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The quantities ε ′K and εK measure the amount of direct and indirect CP violation in K → ππ

decays, respectively. Using the recent lattice results from the RBC and UKQCD Collaborations

and a new compact implementation of the ∆S = 1 renormalization group evolution we predict

Re
ε ′K
εK

= (1.06±5.07)×10−4

in the Standard Model. This value is 2.8σ below the experimental value of

Re
ε ′K
εK

= (16.6±2.3)×10−4.

In generic models of new physics the well-understood εK precludes large contributions to ε ′K , if

the new contributions enter at loop level. However, one can resolve the tension in ε ′K/εK within

the Minimal Supersymmetric Standard Model. To this end two features of supersymmetry are

crucial: First, one can have large isospin-breaking contributions (involving the strong instead

of the weak interaction) which enhance ε ′K . Second the Majorana nature of gluinos permits a

suppression of the MSSM contribution to εK , because two box diagrams interfere destructively.
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1. Formalism and Standard-Model prediction

Flavour-changing neutral current (FCNC) transitions of Kaons are extremely sensitive to new

physics and probe mass scales far above the reach of current high-pT experiments. K → ππ de-

cays give access to two CP-violating quantities, which are related to FCNC amplitudes changing

strangeness S by one or two units, respectively. To define these quantities ε ′
K and εK one first com-

bines the decay amplitudes A(K0 → π+π−) and A(K0 → π0π0) into A0 ≡ A(K0 → (ππ)I=0) and

A2 ≡ A(K0 → (ππ)I=2) where I denotes the strong isospin. Indirect CP violation (stemming from

the ∆S = 2 box diagrams) is quantified by

εK ≡ A(KL → (ππ)I=0)

A(KS → (ππ)I=0)
= (2.228±0.011) ·10−3 · ei(0.97±0.02)π/4 (1.1)

and was discovered in 1964 [1]. The measure of direct CP violation, which originates from the

∆S = 1 Kaon decay amplitude, is1

ε ′
K ≃ εK√

2

[

A(KL → (ππ)I=2)

A(KL → (ππ)I=0)
− A(KS → (ππ)I=2)

A(KS → (ππ)I=0)

]

= (16.6±2.3) ·10−4 · εK . (1.2)

This experimental result was established in 1999 and constituted the first measurement of direct CP

violation in any decay [2]. Adopting the standard phase convention for the elements of the Cabibbo-

Kobayashi-Maskawa (CKM) matrix, the real parts of the isospin amplitudes are experimentally

determined as

ReA0 = (3.3201±0.0018)×10−7 GeV, ReA2 = (1.4787±0.0031)×10−8 GeV. (1.3)

The master equation for ε ′
K/εK (see e.g. Ref. [3]) reads:

ε ′
K

εK

=
ω+√

2|εexp
K |ReA

exp
0

{

ImA2

ω+
−
(

1− Ω̂eff

)

ImA0

}

. (1.4)

Here ω+ ≃ ReA2

ReA0
= (4.53±0.02) ·10−2 is determined from the charged counterparts of ReA0,2 and

Ω̂eff = (14.8±8.0) ·10−2 quantifies isospin breaking. The quantities |εexp
K | and ReA

exp
0 are also

taken from experiment, as indicated.

The important theoretical ingredients encoding potential new-physics effects are ImA0 and

ImA2, which are calculated from the effective hamiltonian H |∆S|=1 describing s → dqq decays.

This hamiltonian is known for a while at the level of next-to-leading-order (NLO) in QCD [4]

and a precise prediction of ε ′
K/εK is challenged by the difficulty to calculate the hadronic matrix

elements of the operators in H |∆S|=1. Within the Standard Model (SM) ImA0 is dominated by gluon

penguins, with roughly 2/3 stemming from the matrix element 〈(ππ)I=0|Q6|K0〉 with the operator

Q6 = s
j
Lγµdk

L ∑
q

qk
Rγµq

j
R. (1.5)

About 3/4 of the contribution to ImA2 stems from 〈(ππ)I=2|Q8|K0〉 with

Q8 =
3

2
s

j
Lγµdk

L ∑
q

eqqk
Rγµq

j
R. (1.6)
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Figure 1: Sample diagrams of electroweak penguins and boxes, which contribute to the Wilson coefficient

of Q8.

The Wilson coefficient of Q8 stems from electroweak penguins and box diagrams (Fig. 1). Lattice-

gauge theory has 〈(ππ)I=2|Q8|K0〉 (and thereby ImA2) under good control for some time [5], while

lattice calculations of 〈(ππ)I=0|Q6|K0〉 and the other matrix elements entering ImA0 are new [6].

The results are consistent with earlier analytic calculations in the large-Nc “dual QCD” approach

[7]. Using these matrix elements from lattice QCD we find [8]

ε ′
K

εK

= (1.06±4.66Lattice ±1.91NNLO ±0.59IV ±0.23mt
)×10−4. (1.7)

The various sources of errors are indicated in the subscripts, with “NNLO” referring to unknown

higher-orders of the perturbative expansion and “IV” meaning isospin violation. Adding the errors

in quadrature gives the result in the abstract. We use the methodology of [9], which exploits

the CP-conserving data of Eq. (1.3) to constrain the matrix elements. To arrive at Eq. (1.7) we

have implemented a novel compact solution of the renormalization group equations; the result

is in full agreement with the calculation in Ref. [3]. Eq. (1.7) disagrees with the experimental

number in Eq. (1.2) by 2.8 standard deviations. The original lattice paper, Ref. [6], quotes a smaller

discrepancy. The discussion at this conference has indicated that the combination of Eq. (1.3) with

Fierz identities between different matrix elements has lead to the sharper prediction in Refs. [3, 8].

2. A supersymmetric solution

The large factor 1/ω+ multiplying ImA2 in Eq. (1.4) renders ε ′
K/εK especially sensitive to new

physics in the ∆I = 3/2 decay K → (ππ)I=2. This feature makes ε ′
K/εK special among all FCNC

processes. However, it is difficult to place a large effect into ε ′
K without overshooting εK : The SM

contributions to both quantities are governed by the CKM combination

τ =−VtdV ∗
ts

VudV ∗
us

∼ (1.5− i0.6) ·10−3. (2.1)

Our quantities scale as

ε ′SM
K ∝ Im

τ

M2
W

and εSM
K ∝ Im

τ2

M2
W

. (2.2)

1Accidentally, ε ′K/εK is essentially real.
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Figure 2: “Trojan penguin” diagrams [12]. The difference of the two boxes contributes to the ∆I = 3/2 am-

plitude and increases with the mass difference among right-handed up-type (Ũ) and down-type (D̃) squark.

Q̃ denotes a left-handed squark, which is a strange-down mixture.

In new-physics scenarios τ is replaced by some new ∆S = 1 parameter δ and MW is replaced by

some particle mass M ≫ MW . The new-physics contributions scale as

ε ′NP
K ∝ Im

δ

M2
, and εNP

K ∝ Im
δ 2

M2
. (2.3)

If new-physics enters through a loop, the only chance to have a detectable effect in ε ′
K is a scenario

with |δ | ≫ |τ |. Using Eqs. (2.2) and (2.3) the experimental constraint |εNP
K | ≤ |εSM

K | entails

∣

∣

∣

∣

ε ′NP
K

ε ′SM
K

∣

∣

∣

∣

≤
∣

∣ε ′NP
K /ε ′SM

K

∣

∣

∣

∣εNP
K /εSM

K

∣

∣

= O

(

Reτ

Reδ

)

. (2.4)

Thus large effects in ε ′
K from loop-induced new physics are seemingly forbidden. Many studies

of ε ′
K indeed involve new-physics scenarios with tree-level contributions to ε ′

K [10], in which the

requirement |δ | ≫ |τ | can be relaxed.

Here we present an explanation of the measurement in Eq. (1.2) by a supersymmetric loop

effect [11]. We circumvent the argument in Eq. (2.4) by exploiting two special features of the

Minimal Supersymmetric Standard Model (MSSM): Firstly, the MSSM permits large ∆I = 3/2

transitions mediated by the strong interaction (“Trojan penguins”) [12]. These enhanced ampli-

tudes occur if the mass splitting between the right-handed up and down squarks is sizable (see

Fig. 2). Secondly, the Majorana nature of the gluino permits the suppression of εK , which receives

contributions from two squark-gluino box diagrams (“regular” and “crossed”). These diagrams

cancel each other efficiently, once the gluino mass mg̃ and the squark mass mQ̃ in the loop satisfy

mg̃ ≥ 1.5mQ̃ [13]. In our scenario, the mass scale MS of the supersymmetric particles is large, of

order 3–7TeV. Squark flavour mixing appears only among the left-handed doublets. We choose

the CP-violating phase of the (2,1) element ∆LL
sd of the left-handed squark mass matrix equal to

arg(∆LL
sd ) = π/4. The results are shown in Fig. 3

3. Summary

Novel lattice results reveal a tension between the measured value of ε ′
K in Eq. (1.2) and the

SM prediction in Eq. (1.7). Within the MSSM one can simultaneously enhance ε ′
K and suppress

unwanted effects in εK . Our MSSM scenario works with large superpartner masses in the 3–7 TeV

range and thereby comply with bounds from collider searches. Crucial elements are mg̃ ≥ 1.5MQ̃,

a sizable mass splitting between right-handed up and down squarks, and flavour mixing among

left-handed squarks.
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Figure 3: Left: εSUSY
K /εSM

K as a function of mg̃/MS for a common mass MS = 10TeV of all superpartners

except the gluino. Right: Parameter region explaining ε ′K/εK while complying with the measured εK for the

point mg̃ = 1.5MS and MS = mQ̃ = mD̃. The lines labeled with negative values of the MSSM contribution

ε ′SUSY
K /εK correspond to correct (positive) solutions if the CP phase is appropriately adjusted. The SM pre-

diction for εK strongly depends on |Vcb|. The blue (red) lines in both plots delimit the region which complies

with εK if |Vcb| is determined from exclusive (inclusive) b → cℓν decays. If the exclusive determination is

correct, some new physics in εK is welcome. In the inclusive case the forbidden region is marked with the

red shading. For more details see Ref. [11], from which the plots are taken.
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