to the left one in Figure 3.9. So assume the edge uz is red. If

{u, v, w, z} forms a red copy of K4, then all edges from this K4 to {x, y} are blue.

No matter which color is assigned to xy, the coloring has no monochromatic copy

of T3 and corresponds to the middle or right coloring in Figure 3.9.

So assume further that {u, v, w, z} is not a red copy of K4 (but uz is still red),

without loss of generality wz is blue. Since uz is red, xz and yz are blue.

Case 1 : The edge wx is blue. Then {w, x, z} is a blue copy of K3 with pendant blue

edge yz. Thus uy, vy are red. But then wy needs to be blue (otherwise {v, w, y} is

red copy of K3 with pendant red path vuz) and there is a blue copy of K4. Thus

the coloring corresponds to the middle or right coloring of Figure 3.9 with switched

colors, as argued above.

Case 2 : The edge wx is red. Then xy is blue and vx, vz are blue. Then vy needs to

be red, since {v, x, y} is a blue copy of K3 with pendant blue path xzw otherwise.

Then wy is blue, since otherwise {v, w, y} is a red copy of K3 with pendant red path

vuz otherwise. But now {w, y, z} is a blue copy of K3 with pendant blue path zxv,

a contradiction.

Lemma 3.2.23. K → T3.

Proof. Assume c is a 2-coloring of the edges of K, labeled like in Figure 3.8, without a

monochromatic copy of T3. Let K denote the copy of K6 in K. Due to Lemma 3.2.22,

c restricted to K is isomorphic to one of three colorings of K6 given in Figure 3.9.

We shall distinguish cases based on the coloring of K under c.

Case 1 : The red subgraph of K6 consists of two disjoint copies of K3. Then the

blue edges in K form a copy of K3,3. If one of these blue edges is contained in a

blue copy of K3 with a vertex from {x, y, z}, then there is a blue copy of T3. On the

other hand no vertex in Kc = {x, y, z} sends a red edge to each of the red copies of

K3 in K. Since there are 4 edges from each vertex in {x, y, z} to K, each is incident
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to at least one red edge and one blue edge. If one of the edges induced by {x, y, z}
is red, then there is a red copy of T3 with a red copy of K3 from K and an edge

between them. So {x, y, z} induces a blue copy of K3 which forms a blue copy of T3

with an edge to K and another contained in K.

Case 2 : The red subgraph of K6 consists of a red copy of K4 only. Then no edge

incident to this copy of K4 is red. Let a, b denote the vertices in K not contained

in the red copy of K4. Then every blue edge between {x, y, z} and the red copy of

K4 is part of a blue copy of T3 together with a, b, and another vertex in K.

Case 3 : The red subgraph of K6 consists of a red copy of K4 and a disjoint red

edge e. Again all edges incident to the red copy of K4 are blue and no blue edge

in K is contained in a blue copy of K3 with a vertex from Kc. Thus all edges from

e to Kc are red. Assume e 6∈ {v1v2, u1u2, w1w2}, say it is v2w2. If xy is blue then

{x, y, u1, v1, z} forms a blue copy of T3. If xy is red then {x, y, v2, w2, z} gives a red

copy of T3. So assume e = w1w2. If the edge xy is blue, then {x, y, u1, v1, z} forms

a blue copy of T3. If it is red, then {x, y, z, w1, w2} gives a red copy of T3.

Lemma 3.2.24. For each i ∈ {1, 2, 3} a 2-coloring of K8 does not have a monochro-

matic copy of Ti if and only if one of the color classes induces two vertex disjoint

copies of K4.

Proof. First of all note that a 2-edge-coloring of K8 with one color class inducing

two vertex disjoint copies of K4’s does not contain a monochromatic copy of Ti for

each i ∈ {1, 2, 3}.

On the other hand, consider an arbitrary 2-edge-coloring of K8 without no

monochromatic copies of Ti for a fixed i ∈ {1, 2, 3}. There is a monochromatic

copy K of H3,1, say in red (i.e., a red copy of K3 with a pendant edge), since

r(H3,1) = 7.

Suppose that there is no monochromatic copy of T1. Then none of the two

vertices of degree 2 in K is incident to another red edge in K8. Thus there is a blue

copy of K2,4. Then the part with four vertices in this K2,4 contains no further blue

edge and induces a red copy of K4. But then no edge incident to this copy of K4 is

red, and there is a blue copy of K4,4. Since no other edge might be blue then, there

are two disjoint red copies of K4.

Suppose there is no monochromatic copy of T2. The vertex of degree 3 in K has

no other incident red edge. So it is the center of a blue copy of K1,4. The degree 1

vertices in this copy of K1,4 do not induce a blue edge, so they induce a red copy

of K4. But then no edge incident to this K4 is red and there is a blue copy of K4,4

between K and the other vertices. As argued above the red edges form two disjoint

copies of K4s and the blue edges form a copy of K4,4.
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Suppose there is no monochromatic copy of T3. Let Kc denote the set of vertices

not in K. Then any edge connecting the vertex v of degree 1 in K to a vertex in

Kc is blue. Assume there is a red edge from K to a vertex u ∈ Kc. Then any edge

connecting u to a vertex in Kc \ {u} is blue. Then each edge e within Kc \ {u} or

from Kc \ {u} to K \ {v} is red, since otherwise there is a blue copy of T3 spanned

by u, v and e. But then there is red copy of T3, a contradiction.

So all edges between K and Kc are blue. Then there is no other blue edge and

the red edges form two disjoint copies of K4.

Lemma 3.2.25. H8,5 → Ti for each i ∈ {1, 2, 3}.

Proof. Assume there is a 2-edge-coloring of H8,5 without a monochromatic copy of

Ti for some i ∈ {1, 2, 3}. We may assume that within the copy of K8 the red edges

form two disjoint copies of K4 with a blue copy of K4,4 in-between by Lemma 3.2.24.

Let v denote the vertex of degree 5. Then v has only blue incident edges since every

neighbor of v is part of a red copy of K4. But v has a neighbor in each of the red

copies of K4’s. Thus v together with these two vertices forms a blue copy of K3

which is contained in a blue copy of Ti for all i ∈ {1, 2, 3}, a contradiction.

Lemma 3.2.26. A 2-edge-coloring of K7 does not have a monochromatic copy of

T1 if and only if one of the color classes induces vertex disjoint copies of K3 and

K4.

Proof. The proof is very similar to the proof of Lemma 3.2.24.

Lemma 3.2.27. K′ → T1.

Proof. Assume there is a 2-edge-coloring of K′ without a monochromatic copy of T1.

Due to Lemma 3.2.26 we may assume that the copy of K7 in K′ is colored such that

the blue edges induce a copy of K3,4 and the red subgraph consists of two disjoint

copies of K4 and K3. Let K denote the red copy of K3 and u, v the two vertices

of degree 5 in K′. Then each edge from {u, v} to the red copy of K4 is blue and

there are at least two such edges incident to each of u, v. Thus each edge from u

or v to K is red, since there is a blue copy of T1 otherwise. Due to construction of

K′ there are two independent edges from K to {u, v} and thus a red copy of T1, a

contradiction.

We checked the following lemma by a straightforward algorithm computing all

solutions of an equivalent satisfiability problem. It would be nice to have a proof

that avoids the use of computers as well as lengthy case analysis. Note that each of

the colorings described in the following lemma does not contain a monochromatic

copy of C5. Since C5 is a subgraph of T4 this shows that a coloring of K8 has no

monochromatic copy of C5 if and only if there is no monochromatic copy of T4.
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Lemma 3.2.28. A 2-edge-coloring of K8 does not have a monochromatic copy of T4

if and only if one of the color classes induces two disjoint copies of K4 with at most

one edge of the same color in-between (i.e., the other color spans a copy of K4,4 or

K4,4 − e).

Lemma 3.2.29. H8,6 → C5, T4.

Proof. Since C5 is a subgraph of T4 it is sufficient to prove H8,6 → T4. Assume

there is a 2-edge-coloring of H8,6 without a monochromatic copy of T4. Due to

Lemma 3.2.28 we assume that the coloring of the copy of K8 in H8,6 has two disjoint

red copies of K4 connected by at most one red edge. Let v denote the vertex of degree

6. It is incident to at most one red edge to each of the red copies of K4. Thus there

is a blue copy of K3 with v and one vertex from each red copy of K4. But this forms

a blue copy of T4 together with some of the other blue edges, a contradiction.

Lemma 3.2.30. A 2-edge-coloring of K9 does not have a monochromatic copy of

H3,2 = K4 − e if and only if each color class is isomorphic to the Cartesian product

K3 ×K3.

Proof. First of all observe that K3×K3 does not contain a copy of H3,2 since every

edge is contained in exactly one copy of K3. Moreover the complement of K3 ×K3

(as a subgraph of K9) is isomorphic to K3 × K3. Hence the edges of K9 can be

2-colored without a monochromatic copy of H3,2 using two edge disjoint copies of

K3 ×K3.

On the other hand consider a 2-edge-coloring c of K9 without a monochromatic

copy of H3,2 = K4− e. We shall assign labels vi,j , 1 6 i, j 6 3, to the vertices of K9

such that this labeling corresponds to an arrangement of the vertices in a 3× 3 grid

where the red subgraph spans all rows and columns and all other edges are blue.

There is a monochromatic copy of T5 under c, say in red, since r(T5) = 9, see

Table 3.1. Let K = {v1,1, v1,2, v1,3, v2,1, v3,1} denote the vertices of this copy of

T5 such that v1,1 is the vertex of degree 4 and the edges of this red copy of T5 span

the first row and first column in the grid, see Figure 3.11. Observe that no edge

spanned by K is red except for the edges in the red copy of T5. Indeed if another

edge is red, then there is a red copy of H3,2 in K. Let Kc denote the vertices not in

K. We shall use the following claim.

Claim 1. If C is a red copy of K3 and uv is a vertex disjoint blue edge, then there

is a vertex x in C such that xu and xv are blue, and there are two independent

red and two independent blue edges between C − x and uv. See Figure 3.10 for an

illustration.

Proof of Claim 1. Indeed, there is at most one red edge between each vertex in

{u, v} and C and for at most one vertex in C both edges to uv are blue. Hence for
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u

v

x

Figure 3.10: The unique 2-coloring
of K5 (up to isomorphism) without a
monochromatic copy of H3,2 provided
that there is a red copy of K3 with a
disjoint blue edge.

v2,1

v1,1 v1,2 v1,3

v3,1

f

e Kc

Figure 3.11: The partial labeling of ver-
tices of K9 under a 2-coloring without
a monochromatic copy of H3,2 in the
proof of Lemma 3.2.30, with solid red
and dashed blue edges.

exactly one vertex in C both edges to uv are blue and there are exactly two further

independent blue edges between C and uv. This proves Claim 1. 4

By assumption the four vertices in Kc do not induce a monochromatic copy of

H3,2 and hence there are at least two blue edges e, f . Let C1, C2 denote the red

copies of K3 in K. We shall apply Claim 1 to each of the pairs {e, C1}, {e, C2},
{f, C1}, {f, C2}. There is a vertex xi in Ci, i = 1, 2, such that both edges between

xi and a blue edge in Kc are blue by Claim 1. Then x1 = x2 = v1,1, since otherwise

there is blue copy of H3,2. Hence the blue edges in Kc are independent, since two

adjacent blue edges together with v1,1 form a blue copy of H3,2. Thus e and f are

the only blue edges in Kc. See Figure 3.11 for the partial labeling. Furthermore

there are two independent red edges and two independent blue edges from each of

the edges e and f to each Ci − v1,1, i = 1, 2, by Claim 1. It remains to find labels

for the vertices in e and f .

Claim 2. For any two vertices u ∈ {v1,2, v1,3}, v ∈ {v2,1, v3,1} there is exactly one

vertex w in Kc such that uw and vw are red.

Proof of Claim 2. Indeed, assume there are two such vertices w,w′ in Kc for some

pair u,v. Then the edge ww′ is red by Claim 1 and there is a red copy of H3,2. Thus

there is at most one such vertex. Assume there is no such vertex in Kc for some

pair. Then there is a red copy of H3,2, since there are two independent red edges

between each of e and f and each Ci, i = 1, 2, by Claim 1, a contradiction. This

proves Claim 2. 4

Let v2,2 denote the vertex which is adjacent to v1,2 and v2,1 in red which exists

by Claim 2. Without loss of generality assume v2,2 is incident to e. Let v3,3 denote

the other vertex incident to e. Due to Claim 1 applied to e and C1 and C2, the

edges v3,3v1,3 and v3,3v3,1 are red and the edges v2,2v1,3, v2,2v3,1, v3,3v1,2 and v3,3v2,1

are blue. With the same arguments we choose f = v3,2v2,3 accordingly. This shows

that the red color class is isomorphic to K3 ×K3.



3.2. PRELIMINARY OBSERVATIONS AND RESULTS 79

D1 D2

Figure 3.12: The graphs D1 and D2.

The following lemma give results for the graphs in Figure 3.12 used in Section 3.4.

Lemma 3.2.31. H9,6 → H for each H ∈ {H3,2,D1,D2}.

Proof. Consider a 2-edge-coloring of H9,6. Let v denote the vertex of degree 6. We

shall show that it contains each of the graphs from {H3,2,D1,D2} as a monochro-

matic subgraph.

Either there is a monochromatic copy of H3,2 in the copy of K9 in H9,6 or we

may assume by Lemma 3.2.30 that the copy of K9 in H9,6 is an edge disjoint union

of a red copy of K3 ×K3 and a blue copy of K3 ×K3. Each edge in the copy of K9

belongs to a unique monochromatic triangle. If v sends two blue edges to vertices

u,w, where uw is blue, then the blue triangle containing uw in K9 together with v

form a blue copy of H3,2. Thus, we may assume that neighborhood of v via blue

edges forms a red clique, and, similarly, its neighborhood via red edges forms a red

clique. Since degree of v is 6, and the largest monochromatic clique in the copy of

K9 is a triangle, these cliques must be triangles. However, there are no two disjoint

red and blue triangles in the copy of K9, so we arrive at a contradiction. Thus, there

is a monochromatic copy of H3,2.

Assume that the monochromatic copy K of H3,2 is red. First, we assume that

K does not contain v. Let Kc denote the set of vertices from the copy of K9 that

are not in K. If there is a red edge between a vertex of degree 3 of K and Kc, we

have a monochromatic copy of D1. If there is a red edge between a vertex of degree

2 of K and Kc, we have a monochromatic copy of D2. If all edges between degree

3 vertices of K and Kc are blue and there are two adjacent blue edges in Kc, then

there is a blue copy of D1. If all edges between degree 3 vertices of K and Kc are

blue and there are no two adjacent blue edges in Kc, then Kc forms a red copy of

K5 minus a matching, and thus contains a copy of D1. If all edges between degree

2 vertices of K and Kc are blue, then there is a blue copy of D2 or there is no blue

edge induced by Kc, In the latter case Kc induces a red copy of K5 that contains a

red copy of D2.

Now, assume that any monochromatic copy of H3,2 contains v, i.e., there is no

monochromatic copy of H3,2 in a copy of K9 of H9,6. Hence the coloring of this

copy of K9 is like it is described in Lemma 3.2.30. Then, it is easy to see that K

and an appropriate edge of this copy of K9 form a monochromatic copy of D1 and,

similarly, a monochromatic copy of D2.
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Finally we prove a result on multicolor Ramsey numbers used in the conclusions

to show that for some graphs of the same 2-color Ramsey number, the multicolor

Ramsey numbers differ.

Lemma 3.2.32. If k > 3 is odd and k+1
2 is even, then rk(P4 + e) > 2k + 2.

Proof. We shall give a coloring of the edges of K2k+2 without monochromatic copy

of P4 + e. Let t = k+1
2 and let V1, V2, . . . , Vt denote a partition of the vertices of

K2k+2 such that |Vi| = 4, i ∈ [t]. Color all edges induced by each set Vi in color

1, i = 1, . . . , t. Then there is no copy of P4 + e in color 1. It remains to color

the edges between the parts. The edges between two parts Vi and Vj form copies

of K4,4, 1 6 i < j 6 t. So these can be decomposed into two edge-disjoint copies

Ai,j and Bi,j of an 8-cycle C8. Consider a complete graph K with vertex set [t].

Since t = k+1
2 is even there is a decomposition of the edges of K into t − 1 perfect

matchings M1, . . . ,Mt−1. For each ` ∈ [t− 1] and each edge ij ∈M` in K color the

edges of Ai,j in color 2` and the edges of Bi,j in color 2`+ 1. Then each color from

{2, . . . , 2(t− 1) + 1} induces a vertex disjoint union of cycles. In particular there is

no monochromatic copy of P4 + e, since ∆(P4 + e) = 3. Moreover the number of

colors used equals 2(t− 1) + 1 = k. This shows that rk(P4 + e) > 2k + 2

3.3 Proofs of Theorems

Proof of Theorem 3.3

If χ(G) = 2 then G is not Ramsey equivalent to any graph H of higher chromatic

number by Observation 3.4. So, assume that χ(G) > 3.

We shall construct a graph Γ such that Γ → G and Γ 6→ H. Let ω = ω(G),

k = χ(G), χ(H) > k. We assume ω(G) = ω(H), otherwise G 6R∼ H by Lemma 3.2.4.

Let V (G) = V1 ∪ V2, V1 ∩ V2 = ∅, such that G1 = G[V1] and G2 = G[V2] each

have clique number less than ω. Let G? be a vertex disjoint union of G1 and G2, in

particular ω(G?) < ω.

The building blocks of Γ are a hypergraph H and graphs F and F ′ such that:

• H is a 3-chromatic, k-uniform hypergraph of girth at least |V (H)|+1. It exists

by Lemma 3.2.6.

• F is a graph such that ω(F ) < ω and every set of at least ε1|V (F )| vertices

in F contains a copy of G?, where ε1 = 2−|V (H)|. Such a graph exists by

Lemma 3.2.8.

• F ′ is a graph such that ω(F ′) = ω(F ) < ω and F ′
ε→ F for ε = 2−|V (H)||V (F )|.

Such a graph exists by Lemma 3.2.7.
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Note that |V (H)| depends on |V (H)| and χ(G); |V (F )| in turn depends on |V (H)|,
ω(G), and G, so |V (F )| depends only on H and G. So, ε and ε1 are constants

depending on H and G.

Construct a graph Γ by replacing the vertices v1, . . . , vn ofH with pairwise vertex

disjoint copies of F ′ on vertex sets V1, . . . , Vn and placing a complete bipartite graph

between two copies of F ′ if and only if the corresponding vertices belong to the same

hyperedge of H, see Figure 3.13.

F ′

F ′ F ′
F ′

F ′

F ′

F ′

F ′

F ′
F ′F ′

F ′

H Γ

Figure 3.13: Left: The k-uniform hypergraph H, k = 3. Right: The graph Γ.

To show that Γ 6→ H color each edge with both endpoints in some Vi red,

i = 1, . . . , n, and all other edges blue. The red subgraph is a vertex disjoint union

of copies of F ′, its clique number is strictly less than ω, so it does not contain H,

whose clique number is ω. The blue subgraph is a union of complete k-partite graphs

induced by Vi, i = 1, . . . , n. To see that the blue subgraph does not contain a copy

of H, consider any copy of H in Γ and consider sets Vi1 , . . . , Vi` intersecting the

vertex set of this copy. Since H has girth at least |V (H)| + 1, vi1 , . . . , vi` do not

form a cycle in H, thus the blue graph induced by Vi1 , . . . , Vi` is k-partite. However,

χ(H) > k, so the blue subgraph does not contain a copy of H.

Next we shall show that Γ → G. Consider a 2-edge-coloring of Γ. Recall that

n = |V (H)| = n(k, |V (H)|). We write vi ∼ vj if there is a hyperedge in H containing

both vi and vj .

Claim 1. For any m, 1 6 m 6 n, any i, 1 6 i 6 m, Vi contains a subset V ′i that is

the vertex set of a monochromatic copy of F and such that for any v ∈ V ′i and any

j with vi ∼ vj, i < j 6 m, all edges from v to V ′j , are of the same color.

Proof of Claim 1. We prove Claim 1 by induction on m using the Focusing Lemma

(Lemma 3.2.3). When m = 1, we see that Γ[V1] is isomorphic to F ′ and F ′
ε→ F .

So in particular F ′ → F and there is a monochromatic copy of F on some vertex

set V ′1 . Assume that V ′1 , V
′

2 , . . . , V
′
m form vertex sets of monochromatic copies of F

satisfying the conditions of Claim 1. Apply the Focusing Lemma to the bipartite

graph with parts Um = V ′1 ∪· · ·∪V ′m and Vm+1. It gives a subset V ∗m+1 ⊆ Vm+1 such

that for any v ∈ Um, all edges between v and V ∗m+1, if any, are of the same color
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· · ·V ′
1 V ′

2 V ′
3 V ′

m
· · ·V ′′

1 V ′′
2 V ′′

3 V ′′
m

Figure 3.14: Illustrations of Claim 1 (left) and Claim 2 (right). Thin solid edges are
red and thick dashed edges blue.

and such that |V ∗m+1| > 2−|V
′
1∪···∪V ′m||Vm+1| = 2−m|V (F )||Vm+1| > ε|Vm+1|. Thus

Γ[V ∗m+1] contains a monochromatic copy of F , because Γ[Vm+1] is isomorphic to F ′

and F ′
ε→ F . Call the vertex set of this copy V ′m+1. 4

Claim 2. For any m, 1 6 m 6 n, and i, m 6 i 6 n, each Vi contains a subset

V ′′i ⊆ V ′i that is the vertex set of a monochromatic copy of G? and such that for

each j with vi ∼ vj, i < j 6 n, V ′′i , V ′′j are partite sets of a monochromatic complete

bipartite graph.

Proof of Claim 2. We prove Claim 2 by induction on n − m using the pigeonhole

principle. When m = n, we see that V ′n forms the vertex set of a monochromatic

copy of F , that in turn contains a monochromatic copy of G?. Denote the vertex set

of this G? as V ′′n . Assume that V ′′m, V
′′
m+1, . . . , V

′′
n form vertex sets of monochromatic

copies of G? satisfying the conditions of Claim 2. Consider V ′m−1 and recall from

Claim 1 that each vertex in V ′m−1 sends only red or only blue edges to each V ′′i
with vm−1 ∼ vi, i = m, . . . , n. If vm−1 ∼ vn then at least half of the vertices in

V ′m−1 send monochromatic stars of the same color to V ′′n . If vm−1 ∼ vn−1 then

at least half of those send monochromatic stars of the same color to V ′′n−1, and so

on. So at least 2−(n−m)|V ′m−1| vertices of V ′m−1 send monochromatic stars of the

same color to each V ′′i with vm−1 ∼ vi for i = m, . . . , n. We denote the set of

these vertices by V ∗m−1. Since V ′m−1 forms the vertex set of a monochromatic copy

of F , and |V ∗m−1| > 2−(n−m)|V ′m−1| > ε1|V ′m−1|, the definition of F implies that

Γ[V ∗m−1] contains a monochromatic copy of G?. We denote the vertex set of this

copy by V ′′m−1. 4

Applying Claim 2 with m = 1, we see that each vertex vi of H corresponds to a

monochromatic copy of G? with vertex set V ′′i , such that all edges between any two

such copies from a common hyperedge have the same color. Assigning the color of

this G? to vi gives a 2-coloring of V (H). Since χ(H) > 2, there is a monochromatic

hyperedge, without loss of generality with red vertices v1, . . . , vk. Thus in Γ there

are k red copies of G? on vertex sets V ′′1 , . . . , V
′′
k , such that V ′′i , V

′′
j are partite sets of

monochromatic complete bipartite graphs, for all i, j, 1 6 i < j 6 k, see Figure 3.15.

If at least one such bipartite graph is red, then there is a red copy of G obtained

by taking a red copy of G1 ⊆ G∗ from one part and a red copy of G2 ⊆ G∗ from
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G?

G?

G?

Figure 3.15: A set of k red copies of G? corresponding to the k vertices of a hyperedge
of H. Here k = 3. The complete bipartite graph between any two of these k copies
is also monochromatic.

the other part. So we can assume that all such bipartite graphs are blue, forming a

complete k-partite graph with each part of size |V (G)|. Since χ(G) = k, there is a

blue copy of G. Thus Γ → G. Since Γ 6→ H, we have that G 6R∼ H. This concludes

the proof of Theorem 3.3.

Proof of Corollary 3.4. Let G and H be two graphs such that χ(G) 6= χ(H) and

χ(G) 6 2ω(G)− 2. Consider an arbitrary proper χ(G)-vertex-coloring of G. Let V1

denote the union of bχ(G)
2 c color classes and V2 = V (G)\V1. Since ω(G) > χ(G)

2 + 1,

every maximum clique contains a vertex from both sets Vi, i = 1, 2. Thus, G is

clique splittable. So, if χ(H) > χ(G) then G 6R∼ H by Theorem 3.3. If χ(H) < χ(G),

then χ(H) < χ(G) 6 2ω(H)− 2 (where we assume ω(H) = ω(G) by Lemma 3.2.4).

Thus, H is clique-splittable with the same arguments as above. Hence G 6R∼ H by

Theorem 3.3.

Proof of Theorem 3.5

In the first part of the proof we shall construct a graph Γ with Γ→ G and Γ 6→ H if

H 6⊆ G and χ(H) > χ(G). Our construction is similar to the one from Lemma 3.9

in [77]. In the second part of the proof we suppose that H ⊆ G. In this case we can

either apply this construction with roles of G and H switched or use Theorem 3.3.

Consider a connected graph H. We may assume ω(G) = ω(H) by Lemma 3.2.4.

Note that G is clique-splittable since ω(S) = 0 and ω(G− S) < ω(G). Further note

that if G is bipartite, the conditions of the theorem imply that G is a union of a

matching and a set of independent vertices. However, G is assumed to be connected,

and thus it must be a single edge. Since a single edge is Ramsey isolated, we can

assume that χ(G) > 3.

In the first part of the proof, we assume that H 6⊆ G and χ(H) > χ(G). Let

s = |S|, k = χ(G) 6 χ(H) and let m denote the size of a matching induced by two

color classes of some proper k-vertex-coloring of G. Note that m > 1 since there is

at least one edge between any two color classes. Further let n = |V (G)|, ω = ω(G)

and GS be a vertex disjoint union of G − S and s independent vertices, i.e., GS is
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the graph obtained from G by deleting all edges incident to S. Then ω(GS) < ω.

Let G′ be a vertex disjoint union of m′ = (k − 2)(s − 1) + m copies of GS and G′0
be a vertex disjoint union of m′ copies of G. Let ε = 2−|V (G′)|k = 2−m

′nk. Let F

be a graph with F
ε→ G′ and ω(F ) = ω(G′) < ω, which exists by Lemma 3.2.7.

We construct a graph Γ by taking the vertex disjoint union of a copy of G′0 and

k − 2 copies of F denoted by F1, . . . , Fk−2 and placing a complete bipartite graph

between Fi and Fj , 1 6 i < j 6 k − 2 and between Fi and G′0, i = 1, . . . , k − 2, see

Figure 3.16.

GS

G′ = m′ copies of GS

F1

F2 · · · Fk−2

G

· · ·

· · ·

· · ·

G′0 = m′ copies of G

· · ·

· · ·

· · · G′0

Figure 3.16: The graph Γ consisting of k− 2 copies F1, . . . , Fk−2 of F and one copy
of G′0 and all possible edges between distinct copies. We have F

ε→ G′, G′ consists
of m′ copies of GS and G′0 consists of m′ copies of G.

We shall show that Γ → G, but Γ 6→ H. Color all edges within each Fi and

within G′0 red and all other edges blue. Since ω(F ) < ω = ω(H), H 6⊆ F , and thus

H 6⊆ Fi, i = 1, . . . , k − 2. Since H 6⊆ G and H is connected, we have that H 6⊆ G′0.

Thus there is no red copy of H. On the other hand, the blue subgraph is a complete

(k − 1)-partite graph, but χ(H) > χ(G) = k. Thus there is no blue copy of H. It

remains to show that Γ→ G. Consider a 2-edge-coloring of Γ. Assume for the sake

of contradiction that there is no monochromatic copy of G. We prove the following

claim, similar to Claim 1 in the proof of Theorem 3.3, by induction on p (up to

renaming colors), see Figure 3.17 for an illustration.

Claim. For each p, 1 6 p 6 k − 2, and each i, 1 6 i 6 p, there is a red copy G′i of

G′ in Fi. Moreover for each i, 0 6 i < p, each vertex v in G′i and each j, i < j 6 p,

all edges between v and G′j are of the same color.

Proof of Claim. There is a set V1 of 2−m
′n|V (F1)| > ε|V (F )| vertices in F1 such that

for each vertex in G′0 all edges to V1 are of the same color by the Focusing Lemma

(Lemma 3.2.3). Since F
ε→ G′ there is a monochromatic copy G′1 of G′ in F1[V1].

Assume without loss of generality that G′1 is red. This proves the Claim for p = 1,

and for k = 3.
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· · ·

F1

Fp

· · ·

Fk−2

G′0

· · ·

· · ·

· · ·

G′1

G′p

Figure 3.17: Illustrating the statement of the Claim.

Suppose k − 2 > p > 2 and there are red subgraphs G′1, . . . , G
′
p−1, satisfying the

conditions of the Claim. We apply the Focusing Lemma to the complete bipartite

graph with one part V (G′0) ∪ · · · ∪ V (G′p−1) and the other part V (Fp). There is a

set Vp ⊆ V (Fp) of size 2−|V (G′)|p|V (Fp)| > ε|V (F )|, such that for each vertex v in

G′0, . . . , G
′
p−1 all edges from v to Vp are of the same color. Since F

ε→ G′ there is a

monochromatic copy G′p of G′ in Fp[Vp]. It remains to prove that G′p is red. Assume

G′p is blue. Consider the vertices of G′1. All of them send monochromatic stars to

G′p. At most s − 1 of these stars are blue, as otherwise these stars together with a

blue subgraph of G′p isomorphic to GS form a blue copy of G. Since the number of

vertex disjoint copies of GS in G′1 is m′ > s− 1, there is a red copy G∗ of GS in G′1
whose vertices send only red stars to G′p. Taking G∗ and s vertices from G′p gives a

red copy of G, a contradiction. So we may assume that G′p is red, which completes

the proof of the Claim. 4

Consider the red G′i, 1 6 i 6 k − 2, given by the Claim for p = k − 2. We say

that a vertex in V (G′i), i = 0, . . . , k − 3 is bad for G′j if it sends a red star to G′j ,

for some j > i. For each G′j there are at most s − 1 bad vertices, since otherwise

there is a red copy of G. Hence, there are at most (k−2)(s−1) bad vertices overall.

Since G′0 has m′ = (k − 2)(s − 1) + m vertex disjoint copies of G, there are at

least m > 1 copies G0
1, . . . , G

0
m of G in G′0 without bad vertices. Since each G′i,

i = 1, . . . k − 2, has m′ = (k − 2)(s − 1) + m disjoint copies of GS , there is at least

one copy G′′i of GS in G′i without bad vertices, i = 1, . . . , k − 2. Note that all G′′i s

are red, i = 1, . . . , k − 2, all edges between them are blue, and all edges between a

G′′i and G0
j are blue, i = 1, . . . , k − 2, j = 1, . . . ,m, see Figure 3.18. By assumption

each G0
j , j = 1, . . . ,m, has a blue edge, since otherwise there is a red copy of G. But

then we can find a blue copy of G by identifying these blue edges with the matching

of size m induced by the union of two color classes of G, picking the other vertices

of these two color classes from G0
1 and the vertices of the other k− 2 color classes of

G from G′′i , i = 1, . . . , k − 2. Since |V (G′′i )| = |V (G)|, there is sufficient number of
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F1

F2 · · · Fk−2

G′0

G′′2

G′′1

G′′k−2

· · ·

· · ·

· · ·

· · ·
G0

1 G0
2 G0

m

Figure 3.18: One red copy of GS in each of F1, . . . , Fk−2 and m copies G0
1, . . . , G

0
m of

G in G′0 where all edges between distinct copies are blue. If each G0
i , i = 1, . . . ,m,

has a blue edge we find a blue copy of G in here.

vertices for each color class. Altogether we have a contradiction to our assumption

that there are no monochromatic copies of G. Hence Γ → G. This concludes the

proof in case when H 6⊆ G and χ(H) > χ(G).

Now, in the second part of the proof, we assume that H ⊆ G. Then χ(H) 6

χ(G). Since we assume that ω(G) = ω(H), we have ω(H − S) < ω(H). Thus,

H is clique-splittable. Assume first that χ(H) < χ(G). Then we have G 6R∼ H by

Theorem 3.3, applied with roles of G and H switched. The last case to consider is

when χ(H) = χ(G) (and H ⊆ G). Now any proper χ(G)-vertex-coloring of G with

two color classes inducing a subgraph of a matching gives such a coloring of H, too.

Thus, the first part of the proof applied with roles of G and H switched shows that

G 6R∼ H.

Proof of Theorem 3.6

Proof of 3.6(a). Since χ(G) = ω(G) and in some proper χ(G)-vertex-coloring of G

two color classes induce a subgraph of a matching, G satisfies the requirements of

Theorem 3.5. Let H be an arbitrary graph. If ω(H) 6= ω(G) then H 6R∼ G by

Lemma 3.2.4. So, we can assume that ω(H) = ω(G). If H ⊆ G or χ(H) > χ(G),

then G 6R∼ H by Theorem 3.5. If H 6⊆ G and χ(H) < χ(G), then ω(H) = ω(G) =

χ(G) > χ(H). Thus χ(H) < ω(H), a contradiction.

Proof of 3.6(b). To see that a star S = K1,t is not Ramsey equivalent to any other

graph, observe that K1,2t−1 is a minimal Ramsey graph for S, but K1,2t−1 is minimal

Ramsey for neither any connected subgraph of S nor any connected graph that is

not a subgraph of S.

It remains to show that a path is not Ramsey equivalent to any other connected

graph. Let G = Pm be a path on m vertices, and let H be a connected graph not

isomorphic to G. If H is a path of different length, then G 6R∼ H since r(Pm) =
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K2 2

P3

K3

K1,3

P4

C4

H3,1

H3,2

K4

3

6

6

5

6

7

10

18

H r(H)

6

7

6

6

9

9

9

P5

K1,4

9

10

9

9

10

10

10

C5

K2,3

10

14

18

18

15

22

P4 + e

C4 + e

H H H

T1

T2

T3

T4

T5

D1

D2

D3

H4,1

H4,2

H4,3

K5

D4

W4

B3

≥ 43

r(H) r(H) r(H)

Table 3.1: The connected graphs on at most five vertices with their Ramsey num-
bers [42, 84]. The different vertex symbols indicate proper colorings for the graphs
which satisfy the conditions of Theorem 3.6(a).

m+ bm2 c − 1 [73] and hence r(G) 6= r(H). So assume H is not a path. If H is not a

tree, then by Lemma 3.2.9 we have G 6R∼ H. Otherwise, H is a tree and ∆(H) > 3.

Then r∆(H) > 2∆(H) − 1 > 5 [85], while an easy argument due to Alon et al. [6]

shows that r∆(G) 6 4. Indeed, for any 4-regular graph F with girth at least m+ 1

we have F → Pm as follows. Considering any 2-edge-coloring of F , we see that since

F has average degree 4 at least one color class has average degree at least 2, i.e.,

contains a cycle. Since girth(F ) > m + 1, this monochromatic cycle has length at

least m+ 1, and thus contains Pm.

Proof of 3.6(c). Table 3.1 shows all non-trivial connected graphs on at most five

vertices. Recall that Ht,d is a graph on t + 1 vertices such that one vertex has

degree d and the other vertices induce a copy of Kt. Let S = {C4, P4 + e, C4 +
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e, C5,K2,3,D4,W4}. Observe that any connected graph on at most five vertices

which is not in S satisfies the conditions of Theorem 3.6(a) or 3.6(b) and thus is

Ramsey isolated; Table 3.1 also indicates proper colorings for the graphs which

satisfy the conditions of Theorem 3.6(a). It remains to prove that each graph in S is

Ramsey isolated. We consider the graphs in S grouped according to their Ramsey

number. Let S1 = {C4, P4 +e, C4 +e}, S2 = {C5}, S3 = {K2,3,D4}, and S4 = {W4}.
Here S1 contains the graphs from S of Ramsey number 6, S2 the graph of Ramsey

number 9, S3 those of Ramsey number 10, and S4 the graph of Ramsey number 18,

see [42, 84].

First of all we consider G ∈ S1. Consider a connected graph H which is not

isomorphic to G. If |V (H)| > 6, then r(H) > 6 and hence H 6R∼ G. Indeed, if

H is a star then coloring the edges of a copy of C6 in K6 red and all other edges

blue does not yield a monochromatic copy of H. If H is not a star, then color a

copy of K1,5 in K6 red and all other edges blue. Then the red edges form a star

and the blue connected subgraph contains only five vertices, so the coloring has no

monochromatic copy of H. So assume that |V (H)| 6 5. If H 6∈ S1 we have G 6R∼ H.

Indeed either H ∈ S \ S1 and r(H) 6= r(G), or H 6∈ S and H is Ramsey isolated

by Theorem 3.6(a) or 3.6(b). So it remains to distinguish the graphs in S1 from

each other. We have H5,4 6→ C4 and H5,4 6→ C4 + e due to the coloring given in

Figure 3.19 and H5,2 → P4 + e by Lemma 3.2.15. In particular H5,4 → P4 + e and

thus P4 +e 6R∼ C4 and P4 +e 6R∼ C4 +e. Finally rδ(C4) = 3 [69] and rδ(C4 +e) = 1 [67]

(for the latter see a remark in the conclusion of [67]). Thus C4 6R∼ C4 + e and hence

G is Ramsey isolated.

(1) (2) (3)

Figure 3.19: A coloring of H5,2 without a monochromatic copy of P5 (1), a coloring
of H5,4 without a monochromatic copy of C4 (2), and a coloring of H5,4 without a
monochromatic copy of K3 (3).

Next consider G ∈ S2, i.e., G = C5 and a connected graph H which is not

isomorphic to G. If |V (H)| 6 5 we have G 6R∼ H, because H ∈ S \ S2 and hence

r(H) 6= r(G) or H 6∈ S (and H is Ramsey isolated by Theorem 3.6(a) or 3.6(b)).

If H is bipartite then G 6R∼ H by Observation 3.4. If |V (H)| > 6 and H is not

bipartite, then r(H) > 10. Indeed color the edges of K10 with two vertex disjoint

red copies of K5 and all other edges blue. Then each connected component of the

red subgraph has five vertices and the blue subgraph is bipartite. In particular there

is no monochromatic copy of H. We conclude that G 6R∼ H, so G is Ramsey isolated.
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Next consider G ∈ S3 and a connected graph H which is not isomorphic to G.

Since K2,3 is bipartite but D4 is not, the two graphs in S3 are not Ramsey equivalent

by Observation 3.4. If |V (H)| 6 5 then G 6R∼ H, because either H ∈ S3 \ {G}, or

r(H) 6= r(G), or H 6∈ S. So assume |V (H)| > 6. Then K2,3 6R∼ H by Lemma 3.2.14.

If H is bipartite then D4 6R∼ H by Observation 3.4. If H is not bipartite then D4 6R∼ H,

since r(H) > 10 = r(D4) as argued above (when considering S2). Altogether G is

Ramsey isolated.

Finally consider G ∈ S4, i.e., G = W4, and a connected graph H which is not

isomorphic to G. If |V (H)| 6 5 we have G 6R∼ H, because H 6∈ S4 and hence

r(H) 6= r(G) or H 6∈ S. If |V (H)| > 6 then W4 6R∼ H by Lemma 3.2.13. Hence G is

Ramsey isolated.

Proof of Theorem 3.7 (Trees)

(a) Assume first that Conjecture 3.1 is true. Let Tk and T` be trees on k and `

vertices respectively, k < `. Note that ex(n, T`) >
`−2

2 n−`2. Indeed, just take b n
`−1c

vertex disjoint copies of K`−1. Then

ex(n, Tk) 6
k−1−ε

2 n =
√
n
(
k−1−ε

2

√
n
)
<
√
n
(
`−2

2

√
n− `2

)
6
√
n ex(

√
n, T`),

for sufficiently large n. Thus ex(n, Tk) < ex(
√
n, T`)

√
n and Lemma 3.2.9 implies

that Tk 6R∼ T`.

(b) Now, we shall prove the second statement of Theorem 3.7 without assuming the

validity of Conjecture 3.1. Let Tk be a balanced tree on k vertices and T` be any

tree on ` > k + 1 vertices. Let G be a k-regular graph of girth at least k, which is

known to exist [131]. We construct a bipartite k-regular graph B of girth at least k

from G by taking for each v in G two vertices v1, v2 in B and for every edge uv in

G the edges u1v2 and u2v1 in B. Finally, let F = L(B) be the line graph of B. We

shall show that F 6→ T` and F → Tk.

As B is bipartite, F = L(B) is an edge disjoint union of two graphs F1 and F2

on the same vertex set, each is a vertex disjoint union of copies of Kk, where each

clique in Fi corresponds to a set of edges incident to a vertex in the ith partite set of

B, i = 1, 2. Note that a clique in F1 intersects a clique in F2 by at most one vertex

and that each vertex in F belongs to two cliques, one from F1 and one from F2.

Coloring F1 red and F2 blue gives no monochromatic copy of T` since each

monochromatic connected component has k < ` vertices. Thus F 6→ T`.

Next, we show that F → Tk. Let vw be an edge of Tk such that the components

of Tk− vw rooted at v and w have order at most dk+1
2 e. Consider any edge-coloring

of F with colors red and blue. Note that |V (F )| = |E(B)| = k
2 |V (B)| and |E(F )| =(

k
2

)
|V (B)| = (k − 1)|V (F )|. Hence there are at least k−1

2 |V (F )| red edges or at
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least k−1
2 |V (F )| blue edges. (Note that Conjecture 3.1, if true, would imply that

there is a red or blue copy of Tk, independent of the girth of B and whether Tk is

balanced.) Assume without loss of generality that there are at least k−1
2 |V (F )| red

edges. Consider the red subgraph Gr of F . If each subgraph of Gr contains a vertex

of degree less than k−1
2 , then Gr contains less than k−1

2 |V (Gr)| = k−1
2 |V (F )| edges,

a contradiction. It follows that there is a subgraph G of Gr with δ(G) > dk−1
2 e and

|E(G)| > k−1
2 |V (G)|, and so ∆(G) > k − 1. If ∆(G) = k − 1, then G is (k − 1)-

regular and we can embed Tk into G greedily. So without loss of generality we have

∆(G) > k.

Let x be a vertex of maximum degree in G, i.e., degG(x) > k. It follows that x

has incident red edges in both corresponding maximum cliques C1, C2 in F . Without

loss of generality x has at least dk−1
2 e incident red edges in C1. We embed v onto

x, w onto a neighbor of x in Gr in C2 and all neighbors of v different from w onto

neighbors of x in Gr in C1. Now we can greedily embed the subtrees T1, . . . , Ta of

Tk−v with their roots at the designated vertices in Gr. Say T1 is the subtree rooted

at w. As δ(G) > dk−1
2 e > |V (T1)| − 1 =

∑a
i=2 |V (Ti)| and B has girth greater than

k, the embeddings of T1 and
⋃a
i=2 Ti are in disjoint sets of cliques. It follows that

F → Tk.

Proof of Theorem 3.8 (Multicolor Ramsey numbers)

(a) We prove the first part of the theorem. Let m = r(G,G,F ). Consider a 3-

edge-coloring c of Km without a red or blue copy of H and without a green copy of

F , which exists as m < r(H,H,F ). Let Γ denote the graph obtained from Km by

removing all green edges under c. Thus Γ 6→ H due to the coloring c restricted to

Γ. But Γ → G, since any 2-edge-coloring of Γ without a monochromatic copy of G

can be extended by the green edges of c to an edge-coloring of Km without a red or

blue copy of G and without a green copy of F .

(b) We prove the second statement by induction on k with k = 2 being obvious.

Let Γ be a graph such that Γ
k→ G, but Γ 6 k→ H, k > 3. Let c be a k-edge-

coloring of Γ with no monochromatic copy of H. Let a graph Γ′ be obtained from Γ

by deleting the edges of color 1. We have that Γ′ 6k−1→ H since c restricted to Γ′ is a

(k− 1)-coloring with no monochromatic copy of H. We claim that Γ′
k−1→ G, which,

if true, gives G 6R∼k−1 H and by induction G 6R∼ H, as desired.

Let us assume for the sake of contradiction that Γ′ 6k−1→ G, i.e., there is a (k− 1)-

edge-coloring c′ of Γ′ without a monochromatic copy of G. We see that there is a

copy of G in color 1 of c, otherwise the coloring c′′ of Γ that is the same as c′ on

Γ′ and that colors all other edges with color 1 has no monochromatic copy of G, a

contradiction to the fact that Γ
k→ G. Repeating the argument above to all colors in

c, we see that each of them contains G. More generally, we see that any edge-coloring
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of Γ with k colors avoiding a monochromatic copy of H must have a monochromatic

copy of G in each color. However, since G ⊆ H, Γ′ has no monochromatic copy

of H under c′, and hence the coloring c′′ of Γ has no monochromatic copy of H.

Thus c′′ must have a monochromatic copy of G in each color, however there is no

monochromatic copy of G in any of the colors 2, . . . , k, a contradiction.

Proof of Theorem 3.9 (Ramsey numbers cycles plus edges)

(a) First we consider even cycles C2n for n > 3. Then r(C2n) = 3n − 1 [90]. Let

N = 3n − 1. Color KN with a red copy of K2n and all other edges blue. Clearly

there is no red copy of G because G has at least 2n + 1 vertices and is connected.

The blue subgraph consists of a copy of K2n,n−1 where all edges within the part on

n− 1 vertices are blue as well. Hence the blue subgraph does not contain a copy of

C2n. Therefore r(G) > N = r(C2n).

Next we consider odd cycles C2n+1 for n > 2. Then r(C2n+1) = 4n + 1 [90].

Let N = 4n + 1. Color KN with a red copy of a vertex disjoint union K2n+1 and

K2n and all other edges blue. Then the red subgraph does not contain a copy of

G because G is connected and has 2n + 2 vertices. The blue subgraph is bipartite

and hence does not contain a copy of G because G contains an odd cycle. Hence

r(G) > N = r(C2n+1).

(b) First we consider C4. Color K6 with a red copy of K4 and all other edges blue.

It easy to see that there is no red copy of C4 +K2. Hence r(C4 +K2) > 6 = r(C4).

Now consider even cycles C2n for n > 3. Then r(C2n) = 3n − 1 [90]. Let

N = 3n − 1. Color KN with a red copy of K2n and all other edges blue. Clearly

there is no red copy of C2n +K2. The blue subgraph consists of a copy of K2n,n−1

where all edges within the part on n − 1 vertices are blue as well. Hence the blue

subgraph does not contain a copy of C2n. Therefore r(C2n +K2) > N = r(C2n).

Next suppose thatG = C2n+1+kK2 for some k > n
3 . Then r(C2n+1) = 4n+1 [90].

Let N = 4n + 1, a = 2n + 1 + b2
3nc, and b = 4n + 1 − a = 2n − b2

3nc = n + dn3 e.
Color KN with a red copy of Ka and all other edges blue. Then the red subgraph

does not contain a copy of G because G has 2n+ 1 + 2k > a vertices and no isolated

vertex. The blue subgraph consists of a copy of Ka,b where all edges within the part

on b vertices are blue as well. Let B denote the part with b vertices. Each copy

of C2n+1 in the blue subgraph has at least n + 1 vertices in B. Hence there are at

most dn3 e−1 < k independent blue edges independent from any blue copy of C2n+1,

since each such edge has at least one vertex in B. Thus there is no blue copy of

G = C2n+1 + kK2. Therefore r(G) > N = r(C2n+1).

Finally suppose that G = C2n+1 + kK2 for some k, 0 6 k 6 n
3 . In this case we

shall show that r(G) = r(C2n+1) = N . Consider a 2-edge-coloring of KN . We will

prove that there is a monochromatic copy of G = C2n+1 + kK2 by induction on k.
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B

F

B

C M A ∪N
=V (C) ∪ V (M)

Figure 3.20: A red copy of C19 + 2K2 in a coloring of K37 without red C19 + 3K2.
All edges induced by the set B are blue (left). On the right side a feasible set P
of 11 blue peaks exists and thus there is a blue copy of C19 + 3K2 with some edges
within B as indicated.

By assumption there is a monochromatic copy of C2n+1 = C2n+1 + 0K2. This gives

a basis for k = 0.

Suppose that k > 1. Inductively there is a monochromatic, say red, copy of

C2n+1 + (k − 1)K2. Let C denote the red copy of C2n+1 and let M denote the set

of k − 1 independent red edges, independent from C, in some red copy of C2n+1 +

(k − 1)K2. Further let A = V (C), N = V (M), and let B denote all vertices not in

A or N . Then |B| = 2n − 2(k − 1). For the remaining proof we assume that there

is no red copy of G. We shall prove that there is a blue copy of G. Clearly all edges

within B are blue. See Figure 3.20 (left) for an illustration in case n = 9, k = 3.

We call a blue copy of P3 (a path on 3 vertices) a blue peak , if its middle vertex is

in A ∪N and the other two vertices are in B. Similarly we call a red copy of P3 a

red peak , if its middle vertex is in B and the other two vertices are in A. We call a

set of blue peaks feasible if their union is a path forest.

Assume first that there is a set of 4k−1 feasible blue peaks. We claim that there

is a blue copy of G. Let F denote the path forest formed by the union of these 4k−1

feasible blue peaks. Observe that if e is an edge in a union of feasible peaks and e is

incident to a leaf (a vertex of degree 1) in the union of the peaks, then the endpoints

of e are contained in exactly one of the peaks. Hence, we can choose a set M ′ of k

independent edges from F , such that there is a set P ′ of 3k − 1 feasible peaks left,

each peak in P ′ not incident to any edge in M ′ (iteratively choose an edge e incident

to a leaf in F and remove the peak containing e). Let F ′ denote the union of peaks

in P ′. Then the number of vertices in the union of F ′ and B which are not incident

to edges of M ′ is |V (F ′) \B|+ |B| − |M ′| = |P ′|+ |B| − |M ′| = 2n+ 1. Recall that

each edge within B is blue and that |P ′| = 3k−1 6 n−1. Hence F ′ and the vertices

in B not incident to edges in M ′ form a blue copy of C2n+1 (connect the paths in

F ′ and possibly some isolated vertices from B \ V (M ′) to a cycle with some edges

within B). Hence there is a blue copy of G = C2n+1 + kK2. See Figure 3.20 (right)

for an illustration in case n = 9, k = 3.

Now let P denote a maximal feasible set of blue peaks. We shall show that

|P | > 4k − 1. To this end we use the following facts which can be verified by a
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C M

u1 u2 u3 u4

x
y

C
M

u1 u2 u3 u4

x ya1 v w a2

u1 u2 u3 u4

x y z
C

B

M

B B

Figure 3.21: Two independent red edges between some edge xy in M and B (left),
three consecutive vertices along C7 with a red peak and an independent red edge
(middle), and two disjoint red peaks, one of which connecting two vertices of distance
exactly 3 on C7 (right). In each case there is a red copy of C7 + 3K2.

simple case analysis using the fact that the absence of a blue peak forces two red

incident edges at the vertices in A ∪N .

Claim 1. In any copy of K2,3 between 2 vertices from A∪N and 3 vertices from B

there are 2 independent red edges or there is a blue peak.

Claim 2. In any copy of K3,3 between some subset X ⊆ A and three vertices from

B either there is a blue peak, or for each pair of vertices in X there is a red peak

containing this pair of vertices and a red edge independent from this peak.

Claim 3. There is a red or a blue peak in any copy of K2,3 between 2 vertices from

A and 3 vertices from B.

We proceed with the proof of the theorem. Consider the graph Γ formed by the

union of all peaks from P and all vertices from B. Then each connected component

of Γ is a path with an odd number of vertices or an isolated vertex. Let C denote the

set of connected components of Γ and let t = |C|. Then |B| = ∑
K∈Cd|V (K)|/2e =

t+
∑

K∈Cb|V (K)|/2c = t+ |P | and thus t = 2n− 2k + 2− |P |. Thus |P | > 4k − 1

and we are done or t > 2n − 2k + 2 − (4k − 2) > 6k − 6k + 4 = 4. Assume the

latter case holds, that is, t > 4. Let u1, u2, u3, u4 ∈ B denote distinct vertices from

different connected components of Γ each of degree at most 1 in Γ. Then there is no

blue peak containing two of these vertices and a vertex from A∪N not contained in

any peak in P , since adding this peak to P would yield a larger set of feasible blue

peaks. We shall use this fact to prove that |P | > 4k − 1 again. More precisely we

shall find k − 1 peaks in P with a vertex from N and 3k peaks in P with a vertex

from A.

Consider a (red) edge xy in M and the copy K of K2,3 with parts {x, y} and

{u1, u2, u3}. Then there are no two independent red edges in K, since there is a red

copy of C2n+1 +kK2 otherwise (replace xy with the two independent red edges). See

Figure 3.21 (left). Hence K contains a blue peak by Claim 1. Thus at least one of x

and y is already contained in a peak from P as argued above (since P is maximal).

This shows that there are at least k− 1 peaks in P containing vertices from N (but

not from A). It remains to find 3k peaks in P with vertices from A.
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Let A′ denote the vertices from A not contained in any peak in P . We shall show

that |A′| 6 n+ 1 and hence that there are at least n > 3k vertices from A contained

in peaks from P and we are done. To this end we shall prove that no three vertices

in A′ are consecutive along C (that is, do not form a path in C) and that either at

most two pairs of vertices from A′ are adjacent on C or there are no vertices from

A′ at distance exactly 3 along C.

For the sake of contradiction assume that there is a set {x, y, z} ⊆ A′ of three

distinct vertices which are consecutive along C (in some order). Without loss of

generality assume that y is the middle vertex among {x, y, z} along C. Consider the

copy K of K3,3 with parts {x, y, z} and {u1, u2, u3}. Since there is no blue peak in

K (as P is maximal) there is a red peak Q in K containing x and z and there is a

red edge e incident to y independent from Q by Claim 2. Replacing y in C by the

vertex in Q not in A yields a red copy of C2n+1. See Figure 3.21 (middle). Moreover

e is independent from this cycle and from the k − 1 red edges in M . Hence there is

a red copy of G = C2n+1 + kK2, a contradiction. This shows that no three vertices

from A′ are consecutive along C.

We call two vertices from A′ friends if they are neighbors in C. If there are at

most two pairs of friends in A′, then |A′| 6 2 + b(2n − 1)/2c = n + 1 and we are

done. So suppose that there are three distinct pairs of friends in A′. For the sake

of contradiction assume that there are a1, a2 ∈ A′ of distance exactly 3 on C and

let v and w denote the vertices between a1 and a2 in C. Then there is a pair of

friends {x, y} which is disjoint from {a1, a2, v, w}, since no three vertices from A′ are

consecutive along C. Consider the copy of K2,3 between {a1, a2} and {u1, u2, u3}.
By Claim 3 there is a red peak containing a1 and a2 in this copy. Without loss

of generality assume that this peak contains u1. Then consider the copy of K2,3

between {x, y} and {u2, u3, u4}. Again by Claim 3 there is another (vertex disjoint)

red peak containing x and y. See Figure 3.21 (right). Without loss of generality

assume that this peak contains u2. Replacing v and w in C with u1 and u2 yields

a red C2n+1. Moreover vw is a red edge disjoint from this cycle and from the k − 1

red edges in M . Hence there is a red copy of G = C2n+1 + kK2, a contradiction.

This shows that no two vertices from A′ are of distance 3 on C.

Consider four consecutive vertices on C2n+1. Then at most two of these vertices

are contained in A′ (since no three from A′ are consecutive and no two from A′ at

distance exactly 3). Hence |A′| 6 n+1. Thus in both cases there are at least n > 3k

vertices from A contained in peaks from P . Therefore |P | > 4k − 1 and there is a

blue copy of G as argued above. Altogether r(G) = r(C2n+1).
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3.4 Small Distinguishing Graphs

For a pair of Ramsey non-equivalent graphs G and H let rdn(G,H) denote the

Ramsey distinguishing number defined as the smallest number of vertices among all

graphs distinguishing G and H. Clearly rdn(G,H) > min(r(G), r(H)). Recall that

Ht,d is a graph on t + 1 vertices such that one vertex has degree d and the other

vertices induce a copy of Kt. We shall refer to the non-trivial connected graphs on

at most five vertices by the names given in Table 3.1. Let

A = {{C4, C4 + e}, {C5, T4}, {D1,D2}, {D3,D4},
{H3,2,D1}, {H3,2,D2}, {K4, H4,1}, {K4, H4,2}, {H4,1, H4,2}},

B = {{K3, C4}, {K3, C4 + e}, {K2,3, H3,2},
{K2,3,D1}, {K2,3,D2}, {K2,3,D3}, {K2,3,D4}}.

We shall show that all of the
(

31
2

)
= 465 pairs of non-isomorphic connected graphs

on at most five vertices that are not in A are distinguished by a “small” graph. For

all 449 such pairs {G,H} that are not in A ∪ B we give a distinguishing graph on

min{r(G), r(H)} vertices, which is best-possible. On the other hand there are pairs

{G,H} with rdn(G,H) > min{r(G), r(H)}. We do not have small distinguishing

graphs for pairs in A.

Proposition 3.4.1. For each pair {G,H} of non-isomorphic connected graphs on

at most five vertices that is not in A ∪ B we have

rdn(G,H) = min(r(G), r(H)).

Moreover 10 6 rdn(G,H) 6 16 for {G,H} ∈ B \ {{K3, C4}, {K3, C4 + e}}, and

rdn(K3, C4), rdn(K3, C4 + e), rdn(C4, C4 + e) > min{r(G), r(H)}, and rdn(K3, C4),

rdn(K3, C4 + e) 6 10.

Proof. First of all note that two graphs G, H of different Ramsey number are dis-

tinguished by Kn where n = min{r(G), r(H)}. It remains to consider pairs of

connected graphs on at most five vertices of the same Ramsey number. Hence, we

need to consider the following sets of graphs corresponding to Ramsey number 6, 7,

9, 10, and 18 respectively.

Ramsey number 6: {K3,K1,3, C4, P5, P4 + e, C4 + e}. We have K1,5 → K1,3

(pigeonhole principle) but K1,5 6→ K3, C4, P5, P4 + e, C4 + e (K1,5 does not con-

tain these), H5,2 → P4 + e (Lemma 3.2.15) but H5,2 6→ K3, C4, P5, C4 + e (Fig-

ure 3.19), H5,4 → P5 (Lemma 3.2.17) but H5,4 6→ K3, C4, C4 +e (Figure 3.19(2),(3)),

K5,5 → C4, C4 + e (Lemma 3.2.18) but K5,5 6→ K3 (since K3 not bipartite).

Note that {C4, C4 + e} ∈ A and {K3, C4}, {K3, C4 + e} ∈ B. Note further that

H5,4 6→ K3, C4, C4+e (Figure 3.19(2),(3)) andK6 → K3, C4, C4+e implies that there
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Figure 3.22: A coloring of K′ without a monochromatic copy of T3.

Figure 3.23: A coloring of
H6,5 without a monochro-
matic copy of K1,4.

Figure 3.24: A coloring
of H8,5 without monochro-
matic copies of T4 and C5.

Figure 3.25: A coloring of
H8,6 without a monochro-
matic copy of T5.

is no graph on at most 6 vertices that distinguishes any pair from {K3, C4, C4 + e}.
Therefore rdn(K3, C4), rdn(K3, C4 + e), rdn(C4, C4 + e) > 7.

Ramsey number 7: {H3,1,K1,4}. We have H6,5 → H3,1 (Lemma 3.2.19) but

H6,5 6→ H3,1 (Figure 3.23).

Ramsey number 9: {T1, T2, T3, C5, T4, T5}. Consider the graphs K and K′ given

in Figure 3.8. The graph K′ is obtained from K7 by adding two independent ver-

tices of degree 5 such that these two vertices have exactly 4 common neighbors.

We have K → T1, T3 (Lemma 3.2.21, 3.2.23) but K 6→ T2, T5 (by Lemma 3.2.16,

since ∆(K) = 7), K′ → T1 (Lemma 3.2.27) but K′ 6→ T3 (Figure 3.22), H8,5 →
T1, T2, T3 (Lemma 3.2.25) but H8,5 6→ T4, T5, C5 (Figures 3.24, 3.25), H8,6 → C5, T4

(Lemma 3.2.29) but H8,6 6→ T5 (Figure 3.25). Note that {C5, T4} ∈ A.

Ramsey number 10: {H3,2,K2,3,D1,D2,D3,D4}. We have K3,13 → K2,3 ([69])

but the other graphs are not bipartite, H9,6 → H3,2,D1,D2 (Lemma 3.2.31) but

H9,6 6→ D3,D4 (Figures 3.26, 3.27). Note that each pair within the set {H3,2,D1,D2}
is in A and {D3,D4} ∈ A.

Ramsey number 18: {K4, H4,1, H4,2}. All pairs of these graphs are in A.

3.5 Conclusions

This chapter addresses Ramsey equivalence of graphs and gives a negative answer

to the question of Fox et al. [67] “Are there two connected non-isomorphic graphs

that are Ramsey equivalent?” (Question 1.2) for wide families of graphs determined
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Figure 3.26: An edge-coloring of H9,6

without a monochromatic copy of D3 is
obtained by identifying vertices of the
same label.

(2,2)

(1,2)

(2,1) (2,3)

(3,2)

(1,1) (1,3)

(3,1) (3,3)

(3,1)
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(2,1) (3,3)

(3,2) (1,1)

Figure 3.27: An edge-coloring of H9,8

without a monochromatic copy of D4 is
obtained by identifying vertices of the
same label.

by so-called “clique splitting” properties and chromatic number. In particular, The-

orem 3.6 gives an infinite family of graphs that are not Ramsey equivalent to any

other connected graphs. This extends the only such known family consisting of all

cliques, paths, and stars.

In Theorems 3.3 and 3.5 we can replace the clique number with the negative of

the odd girth and mimic the proofs to obtain similar statements. This might also

hold for other “sufficiently nice” parameters.

There are many questions that remain open in this area. Even the following

weaker question is very far from being understood.

Question 3.2. Which parameters ρ are Ramsey distinguishing, that is, for which ρ

does ρ(G) 6= ρ(H) imply that G 6R∼ H?

Here, we show that the chromatic number is very likely to be such a distinguishing

parameter by proving this implication for graphs satisfying some additional proper-

ties. Interestingly enough, it is not clear but most likely not true that χ(G) 6= χ(H)

implies that rχ(G) 6= rχ(H). Indeed, rχ(K4) = 18, since r(K4) = 18 [76] and any

graph F with χ(F ) 6 17 can be colored without a monochromatic copy of K4 based

on a coloring of K17 without a monochromatic copy of K4 (see Figure 1.7). On the

other hand, the positive answer to the Burr-Erdős-Lovász-Conjecture [146] shows

that there is a 5-chromatic graph G with rχ(G) = 42 + 1 = 17. So χ(K4) < χ(G)

but rχ(K4) > rχ(G). We believe that the following question has a positive answer.

Question 3.3. Are there infinitely many pairs of graphs G, H with χ(G) 6= χ(H)

and rχ(G) = rχ(H)?

For any set of pairwise Ramsey equivalent graphs known yet, there is a unique

minimal element. For example any graph that is Ramsey equivalent to Kt contains
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a copy of Kt [116]. However, this observation might be just due to the fact that

cliques are studied most. We pose the following question.

Question 3.4. Is there a pair G, H of Ramsey equivalent graphs such that for each

common subgraph F of G and H (F ⊆ G and F ⊂ H) we have F 6R∼ G and F 6R∼ H?

We also address relations between other types of Ramsey numbers and Ramsey

equivalence. For instance Theorem 3.8 gives results in terms of multicolor Ramsey

numbers. The following questions are open.

Question 3.5. Let F , G, and H be graphs with r(G,F ) 6= r(H,F ). Does this imply

G 6R∼ H?

Question 3.6. If G 6R∼k H for some k > 2, then G 6R∼ H?

We have a positive answer to the last question only when G is a subgraph of H

(Theorem 3.8). Positive answers to Question 3.6 and the following question would

imply a negative answer to our main question of Fox et al. (Question 1.2).

Question 3.7. Let G and H denote non-isomorphic connected graphs. Is there an

integer k such that rk(G) 6= rk(H)?

For example, we see that r(P4 + e) = r(K1,3) = 6, and rk(P4 + e) > 2k + 2 =

rk(K1,3), for odd k > 3 with k+1
2 even (see Lemma 3.2.32 and [34]). A particular

interesting case to consider are cliques with a pendant edge (that is, graphs Ht,1).

It is known that r(Kt) = r(Ht,1) for each t > 4 [30]. We think that this also holds

for more colors (an opinion shared by Irving [87]). Interestingly 17 = r3(K3) =

r3(H3,1) [144] and r4(K3) < r4(H3,1) if and only if r4(K3) = 51 (where it is known

that 51 6 r4(K3) 6 62) [136].

Cliques play a special role in Ramsey theory and received particular attention

in Ramsey equivalence. Still, it is not clear for what graphs is a clique a minimal

Ramsey graph. Specifically we have the following question.

Question 3.8. Does re(H) <
(
r(H)

2

)
imply that Kr(H) is not a minimal Ramsey

graph for H?

It is also not clear how small a distinguishing graph for two graphs that are not

Ramsey equivalent could be. Clearly, any graph distinguishing graphs G and H has

at least min{r(G), r(H)} vertices. We see that K3, C4 and C4 + e are not distin-

guished by any graph on r(K3) = r(C4) = r(C4 +e) = 6 vertices (Proposition 3.4.1).

As noted above it is known that for each t > 4 we have r(Kt) = r(Ht,1) = r [30] but

Kr − e 6→ Kt, Ht,1. So we see that Kt and Ht,1 are not distinguished by any graph

on r vertices for t > 4. This shows that for infinitely many pairs of graphs G, H

there is no distinguishing graph on min{r(G), r(H)} vertices. Recall that rdn(G,H)

is the smallest order of a graph distinguishing G and H.
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Question 3.9. Is there a constant c such that for each pair of graphs G and H with

r(G) = r(H) = k and G 6R∼ H we have rdn(G,H) 6 c k?

Finally, Theorem 3.7 shows that two trees of different order are not Ramsey

equivalent provided that the Erdős-Sós-Conjecture is true or if one of the trees is

balanced. We do not know whether there are two Ramsey equivalent non-isomorphic

trees on the same number of vertices.

Bloom and Liebenau [16] describe the following weaker concept than Ramsey

equivalence (contributed to Szabó). A pair of graphs is Ramsey close if their re-

spective sets of minimal Ramsey graphs differ in at most finitely many members.

Clearly any pair of Ramsey finite graphs is Ramsey close. Similar to Question 1.2

they ask whether there are two connected, Ramsey infinite, non-isomorphic graphs

that are Ramsey close. The only graphs known to be Ramsey close but not Ramsey

equivalent are K3 and K3 + K2. Bloom and Liebenau conjecture that there are

infinitely many such pairs of graphs. A particular interesting case to consider is

given by Kt and Kt +Kt [16].
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Minimal Ordered Ramsey Graphs

4.1 Introduction and Main Results

In this chapter we initiate the study of minimal ordered Ramsey graphs. Observa-

tion 1.4 in Section 1.5 shows that for every minimal ordered Ramsey graph F of

some ordered graph H the underlying (unordered) graph F̃ of F is a Ramsey graph

of the underlying graph H̃ of H. As it turns out, F̃ is not necessarily a minimal

Ramsey graph of H̃. Also the other way round not every Ramsey graph of H̃ admits

an ordering that yields an ordered Ramsey graph of H. See Figure 4.1 for examples.

F

H

Figure 4.1: An ordered Ramsey graph F of H (left) and colorings of each proper
subgraph of F showing that F is minimal (middle). We see that the underlying
(unordered) graph of F is not a minimal Ramsey graph for the underlying graph of
H, since K3 ⊆ F is a Ramsey graph of an unordered star on two edges. Observe
that no ordering of K3 gives an ordered Ramsey graph of H (right).

First we characterize all pairs of ordered graphs that have an ordered Ramsey

graph which is a forest. Then we study the questions which pairs of ordered graphs

have only finitely many minimal ordered Ramsey graphs. Our results show that the

ordering of vertices heavily affects the structure of the set of ordered Ramsey graphs,

at least for forests. In Section 4.2 we prove our main theorems and in Section 4.3 we

give several additional results, which are not part of these theorems. In particular

we give constructions of infinitely many minimal Ramsey graphs for each bonnet and

some ordered matchings in that section. Concluding remarks and open questions

are stated in Section 4.4.

Ramsey Forests Observe that an (unordered) graph H has a Ramsey graph

which is a forest if and only if H is a star forest. For ordered graphs also the

ordering affects this property. Recall that a right star is an ordered star with all

101
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leafs to the right of its center and a left star is an ordered star with all leafs to the

left of its center. Further, a monotone path is a path v1 · · · vn with v1 < · · · < vn.

Theorem 4.1. Let H and H ′ be ordered graphs with at least one edge each. Then

R<(H,H ′) contains a forest if and only if H and H ′ are forests and one of the

following statements holds.

(a) H or H ′ is a matching.

(b) For one of H or H ′ each component is a right star and for the other each

vertex has at most one neighbor to the left.

(c) For one of H or H ′ each component is a left star and for the other each vertex

has at most one neighbor to the right.

(d) For one of H or H ′ each component is a left or a right star and for the other

each component is a monotone path.

Ramsey (In)Finiteness Next we present results along the lines of Theorem 1.3

from Section 1.4 and its asymmetric relatives. As for unordered graphs, we call a

pair (H,H ′) of ordered graphs Ramsey finite if there are only finitely many minimal

graphs in R<(H,H ′), and Ramsey infinite otherwise. Here an ordered graph F ∈
R<(H,H ′) is minimal if F ′ 6∈ R<(H,H ′) for each proper ordered subgraph F ′ of F .

In case H = H ′ we call H itself Ramsey finite or infinite, respectively. Clearly the

following analog of Observation 1.3 holds for ordered graphs.

Observation 4.1. A pair (H,H ′) of ordered graphs is Ramsey finite if and only

if max{|V (F )| | F ∈ R<(H,H ′), F minimal} exists, that is, the order of minimal

ordered Ramsey graphs of (H,H ′) is bounded.

The proof of the following theorem closely follows a recent new proof of the

analogous statement for unordered graphs (Corollary 1.5 in Section 1.4) due to

Nenadov and Steger [109].

Theorem 4.2. Each ordered graph that contains a cycle is Ramsey infinite.

Now we turn to pairs of ordered graphs where one is a forest and the other

contains a cycle. In the unordered setting such a pair is Ramsey finite if and only

if the forest is a matching [29, 102] (see Theorems 1.6 and 1.7 in Section 1.4). The

following theorem gives partial results for ordered graphs, similar to Theorem 1.6.

Recall that an ordered graph G with at least two vertices is segmentally connected

if for any any partition V1∪̇V2 = V (G) of the vertices of G into two disjoint intervals

V1 and V2 there is an edge with one endpoint in V1 and the other endpoint in V2. See

Figure 4.2. Further G t G′ denotes the intervally disjoint union of ordered graphs

G and G′, that is, a vertex disjoint union of G and G′ where all vertices of G are to

left of all vertices of G′. A monotone matching is an ordered matching with vertices

u1 < · · · < u2k and edges u2i−1u2i, 1 6 i 6 k.
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Figure 4.2: Each ordered graph on the left side is segmentally connected while
each ordered graph on the right is not segmentally connected. Here each segment is
marked gray, with darker empty segments. We see that a disconnected ordered graph
might be segmentally connected, and each ordered graph which is not segmentally
connected contains a segment without edges.

Theorem 4.3. Let s and t be positive integers and let H1, . . . ,Hs, H
′
1, . . . ,H

′
t be

segmentally connected ordered graphs. If (Hi, H
′
j) is Ramsey finite for each i ∈ [s]

and j ∈ [t], then (H1 t · · · tHs, H
′
1 t · · · tH ′t) is Ramsey finite.

Corollary 4.4. If H ′ is a monotone matching, then (H,H ′) is Ramsey finite for

each ordered graph H.

Finally we consider pairs of ordered forests. A large part of the full character-

ization for unordered graphs (Theorem 1.8 in Section 1.4) is due to Nešetřil and

Rödl [114] who prove that each pair of (unordered) forests which are not a star

forests is Ramsey infinite. Their proof is based on the fact that each pair of (un-

ordered) forests has Ramsey graphs of arbitrarily large girth. This in turn relies on

the fact that each (unordered) forest is χ-unavoidable. As we have seen in Chapter 2

(Theorem 2.1) this second fact is not true for ordered forests. We think though that

the first fact holds for ordered graphs as well.

Conjecture 4.1. For each integer t and any pair (H,H ′) of ordered forests there

is F ∈ R<(H,H ′) with girth(F ) > t.

If Conjecture 4.1 is true, then each pair of ordered forests where R<(H,H ′) does

not contain a forest has minimal Ramsey graphs of arbitrarily large (but finite)

girth, and hence of arbitrarily large order.

Observation 4.2. Let (H,H ′) be a pair of ordered forests such that R<(H,H ′)

contains no forest and for each integer t there is F ∈ R<(H,H ′) with girth(F ) > t.

Then (H,H ′) is Ramsey infinite.

Here we focus on pairs of χ-unavoidable ordered forests and defer the study of χ-

avoidable ordered forests to future work, except for some small χ-avoidable ordered

graphs in Section 4.3. The proof from [114] can be easily adopted for χ-unavoidable

ordered forests. So Conjecture 4.1 holds for χ-unavoidable ordered forests and we

have the following theorem.
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}

d4

}

d1

}

d2

}

d3

Figure 4.3: Two almost increasing right caterpillars (left, middle) and two not almost
increasing right caterpillars (right).

Theorem 4.5. If H and H ′ are χ-unavoidable ordered graphs and R<(H,H ′) con-

tains no forest, then (H,H ′) is Ramsey infinite.

This theorem leaves to consider pairs of χ-unavoidable ordered graphs where

R<(H,H ′) contains some forest. We address such pairs of connected ordered graphs

next and, again, defer the the study of such disconnected forests to future work.

Recall that a right caterpillar is an ordered tree where each segment is a right star

with at least one edge. If Si � · · · � S1 are the segments of a right caterpillar H,

then the defining sequence of H is |E(S1)|, . . . , |E(Si)|. Left caterpillars are defined

similarly. A left or right caterpillar with defining sequence d1, . . . , di is called almost

increasing if i 6 2 or (i > 3, d1 6 d3, and d2 6 · · · 6 di). See Figure 4.3.

Theorem 4.6. Let (H,H ′) be a Ramsey finite pair of χ-unavoidable connected or-

dered graphs with at least two edges. Then (H,H ′) is a pair of a right star and an

almost increasing right caterpillar or a pair of a left star and an almost increasing

left caterpillar.

Theorem 4.7. Let (H,H ′) be a pair of a right star and a right caterpillar or a pair

of a left star and a left caterpillar, and let d1, . . . , di be the defining sequence of the

caterpillar. If either i 6 2 or d1 6 · · · 6 di, then (H,H ′) is Ramsey finite.

Corollary 4.8. A connected χ-unavoidable ordered graph is Ramsey finite if and

only if it is a left or a right star.

Unfortunately we do not resolve this case completely, see Conjecture 4.2 and the

preceding discussion in Section 4.4. A summary of our results is given in Table 4.1.

H ′ monotone
matching

⇒ finite

H, H ′

cyclic

H cyclic
H ′ forest

H 6= H ′

open
H = H ′

⇒ infinite

otherwise open

H, H ′

forests

H, H ′ χ-unavoidable
& no Ramsey forest
⇒ infinite

H, H ′ χ-unavoidable
& connected

⇒ finite iff special
star & caterpillar

otherwise
open

Table 4.1: Summary of results on Ramsey finiteness for ordered graphs H and H ′.
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4.2 Proofs of Theorems

Proof of Theorem 4.1

Lemma 4.2.1. Let H and H ′ be ordered forests. Then R<(H,H ′) does not contain

a forest in each of the following cases.

(a) Both H and H ′ contain a component that is not a star.

(b) One of H or H ′ contains a vertex with two neighbors to the right and the other

contains a vertex with two neighbors to the left.

(c) Both H and H ′ contain a monotone path on two edges.

(d) One of H or H ′ contains a monotone path on two edges and the other contains

a path P on three edges.

Proof. Let F be a forest. For each of the cases we shall give a coloring of the edges

of F without red copies of H and blue copies of H ′.

(a) Choose a root in each component of F and color an edge red if and only if its

distance to the root is odd. Then each color class forms a star forest, that is, there is

neither a monochromatic copy of H nor of H ′. Hence R<(H,H ′) contains no forest.

(b) Without loss of generality assume that H contains a vertex with two neighbors

to the right and H ′ contains a vertex with two neighbors to the left. By induction

on the number of edges of F there is a 2-coloring of its edges such that for each

vertex at most one incident edge to the right is red and at most one incident edge

to the left is blue. Indeed this is clear if |E(F )| = 1. If |E(F )| > 1 remove a vertex

v of degree 1 from F and color the resulting forest inductively. If v is to the left of

its neighbor u in F then color uv red, otherwise color it blue. This coloring contains

neither red copies of H nor blue copies of H ′. Hence R<(H,H ′) contains no forest.

(c) An induction on the number of edges of F shows that there is a 2-coloring of

its edges such that for each vertex its incident edges to the left are of different color

than its incident edges to the right. Indeed this is clear if |E(F )| = 1. If |E(F )| > 1

remove a vertex v of degree 1 from F and color the resulting forest inductively. Then

color the edge incident to v based on the colors of edges incident to its endpoint

distinct from v. This coloring contains neither red copies of H nor blue copies of

H ′. Hence R<(H,H ′) contains no forest.

(d) Without loss of generality assume that H contains a monotone path on two

edges and H ′ contains a path P on three edges. If P contains a monotone path on

two edges, then R<(H,H ′) contains no forest due to Case (c). Assume that P does

not contain a monotone path on two edges. Color an edge e of a component T of

F red if and only if the edge next to e on the (unique) path to the leftmost vertex
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e e

e e

Figure 4.4: A 2-coloring of the edges of an ordered tree where an edge e is red if
and only if the edge next to e on the path to the leftmost vertex forms a bend with
e (left). Then there is no red monotone path on at least two edges (right, top) and
no blue alternating path on at least three edges (right, bottom).

of T exists and does not form a monotone path with e (that is, forms a bend with

e). Color all other edges blue. See Figure 4.4 (left). It easy to see that there is no

red monotone path on two edges. Observe that the middle edge of P forms a bend

with each of the other edges in P and in each copy of P in T it is the next edge

on the path to the leftmost vertex for one of them. Hence one of the edges in each

copy of P is red and there is no blue copy of H ′. Therefore R<(H,H ′) contains no

forest.

Proof of Theorem 4.1. We shall prove that all pairs of ordered forests that do not

have a forest as an ordered Ramsey graph are covered by Lemma 4.2.1. To this end

we provide explicit constructions of ordered forests that are ordered Ramsey graphs

for the remaining pairs.

Let H and H ′ be ordered graphs such that R<(H,H ′) contains a forest. Then

H and H ′ are forests, since any monochromatic subgraph of an edge-colored forest

is a forest itself. If either H or H ′ is a matching then Case (a) of this theorem holds.

So assume that neither H nor H ′ is a matching. Due to Lemma 4.2.1 (a) either H

or H ′ is a star forest. Without loss of generality assume that H is a star forest. Due

to Lemma 4.2.1 (c) one of H or H ′ does not contain a monotone path on two edges.

First suppose that H does not contain a monotone path on two edges. Then

each component of H is a left or a right star. Due to Lemma 4.2.1 (b) the following

holds. If each component of H is a right star, then each vertex of H ′ has at most

one neighbor to the left (as H is not a matching). Thus H and H ′ satisfy Case (b)

of this theorem. Similarly, if each component of H is a left star, then each vertex

of H ′ has at most one neighbor to the right. Thus H and H ′ satisfy Case (c) of

this theorem. If H contains a right star on two edges as well as a left star on two

two edges, then each component of H ′ is a monotone path. Thus H and H ′ satisfy

Case (d) of this theorem.

Now suppose that H contains a monotone path on two edges. Then H ′ nei-

ther contains a monotone path on two edges nor a path on three edges due to

Lemma 4.2.1 (c) and (d). Therefore each component of H ′ is a left or a right star.

The same arguments as above show that H and H ′ satisfy one of the Cases (b), (c),

or (d) of this theorem.
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H ′

H ′

H ′
H ′

H ′

V1 Vr
V2 V3

Figure 4.5: Disjoint copies of H ′ forming an ordered graph in R<(H,H ′) for some
matching H.

Next consider two ordered forests H and H ′ that satisfy Case (a), (b), (c), or (d)

of this theorem. We shall show that there is a forest in R<(H,H ′). First of all

suppose that H and H ′ together contain some t > 0 isolated vertices. Let H̄ and

H̄ ′ be obtained from H respectively H ′ by removing these t isolated vertices. Then

there is a forest in R<(H,H ′) if and only if there is a forest in R<(H̄, H̄ ′). Indeed,

if F is an ordered forest in R<(H,H ′), then F ∈ R<(H̄, H̄ ′). Suppose that F̄ is

an ordered forest in R<(H̄, H̄ ′). Then we obtain an ordered forest in R<(H,H ′) by

adding t isolated vertices to the left of all vertices in F̄ , to the right of all vertices in

F̄ , as well as between any pair of consecutive vertices of F̄ . For the remaining proof

we assume that neither H nor H ′ contains isolated vertices. We shall distinguish

which of the cases of the theorem is satisfied.

(a) Without loss of generality assume that H is a matching. Consider a complete

ordered graph K of order r = r<(H,H ′) with vertices v1 < · · · < vr. Let k =

|V (H ′)|, m′ =
(
r
k

)
, and m =

(
r−1
k−1

)
. Note that K contains exactly m′ copies of

H ′ and each vertex of K is contained in exactly m copies of H ′ in K. We shall

construct an ordered graph F that is a vertex disjoint union of m′ copies of H ′. For

each i ∈ [r] let H1
i , . . . ,H

m
i denote the copies of H ′ in K containing vi. Choose

disjoint ordered vertex sets Vi = (v1
i , . . . , v

m
i ) of size m each, i ∈ [r]. Let F denote

the ordered graph with vertex set ∪ri=1Vi, V1 ≺ · · · ≺ Vr, where vji v
t
s is an edge in F

if and only if Hj
i = Ht

s and the edge vivs is in Hj
i = Ht

s, 1 6 i < s 6 r, 1 6 j, t 6 m.

See Figure 4.5.

Observe that F is a vertex disjoint union of copies of H ′ and hence a forest. We

claim that F → (H,H ′). Consider a 2-coloring c of the edges of F . We shall show

that there is either a red copy of H or a blue copy of H ′. To this end consider the

edge-coloring c′ of K where an edge vivs, 1 6 i < s 6 r, is colored red if there is at

least one red edge between Vi and Vs in F and blue otherwise. Due to the choice of

K there is either a red copy of H or a blue copy of H ′ under c′. In either case there

is a red copy of H respectively a blue copy of H ′ under c. Thus F → (H,H ′).

(b) Without loss of generality assume that each component of H is a right star and

each vertex in H ′ has at most one neighbor to the left. We shall prove that there

is a forest in R<(H,H ′) by induction on the size of H ′. If H ′ has only one edge,

then clearly H is in R<(H,H ′) and we are done. So suppose that H ′ has at least

two edges. Let e denote the edge incident to the rightmost vertex of H ′ (recall that
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F ′F ′
H F

F ′

Figure 4.6: A forest F in R<(H,H ′) formed from disjoint copies of a forest F ′ ∈
R<(H,H ′ − e) with attached leafs. Here H is a forest of right stars, H ′ is a forest
where each vertex has at most one neighbor to the left, and e is the edge incident
to the rightmost vertex of H ′.

H ′ has no isolated vertices) and let F ′ denote an ordered forest in R<(H,H ′ − e)
which exists by induction. We shall construct an ordered forest F as follows. Let

v1 < · · · < vn denote the vertices of H and let S denote the set of vertices in H that

are a center of some right star (on at least one edge) in H.

Choose n disjoint ordered sets of vertices V1 ≺ · · · ≺ Vn, each of size |V (F ′)|. For

each i ∈ [n], with vi ∈ S, add edges among the vertices in Vi such that Vi induces

a copy of F ′. For each edge vivj in H, 1 6 i < j 6 n, add an arbitrary perfect

matching between Vi and Vj . See Figure 4.6 for an illustration.

Then F is a vertex disjoint union of copies of F ′ with some leafs attached. In

particular F is a forest. We claim that F ∈ R<(H,H ′). Consider a coloring of the

edges of F . Note that each vi ∈ S is left endpoint of some edge vivj in H and hence

for each u ∈ Vi there is an edge uv with v ∈ Vj , j > i. If for each vi ∈ S there exists

u ∈ Vi such that an edge uv is red whenever v ∈ Vj with j > i, then there is a red

copy of H. So assume that there is some vi ∈ S such that for each u ∈ Vi there is a

blue edge uv for some v ∈ Vj , j > i. Since Vi induces a copy of F ′, there is either

a red copy of H or a blue copy of H ′ − e. In the latter case some edge between Vi

and Vj yields a blue copy of H ′ in F , since e is incident to the rightmost vertex in

H ′. Altogether F is a forest in R<(H,H ′).

(c) This follows from Case (b).

(d) Without loss of generality assume that each component of H is a left or a right

star and each component of H ′ is a monotone path. We shall prove that there is a

forest in R<(H,H ′) by induction on the number of components of H and the size of

H ′. If H has only one component, then there is a forest in R<(H,H ′) by Case (b)

or (c). If H ′ has only one edge, then H is a forest in R<(H,H ′). Suppose that H has

at least two components and H ′ has at least two edges. Let S denote a component

of H. Without loss of generality assume that S is a right star. Let e denote the edge

in H ′ containing the rightmost vertex of H ′ (recall that H ′ has no isolated vertices).

By induction there are ordered forests A ∈ R<(H − S,H ′) and B ∈ R<(H,H ′ − e).
Let a1 < · · · < an denote the vertices of A. Let F ′ consist of an intervally disjoint

union of n + 1 copies B1, . . . , Bn+1 of B. Consider an ordered forest F ′′ that is a

vertex disjoint union of F ′ and A where for each i, 1 6 i 6 n, the vertex ai ∈ V (A)

is between Bi and Bi+1. See Figure 4.7 (left). Obtain an ordered forest F from F ′′

as follows. For each i, j with 1 6 i 6 j 6 n + 1, and each vertex u in Bi add a
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B

A
F ′′

Bi

u
B BB B B B

A
· · ·

F

} |E(S)|
ai

Figure 4.7: Forests A ∈ R<(H − S,H ′) and B ∈ R<(H,H ′ − e) forming a forest F
in R<(H,H ′). Here S is a component of a forest H and e is an edge in a forest H ′,
where each component of H is a left or a right star and each component of H ′ is a
monotone path.

star with center u and |E(S)| leafs to the right of Bj and, if j < n + 1, to the left

of aj , such that these leafs are distinct for distinct pairs i, j, and vertices u. See

Figure 4.7 (right) for an illustration.

Clearly F is a forest since F ′′ is a forest and all the leafs added in the last step

are distinct. We claim that F ∈ R<(H,H ′). Consider a 2-coloring of the edges of

F without blue copies of H ′. Then there is a red copy K of H − S in A. Consider

some i ∈ [n+ 1] such that the position of any vertex u in Bi in K + u corresponds

to the position of the center of S in H. If for some u ∈ V (Bi) all the edges uv in

F where v is to the right of Bi are red, then this red right star together with K

contains a red copy of H. So suppose that for each vertex u ∈ V (Bi) there is a blue

edge uv where v is to the right of Bi. Then there is no blue copy of H ′ − e in Bi,

as otherwise there is a blue copy of H ′ since e is incident to the rightmost vertex in

H ′. Hence there is a red copy of H in Bi. Altogether F ∈ R<(H,H ′).

Proof of Theorem 4.2

We shall use the hypergraph container method due to Saxton and Thomason [132]

and independently Balogh et al. [13] to prove that (G,G) is Ramsey infinite for any

ordered graph G that contains a cycle. We will follow the arguments from [109]

(see also [70]) using the following result of Saxton and Thomason [133]. Considering

ordered graphs instead of (unordered) graphs only affects the involved constants. Re-

call that the density of a graph is m(G) = max{|E(G′)|/|V (G′)| | G′ ⊆ G} and that

the 2-density ism2(G) = max{(|E(G′)|−1)/(|V (G′)|−2) | G′ ⊆ G, |V (G′)| > 3}. For

a hypergraph H and some integer ` let ∆`(H) = max{|E| | E ⊆ E(H), |∩E∈EE| > `}.

Theorem 4.9 (Cor. 1.3 [133]). For all r ∈ N and for any ε > 0 there is c > 0

such that for all r-uniform hypergraphs H with average degree d > 0 and each τ ,

0 < τ 6 1, with ∆`(H) 6 cdτ `−1, 2 6 ` 6 r, the following holds. There is a function

f : 2V (H) → 2V (H) such that for each independent set I in H there is S ⊆ V (H) with

(a) S ⊆ I ⊆ f(S),

(b) |S| 6 τ |V (H)|,

(c) |E(H[f(S)])| 6 ε|E(H)|.
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We shall also use a corollary to the so-called Small-Subgraph-Theorem of Erdős

and Rényi [59] and Bollobás [17].

Theorem 4.10 ([17],[59]). Let H be a graph with at least one edge. The probabil-

ity that a random graph G(n, p) contains a copy of H tends to 0 (as n → ∞) if

pn1/m(H) → 0 (as n→∞).

The following lemma is an analog of Corollary 2.2. from [109]. We include a

proof for ordered graphs for completeness.

Lemma 4.2.2. Let H be an ordered graph, σ = r<(H,H,H), ε = 1
4σ
−σ, δ =

|E(H)|12σ−σ, and n > σ. If E1, E2 ⊆ E(Kn) with Ei inducing at most εn|V (H)|

copies of H, i ∈ [2], then |E1 ∪ E2| 6 (1− δ)
(
n
2

)
.

Proof. Let t = |V (H)|, E = E1∪E2, and E′ = E(Kn)\E. Then for each each set of

σ vertices in Kn there is a copy of H with all edges in E1, all edges in E2, or all edges

in E′. Note that each copy of H in Kn is contained in at most nσ−t such σ-sets.

Thus there are at least
(
n
σ

)
nt−σ copies of H in Kn with all edges in one of E1, E2, or

E′. Therefore E′ induces at least
(
n
σ

)
nt−σ − 2εnt > (σ−σ − 2ε)nt = 1

2σ
−σnt copies of

H. Since each edge in E′ is contained in at most nt−2 copies of H, there are at least

|E(H)|12σ−σnt/nt−2 = |E(H)|12σ−σn2 > δ
(
n
2

)
edges in E′. Thus |E| 6 (1−δ)

(
n
2

)
.

The following lemma is implicitly contained in [109] for unordered graphs.

Lemma 4.2.3 (Ramsey Containers [109]). Let H be an ordered graph. Then there

are constants N0, C, δ > 0, and a function g mapping ordered graphs to ordered

graphs such that for each n, n > N0, and each F 6∈ R<(H) on vertex set [n] there is

an ordered graph P with

(a) V (P ), V (g(P )) ⊆ [n],

(b) P ⊆ F ⊆ g(P ),

(c) |E(P )| 6 Cn2−1/m2(H),

(d) |E(g(P ))| 6 (1− δ)
(
n
2

)
.

Proof. Consider some (large) n and an ordered complete graph K on vertex set [n].

Let H = Hn be a hypergraph with vertex set E(K) that contains an edge E ⊆ E(K)

if and only if E forms a copy of H in K. Observe that there is a 1-1 correspondence

between subsets of V (H) and ordered graphs on vertex set [n] (without isolated

vertices). Let t = |V (H)|, r = |E(H)|. Then H is r-uniform, |V (H)| =
(
n
2

)
,

|E(H)| =
(
n
t

)
, and its average degree is d(H) = r|E(H)|

|V (H)| . Let δ and ε be given by

Lemma 4.2.2 and let c 6 1 be given by Theorem 4.9 for r and ε as defined here.

Further let τ = tt

c n
−1/m2(H) and let v(`) = min{|V (H ′)| | H ′ ⊆ H, |E(H ′)| = `},
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for ` ∈ [r]. Finally choose N0 > max{r<(H), t} such that tt

cN
−1/m2(H)
0 6 1 and

consider n > N0. Then d(H) > 0 and for each `, 2 6 ` 6 r,

m2(H) = max
H′⊆H
|V (H′)|>3

|E(H′)|−1
|V (H′)|−2 > max

H′⊆H,|E(H′)|=`
`−1

|V (H′)|−2 = `−1
v(`)−2 , (4.1)

∆`(H) 6
(n−v(`)
t−v(`)

)
6 nt−v(`)

(4.1)

6 n
t−2− `−1

m2(H) 6
tt
(
n
t

)
(
n
2

) n−
`−1

m2(H)

6 r|E(H)|
|V (H)| c

(
tt

c

)`−1
n
− `−1
m2(H) = cdτ `−1.

Due to Theorem 4.9 there is a function f : 2V (H) → 2V (H) such that for each

independent set I of H there is S ⊆ V (H) with S ⊆ I ⊆ f(S), |S| 6 τ |V (H)|, and

|E(H[f(S)])| 6 ε|E(H)|. Now consider F 6∈ R<(H) on n vertices and a 2-coloring

of the edges of F with no monochromatic copy of H. Then the color classes form

independent sets I1 and I2 in H. As argued above there are sets S1, S2 ⊆ V (H) with

Si ⊆ Ii ⊆ f(Si), |Si| 6 τ |V (H)| 6 tt

c n
2−1/m2(H), and |E(H[f(Si)])| 6 ε|E(H)| 6 εnt,

i = 1, 2. Due to the latter condition and Lemma 4.2.2 we have |f(S1) ∪ f(S2)| 6
(1 − δ)n2. The statement of the lemma follows with C = 2 t

t

c , P being the graph

formed by S1 ∪ S2, and g(P ) being the graph formed by f(S1) ∪ f(S2).

Proof of Theorem 4.2. Let H be an ordered graph that contains a cycle. We shall

prove that for each positive integer t there is an ordered graph F with F ∈ R<(H)

and F [V ] 6∈ R<(H) for each t-subset V ⊆ V (F ). More precisely we shall show

that there is a constant C ′ = C ′(H, t) such that a random graph F = G(n, p), with

p = C ′n
− 1
m2(H) , satisfies both conditions with probability tending to 1 as n tends to

infinity. Hence there is a minimal ordered Ramsey graph contained in F on more

than t vertices. Since t is arbitrary there are minimal ordered Ramsey graphs of H

of arbitrarily large order and hence H is Ramsey infinite by Observation 4.1.

Fix some t > 0 and C ′ > C and consider n sufficiently large such that p 6 1.

Let F denote the set of all ordered graphs in R<(H) with t vertices and let F̃

denote the underlying (unordered) graph of F . First we shall show that with high

probability F̃ does not contain the underlying graph of any member of F as a

subgraph. Consider some fixed F ′ ∈ F . Since H contains a cycle we have m(F ′) >

m2(H) by Lemma 1.4.1 and Observation 1.4. Therefore

pn
1

m(F ′) = n
1

m(F ′)−
1

m2(H) −→ 0 (n→∞).

So with high probability F̃ does not contain the underlying graph of F ′ as a subgraph

by Theorem 4.10. In particular F does not contain F ′ as an ordered subgraph. This

shows that with probability tending to 1 (as n → ∞) F does not contain any

member of F as a subgraph, since F is a finite set. So with probability tending to 1

(as n→∞) F [V ] 6∈ R<(H) for each t-subset V ⊆ V (F ).
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Next we shall show that with high probability F ∈ R<(H). Let N0, C, δ > 0

be constants and let g be a function given by Lemma 4.2.3. Let P denote the set of

ordered graphs P with V (P ) ⊆ [n], |E(P )| 6 Cn2−1/m2(H), and no isolated vertices.

Note that we can assume that |E(g(P ))| 6 (1−δ)
(
n
2

)
for each P ∈ P. For sufficiently

large C ′ the probability that there is some P ∈ P with P ⊆ F ⊆ g(P ) is at most

∑

P∈P
P (P ⊆ F ⊆ g(P )) 6

∑

P∈P
p|E(P )|(1− p)δ(n2)

=

bCn2−1/m2(H)c∑

i=0

((n
2

)

i

)
pi(1− p)δ(n2) (4.2)

6

bCn2−1/m2(H)c∑

i=0

(
en2p
i

)i
e−pδ(

n
2) (4.3)

6 Cn2
(

en2p

Cn2−1/m2(H)

)Cn2−1/m2(H)

e−pδ(
n
2) (4.4)

6 Cn2
(
eC′

C

)Cn2−1/m2(H)

e−(C′δ/4)n2−1/m2(H)

= Cn2e(

<0︷ ︸︸ ︷
C+C ln(C′)−C ln(C)−(C′δ/4))n2−1/m2(H)

−→ 0 (n→∞).

Here equality 4.2 holds since for each i there are
((n2)
i

)
graphs on i edges in P.

Inequality 4.3 holds since
((n2)
i

)
6 (en2/i)i. Finally inequality 4.4 holds since for

any fixed r > 0 the function (r/x)x of x is increasing for 0 < x 6 r (note that

its derivative is (r/x)x(ln(r/x) − 1)) and Cn2−1/m2(H) 6 eC ′n2−1/m2(H) = en2p.

If n > N0 and F 6∈ R<(H), then by Lemma 4.2.3 there is some P ∈ P with

P ⊆ F ⊆ g(P ). Thus the calculation above shows that F ∈ R<(H) with probability

tending 1 as n → ∞. Altogether we see that for sufficiently large n there is an

ordered graph F with F ∈ R<(H) and F [V ] 6∈ R<(H) for each t-subset V ⊆ V (F ).

Therefore there are arbitrarily large minimal ordered Ramsey graphs of H and hence

H is Ramsey infinite.

Proof of Theorem 4.3

In order to prove that (H,H ′) is Ramsey finite we shall show that each minimal

ordered Ramsey graph of (H,H ′) is a member of the following finite family of ordered

graphs. Let F ts denote the set of all ordered graphs that are isomorphic to a union of

ordered graphs F ji , i ∈ [s], j ∈ [t], where F ji is a minimal ordered Ramsey graph for

(Hi, Hj), for each i ∈ [s], j ∈ [t−1] we have F ji ≺ F
j+1
i , and for each j ∈ [t], i ∈ [s−1]

we have F ji ≺ F ji+1. See Figure 4.8 for an illustration in the case s = t = 3. For
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Figure 4.8: A Ramsey graph for (H1tH2tH3, H
′
1tH ′2tH ′3) where F ji ∈ R<(Hi, H

′
j),

i, j = 1, 2, 3. The subgraphs of the same color correspond to constant j, the
subgraphs on the same horizontal layer (above, on, respectively below the line of
vertices) correspond to constant i.

some graph A ∈ F ts that is isomorphic to such a union of graphs F ji , i ∈ [s], j ∈ [t],

let Aji denote the copy of F ji in A. Note that F ts is finite. Let H = H1 t · · · tHs

and H ′ = H ′1 t · · · t H ′t. We claim that F ∈ R<(H,H ′) if and only if F contains

some member of F ts.

Consider a 2-coloring of the edges of some A ∈ F ts. We shall prove that there

is a red copy of H or a blue copy of H ′ by induction on s and t. If s = 1, then

A = A1
1 t · · · t At1 where Aj1 ∈ R<(H,H ′j) for each j ∈ [t]. If t = 1, then A =

A1
1 t · · · tA1

s where A1
i ∈ R<(Hi, H

′) for each i ∈ [s]. In both cases it is easy to see

that there is either a red copy of H or a blue copy of H ′. Hence A ∈ R<(H,H ′).

Suppose that s, t > 1. Let A′ denote the subgraph of A formed by all subgraphs

Aji with (i, j) 6= (s, t). Then A′ ∈ F ts−1 and A′ ∈ F t−1
s . By induction, A is in

R<(H,H ′1 t · · · tH ′t−1) and in R<(H1 t · · · tHs−1, H
′). If there is no red copy of

H and no blue copy of H ′ in A′, then there is a red copy of H1 t · · · tHs−1 and a

blue copy of H ′1 t · · · tH ′t−1. Observe that A′ ≺ Ats. Since Ats ∈ R<(Hs, H
′
t) there

is a red copy of H or a blue copy of H ′ in either case. Thus A ∈ R<(H,H ′).

Now consider an ordered graph F that does not contain any member of F ts.
We shall prove that F 6∈ R<(H,H ′) by induction on s and t. Consider the case

s = 1. If t = 1 then F does not contain any minimal ordered Ramsey graph of

(H1, H
′
1) = (H,H ′). Clearly F 6∈ R<(H,H ′). Suppose that t > 1 and let p denote

the rightmost vertex in F such that {q ∈ V (F ) | q > p} induces a copy of some

graph from R<(H,H ′t) in F . Let F` and Fr denote the subgraphs of F induced by

all vertices to the left respectively to the right of p. Then F` does not contain any

member of F t−1
1 . By induction on t there is a coloring of the edges of F` without

red copies of H or blue copies of H ′1 t · · · tH ′t−1. Moreover there is a coloring of Fr

without red copies of H or blue copies of H ′t. Color all remaining edges blue (that

is, all edges incident to p and all edges between F` and Fr). Then there is no red

copy of H since H = H1 is segmentally connected. Moreover each blue copy of Ht

contains some vertex q with q 6 p and thus there is no blue copy of H ′. This shows

that F 6∈ R<(H,H ′). If t = 1 and s > 1, then F 6∈ R<(H,H ′) due to symmetric

arguments.

So suppose that s, t > 1. If F does not contain any member of F ts−1, then

F 6∈ R<(H1 t · · · tHs−1, H
′) by induction on s. Hence F 6∈ R<(H,H ′). So assume

that F contains some member of F ts−1. Let A denote such a copy where for each
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s−1
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V (F )

B1 BtBj

Fr

6→ (Hs, H
′
j t · · · tH ′t)

F`

6→ (Hs−1, H ′1 t · · · tH ′j)

Figure 4.9: An illustration of the proof of Theorem 4.3. Here Aji ∈ R<(Hi, H
′
j),

Bj ∈ R<(Hs, H
′
j), and F does not contain any element from F ts . Therefore a

combination of colorings of F` and Fr shows that F 6→ (H1t· · ·tHs, H
′
1t· · ·tH ′t).

i ∈ [s− 1] and j ∈ [t] the rightmost vertex of Aji is leftmost among all such copies.

Note that we can simultaneously choose such leftmost vertices for all i ∈ [s − 1]

and j ∈ [t]. If F does not contain a subgraph of the form B1 t · · · t Bt where

Bj ∈ R<(Hs, H
′
j) for each j ∈ [t], then the arguments from case s = 1 show that

F 6∈ R<(Hs, H
′) and thus F 6∈ R<(H,H ′). Otherwise let B = B1 t · · · t Bt denote

such a subgraph of F where for each j ∈ [t] the leftmost vertex of Bj is rightmost

among all such subgraphs. Again we can simultaneously choose such rightmost

vertices for all j ∈ [t]. Since A ∪ B 6∈ F ts there is j ∈ [t] such that Bj is not to

the right of Ajs−1. See Figure 4.9 for an illustration. Let p denote the rightmost

vertex of Ajs−1 and let F` and Fr denote the subgraphs of F induced by all vertices

to the left respectively to the right of p. By the choice of A the graph F` does not

contain any member of F js−1. By the choice of B the graph Fr does not contain any

subgraph of the form B′j t · · · t B′t where B′j′ ∈ R<(Hs, Hj′), j 6 j′ 6 t. Therefore

there is a coloring of the edges of F` without red copies of H1 t · · · tHs−1 or blue

copies of H ′1 t · · · tH ′j by induction on s. Similarly there is a coloring of the edges

of Fr without red copies of Hs or blue copies of H ′j t · · · tH ′t due to the arguments

from case s = 1. Color all remaining edges red (that is, all edges incident to p and

all edges between F` and Fr). Then each red copy of H1 t · · · tHs−1 contains some

vertex q with p 6 q. Hence there is no red copy of H. Similarly we see that there

is no blue copy of H ′ since all edges incident to p and all edges between F` and Fr

are red. Altogether F 6∈ R<(H,H ′). This shows that each minimal ordered Ramsey

graph of (H,H ′) is contained in F ts, since we proved in the beginning that each

member of F ts is in R<(H,H ′). Thus (H,H ′) is Ramsey finite.

Proof of Theorems 4.5 and 4.6

Proof of Theorem 4.5. As H and H ′ are χ-unavoidable there is an integer k such

that each ordered graph of chromatic number at least k contains a copy of H and

a copy of H ′. For each t > 3 let Gt be an ordered graph of chromatic number

at least k2 and girth at least t. First we prove that Gt ∈ R<(H,H ′). Consider a

2-coloring of the edges of Gt. Since χ(Gt) > k2 one of the color classes forms an
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ordered subgraph of chromatic number at least k. Therefore this subgraph contains

a (monochromatic) copy of both of H and H ′. Thus Gt ∈ R<(H,H ′).

For each t > 3 let G′t be a minimal ordered Ramsey graph of (H,H ′) that is

a subgraph of Gt. For each t > 3 the graph G′t contains a cycle, since R<(H,H ′)

contains no forest. As Gt has girth at least t, infinitely many of the graphs G′t are

not isomorphic. Thus (H,H ′) is Ramsey infinite.

For the proof of Theorem 4.6 it remains to consider pairs of χ-unavoidable con-

nected ordered graphs that are not covered by Theorem 4.5, i.e., that have a forest as

an ordered Ramsey graph. Recall that such pairs are characterized by Theorem 4.1.

We give explicit constructions of infinitely many ordered Ramsey graphs for these

pairs using so-called determiners as building blocks. We introduce determiners and

prove give explicit constructions of such ordered graphs next. The concept of (un-

ordered) determiners is used by Burr et al. [33] to construct Ramsey graphs with

certain properties.

Recall that G t G′ denotes a intervally disjoint union of ordered graphs G and

G′, that is, a vertex disjoint union of G and G′ where all vertices of G are to left of

all vertices of G′. Also recall that the concatenation G ◦ G′ of two ordered graphs

G and G′ is obtained from G t G′ by identifying the rightmost vertex in the copy

of G with the leftmost vertex in the copy of G′. Let ~Sp denote a right star with p

edges. Given integers i, j with 1 6 j 6 i, and a sequence d = d1, d2, . . . of positive

integers, let Hi(d) = ~Sdi ◦ · · · ◦ ~Sd1 and Hj
i (d) = ~Sdi ◦ · · · ◦ ~Sdj be right caterpillars.

For convenience let H0(d) and H i+1
i (d) each denote a single vertex ordered graph.

Consider a right star H and a sequence d = d1, d2, . . . of positive integers. A left

determiner for (H,Hi(d)), i > 0, is an ordered graph F such that

• for any 2-coloring of the edges of F without red copies of H there is a blue

copy of Hi(d) that contains the leftmost vertex of F , and

• there is a good coloring of the edges of F , that is, a 2-coloring without red

copies of H or blue copies of Hi+1 such that there is a unique blue copy of

Hi(d) that contains the leftmost vertex of F and this copy is induced and

isolated in the blue subgraph.

A right determiner for (H,Hj
i (d)), 1 6 j 6 i+ 1, is an ordered graph F such that

• for any 2-coloring of the edges of F without red copies of H or blue copies of

Hi(d) there is a blue copy of Hj
i (d) that contains the rightmost vertex of F ,

and

• there is a good coloring of the edges of F , that is, a 2-coloring without red

copies of H or blue copies of Hi such that there is a unique blue copy of Hj
i (d)

that contains the rightmost vertex of F and this copy is induced and isolated

in the blue subgraph.
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D }
D

H3

H }}

H2
3 H2

Figure 4.10: A left determiner for (H,H2(d)) (left) and a right determiner for
(H,H2

3 (d)) (right) with respective good colorings (red solid and blue dashed edges).
Here H is a right star on two edges and d1 = d2 = 1 and d3 = 2.

D≤i−1 D≤i−1 D≤i−1

di − 1

}

u u1 u2 us

Figure 4.11: A left determiner for (H,Hi) with s = |E(H)| = 3, di = 3, and a good
coloring of its edges. Here D6i−1 is a left determiner for (H,Hi−1).

See Figure 4.10 for examples of determiners. Recall that a⊕bG denotes the ordered

graph obtained from ~Sat(tbG) by connecting the leftmost vertex of this union with

the leftmost vertex of each of the b copies of G. See Figure 1.10 for an illustration.

Lemma 4.2.4. Let H be a right star with at least one edge, let d be a sequence of

positive integers, and let i, j be non-negative integers with j 6 i + 1. Then there

is a left determiner for (H,Hi(d)) and, if j > 2, there is a right determiner for

(H,Hj
i (d)).

Proof. Let s = |E(H)|, Hi = Hi(d), Hj
i = Hj

i (d), and d = d1, d2, . . .. First we shall

construct a left determiner for (H,Hi) by induction on i. It is easy to see that a

single vertex graph is left determiner for (H,H0) and a right star on s+d1−1 edges

is a left determiner for (H,H1). Suppose that i > 2 and let D6i−1 denote a left

determiner for (H,Hi−1), which exists by induction. Let D = (di − 1)⊕sD6i−1, let

D1, . . . , Ds denote the copies of D6i−1 in D, and let ut denote the leftmost vertex

of Dt, 1 6 t 6 s, see Figure 4.11 for an illustration.

To see that D is a left determiner for (H,Hi) consider a 2-coloring of its edges

without a red copy of H. Since u is of degree di + s − 1, it is incident to at least

di blue edges. Consider the rightmost vertex v such that the edge uv is blue. Then

v = ut for some t ∈ [s], and hence is leftmost in a blue copy of Hi−1. Thus there is

a blue copy of Hi that contains u.

It remains to give a good coloring of the edges of D. Recall that D6i−1 has a

good coloring, that is, a 2-coloring of its edges without red copies of H or blue copies

of Hi such that the blue copy of Hi−1 that contains the leftmost vertex of D6i−1

is induced and isolated in the blue subgraph. Color D1, . . . , Ds according to such

a coloring. Moreover color some s − 1 of the edges uut, 1 6 t 6 s, in red, and all

other edges incident to u in blue. See Figures 4.10 and 4.11. Clearly there is no red

copy of H and no blue copy of Hi+1. Moreover the blue copy of Hi that contains u
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D≤j−1 D≤j−1

dj − 1

}D≥j+1

x yv1 vs−1

Figure 4.12: A right determiner for (H,Hj
i ) with s = |E(H)| = 3, dj = 3, and a

good coloring of its edges. Here D6j−1 is a left determiner for (H,Hj−1) and D>j+1

is a right determiner for (H,Hj+1
i ).

is induced and isolated in the blue subgraph. Hence this coloring is a good coloring

of D. Thus D is a left determiner for (H,Hi).

Next we shall construct right determiners for (H,Hj
i ) for i, j with i + 1 >

j > 2. Consider a fixed i > 1. We shall construct a right determiner for (H,Hj
i ) by

induction on i+1−j (that is, “from left to right”), using the already constructed left

determiners. We see that a single vertex graph is a right determiner for (H,H i+1
i ).

This forms the base case i+ 1− j = 0, that is, j = i+ 1. Suppose that i+ 1− j > 0,

that is, j 6 i. Let D>j+1 denote a right determiner for (H,Hj+1
i ), which exists by

induction, and let D6j−1 denote a left determiner for (H,Hj−1) (note that j−1 > 1).

Let D′ = (dj−1)⊕s−1D6j−1, let x denote the leftmost vertex in D′, let D1, . . . , Ds−1

denote the copies of D6j−1 in D′, and let vt denote the leftmost vertex in Dt,

1 6 t 6 s− 1. Obtain an ordered graph D from D>j+1 ◦D′ by adding a vertex y to

the right of all other vertices and an edge between x and y. See Figure 4.12.

We claim that D is a right determiner for (H,Hj
i ). Consider a 2-coloring of

the edges of D without red copies of H or blue copies of Hi. We shall find a blue

copy of Hj
i that contains y. By construction x is rightmost in a blue copy of Hj+1

i .

Moreover x is left endpoint of at least dj blue edges. Assume that the edge xy is

red. Consider the rightmost vertex z such that the edge xz is blue. Then z = vt for

some t, 1 6 t 6 s− 1, and hence z is leftmost in a blue copy of Hj−1. Thus there is

a blue copy of Hi, a contradiction. This shows that xy is colored blue and there is

a blue copy of Hj
i that contains y.

It remains to give a good coloring of D. Recall that D>j+1 has a good coloring,

that is, a 2-coloring of its edges without red copies of H or blue copies of Hi such that

the blue copy of Hj+1
i that contains x is induced and isolated in the blue subgraph.

Similarly D6j−1 has a good coloring. Color the leftmost copy of D>j+1 in D and

each Dt, 1 6 t 6 s − 1, according to such colorings. Color the edges xvt in red,

1 6 t 6 s− 1, and all remaining edges with left endpoint x in blue. See Figures 4.10

and 4.12 for an illustration. Clearly there is no red copy of H and no blue copy

of Hi (since j > 2). Moreover the blue copy of Hj
i that contains y is induced and

isolated in the blue subgraph. Hence D is a right determiner for (H,Hj
i ).

Lemma 4.2.5. Let G be a χ-unavoidable connected ordered graph where each vertex

has at most one neighbor to the left (right). Then each segment of G is a right (left)

star.
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Proof. Suppose that each vertex in G has at most one neighbor to the left. We shall

show that each segment of G is a right star. Since G is χ-unavoidable and connected

it is a tree and contains neither a bonnet nor a tangled path by Theorem 2.1. Hence

each segment of G is a monotonically alternating tree by Theorem 2.2. Let G′ be a

segment of G and let u denote its leftmost vertex. Consider a neighbor v of u in G′.

Then there is no edge vv′ in G′ with v < v′ since G′ is monotonically alternating

and thus χ<(G′) 6 2. If v′v is an edge in G′ with v′ < v then u = v′ by assumption.

Hence G′ is a right star. If each vertex in G has at most one neighbor to the right,

then each segment is a left star due to symmetric arguments.

Proof of Theorem 4.6. Recall that (H,H ′) is a Ramsey finite pair of χ-unavoidable

connected ordered graphs with at least two edges each. We shall give constructions of

infinitely many ordered Ramsey graphs of (H,H ′) using the determiners introduced

above. Since H and H ′ are connected and χ-unavoidable both H and H ′ are trees.

Since (H,H ′) is Ramsey finite there is a forest in R<(H,H ′) due to Theorem 4.5.

Due to Theorem 4.1 and since H and H ′ are connected and have at least two edges

each, we assume, without loss of generality, that H is a right star while each vertex

of H ′ has at most one neighbor to the left. Since H ′ is a χ-unavoidable tree each

segment of H ′ is a right star due to Lemma 4.2.5, that is, H ′ is a right caterpillar.

Let d = d1, . . . , di denote the defining sequence of H ′ = Hi(d). Due to the two cases

considered below we have that d2 6 · · · di and, if i > 3, d1 6 d3. In particular H ′ is

almost increasing. Recall that Ht = Ht(d) and Ht+1
i = Ht+1

i (d) are the subgraphs

of Hi(d) that consist of the t rightmost segments respectively the i − t leftmost

segments of Hi(d), 0 6 t 6 i+1. Let D6t be a left determiner for (H,Ht), 0 6 t < i,

and let D>t be a right determiner for (H,Ht
i ), 2 6 t 6 i + 1, which exist due to

Lemma 4.2.4.

Case 1 : There is j, 1 6 j 6 i− 2, with dj > max {dj+1, dj+2}. We shall prove that

(H,Hi(d)) is Ramsey infinite by constructing infinitely many Ramsey graphs. Let

a = max{dj+2, dj+1} − 1. Obtain a graph Γ′ from (a ⊕|E(H)|−1 D6j) t D>j+3 by

adding an edge between leftmost and rightmost vertex. Similarly obtain a graph Γ′′

from (a⊕|E(H)|−1D6j+1)tD>j+3 by adding an edge between leftmost and rightmost

vertex. For n > 1 let Γn = D>j+3◦Γ′′◦(◦nΓ′)◦D6i. See Figure 4.13 for an illustration

in case |E(H)| = 2.

First we shall prove that Γn → (H,Hi). Consider a 2-coloring of the edges of Γn

without red copy of H. We refer to bold and dashed edges like given in Figure 4.13,

that is, an edge is dashed if its the longest edge in the copy Γ′′ or in one of the copies

of Γ′, and an edge is bold if it has the same left endpoint as some dashed edge and

its right endpoint is leftmost in a copy of D6j+1 (in Γ′′) or D6j (in Γ′). Observe

that the left endpoint of each dashed edge is rightmost in a blue copy of Hj+3
i and

left endpoint of at least a + 1 > dj+2 blue edges. Hence, if a dashed edge is blue,

then its right endpoint is rightmost in a blue copy of Hj+2
i .
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Figure 4.13: A Ramsey graph for (H,Hi) where H is a right star on two edges and
Hi is a right caterpillar with at least three segments where a = max{dj+2, dj+1}− 1
and dj > a+ 1.

First suppose that all dashed edges are blue. Consider the rightmost copy K of

Γ′ and its dashed edge xy. Then x is rightmost in a blue copy of Hj+2
i and y is

leftmost in a blue copy of Hj . We see that the blue edge xy with a further blue

edges in K yields a blue copy of Hi.

Now suppose that the leftmost dashed edge uv is red. Note that u is rightmost

in a blue copy of Hj+3
i . Consider the rightmost vertex z such that the edge uz is

blue. Since there are a+ 1 blue edges with left endpoint u (and uz is red), the edge

uz is a bold edge. Since a > dj+2 − 1 and z is the leftmost vertex in a blue copy of

H6j+1, there is a blue copy of Hi.

Finally suppose that there is a blue dashed edge whose right endpoint w is

incident to a red dashed edge. Consider the rightmost vertex z such that the edge

wz is blue. Since there are a + 1 blue edges with left endpoint w (and the dashed

edge with left endpoint w is red), the edge wz is a bold edge. Recall that w is

rightmost in a blue copy of Hj+2
i . Since a > dj+1 − 1 and z is leftmost in a blue

copy of Hj , there is a blue copy of Hi. Altogether Γn → (H,Hi).

Next we shall show that each minimal Ramsey graph of (H,Hi) that is a subgraph

of Γn contains all dashed edges, that is, contains at least n + 1 edges. Let Γ̄ be

obtained from Γn by removing some dashed edge ē. We construct a coloring of

Γ̄ without red copies of H or blue copies of Hi as follows. Note that Γ̄ consists

of two connected components. First consider the component that contains the left

endpoint of ē. Color all bold edges in this component in red, all other edges with left

endpoint equal to the left endpoint of some bold edge in blue. All other edges form

vertex disjoint copies of D>j+3, D6j+1, and D6j . Color each of these determiners

according to a good coloring. Clearly there is no red copy of H. Moreover there

is no blue copy of Hi within one of the determiners. The blue edges not in one of

the determiners form a right caterpillar where each segment has a+ 1 edges. Since

a + 1 < dj and since the blue copy of Hj+3
i in in the leftmost copy of D>j+3 is

induced and isolated, there is no blue copy of Hi (but a blue copy of Hj+1
i ).

Now consider the component that contains the right endpoint of ē. For each

vertex p in this component that is the left endpoint of some dashed edge color this

dashed edge and |E(H)| − 2 further edges with left endpoint p in red and all other

edges with left endpoint p blue. The remaining edges form vertex disjoint copies
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Figure 4.14: A Ramsey graph for (H,Hi) where H is a right star and Hi is a right
caterpillar whose defining sequence contains dj < dj−1 for some j, i > j > 3. The
dashed edges form a complete bipartite graph.

of D>j+3 and D6j . Color each of these determiners according to a good coloring.

Clearly there is no red copy of H. Each component of the blue subgraph is contained

in a copy of D>j+3 ◦ (a⊕|E(H)|−1 D6j). As before there is no blue copy of Hi.

For each n > 1 choose a minimal Ramsey graph of (H,H ′) contained in Γn.

The arguments before show that infinitely many of these graphs are pairwise non-

isomorphic. Thus (H,H ′) is Ramsey infinite.

Case 2 : There is j, i > j > 3, with dj−1 > dj . We shall prove that (H,Hi) is

Ramsey infinite by constructing infinitely many Ramsey graphs. An illustration

of the following construction is given in Figure 4.14. Let Γ denote an ordered

graph obtained from ~Sdj−1tD>j+1 by adding an edge between the leftmost and the

rightmost vertex (recall that D>j+1 is a right determiner for (H,Hj+1
i )). For n > 1

let F ′n be defined as follows. Start with a right determiner D>j for (H,Hj
i ) and let

x < y denote its two rightmost vertices. Add a copy of D>j+1 that has all its vertices

to the right of x and has y as its rightmost vertex. Call the resulting graph D. To

this graph D concatenate n copies Γ1, . . . ,Γn of Γ and a left determiner D6j−1 for

(H,Hj−1), one after the other in this order. Finally add dj−1 − dj > 0 isolated

vertices and an intervally disjoint union of |E(H)| − 1 left determiners D6j−2 for

(H,Hj−2) to the right of all current vertices. Altogether

F ′n = D ◦ (◦nΓ) ◦D6j−1 t (tdj−1−djK1) t (t|E(H)|−1D6j−2).

Let U be the set of isolated vertices and let W denote the set of leftmost vertices

of each D6j−2 added in the last step. We obtain an ordered graph Fn from F ′n by

adding a complete bipartite graph between U ∪W and the leftmost vertex of Γt for

each t ∈ [n].

First we shall prove that Fn → (H,H ′). For the sake of contradiction consider a

2-coloring of the edges of F = Fn without red copies of H or blue copies of H ′. Let

γt denote the leftmost vertex of Γt in F , 1 6 t 6 n and let γn+1 be the rightmost

vertex of Γn. We shall prove that γt is rightmost in a blue copy of Hj
i , 1 6 t 6 n+1,

by induction on t. For t = 1 this holds since γ1 is rightmost in a right determiner for
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Hj
i . Consider t > 1. Since γt−1 is left endpoint of dj−1+|E(H)|−1 edges there are at

least dj−1 blue edges with left endpoint γt−1. Consider the rightmost vertex z with

γt−1z colored blue. Since γt−1 is rightmost in a blue copy of Hj
i , z is rightmost in a

blue copy of Hj−1
i . Hence z 6∈W , since otherwise there is a blue copy of Hi as each

vertex in W is leftmost in a blue copy of Hj−2. Hence all edges between W and γt−1

are red and, since |W | = |E(H)|−1, all other edges with left endpoint γt−1 are blue.

In particular γt−1γt and dj − 1 further edges γt−1z, with γt−1 < z < γt, are blue.

Since there is a blue copy of Hj+1
i with rightmost vertex γt−1, γt is rightmost is a

blue copy of Hj
i . These arguments show that γn+1 is rightmost in a blue copy of Hj

i .

This forms a blue copy of Hi together with a blue copy of Hj−1 in the left determiner

D6j−1 with leftmost vertex γn+1, a contradiction. Therefore Fn → (H,H ′).

Next we shall show that each minimal Ramsey graph of (H,H ′) that is a subgraph

of Fn contains all edges γtγt+1, 1 6 t 6 n. Let F̄ be obtained from Fn by removing

the edge γsγs+1 for some s, 1 6 s 6 n. We construct a coloring of Γ̄ without

red copies of H or blue copies of Hi as follows. For each t 6 s color all edges

between γt and W red and all other edges with left endpoint γt blue. For each t,

s + 1 6 t 6 n, color the edge γtγt+1 red and all other edges with left endpoint γt

blue. The remaining edges are contained in an edge disjoint union of determiners

and are colored according to a good coloring of each determiner. There are no red

copies of H since a good coloring of a determiner has no red copy of H and each

γt, 1 6 t 6 n is left endpoint of at most |W | = |E(H)| − 1 red edges. Consider the

unique vertex u in Hi that is contained in a copy of Hj and a copy of Hj
i . Due to

the good colorings of the determiners u corresponds to one of the γts in any blue

copy of Hi. Observe that for each t > s + 1 the vertex γt is not leftmost in a blue

copy of Hj (though in a blue copy of Hj−1). Moreover it is not right endpoint of

any blue edge. Hence there are no blue copies of Hi containing a vertex γt with

t > s + 1. Consider the vertices γt for t 6 s − 1. Each of these is left endpoint

of dj−1 blue edges, but γtγt+1 is the only such blue edge whose right endpoint has

further neighbors to the right. Note that there are only dj−1 neighbors z of γt with

γt < z < γt+1. Since dj < dj−1 and j > 3, γt is not leftmost in a blue copy of Hj−1.

Therefore it is also not leftmost in a blue copy of Hj , since γt+1 is leftmost in a blue

copy of Hj−1 otherwise. This shows that there is no blue copy of Hi.

For each n > 1 choose a minimal Ramsey graph of (H,H ′) contained in Fn.

The arguments before show that infinitely many of these graphs are pairwise non-

isomorphic. Thus (H,H ′) is Ramsey infinite.

Proof of Theorem 4.7

In order to prove that (H,H ′) is Ramsey finite we shall show that each minimal

ordered Ramsey graph of (H,H ′) is a member of a finite family of ordered graphs
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F1 F2 F3 F4

Figure 4.15: A Ramsey graph for (H,Hi) where H is a right star with four edges and
Hi is a right caterpillar with di = 2. Here F1, F2, F3, F4 ∈ R<(H,Hi−1) such that
for any coloring without red copies of H there is a blue copy of Hi−1 that contains
the leftmost vertex of Ft, t = 1, 2, 3, 4. The graphs F1, . . . , F4 might share vertices
and edges as long as their leftmost vertices are mutually distinct.

defined below. Without loss of generality assume that H is a right star with s edges

and H ′ is a right caterpillar with defining sequence d = d1, . . . , di where either i 6 2

or d1 6 · · · 6 di. Recall that Ht = Ht(d) is the subgraph of Hi(d) = H ′ that

consist of the t rightmost segments of Hi(d), 0 6 t 6 i. Recursively define sets Fj ,
1 6 j 6 i, of ordered graphs as follows. Let F1 = {~Ss+d1−1}. Consider j > 1. An

ordered graph F is in Fj if and only if its leftmost vertex u has exactly s + dj − 1

neighbors v1 < · · · < vs+dj−1 and there are (not necessarily disjoint) subgraphs

F1, . . . , Fs of F with E(F − u) = ∪st=1E(Ft), Ft ∈ Fj−1, and vt+dj−1 is leftmost

in Ft, 1 6 t 6 s. See Figure 4.15. Note that for each j ∈ [i] the set Fj is finite.

We shall show that each minimal ordered Ramsey graph of (H,Hi) is in Fi. Hence

(H,Hi) is Ramsey finite.

First of all observe that for each j ∈ [i] each graph in Fj is in R<(H,Hj). Even

more, for each coloring of the edges of some graph F ∈ Fj without red copies of H

there is a blue copy of Hj containing the leftmost vertex of F .

We consider the case i 6 2 first. It is easy to see that F ∈ R<(H,H1) if and only

if F contains a copy of ~Ss+d1−1. In particular each graph in R<(H,H1) contains

some member of F1 = {~Ss+d1−1}. Therefore ~Ss+d1−1 is the only minimal ordered

Ramsey graph of (H,H1). Consider an ordered graph F that does not contain any

copy of some F ′ ∈ F2. We shall give a coloring of the edges of F without red copies

of H or blue copies of H2. Let D1 denote the set of all vertices in F that are leftmost

in a copy of some graph from F1 = {~Ss+d1−1} in F . For u ∈ V (F ) let dr(u) denote

its right degree, that is, the number of edges uv in F with u < v. Note that u ∈ D1

if and only if dr(u) > s + d1 − 1. We color the edges of F in three steps. In the

first step color each edge uv, with u < v, red if v ∈ D1, and there are d2− 1 vertices

z with u < z < v. In the second step color as few further edges as possible red,

such that for each u ∈ V (F ) there are at least min{s− 1, dr(u)} red edges uv with

u < v. In the last step color all yet uncolored edges blue. First assume for the sake

of a contradiction that there is a blue copy of H2. Let uv denote the longest edge

incident to the leftmost vertex u in this copy. Then v is leftmost in a blue copy of H1

and hence dr(v) > s+d1−1 due to the second step. In particular v ∈ D1. Moreover

there are d2 − 1 vertices z with u < z < v. Hence uv is colored red in the first step,

a contradiction as uv is blue. Next assume that there is a red copy of H. Then its
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u
dj − 1

}

h(v) ≥ j-1
(⇒∈ Dj−1)

u
dj − 1

}

v ∈ Dj−1

Figure 4.16: All edges uv with u < v, h(u) = j− 1, and h(v) > j− 1 are colored red
if there are dj − 1 vertices between u and v (left). Since u 6∈ Dj , u is not leftmost in
a red copy of H. Moreover if u is leftmost in a blue copy of Hj , then h(u) > j (and
u is in Dj) since otherwise uv is colored red (right).

was created in the first step. Hence the leftmost vertex u of this red copy of H has

s+ d2− 1 neighbors to the right in F , the s rightmost of which are contained in D1.

Thus u is leftmost in a copy of some graph from F2, a contradiction. Altogether

F 6∈ R<(H,H ′). This proves that a graph is in R<(H,H2) if and only if it contains a

copy of some F ′ ∈ F2. In particular each minimal ordered Ramsey graph of (H,Hi)

is in Fi and hence (H,Hi) is Ramsey finite.

Next we consider the case i > 3. By assumption we have d1 6 · · · 6 di. Observe

that there is a copy of Hj−1 in Hj that contains the leftmost vertex of Hj for each

j, 2 6 j 6 i. Moreover, the leftmost vertex of each F ∈ Fj is contained in a copy of

some F ′ ∈ Fj−1 in F , 2 6 j 6 i. Recall that for each coloring of the edges of some

graph F ∈ Fj without red copies of H there is a blue copy of Hj containing the

leftmost vertex of F . Hence, for each t ∈ [j], there is also a blue copy of Ht which

contains the leftmost vertex of F under such a coloring. Consider an ordered graph

F that does not contain any copy of some F ′ ∈ Fi. We shall give a coloring of the

edges of F without red copies of H or blue copies of Hi. Let D0 = V (F ) and for

j ∈ [i] let Dj denote the set of all vertices in F that are leftmost in a copy of some

graph from Fj in F . As argued above we have ∅ = Di ⊆ Di−1 · · · ⊆ D1 ⊆ D0. For

u ∈ V (F ) let h(u) denote the largest j with u ∈ Dj . Color an edge uv, with u < v,

red if and only if h(u) 6 h(v) and there are dh(u)+1 − 1 vertices z with u < z < v.

For the sake of a contradiction assume that there is a red copy H̄ of H. Let u

denote the leftmost vertex in H̄ and let j = h(u). For each other vertex v in H̄

there are dj+1 − 1 vertices z with u < z < v, h(v) > j, and hence v ∈ Dj , as argued

above. Thus u is leftmost in a copy of some graph from Fj+1 in F , a contradiction

as h(u) = j. See Figure 4.16 (left).

Let H0 denote the single vertex ordered graph. Next we shall prove by induction

on j, 0 6 j 6 i, that for each vertex u which is leftmost in a blue copy of Hj we

have u ∈ Dj . This clearly holds for j = 0. So consider j > 0 and a blue copy H ′′ of

Hj . Let uv denote the longest edge incident to the leftmost vertex u of H ′′. Then v

is leftmost in a blue copy of Hj−1 and hence v ∈ Dj−1 by induction. In particular

h(v) > j − 1. Moreover there are dj − 1 vertices z with u < z < v. Hence h(u) > j,
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∈ R1 ∈ R1 ∈ R2 ∪R′
2∈ R2∈ R1

H H ′
R2 R1 R1 R2

R1 R2 R′
2 R3

Figure 4.17: Ordered graphs in R1 (left), in R2 (middle left), in R′2 (middle right),
and in R3 (right). The gray subgraphs are not necessarily disjoint.

since otherwise h(u) 6 h(v) and dj − 1 > dh(u)+1 − 1, and thus uv is colored red.

See Figure 4.16 (right). Therefore u ∈ Dj . Since Di = ∅ there is no blue copy of Hi.

Altogether F 6∈ R<(H,Hi). This proves that a graph is in R<(H,Hi) if and only

if it contains a copy of some F ′ ∈ Fi (since each member of Fi is in R<(H,Hi),

as argued above). Therefore, each minimal ordered Ramsey graph of (H,H ′) is

contained in Fi. In particular (H,Hi) is Ramsey finite.

4.3 Further Observations and Constructions

Star and Caterpillar

The following lemma and Theorems 4.6 and 4.7 show that Conjecture 4.2 holds in

case i = 3 and |E(H)| = 2. The proof of this lemma is very similar to the proof

of Theorem 4.7, but there is a new kind of minimal ordered Ramsey graphs (those

containing members of the sets R′2 in the proof, see Figure 4.17).

Lemma 4.3.1. Let H be a right star and H ′ a right caterpillar with defining sequence

d1, d2, d3 where d3 > d1 > d2. Then (H,H ′) is Ramsey finite.

Proof. Recall that ~Sn denotes a right star with n edges. Recursively define families

of ordered graphs as follows. Let R1 = {~Sd1+1} and let R2 consist of all ordered

graphs F where the leftmost vertex u of F has two neighbors v such that there are

d2 − 1 edges uz with u < z < v and v is leftmost in a copy of some member of R1

in F . Let R′2 consist of all ordered graphs F where the leftmost vertex u of F has

two neighbors v1, v2 such that for each i ∈ [2] the vertex vi is leftmost in a copy Gi

of a member of Ri and there are di+1 − 1 edges uz with u < z < vi, z 6∈ {v1, v2}.
Finally let R3 consist of all ordered graphs F where the leftmost vertex u of F has

two neighbors v such that there are d3−1 edges uz with u < z < v and v is leftmost

in a copy of some member of R2 ∪ R′2 in F . See Figure 4.17 for an illustration in

case d1 = d3 = 2, d2 = 1.

Note that each of the sets R1, R2, R′2, and R3 has only finitely many minimal

elements (under subgraph relation). Recall that Hi = Hi(d), i ∈ [3], is the right

caterpillar with segments ~Sdi � · · · � ~Sd1 . Next, we establish some Ramsey proper-

ties of the members of the sets R1, R2, R′2, R3. Clearly, for each j ∈ [2] and any
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coloring of the edges of a member F of Rj without red copies of H there is a blue

copy of Hj containing the leftmost vertex of F . Consider an ordered graph F in R′2
and a coloring of its edges without red copies of H and blue copies of H3. We claim

that there is a blue copy of H2 which contains the leftmost vertex u of F . Let v1

and v2 denote neighbors of u in F such that for each i ∈ [2] the vertex vi is leftmost

in a copy Gi of a member of Ri and there are di+1 − 1 edges uz with u < z < vi,

z 6∈ {v1, v2}. Consider the rightmost vertex among v1, v2 such that uvi is blue (at

least one such edge exists since there is no red copy of H). By assumption, vi is

leftmost in a copy of Gi of some member of Ri and there are di+1 − 1 neighbors

z of u with u < z < vi, z 6∈ {v1, v2}. Hence, there are di+1 − 1 blue edges uz

with u < z < vi, no matter whether vi is to the left or to the right of the vertex

in {v1, v2} \ {vi}. Since vi is leftmost in a blue copy of Hi, as argued above, u is

leftmost in a copy of Hi+1. By assumption there are no blue copies of H3 and thus

i = 1, that is, u is leftmost in a blue copy of H2. Finally, the arguments above show

that for any coloring of the edges of a member F of R3 without red copies of H

there is a blue copy of H3.

We claim that each graph in R<(H,H ′) contains a copy of a member of R3.

Consider an ordered graph F with no copy of any member of R3. We shall give

a coloring of the edges of F without red copies of H or blue copies of H ′. Let

D0 = V (F ) and for j ∈ [3] let Dj denote the set of all vertices in F that are

leftmost in a copy of some graph from Rj in F . Further let D′2 denote the set of

all vertices in F that are leftmost in a copy of some graph from R′2 in F . Then

∅ = D3 ⊆ D1 ⊆ D0. (In contrast to the proof of Theorem 4.7 neither D2 ⊆ D1 nor

D3 ⊆ D2 might hold.) Moreover D′2 ⊆ D1 since the leftmost vertex of each graph

in R′2 has at least d3 + 1 > d1 + 1 neighbors to the right.

We color the edges of F in two steps. In the first step color each edge uv, with

u < v, red if one of the following cases holds.

(a) u 6∈ D2 ∪D′2, v ∈ D1, and there are d2 − 1 edges uz with u < z < v.

(b) u 6∈ D3, v ∈ D2 ∪D′2, and there are d3 edges uz with u < z < v.

In the second step, consider each still uncolored edge uv, with u < v, and color it red

if u is not a left endpoint of any red edge from the first step and uv is the shortest

edge with left endpoint u, and color it blue otherwise. Note that, due to the second

step, each vertex is either left endpoint of some red edge or not a left endpoint of

any edge.

For the sake of contradiction assume that there is a red copy of H. Let u < v1 <

v2 denote the vertices of such a copy. Then this copy was created in the first step of

the coloring. We distinguish several cases. If uv1 and uv2 are colored by Case (a),

then u 6∈ D2 v1, v2 ∈ D1 and there are d2 − 1 edges uz with u < z < v1 < v2. Thus

u is leftmost in a copy of some member of R2, a contradiction. If one of uv1 or uv2
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is colored by Case (a) and the other by Case (b), then u 6∈ D′2 ∪ D2 and there is

x ∈ {v1, v2} ∩D1 such that y ∈ {v1, v2} \ {x} is in D2 ∪D′2. So, if y is in D2, then

u is leftmost in a copy of some member of R′2 (note that there are d3 edges uz with

u < z < y and thus z 6= x for d3−1 of them), and if y is in D′2, then y ∈ D1 and u is

leftmost in a copy of some member ofR2. Either case yields a contradiction. Finally,

if both of uv1 and uv2 are colored by Case (b), then u 6∈ D3 and v1, v2 ∈ R2 ∪ R′2.

Thus u is leftmost in a copy of some member of R3, a contradiction. This shows

that there is no red copy of H.

Next, we shall prove that for each j ∈ [3] the leftmost vertex of some blue copy of

Hj is in Dj or, if j = 2, in Dj ∪D′j . This is clear for j = 1 due to the second step of

the coloring. Consider the leftmost vertex u of some blue copy of H2 and the longest

edge uv incident to u in this blue copy. Then v is leftmost in a blue copy of H1 and

there are d2 − 1 (blue) edges uz with u < z < v. Hence v ∈ D1 as argued before.

Since uv is not colored red by Case (a), u ∈ D2∪D′2 as desired. Finally, consider the

leftmost vertex u of some blue copy of H3 and the longest edge uv incident to u in

this blue copy. Then v is leftmost in a blue copy of H2, hence v ∈ D2∪D′2, and there

are d3 − 1 (blue) edges uz with u < z < v. Moreover u is leftmost in a copy of H1,

since d1 6 d3, and hence u ∈ D1. Further, there is some red edge uw with u < w.

We distinguish several cases. If uw is colored red in the second step, then w < v

and there are d3 edges uz with u < z < v. Hence u ∈ D3, since uv is not colored red

in Case (b) of the first step. In the remaining cases we shall find a contradiction. If

uw is colored red in the first step by Case (a), then u 6∈ D2 ∪D′2, w ∈ D1, and there

are d2−1 edges uz′ with u < z′ < w. Depending whether v ∈ D2 or v ∈ D′2 ⊆ D1, u

is leftmost in a copy of some member of R2 or R′2, a contradiction. If uw is colored

red in the first step by Case (b), then u 6∈ D3 and w ∈ D2 ∪D′2. Hence u is leftmost

in a copy of some member of R3, a contradiction. Altogether u ∈ D3.

This shows that there is no blue copy of H3, since D3 = ∅. Therefore, each

ordered graph in R<(H,H ′) contains a copy of some member of R3. Since each

graph in R3 is in R<(H,H ′), as argued above, each minimal ordered Ramsey graph

of (H,H ′) is contained in R3. Altogether (H,H ′) is Ramsey finite, since R3 is

finite.

Matchings

The results below show that for any ordered matching H with two edges that is not

a monotone matching there is an ordered graph H ′ such that (H,H ′) is Ramsey

infinite. Recall that for k > 2 an all crossing k-matching is an ordered matching

with vertices u1 < · · · < u2k and edges uiui+k, 1 6 i 6 k, and a nested k-matching

is an ordered matching with vertices u1 < · · · < u2k and edges uiu2k+1−i, 1 6 i 6 k.

Lemma 4.3.2. For each even k > 2 an all crossing k-matching is Ramsey infinite.
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U1 U2 Ui UnV1 V2 Vi VnX Y

Figure 4.18: A minimal Ramsey graph Fn for an all crossing k-matching. Here
k = 6, n = 4.

Proof. Let H denote an all crossing k-matching for some even k > 2. Further let n

be a positive even integer and let X, Y , U1, . . . , Un, and V1, . . . , Vn denote disjoint

ordered sets of vertices of size k − 1 each, where U1 ≺ X ≺ U2 ≺ Vn−1 ≺ Y ≺ Vn,

and, if n > 3, Ui ≺ Vi−1 ≺ Ui+1 ≺ Vi, 2 6 i 6 n−1. Let Fn denote an ordered graph

with vertex set X∪Y ∪∪i∈[n](Ui∪Vi) that consists of an all crossing (k−1)-matching

between X and Y , as well as between Ui and Vi, i ∈ [n]. See Figure 4.18.

Consider a 2-coloring of the edges of Fn. We shall prove that there is a monochro-

matic copy of H. Observe that at least d(k − 1)/2e edges between Ui and Vi are of

the same color, i ∈ [n]. Let ci denote the majority color of edges between Ui and

Vi, i ∈ [n]. Further observe that all edges between Ui ∪ Ui+1 and Vi ∪ Vi+1 cross. If

ci = ci+1 for some i ∈ [n− 1] then there is a monochromatic copy of H (in color ci),

since 2d(k − 1)/2e = k as k is even. So suppose that ci 6= ci+1 for each i ∈ [n − 1].

Then c1 6= cn, since n is even. Without loss of generality assume that there are

d(k− 1)/2e edges of color c1 between X and Y . Since all edges between U1 ∪X and

V1 ∪Y cross, there is a monochromatic copy of H in color c1 similar as before. This

shows that Fn ∈ R<(H).

Let F ′n be a minimal ordered Ramsey graph of H contained in Fn. We shall

show that F ′n contains at least n edges. More precisely we shall show that there

is an edge between Ui and Vi in F ′n for each i ∈ [n]. For the sake of contradiction

assume that there are no edges between Uj and Vj in F ′n for some j ∈ [n]. We shall

give a coloring without monochromatic copies of H. For each i ∈ [j − 1] color all

edges between Ui and Vi red if i is even, and blue if i is odd. For each i ∈ [n], with

i > j, color all edges between Ui and Vi blue if i is even, and red if i is odd. Finally

color all edges between X and Y red. Observe that all edges between U1 and V1

and all edges between Un and Vn are blue. In particular there is no monochromatic

copy of H. This shows that for each n there is a minimal ordered Ramsey graph of

H with at least n edges. Thus (H,H) is Ramsey infinite.

Lemma 4.3.3. For each k > 1 a nested k-matching is Ramsey finite.

Proof. Let H be a nested K-matching. We claim that F ∈ R<(H,H) if and only if

F contains a nested matching with 2k − 1 edges. If F contains a nested matching

with 2k− 1 edges, then clearly any 2-coloring of the edges of this matching yields a

monochromatic copy of H. Hence F ∈ R<(H,H). Suppose that F does not contain

a nested matching with 2k− 1 edges. For an edge e of F let h(e) denote the largest
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P ` P r

P 1 P 2 Pn

Figure 4.19: A minimal ordered Ramsey graph Fn for (H,H ′) where H is a nested
2-matching and H ′ is a monotone path on two edges. Here n = 5.

i such that there is a nested i-matching in F whose longest edge is e. Color an

edge of F red if h(e) is even and blue otherwise. Consider a monochromatic nested

matching M with edges e1, . . . , en, where ei is longer than ei−1, 1 < i 6 n. Then

h(ei) > h(ei−1) + 2 for each i, 2 6 i 6 n, since ei and ei−1 are of the same color.

Therefore h(en) > h(e1) + 2n− 2 > 2n− 1. On the other hand h(en) 6 2k − 2 and

thus n < k. This shows that there is no monochromatic copy of H in F . Therefore

a nested matching on 2k − 1 edges is the only minimal ordered Ramsey graph for

H. In particular (H,H) is Ramsey finite.

Lemma 4.3.4. Let H be a nested 2-matching and let H ′ be a monotone path on

two edges. Then (H,H ′) is Ramsey infinite.

Proof. For n > 1 let Fn denote a vertex disjoint union of n+ 2 monotone paths P `,

P r, P 1, . . . , Pn on two edges each, ordered like it is sketched in Figure 4.19. One

can easily check that Fn is a minimal ordered Ramsey graph for (H,H ′) for each

n > 1. Thus (H,H ′) is Ramsey infinite.

Disconnected Graphs

Recall that an ordered graph H is intervally connected if for each nonempty interval

I of vertices of H, that does not contain all vertices of H, there is an edge in H with

one endpoint in I and one endpoint not in I. For an ordered graph H let Ĥ denote

the ordered graph that is a vertex disjoint union of H and a single edge uv, where

u is to the left and v is to the right of all vertices in H.

Lemma 4.3.5. If H is intervally connected and Ramsey infinite, then Ĥ is Ramsey

infinite.

Proof. Let v1 < · · · < vn denote the vertices of H. Choose a smallest set S of

integers from [n − 1] such that for each edge vivj of H with i < j there is p ∈ S
with i 6 p < j. So S is a smallest set of positions such that each edge of H “covers”

at least one position. Let F be a minimal ordered Ramsey graph of H. Obtain an

ordered graph F̂ from H by adding an edge ab with a < v1 < vn < b and for each

p ∈ S adding a copy Fp of F with {vp} ≺ V (Fp) ≺ {vp+1}. See Figure 4.20.

We claim that F̂ is a minimal ordered Ramsey graph for Ĥ. To see that F̂ ∈
R<(H) consider a 2-coloring of the edges of F̂ . Without loss of generality assume

that ab is colored red. If all edges in the copy of H induced by v1, . . . , vn are red,

then there is a red Ĥ. Otherwise there is a blue edge vivj and some p ∈ S with
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H
F F F

a bv1 vn

Figure 4.20: An ordered Ramsey graph for Ĥ given some F ∈ R<(H).

i 6 p < j. Consider the copy Fp of F . Since F ∈ R<(H) there is a monochromatic

copy of H, with vertices strictly between vi and vj . This monochromatic copy of H

forms a monochromatic copy of Ĥ, either with vivj or with ab. Hence F̂ ∈ R<(Ĥ).

Next we shall give for each edge e of F̂ a coloring of the edges of F̂ − e without

monochromatic copy of Ĥ.

First of all observe that there is a coloring of the edges of F without red copy of

Ĥ or blue copy of H. Indeed, since F is minimal Ramsey for H one can remove a

longest edge ` from F and color the remaining graph without monochromatic copies

of H. Then coloring ` red clearly yields no blue copy of H. Moreover each red copy

of H contains the edge `. Therefore, since ` is a longest edge in F , there is no red

copy of Ĥ.

Case 1 : The edge e is in Fp for some p ∈ S. Color the edges of Fp without monochro-

matic copy of H and the edges of each Fq, q ∈ S \{p} without red copy of Ĥ or blue

copy of H. Observe that there is an edge e = vivj in F̂ such that p is the unique

element of S with i 6 p < j, since S is a smallest set of positions. Color the edge

e red and all remaining edges of F̂ blue. We claim that there is no monochromatic

copy of Ĥ. Consider some copy H ′ of H in F̂ . Since H ′ is intervally connected and

not a single edge (as H is Ramsey infinite), the following holds. If H ′ does not con-

tain any vertex from any Fp, p ∈ S, then V (H ′) = {v1, . . . , vn} (it does not contain

ab as it is intervally connected). If H ′ contains some vertex from Fq for some q ∈ S,

then H ′ is contained in Fq (since there are no edges between Fq and the remaining

graph). In the first case H ′ contains the red edge e and some blue edge. In the

latter case H ′ is not monochromatic if q = p. If q 6= p and H ′ is monochromatic,

then H ′ is red. Therefore H ′ is clearly not part of any blue copy of Ĥ Moreover H ′

is not part of any red copy of Ĥ, since there is no red copy of F̂ in Fq and either

q < i or q > j. Altogether there is no monochromatic copy of Ĥ.

Case 2 : The edge e is induced by {a, b, v1, . . . , vn}. Color the edges of each Fq,

q ∈ S, without red copies of Ĥ or blue copies of H, and color all other edges blue.

Clearly there is no red copy of Ĥ. Similar as above, there is at most one blue copy

of H (induced by v1, . . . , vn) since H is intervally connected. Moreover this copy

exists if and only if e = ab. hence there is no blue copy of Ĥ.

This shows that F̂ is a minimal Ramsey graph of Ĥ. Therefore Ĥ is Ramsey

infinite, since H has infinitely many non-isomorphic minimal ordered Ramsey graphs

F and the graphs F̂ are distinct for distinct F .
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Figure 4.21: A minimal ordered Ramsey graph for Ĥ where H is a right star with
two edges.

The reverse statement of Lemma 4.3.5 is not true. A right star H on two edges

is Ramsey finite due to Corollary 4.8. For t > 1 define an ordered graph Gt with

vertex set {a, b, c, d, u, v, w, x, y} ∪ ⋃t
i=1

{
ui1, u

i
2, u

i
3, u

i
4

}
ordered like in Figure 4.21

and edges ad, bc, bu4
1, ui1u

i
2, ui1u

i
3, (1 6 i 6 t), ui1u

i+1
4 (1 6 i < t), u1

t y, uv, uw, ux.

One can see that Gt is a minimal ordered Ramsey graph of Ĥ for each t > 1. Thus

Ĥ is Ramsey infinite.

χ-Avoidable Ordered Graphs

Lemma 4.3.6. Each bonnet is Ramsey infinite.

Proof. Consider a bonnet B on vertices a < b < c < d < e and edges ab, ae,

bc. Let t > 1 be an integer and consider ordered vertex sets X = (x1, . . . , x12),

Ui = (ui1, . . . , u
i
6), 1 6 i 6 t, and Ut+1 = (ut+1

1 , . . . , ut+1
5 , v, ut+1

6 ). Define a graph Gt

on X ∪ U1 ∪ · · · ∪ Ut+1 with X ≺ U1 ≺ · · · ≺ Ut+1 and edges

x1x2, x1x7, x1x12, x3x4, x5x6, x8x9, x10x11,

x3u
1
1, x3u

1
6, x8u

1
1, x8u

1
6,

ui2u
i
3, u

i
4u
i
5, (1 6 i 6 t+ 1),

ui2u
i+1
1 , ui2u

i+1
6 , (1 6 i 6 t),

ut+1
2 v.

The graph G3 is given in Figure 4.22 (top). For t > 1 let G′t denote the graph

obtained from Gt by removing ut+1
2 , . . . , ut+1

5 , and v.

Claim. For each t > 1 the edges ut2u
t+1
1 and ut2u

t+1
6 are of the same color for any

2-coloring of the edges of G′t without monochromatic copy of B.

Proof of Claim. We shall prove the claim by induction on t. Let c be a coloring of

G′t in red and blue without monochromatic copy of B. Consider t = 1. Without

loss of generality assume that two edges incident to x1 are red, say x1x7 and x1x12.

Then the edges x8x9 and x10x11 are blue. Thus x8u
1
1 and x8u

1
6 are red, hence u1

2u
1
3

and u1
4u

1
5 are blue. This shows that u1

2u
2
1 and u2u

2
6 are both red.
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→
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Figure 4.22: Ordered Ramsey graphs for bonnets.

Now consider t > 2. Observe that x1, . . . , u
t
1, u

t
6 induce a copy of G′t−1 in G′t. By

induction ut−1
1 ut1 and ut−1

1 ut6 are of the same color, say red. Then ut2u
t
3 and ut4u

t
5

are blue and hence ut1u
t+1
1 and ut1u

t+1
6 are red, which proves the claim. 4

Now consider a 2-coloring of the edges of Gt. By the claim either there is

a monochromatic copy of B in a copy of G′t in Gt or ut2u
t+1
1 and ut2u

t+1
6 are of

the same color, say red. Consider the latter case and observe that the set U ={
ut+1

2 , ut+1
3 , ut+1

4 , ut+1
5 , v

}
induces a copy of B in Gt. So either one of the edges

induced by U is red and there is a red copy of B, or all these edges are blue and

there is a blue copy of B. This shows that Gt ∈ R<(B).

For each t > 1 let G?t be subgraph of Gt that is minimal Ramsey for B. We shall

show that G?t contains the edges ui2u
i+1
1 for each i, 2 6 i 6 t. Consider Gt − ui2ui+1

1

for some i ∈ [t]. If an edge e has its left endpoint in X or in Uj for some j 6 i, then

color e red if has length 1 and blue otherwise. If an edge e = xy has its left endpoint

x in Uj for some j > i, then color e red if x = uj2 and y ∈ {uj3, uj+1
1 , v} and blue

otherwise. This coloring yields no monochromatic copies of B. This shows that G?t

has at least t− 1 edges. Since t is arbitrarily large, B is Ramsey infinite.

With similar arguments infinitely many minimal ordered Ramsey graphs for the

other bonnets are constructed, sketched in the middle and bottom of Figure 4.22.
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4.4 Conclusions

In this chapter we study the structure of the set R<(H,H ′) of ordered Ramsey

graphs for pairs (H,H ′) of ordered graphs. First of all Theorem 4.1 characterizes all

such pairs (H,H ′) that have some forest in R<(H,H ′). A pair of unordered forests

has a forest as a Ramsey graph if and only if one of the forests is a star forest. In

contrast to this, there are pairs of ordered star forests that do not have any forest

as a Ramsey graph.

Then we consider the question whether R<(H,H ′) contains only finitely many

minimal elements. The corresponding question in the unordered setting is answered

whenever H = H ′ (Theorem 1.3), but a complete answer in the asymmetric case is

known only if one of H or H ′ is a forest (Theorems 1.6, 1.7, 1.8, see Table 1.1 at the

end of Section 1.4). Similar to the unordered setting we prove in Theorem 4.2 that

any ordered graphH that contains a cycle is Ramsey infinite. Moreover Corollary 4.8

shows that a χ-unavoidable connected ordered graph H is Ramsey finite if and only

if H is a star with center to the right or to the left of all its leafs. This is in contrast

to the unordered setting where a connected graph is Ramsey finite if and only if it

is a star with an odd number of edges (Theorem 1.3).

Intervally disjoint unions of Ramsey finite graphs are considered in Theorem 4.3.

While such a union turns out to be Ramsey finite the reverse statement is open.

Question 4.1. Let H, H1 and H2 denote ordered graphs such that (H,H1 tH2) is

Ramsey finite. Are both pairs (H,H1) and (H,H2) Ramsey finite?

We do not consider pairs of an ordered forest and an ordered graph containing

a cycle that are not handled by this theorem. It might be possible to follow the

arguments of  Luczak [102] (see Theorem 1.7) to prove that all such pairs are Ramsey

infinite.

Question 4.2. Let H be an ordered graph that contains a cycle and let H ′ be an

ordered forest that is not a monotone matching. Is (H,H ′) Ramsey infinite?

Theorems 4.6 and 4.7 deal with connected χ-unavoidable graphs. The only pairs

of connected χ-unavoidable ordered graphs that are not covered by these results are

formed by a right (left) star and an almost increasing right (left) caterpillar with

defining sequence d2 < d1 6 d3 6 · · · 6 di for some i > 3. We conjecture that these

pairs are Ramsey finite. In Section 4.3 we prove the following conjecture for the case

i = 3 and |E(H)| = 2.

Conjecture 4.2. Let (H,H ′) be a pair of χ-unavoidable connected ordered graphs

with at least two edges each. Then (H,H ′) is Ramsey finite if and only if (H,H ′)

is a pair of a right star and an almost increasing right caterpillar or a pair of a left

star and an almost increasing left caterpillar.
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Theorem 4.7 shows that there are Ramsey finite pairs of ordered stars and ordered

caterpillars of arbitrary diameter. Again this is in contrast to the unordered setting

where for any Ramsey finite pair (H,H ′) of forests either one of H or H ′ is a

matching or both are star forests (with additional constraints, see Theorem 1.8). So

there are Ramsey infinite pairs of (unordered) graphs that admit orderings of their

vertices which yield a Ramsey finite pair of ordered graphs. However this does not

hold for all Ramsey infinite pairs of graphs, for example any graph that contains a

cycle stays Ramsey infinite, no matter how its vertices are ordered. The other way

round we conjecture that for any pair (H,H ′) of graphs (no matter whether Ramsey

finite or infinite) there are orderings of the vertices that yield a Ramsey infinite pair

of ordered graphs, unless H or H ′ contains only one edge.

Conjecture 4.3. Let H and H ′ be (unordered) graphs with at least two edges each.

Then there are orderings of the vertices of H and H ′ such that the pair of corre-

sponding ordered graphs is Ramsey infinite.

For disconnected ordered graphs we prove that any pair of an ordered graph and

some monotone matching is Ramsey finite. This is similar to Theorem 1.6 stating

that any pair of an unordered graph and some matching is Ramsey finite. Even more

it is known that a matching is the only (unordered) graph that forms a Ramsey finite

pair with all other graphs. We think that also this property carries over to monotone

matchings. Some evidence for the following conjecture is given in Section 4.3 where

we present results for other types of ordered matchings.

Conjecture 4.4. For each ordered graph H that is not a monotone matching there

is an ordered graph H ′ such that (H,H ′) is Ramsey infinite.

Several cases are left open. First of all we do not handle disconnected ordered

forests which are not covered by Corollary 4.4 (monotone matchings) or Theorem 4.5

(χ-unavoidable and no forest as Ramsey graph). We give some partial results in

Section 4.3. An argument from [114] shows that any pair of (unordered) graphs that

are not star forests is Ramsey infinite. As stated in the beginning of Section 4.1

this result is based on the fact the each (unordered) forest has Ramsey graphs

of arbitrarily large girth. We retrieve this fact for χ-unavoidable ordered forests

(Theorem 4.5) and conjecture that it holds for all ordered forests (see Conjecture 4.1

and Observation 4.2 in Section 1.5). One problem with χ-avoidable ordered forest

is the lack of a characterization of such forests, see Chapter 2. We present results

for some small χ-avoidable ordered forests in Section 4.3. As we do not have general

results for χ-avoidable ordered forests we ask the following question.

Question 4.3. Is each pair (H,H ′) of χ-avoidable ordered graphs Ramsey infinite?

We think that the answer to the previous question is positive, based on the

results from Section 4.3 and on Conjecture 4.1 and Observation 4.2. This leads to

the following conjecture.
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Figure 4.23: Ordered graphs that are not known to be Ramsey finite or infinite.

Conjecture 4.5. Let (H,H ′) be a Ramsey finite pair of ordered forests. Then

R<(H,H ′) contains a forest.

We have seen in Theorem 4.6 (see also Conjecture 4.2) that the reverse statement

of Conjecture 4.5 does not hold and that the family of all Ramsey finite pairs of

ordered graphs might be rather diverse. Several ordered graphs which are not known

to be Ramsey finite or infinite are given in Figure 4.23. Here the graph on the left

is χ-unavoidable, the graph in the middle is a tangled path and hence χ-avoidable,

and for the graph on the right we do not know whether it is χ-avoidable or not.

Future Work First of all one might be able to mimic the approaches in [114]

and [102] for ordered graphs to identify more Ramsey infinite pairs of ordered graphs.

Moreover there might be reductions like in Section 2.3 to prove that a graph is finite

or infinite. For instance Theorem 4.3 and Lemma 4.3.5 (in Section 4.3) are of this

kind. We are sure that the technique of signal senders and determiners can be further

exploited to construct minimal ordered Ramsey graphs with desired properties. This

approach is applied for graphs in [31, 33] and here for ordered graphs in the proof

of Theorem 4.6. Besides constructing infinitely many minimal Ramsey graphs, this

technique might be also useful to study other properties of the set of ordered Ramsey

graphs. We mention here the questions for the minimum (left/right) degree, the

largest bandwith, or the minimum number of pairs of crossing edges of minimal

ordered Ramsey graphs, just to name a few. Of course, any question that is asked

for graphs can be asked for ordered graphs.

We would like to emphasize two questions for ordered graphs. The first question

is concerned with Ramsey equivalence of ordered graphs. So far we do not know

any Ramsey equivalent pair of non-isomorphic ordered graphs.

Question 4.4. Are there non-isomorphic ordered graphs G and H with R<(G) =

R<(H)?

For instance it is not clear how an analog to Observation 3.1 (on Ramsey equiv-

alence of unions of graphs and isolated vertices) might look like. Figure 4.24 shows

that an ordered K3 is not Ramsey equivalent to any ordered graph formed by a union

of K3 and an isolated vertex. Further we observe here that for any ordered graph G

and each minimal ordered Ramsey graph F of G there are colorings c` and cr of the

edges of F such that each monochromatic copy of G contains the leftmost vertex of

F under c` and the rightmost vertex of F under cr. This shows that if G
R∼ H and

G ⊆ H, then each copy of G in H contains the leftmost and the rightmost vertex

of H.
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Figure 4.24: Colorings of an ordered K6 without monochromatic copies of K3 tK1

(left) or a monochromatic copy of K3 with an isolated vertex between its vertices
(right).

The second question is of algorithmic nature. The problem to decide for given

graphs F , G, and H whether F → (G,H) is known to be coNPNP-complete due

to Schaefer [134] (loosely speaking, coNPNP is the class of decision problems where

certificates for No-instances can be verified in polynomial time by solving some

problem in NP in constant time). More precisely, the problem stays coNPNP-

complete when H is a fixed tree and G is a complete graph (of variable order).

Since the proof in [134] also uses a greedy embedding of a tree (which might fail

for ordered trees as observed in the beginning of Section 2.1, see Observation 2.1),

it is interesting to study the computational complexity of this problem for ordered

graphs.
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balanced tree, 62

bend, 24

between, 22

bipartite, 20

blue peak, 92

bonnet, 24, 29

Cartesian product, 20

chromatic number, 6, 20

clique number, 20

clique-splittable, 11, 61

coloring number, 7

concatenation, 23

conflict hypergraph, 33

conflicting edges, 33

connected, 21

copy of a (hyper)graph, 20

copy of a graph, 20

copy of an ordered graph, 21

cross each other, 23

crossing edges, 22, 29

crossing ordered graph, 22, 29

cycle of length n, 21

defining sequence, 24, 104

degree, 20

density, 12, 109

diameter, 21

distance, 21

edges, 19

feasible set of peaks, 92

forest, 21

friends, 94

generalized star, 30

girth, 6, 21

good coloring of left determiner, 115

good coloring of right determiner, 115

graph, 20

greedy embedding, 28

hypergraph, 19

independence number, 20

indistinguishable integer graphs, 57

induced sub(hyper)graph, 19

inner cut vertex, 22

integer graph, 32

interval, 4, 22

interval chromatic number, 4, 23

intervally connected, 22, 128

intervally disjoint union, 23, 102

isolated edge, 20

isolated vertex, 20

isomorphic (hyper)graphs, 19

isomorphic ordered graphs, 21

leaf, 20

left, 7, 21

left caterpillar, 104

left caterpillars, 24

left determiner for (H,Hi(d)), 115

left star, 102
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length of an edge, 23

local constraint, 6

maximum degree, 20

minimal ordered Ramsey graph, 16, 25, 102

minimal Ramsey graph, 13, 25

minimum degree, 20

monochromatic copy, 24

monotone k-matching, 17, 24, 30, 102

monotone r-uniform `-hyperpath, 18

monotone path, 24, 102

monotonically alternating, 23, 29

neighbors, 19

nested k-matching, 24, 30, 126

non-crossing ordered graph, 22

odd girth, 21

order of a (hyper)graph, 19

ordered extremal number, 4, 23

ordered graph, 2, 21

ordered Ramsey graph, 25

ordered Ramsey number, 25

path of length n, 21

pendant edge, 20

proper coloring, 20

proper sub(hyper)graph, 20

Ramsey class, 13

Ramsey close, 99

Ramsey distinguishing graph, 61

Ramsey distinguishing number, 95

Ramsey distinguishing parameter, 61

Ramsey equivalence, 10, 59

Ramsey finite graph, 14

Ramsey finite ordered graph, 17, 102

Ramsey graph, 10, 24

Ramsey infinite graph, 14

Ramsey infinite ordered graph, 17, 102

Ramsey isolated, 62

Ramsey number, 9, 24

red peak, 92

reducible vertex, 23, 40

reverse, 23, 52

right, 7, 21

right caterpillar, 24, 104

right degree, 122

right determiner for (H,Hj
i (d)), 115

right star, 24, 101

segment, 22, 29

segmentally connected, 22, 102

shortest edge incident to, 23

size of a (hyper)graph, 19

size Ramsey number, 12

split by inner cut vertex, 22, 38

subgraph, 20

subhypergraph, 19

supergraph, 20

tangled path, 24, 29

to the left, 21

to the right, 21

translation invariant, 35

tree, 21

underlying graph, 21

vertex disjoint union, 20

vertices, 19
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[33] S. A. Burr, J. Nešetřil, and V. Rödl. On the use of senders in generalized

Ramsey theory for graphs. Discrete Math., 54(1):1–13, 1985.

[34] S. A. Burr and J. A. Roberts. On Ramsey numbers for stars. Utilitas Math.,

4:217–220, 1973.

[35] V. Capoyleas and J. Pach. A Turán-type theorem on chords of a convex

polygon. J. Combin. Theory Ser. B, 56(1):9–15, 1992.

[36] Y. Caro, J. Lauri, and C. Zarb. Selective hypergraph colourings. Discrete

Math., 339(4):1232–1241, 2016.
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[79] A. Gyárfás and J. Lehel. Trees in greedy colorings of hypergraphs. Discrete

Math., 311(2-3):208–209, 2011.

[80] R. Hancock, K. Staden, and A. Treglown. Independent sets in hypergraphs

and Ramsey properties of graphs and the integers. 2017. arXiv:1701.04754.

[81] P. E. Haxell, Y. Kohayakawa, and T.  Luczak. The induced size-Ramsey num-

ber of cycles. Combin. Probab. Comput., 4(3):217–239, 1995.

[82] P. Heggernes, C. Paul, J. A. Telle, and Y. Villanger. Interval completion with

few edges. In STOC’07—Proceedings of the 39th Annual ACM Symposium on

Theory of Computing, pages 374–381. ACM, New York, 2007.

[83] G. R. T. Hendry. Diagonal Ramsey numbers for graphs with seven edges.

Utilitas Math., 32:11–34, 1987.

[84] G. R. T. Hendry. Ramsey numbers for graphs with five vertices. J. Graph

Theory, 13(2):245–248, 1989.
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[89] G. Károlyi, J. Pach, and G. Tóth. Ramsey-type results for geometric graphs.

I. Discrete Comput. Geom., 18(3):247–255, 1997. ACM Symposium on Com-

putational Geometry (Philadelphia, PA, 1996).
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[103] M. Marciniszyn, J. Skokan, R. Spöhel, and A. Steger. Asymmetric Ramsey

properties of random graphs involving cliques. Random Structures Algorithms,

34(4):419–453, 2009.

[104] A. Marcus and G. Tardos. Excluded permutation matrices and the Stanley-

Wilf conjecture. J. Combin. Theory Ser. A, 107(1):153–160, 2004.

[105] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph

coloring algorithms. J. Assoc. Comput. Mach., 30(3):417–427, 1983.

[106] B. D. McKay and A. Piperno. Practical graph isomorphism, II. J. Symbolic

Comput., 60:94–112, 2014.

[107] G. Moshkovitz and A. Shapira. Ramsey theory, integer partitions and a new
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[118] J. Nešetřil and V. Rödl. On Ramsey graphs without bipartite subgraphs.

Discrete Math., 101(1-3):223–229, 1992. Special volume to mark the centennial

of Julius Petersen’s “Die Theorie der regulären Graphs”, Part II.
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