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Abstract we report on a regional flood and earthquake risk assessment for 33 countries in Eastern
Europe and Central Asia. Flood and earthquake risk were defined in terms of affected population and
affected gross domestic product (GDP). Earthquake risk was also quantified in terms of fatalities and cap-
ital loss. Estimates of future population and GDP affected by earthquakes vary significantly among five
shared socioeconomic pathways that are used to represent population and GDP in 2030 and 2080. There
is a linear relationship between the future relative change in a nation’s exposure (population or GDP) and
its future relative change in annual average population or GDP affected by earthquakes. The evolution
of flood hazard was quantified using a flood model with boundary conditions derived from five different
general circulation models and two representative concentration pathways, and changes in population
and GDP were quantified using two shared socioeconomic pathways. There is a nonlinear relationship
between the future relative change in a nation’s exposure (population or GDP) and its future relative
change in its annual average population or GDP affected by floods. Six regions can be defined for positive
and negative relative change in population that designate whether climate change can temper, counter,
or reinforce relative changes in flood risk produced by changes in population or exposure. The depar-
ture from the one-to-one relationship between a relative change in a nation’s population or GDP and its
relative change in flood risk could be used to inform further efforts at flood mitigation and adaptation.

Plain Language Summary Floods and earthquakes affect the economy and population of coun-
tries in Eastern Europe and Central Asia. Future changes in these countries’ economies and population will
change the impacts of floods and earthquakes. In addition, future changes in climate will change how
often flooding occurs. We assume that earthquake occurrence won't change with climate changes. We
show how much the economies and populations of these countries are affected by floods and earth-
quakes in 2015, 2030 and 2080. However, as we don’t know for certain how the economies, population
and climate will change in the future, we show result for a variety of scenarios for future economies, pop-
ulation and climate. We assess how future changes in the economy and population affect future flood risk
using changes in earthquake risk, and assume the remaining change is caused by changes in climate. We
suggest that for some countries the population affected by floods can increase even with a decrease in
population, or the population affected by floods and decrease even with an increase in population, if the
future change in flood hazard is sufficiently large.

1. Introduction

Natural disasters disproportionately affect developing countries. The death and destruction caused by
these events can have an impact on the gross domestic product (GDP) of developing countries that is 20
times larger than their impact on developed, industrialized countries [Sanghi et al., 2011]. An example of
the large impacts of flooding on GDP can be drawn from the 2014 floods in Serbia (SRB). The flooding
affected approximately 50,000 people and caused 54 fatalities [Guha-Sapir et al., 2016]. Damage and losses
totaled over $US 2 billion [Guha-Sapir et al., 2016], approximately 5% of the predisaster estimates of Serbia’s
2014 GDP of $44 billion [World Bank, 2017]. The incremental impact of the flooding was estimated to lower

MURNANE ET AL.

EARTHQUAKE AND FLOOD RISKIN ECA 1


http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%292328-4277
http://orcid.org/0000-0002-9744-8471
http://orcid.org/0000-0003-2157-6431
http://orcid.org/0000-0002-8834-7847
http://orcid.org/0000-0001-7702-7859
http://dx.doi.org/10.1002/2016EF000481
http://dx.doi.org/info:doi/10.1002/2016EF000481

@ AG U Earth’s Future 10.1002/2016EF000481

Table 1. Examples of Significant Earthquakes and Floods in Eastern Europe and Central Asia

Country Year Event

Greece (GRC) ca. 365 Earthquake destroys many cities on Crete, tsunami strikes
eastern and southern Mediterranean [Stiros, 2001].

Turkey (TUR) ca.526 Earthquake and subsequent fire destroys Antioch and
kills about 250,000 people [Sbeinati et al., 2005].

Turkey (TUR) 1509 Earthquake damages Constantinople/Istanbul causing
1500-5000 deaths [Ambraseys, 2009].

Azerbaijan (AZE) 1667 Earthquake causes up to 80,000 deaths [Lomnitz, 1974]

Croatia (HRV) 1667 Earthquake near Dubrovnik causes approximately 4000
deaths [Ambraseys, 2009; Albini, 2015].

Armenia (ARM) 1679 Earthquake near Yerevan causes between 1500 and 8000
deaths [Ambraseys, 2009].

Romania (ROU) 1802 One of Romania’s strongest historical earthquakes causes
extensive damage [Constantin et al., 2011].

Russian Federation (RUS) 1824 Worst historical flooding of St. Petersburg [Barabanova,
2014]

Hungary (HUN) 1838 Floods extensively damaged Pest [Tenk and David, 2015].

Romania (ROU), Moldova/USSR (MDA) 1940 Vrancea earthquake extensively damages Bucharest and
Chisinau [Alcaz et al., 2008].

Turkmen/USSR (TKM) 1948 Earthquake near Ashgabat likely killed over 100,000
people, ca. 50% of the population of the city [Daniell et al.,
2011].

Macedonia/Yugoslavia (MKD) 1962 and 1963  Earthquake destroys nearly 80% of Skopje, 1 year after

large flooding throughout the city [Sinadinovski and
McCue, 2013; Daniell et al., 2016]

Uzbek/USSR (UZB) 1966 Earthquake causes ~60% homelessness in Tashkent
[Daniell et al., 2011, UzReport, 2017]
Tajikistan (TJK) 1998 Flooding causes over 100 deaths and damage equal to

~5% of GDP [World Bank, 1998].

The three letters in parentheses are the ISO Alpha-3 country code for a country.

Serbia’s 2014 economic growth by nearly 1% [European Union, United Nations and World Bank, 2014]. The
2014 flooding in Serbia is only one example of numerous historical natural disasters in Eastern Europe and
Central Asia (ECA). A selection of past events is offered in Table 1.

Future changes in climate are expected to alter the distribution and intensity of extreme weather. For
example, as stated in the Intergovernmental Panel on Climate Change (IPCC) AR5 Summary for Policymak-
ers, by the end of this century, it is very likely that over most of the mid-latitude land masses and over
wet tropical regions, extreme precipitation events will become more frequent and intense, and that heat
waves will occur with a higher frequency and duration [IPCC, 2013]. Such changes will in some cases, for
example, produce wetter wet periods and drier dry periods [e.g., Liu and Allan, 2013] and result in a greater
risk for floods and droughts [Trenberth, 2011]. A recent report concluded that unless appropriate actions
are taken, approximately 100 million people could be pushed into extreme poverty by 2030 as a result of
climate change [Hallegatte et al., 2016]. Without serious efforts to manage and reduce natural disaster risk,
the impacts from future extreme events will likely continue to grow [Global Facility for Disaster Reduction
and Recovery (GFDRR), 2016].

In response to the potential for future impacts (e.g., fatalities, damaged infrastructure, lower GDP) from nat-
ural disasters, a variety of international organizations, such as the World Bank, African Risk Capacity, United
Nations International Strategy for Disaster Reduction, and the European Union, are interested in promoting
disaster risk management programs and developing financial products that allow developing countries to
be better protected against, and more quickly respond to and recover from, natural disasters. The financial
products include multicountry risk pools such as the Caribbean Catastrophe Risk Insurance Facility and the
Pacific Catastrophe Risk Assessment and Financing Initiative, and the MultiCat Program, a catastrophe bond
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issuance platform that gives governments and other public entities access to international capital markets
to insure themselves against the risk of natural disasters. A major component of these efforts to manage
and respond to natural disasters is risk assessments.

Here we describe the results of a risk assessment project that examined earthquake and flood risk for 33
countries in the ECA region. The project was initiated by the GFDRR and the World Bank and focused on
current and future earthquake and flood risk to the population and GDP of countries in the ECA region. In
addition, the assessment estimated the risk of capital loss and fatalities from earthquakes. The risk assess-
ments provide first-order estimates of the spatial distribution of flood and earthquake risk and how it could
evolve over time. The results from the risk assessment will be used to inform governments and decision
makers of the countries of their earthquake and flood risk and to facilitate discussions on how they can
become more resilient to both current and future risk.

2. Methods

A useful way to characterize natural disaster risk is to consider the three basic components that, when com-
bined, turn an extreme event into a natural disaster. The impact of an extreme event can be described using
the three sides of the “risk triangle” [Crichton, 1999]: exposure, vulnerability, and hazard. The area of the tri-
angle schematically represents the impact from an event such as monetary loss or casualties. In most cases,
an increase in the amount of exposure, the vulnerability of the exposure, or the intensity of the hazard will
result in an event having a larger impact. This is represented by an increase of the triangle’s area. Decreas-
ing the amount of exposure and/or reducing its vulnerability will reduce the impact of an event. There are
situations where these generalizations do not hold. For example, if an earthquake causes complete destruc-
tion, then the impact of a more intense event will be the same. Or, an extreme flood could destroy both
well-built and poorly built structures. In practice, natural hazard risk is often determined using a catastro-
phe risk model that accounts for the hazard, exposure, and vulnerability [Murnane et al., 2016]. The hazard
is usually characterized using a catalog of hypothetical events whose aggregate statistics (e.g., frequency,
intensity, size, distribution, etc.) are consistent with the historical record and theory. The user often provides
the exposure data. The vulnerability functions must be consistent with information provided by hazard and
exposure components.

The impacts from each event are used to determine a variety of risk metrics such as annual average loss
(AAL). One definition for AAL is that it equals T,/Ny, where Ty is the total of losses that occur over a number
of years, Ny, and X denotes whether the losses and number of years are from either the historical record or
modeled losses. If the losses are from the historical record, then they should be corrected for inflation and
changes in exposure. For some perils, such as earthquakes, which occur rarely and cause significant loss
when they occur, the AAL derived from the historical record will likely be much less than the modeled AAL
if a large event has not occurred within the time span of the historical record.

The AAL is only one view of risk and it provides little information on the frequency or magnitude of the loss
events. To understand the ambiguity in frequency and magnitude, consider two end-member scenarios,
each with an AAL = A. One end-member scenario is a catalog with a single event that produced a loss of
10,000* A. Another end-member scenario is a catalog with 10,000 events, each with a loss of 4. Each sce-
nario produces the same AAL. Thus, other risk metrics, e.g., different return period losses derived from a
probability of exceedance loss curve, are used to further characterize the risk. The return period is equal to
1/P, where P is the annual probability of exceedance.

The two risk models used to estimate flood and earthquake risk followed different methodologies and had
different vulnerability functions and hazard catalogues to estimate current risk in 2015 and future risk in
2030 and 2080. However, the flood and earthquake risk results for each time period are based on the same
population and GDP exposure estimates. The hazard for the earthquake model is based on a stochastic
catalog whereas the flood model hazard is derived using extreme value theory. The vulnerability functions
used to estimate affected population and GDP are step functions that have a value of either 0 or 1 depending
on ground motion intensity for earthquakes or inundation depth for floods. The earthquake model also
includes more detailed, country-specific, vulnerability functions that are used to estimate capital loss and
fatalities based on ground motion intensity. A reader interested in flood risk derived using flood damage
functions and the same methodology can examine Ward et al. [2013].
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Table 2. Overview of Shared Socioeconomic Pathways (SSPs)

Scenario Description GDP Per Capita Growth Population Growth
SSP1 Sustainability Medium to fast Relatively low
SSP2 Current trends continue Medium to slow Medium

SSP3 Fragmented world Slow Relatively high
SSP4 Divided world Low to medium/high Mixed

SSP5 Conventional development High Peak and decline

SSP descriptions adapted from O’Neill et al. [2012].

Table 3. RCP and SSP Scenario Combinations Used to Estimate Future Flood Risk

RCP Scenario SSP Scenario Scenario Characterization
RCP4.5 SSP2 Cautiously optimistic
RCP8.5 SSP2 Present trends continue
RCP8.5 SSP3 Worst case

Five different shared socioeconomic pathways (SSPs) are used to define population and GDP exposure in
2030 and 2080. For background on the SSPs see Ebi et al.[2014]. An overview of the different SSPs is provided
in Table 2. Earthquake hazard is assumed to be the same for all time periods.

Different climatic and socioeconomic conditions are used to explore the evolution of flood risk. Boundary
conditions for the present day hydrological model were based on climate data from the European Union
Water and Global Change (EU WATCH) project [Weedon et al., 2010]. Climate projections from five global cli-
mate models (GCMs) consistent with two representative concentration pathways (RCPs), RCP4.5 and RCP8.5,
were used as 2030 and 2080 boundary conditions for the hydrological model. For a description of the RCPs
see van Vuuren et al. [2011]. As shown in Table 3, a combination of two RCPs and two SSPs are used to esti-
mate flood risk in this study.

For each country and province, flood and earthquake risks are quantified in terms of AAL and for a variety
of return periods for the three snapshots at 2015, 2030, and 2080.

2.1. Earthquake Model

The earthquake model [Daniell and Schaefer, 2014] includes a hazard component that represents earth-
quake events as finite or point sources depending on magnitude and location, and vulnerability functions
to estimate the loss caused by earthquake-induced ground motion that affects exposed people and
assets. The earthquake hazard is quantified using a 10,000-year stochastic catalog of over 15.8 million
synthetic earthquake events of at least magnitude 5 in the ECA region. The earthquake model contains
1437 source zones and 744 faults incorporating various regional and local studies over the past 30 years.
The source zones are used to account for seismicity of unknown faults and for regions with low seismicity.
The frequency and magnitude of earthquakes within each zone are specified using historical data and a
Gutenberg-Richter (G-R) relationship that relates earthquake magnitude to number of occurrences. Specific
characteristics (e.g., location or epicenter, fault motion, hypocentral depth, fault length) of each earthquake
are defined using known faults and fault models, previously derived source regions, and geophysical
knowledge. For each earthquake in the stochastic catalog, estimates of local soil conditions and ground
motion prediction equations are used to determine peak ground acceleration (PGA) at each grid point. The
estimates of local soil conditions are based on tectonic regime and topographic slope following Allen and
Wald [2007].

Earthquake risk is presented in terms of affected population and affected GDP for areas that experience
ground motion with an intensity consistent with modified Mercalli intensity (MMI) equal to VI or greater.
Ground motion at MMI VI may cause moderate damage to poorly built structures, and slight damage such
as cracks in most average structures. It will be felt by almost everyone. Semi-empirical vulnerability functions
are used to estimate MMI from PGA following Daniell [2014].

MURNANE ET AL.

EARTHQUAKE AND FLOOD RISK IN ECA 4



@ AG U Earth’s Future 10.1002/2016EF000481

Table 4. Climate Models Used With the GLOFRIS Model

Climate Model Description

GFDL ESM2M GFDL Earth System Model 2 with medium resolution

HadGEM2-ES Hadley Global Environment Model 2—Earth System

MIROC-ESM-CHEM MIROC (Model for Interdisciplinary Research on Climate) Earth
System CHASER-coupled Model (Atmospheric Chemistry version)

IPSL-CM5A Institut Pierre Simon Laplace Coupled Model 5

NorESM1-M Norwegian Earth System Model with medium resolution

Earthquake risk is also presented in terms of fatalities and capital losses using vulnerability functions as
described by Daniell [2014] and calibrated using Daniell et al.[2011]. The fatality and capital loss vulnerabil-
ity functions are empirically derived using past ground motion event data versus capital stock. The building
vulnerability is brought in via the averaging of the various vulnerability functions for building types for
each country. As such, capital loss estimates are only applicable for province-level assessment as the aver-
age vulnerability functions apply to both the urban and rural regions of a country, despite the fact that
capital values (or replacement costs) will differ between urban and rural areas. Thus, there is likely a slight
overestimation of loss in countries with a large difference between earthquake vulnerability in urban (less
vulnerable structures) and rural (more vulnerable structures) areas. However, the extent of the difference
varies by country. Checks against other vulnerability functions of authors were also made, and the vulner-
ability functions were adjusted to be consistent with these other functions where there was not enough
data to support a significant difference.

2.2. Flood Model

The flood model uses several modules of the Global Flood Risk with IMAGE Scenarios (GLOFRIS) global
flood risk-modeling cascade. The first step is the simulation of daily discharge at a horizontal resolution
of 0.5° x 0.5° using the PCRaster Global Water Balance (PCR-GLOBWB) global hydrological model [Beek and
Bierkens, 2008; Beek et al., 2011]. For present-day climate, the model boundary conditions were daily meteo-
rological data at 0.5° x 0.5° resolution. These data are derived from analysis of data for the years 1960-1999
and are provided by the EU WATCH project [Weedon et al., 2010].

The second step in the hazard modeling is the simulation of daily within-bank and overbank flood volumes,
again at a spatial resolution of 0.5° x 0.5°. This is carried out using the PCR-GLOBWB extension for dynamic
routing, DynRout (PCR-GLOBWB-DynRout), which simulates flood-wave propagation within the channel as
well as overbank [Ward et al., 2013; Winsemius et al., 2013].

From this daily time series of flood volumes, estimates of flood volumes per grid cell (0.5° x 0.5°) were
derived for selected return periods (2, 5, 10, 25, 50, 100, 250, 500, and 1000 years). The return period esti-
mates are derived using extreme value statistics based on the Gumbel distribution and the daily nonzero
flood volume time series derived from the hydrological model. These flood volumes were then used as input
to the GLOFRIS downscaling module to calculate flood depths at a resolution of 30” x 30” [Winsemius et al.,
2013].

The GDP and population affected by floods for each return period were based on the population or GDP in
each grid cell that had flood depths greater than 10 cm at the selected return periods. The average annual
values at each grid point were derived by integrating over the nine return-period loss estimates. The annual
average and return period values for GDP and population affected by floods were determined by summing
the losses within each Level 1 (the first subnational level, e.g., a state in the United States or a province in
Canada) administrative region and within each country.

To estimate flooding in 2030 and 2080, the same methodology as described above is used except that the
GLOFRIS model boundary conditions were future daily data from five climate models (Table 4). The five
climate models used the two RCPs shown in Table 3. The climate data used were previously bias corrected by
Hempel et al.[2013], using the 1960-1999 EU WATCH data as the baseline. Unless explicitly stated otherwise,
the flood risk for 2030 and 2080 is the average of the five GCM estimates.
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2.3. Exposure Data
A multistep correction process was used to generate the spatial distribution of estimated 2015 GDP. First,
national-level data were adjusted to 2015 using the CATDAT database [Daniell et al., 2012]. The national-level
2015 GDP values were then adjusted
a 2015 to match the individual province-level
131 GDP per capita data derived from
provincial and municipal government
and World Bank estimates. Finally, each

121 POL \’ . .
province-level region had separate
LU TUR values of GDP per capita, and GDP was
114 distributed spatially throughout the
BLH region as a function of 1-km resolution

MNF AZE population data.
104 BIH o K U

‘MNE KO— MDA KGZ

RUS

Log10(GDP)

The 2010 population estimates were
I I I I projected to 2015 values at a Level
6.0 6.5 7.0 7.5 8.0 1 administrative (province) level using
Log10(Population) the 2010 round of census data and cen-
b 2015 to 2080 change in Population and GDP sus growth rates for each of the 863
province level units. The 2010 province
level data were updated to 2015 using
e GEO BGR SIS TUF7 growth rates determined from the 2000
UKR and 2010 census round data and other
subnational-level demographic survey
data sets within CATDAT [Daniell et al.,
BLR 2011]. In most cases, growth rates were
AZE determined from the 2000 and 2010
census surveys.

131 RUS

-
N

Log10(GDP)

10
lMNE MDA KGz Future exposure data (GDP and popu-
6.0 6.5 70 75 80 lation) for 2030 and 2080 were devel-
Log10(Population) oped using the Integrated Model to
Assess the Global Environment (IMAGE)

Figure 1-. ‘Log—-log plot-of population versus GDP for the EC‘A countries. Each model of PBL Netherlands Environ-
country is identified by its ISO Alpha-3 country code. (a) National-level GDP ($)

and population estimates are for 2015. The light gray line is a linear least squares mental Assessment Agency [Bouwman
fit to the data. The correlation between GDP and population is 0.95. (b) The etal., 2006; van Vuuren etal., 2007],
evolut'lon of GDP and populatlor? from 2015 t? 2080 (thick lines). The botto!'n of and socioeconomic conditions associ-
each line represents the population and GDP in 2015. The top end of each line i .

represents the 2080 average GDP and population of the five SSPs. Thin lines are ated with the SSPs in Table 2.

used for labeling. The colors are intended to make it easier to distinguish . .
J 9 While the 2015 population and GDP

individual countries.

data are relatively robust, the projec-
tions to 2030 and 2080 should be considered as scenarios. The spread in the GDP and population values
for the five SSPs is greater in 2080 than in 2030. For more information on future population scenarios see
Samir and Lutz [2017]. For more information on future GDP scenarios see Dellink et al. [2017].

A summary of the estimated population and GDP for countries in the ECA region is shown in Figure 1.
National population and GDP for 2015 in the ECA region differ by more than two orders of magnitude
among countries (Figure 1a), and there is a high level of correlation (0.95) between a country’s popula-
tion and GDP. The top two countries for population and GDP are the Russian Federation (RUS) and Turkey
(TUR). Montenegro (MNE) has the smallest population and GDP. The mean of GDP from the five SSPs for
all countries will be greater in 2080 than in 2015, in some cases by over an order of magnitude (Figure 1b).
While mean GDP increases for all countries, there is more variability in future population growth. For some
countries in the ECA region the 2080 mean of population from the five SSPs will be less than the 2015
population. For example, for two of the three countries with the largest population in the ECA region, the
Russian Federation and Ukraine (UKR), the 2080 mean of population from the five SSPs is less than the 2015
population.

MURNANE ET AL.

EARTHQUAKE AND FLOOD RISK IN ECA 6



@ AG U Earth’s Future 10.1002/2016EF000481

3. Results

3.1. Current Risk
3.1.1. National-Level Risk
A summary at the national level of the average annual population and GDP affected by earthquakes and

flooding is shown in Figure 2. Of all the countries in this study, Turkey (TUR) has the greatest annual average
population (more than 1 million) and

a a1
o & FUS GDP (more than $10 billion) affected
3 61 SVK POL \KAZ T‘:H by earthquakes with Uzbekistan (UZB)
T2 HUN\‘ \‘ ROY having the second greatest population
2 CZE—@ e A ;
=y BLR o ™y AZE UZB 1 and Romania (ROU) the second great-
E,B 51 LT.U/ MDA\B;Q g 4 N est GDP (Figures 2a and 2b). Turkey’s
gé JA MKD _TKM A Geo| exposure is due in large part to the
EE 44 MNGF/O ‘t SVN KG concentration of Turkey’s urban pop-
g% . Mie KO- ARM GRC | ulation along the Anatolian fault and
S3 its large economy. The country with
£ 3 cvp the greatest annual average popula-
! ! ¢ ! ! ! tion (2 million) and GDP ($20 billion)
2 3 4 5 6 affected by flooding is the Russian
ng of Average Annual Federation (RUS)
Population Affected by Earthquake :
b A different view of risk is seen when
104 POI\_. oy | assessing annual average risk relative
SVK i i
T3 CZE—® HUN [ ROU‘ to the total national populatnon.or
29 SRB Ry S & GDP rather than absolute population
cic LTU UKR ~é . )
2:)5, 9+ ’.\/ B‘H\; T‘AM,g'/\UZB or GDP (Figure 3). In relative terms,
23 B,LR LVA e MT/DGEO“‘\BGR GRC Georgia (GEO) and Albania (ALB) are
:%ﬁ 8 . MDA—" G\ ABM— AL?B AZE the countries whose populations and
g: EST MNG ;. KG/Z‘ S GDP have the greatest annual average
33’8 WS chance of being affected by earth-
74 v quakes (~6%-7%). This is consistent
with large events in the past such as
6 7 8 9 10 1991 and 2002 in Georgia and the early
Log of Average Annual 1900s (1905, 1930) in Albania [National

GDP Affected by Earthquake Geophysical Data Center/World Data

Figure 2. Risk of earthquakes and floods in 2015 in terms of (a) the average Service (NGDC/WDS), 2017]. The country
annual affected population and (b) GDP ($) for all nations in the study. The with the greatest annual average risk
abbreviations are based on !SO Alpha-3 notation. Note t'hat all values are plotted in terms of population being affected
on a log10 scales. The gray line shows the 1:1 relationship between the annual X i :
average affected by floods and earthquakes. The similarity between the GDP and by floods, in relative terms, is the Slo-
population results is due to the large correlation between a country’s GDP and vak Republic (SVK, ~4%), followed
poputla.tlon. The colors are intended to make it easier to distinguish individual cIoser by Bosnia and Herzegovina
countries.

(BIH) and FYR Macedonia (MKD), and
the country with the greatest annual average risk in terms of GDP being affected by floods is the FYR

Macedonia (~5%).

A spatial representation of the annual average population at risk of earthquakes and floods in 2015 is shown
in Figure 4. Essentially the same pattern would be seen with GDP because of the high correlation between
a country’s population and GDP. The Russian Federation (RUS) is the largest country in the study area, and
has the largest GDP, population and annual average risk of floods in terms of affected people and GDP
(Figures 2 and 4). Turkey (TUR), Uzbekistan (UZB), Romania (ROU), and Tajikistan (TJK) are at a greater risk of
earthquakes than the Russian Federation (Figures 2a and 4).

The loss exceedance probabilities that contribute to the GDP and population annually affected by earth-
quakes and floods vary by country. A heat map can provide a qualitative sense of how risk varies among
countries and perils in both absolute and relative terms (Figure 5). The absolute and relative flood risk
tends to be fairly constant for all the return periods displayed in Figure 5 whereas the earthquake risk tends
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to increase with longer return periods. This is consistent with the more frequent nature of flood events
relative to damaging earthquakes; however, it may also be related to some of the assumptions, mentioned
in the discussion, that were made when modeling flood risk. Specifically, the flood modeling assumes that
there are no flood defenses and that 100% of population or GDP in a grid cell is affected in any cell with
any inundation depth.

The earthquake model also estimated fatalities and capital losses. The distribution of fatalities versus
affected population, and capital loss versus GDP, for the 250-year return period is shown in Figure 6. There
is a weak correlation between affected population and fatalities and between affected GDP and capital
loss. However, it appears that countries in the European Union and Turkey tend to have a lower capital loss
to affected GDP ratio than non-European Union countries. Note that the ranking of countries by population
or GDP affected by the 250-year return period earthquake is not the same as that for the annual average
(Figure 2) because of differences in their probabilities of loss (Figure 5).

3.1.2. Province-Level Risk

Province-level results for Turkey (Figure 7) and Ukraine (Figure 8) are presented as two examples of how
earthquake and flood risk, and population and GDP, vary within a country. For Turkey, in absolute and rela-
tive terms, the province with the greatest population at risk of flooding is in south-central Turkey (Figures 7a
and 7c¢). For earthquake risk, the province with the highest relative earthquake risk (Figure 7b) is in the
southwest and the province with the highest absolute earthquake risk (Figure 7d) is in the northwest. The
highest absolute earthquake risk corresponds with the province with the highest population (Figure 7e)
and GDP (Figure 7d), but the highest absolute flood risk occurs in a province without an extreme in GDP or
population.

For Ukraine, in absolute and relative terms, the province with the greatest population at risk of flooding
is in northeast province (Figures 8a and 8c). In contrast to Turkey, the flood risk in Ukraine is distributed
more evenly across the country. Earthquake risk in Ukraine is concentrated in the southern provinces of the
country (Figures 8b and 8d). The province with the highest GDP and population in Ukraine is in the north
central part of the country (Figures 8e and 8f). The provinces with the greatest risk differ from the provinces
with high GDP and population.

3.2. Future Changes in Risk

There is a significant amount of intercountry variability in the future change in the risk of earthquakes and
floods affecting a country’s population and GDP. The results shown in Figures 9 and 10 for population, GDP,
and population affected by earthquakes are based on the difference between the average of five results
for 2080 and the results for 2015. The results shown in Figures 9 and 10 for GDP and population affected
by floods are based on the difference between the average of 15 results for 2080 and the results for 2015.
Consistent with Figure 1b all countries experience an increase in GDP (Figure 9e) but some countries see a
decrease in population (Figure 9f).

We show average results for the 2080-2015 differences in population, GDP, and earthquake- and
flood-affected population (Figure 9) and GDP (Figure 10) to focus on the general trends in the results.
The individual SSPs are unlikely to represent exactly what will happen in the future; instead, they represent
a wide range of possibilities that could well span what will happen (Table 2). In fact, five different countries
could follow five different SSPs. In addition, there is uncertainty in the results produced using the flood and
earthquake risk models and variability among the climate models used with the flood risk model. Thus, in
a manner analogous to ensemble forecasting where the ensemble mean has the lowest root-mean-square
error [Park et al., 2008], for earthquake risk we choose to examine the mean of the earthquake risk con-
sistent with the five SSPs and for flood risk we choose to examine the mean of the 15 views of flood risk
consistent with the five climate models (Table 4) combined with the three combinations of SSPs and RCPs
(Table 3) for flood risk.

The percentage change in relative risk of a country’s population being affected by floods (Figure 9a)
depends to a small extent on the change in population (Figure 9f). Similarly, the change in absolute risk of a
country’s population being affected by floods (Figure 9c) depends to a small extent on the projected change
in population. In contrast to floods, the percentage change in the relative risk of a country’s population
being affected by earthquakes (Figure 9b) depends to a great extent on the change in population
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Figure 3. Risk of earthquakes and floods for 2015 in terms of the average annual . X

percentage of (a) affected population and (b) GDP ($) for all nations in the study. Within a country, the pOPUIatlon and

The abbreviations are based on ISO Alpha-3 notation. The gray line shows the 1:1 GDP affected by earthquakes will also

rc.ela.tlor\shlp between the annual averagg affected k?y floods and earthquakes..The change in response to an increase

similarity between the GDP and population results is due to the large correlation .

between a country’s GDP and population. The colors are intended to make it or decrease in a country’s GDP and
population. Turkey, a country where

easier to distinguish individual countries.

population is expected to increase
(Figure 11a), and Ukraine, a country where population is expected to decrease (Figure 11b), are used
to illustrate such changes. The black line in Figure 11 represents the mean value of the earthquake risk
results from the five SSPs. The range between the maximum and minimum populations derived from the
five SSPs (Table 2) grows significantly from 2030 to 2080 and is consistent with growing uncertainties in
results between 2030 and 2080. The results in Figure 11 show that the change in populations associated
with the different SSPs can have a dramatic impact on the annual average population at risk of being
affected by earthquakes in 2030 and 2080. Similar results are obtained when looking at changes in GDP
and affected GDP.

Two RCPs and two SSPs are used to illustrate the contributions of future changes in climate and pop-
ulation on Turkey’s and Ukraine’s flood risk in 2030 and 2080 (Figure 12). Three sets of model runs
were completed to assess the relative roles of changes in climate and changes in population. One
set can be used to examine the influence of changes in climate by fixing population at 2015 val-
ues and using the results from five climate models responding to two different RCPs as boundary
conditions for the flood model. Another set can be used to examine the influence of changes in popu-
lation using current atmospheric conditions and having population follow two different SSP pathways.
The third set can be used to examine the combined impact of changes in climate and population
using three combinations of SSPs and RCPs. A similar exercise was done using GDP as exposure but is
not shown.
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Figure 4. Spatial distribution by country of 2015 average annual percent of population affected by (a) flood and (b) earthquake, the average annual population affected by (c) flood
and (d) earthquake, and the national level of (e) GDP and (f) population. Similar patterns would be seen if GDP were displayed instead of population. The longitude lines are 50°, 100°,
and 150° east. Latitude lines range from 90° (where longitude lines cross) to 40° (the outer circle on the maps) north in 10° increments. Flood is abbreviated as FL and earthquake

as EQ.
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Figure 5. Heat map showing relative values for population affected by floods (left half) and earthquakes (right half) at return periods of 25, 50, 100, 250, 500, and 1000 years. The red
colors represent affected population in absolute terms, the purple colors represent population in relative terms. The intensity for each color is scaled over the values for both perils:
The darkest and lightest color occurs in the column where with the largest and smallest affected population value, respectively. Thus the largest value for affected population occurs
for the 1000-year return period for earthquakes in Turkey and the largest value for the affected population in relative terms occurs for the 1000-year return period for earthquakes in
Georgia. The return period patterns for GDP are very similar and not shown. Flood is abbreviated as FL and earthquake as EQ.

For Turkey (Figure 12a), the mean flood-affected population associated with the five GCMs slightly
decreases or remains almost constant, between 2015 and 2080 for each SSP and RCP combination (top
row of Figure 12b). However, the spread in results from the climate models suggest the flood-affected
population might either increase, decrease, or remain the same depending on the SSP, RCP, and GCM
combination. For Ukraine (Figure 12b), the mean flood-affected population associated with the five GCMs
decreases between 2015 and 2080 for each SSP and RCP combination (top row of Figure 12b). This obser-
vation also holds for each GCM run. The spread of 2080 model results for Turkey is greater than that for
Ukraine suggesting that the results for Ukraine may be more robust than those for Turkey. However, it
would be difficult to confirm this without more analysis.

Model runs that isolate the impact of changes in climate and population can be used to compare their
relative roles in changing the combined flood risk (Figure 12). With a fixed population the mean results
from the five GCMs using two RCPs suggest that climate change would result in a decrease in the annual
average flood-affected populations in Turkey and Ukraine. However, with a fixed climate, changes in popu-
lation consistent with the two SSPs suggest that the population growth in Turkey increases the population
affected by flood whereas population decline in Ukraine decreases the population affected by flood. For
Turkey, the spread in combined model results (top row of Figure 12a) is associated with the relatively wide
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range in flood risk produced by changes in climate as well as the relatively large population differences
between SSP2 and SSP3. For Ukraine, the spread in combined model results (top row of Figure 12b) is
dominated by the differences in climate model runs as the two SSPs have relatively similar population
pathways.

4, Discussion

This study analyzes the relative role of future changes in climate and socioeconomic factors on earthquake
and flood risk in ECA countries. For the GDP and population exposure in the ECA region, the SSPs suggest
an overall increase in GDP for all coun-

a 51 tries whereas the population increases
_— T (AZE GEo TUR/. or decreases depending on the coun-
£e ARN KAZ < try (Figure 1b). Flood hazard estimates
(. . .
a % MNG\. SNt RUS) kGz TIK @ change in response to different RCPs
§§ 3 e\ ALB BGR;GRC Aoy used with the five climate models,
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38 | o ios
O LV .
&'
3 3 10 1 The relative change in flood risk
Log10 of 250y Return Period (Figure 14) is more complex than that for
GDP Affected by Earthquake earthquake (Figure 13) due to the spatial

variation in future flood hazard drivin
Figure 6. Distribution of 250-year return period impacts. (a) The log10 of X . . 9
fatalities as a function of population affected by 250-year return period departures from a 1:1 relationship with
earthquakes. (b) Capital loss ($) as a function of GDP affected by 250-yearreturn  the relative change in exposure. Changes
period earthquakes. The gray line shows the 1:1 relationship between the in atmospheric radiative properties as

annual average affected by floods and earthquakes. The colors are intended to .
make it easier to distinguish individual countries. specified by the RCPs change flood

location, intensity and frequency in the
GCMs, and thereby the flood hazard. The vertical distance from the 1:1 relationship between relative
change in population or GDP and the relative change in flood risk can be used to qualitatively assess the
countries’ susceptibility to changes in flood hazard induced by climate change. The countries with the
largest amount of climate change-induced flood risk are those that lay farthest vertically from the 1:1 line
in Figure 14.

One can define six regions (see the roman numerals in Figure 14a) to qualitatively assess the relative role
of climate change and change in population (or GDP) on the relative change in flood-affected population
(or GDP). The different regions are defined by the dashed and solid lines in Figure 14.

1. Region | is where the relative increase in flood-affected population (or GDP) is driven by an increase in
population (or GDP) and by a climate change-induced increase in flooding.
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Figure 7. Province-level results for Turkey. (a) Average annual percentage of the population affected by flood. (b) Average annual percentage of population affected by earthquake.
(c) Average annual population affected by flood. (d) Average annual population affected by earthquake. (e) GDP. (f) Population. Longitude lines denote 25°E-45°E in increments of
5°. Latitude lines range from 36°N to 42°N in increments of 2°. Flood is abbreviated as FL and earthquake as EQ.

2. Region Il is where an increase in population (or GDP) would cause an increase in flood-affected
population (or GDP), but this increase would be tempered by a climate change-induced decrease in
flooding.

3. Region Il is where a climate change-induced decrease in flooding is so large that it overwhelms the
relative increase in population (or GDP).

4. Region IV is where a relative decrease in flood-affected population is driven by both a decrease in
population and by a decrease in climate change-induced flooding.
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Figure 8. Province-level results for Ukraine. (a) Average annual percentage of the population affected by flood. (b) Average annual percentage of population affected by earthquake.
(c) Average annual population affected by flood. (d) Average annual population affected by earthquake. (e) GDP. (f) Population. Longitude lines denote 25°E-40°E in increments of
5°. Latitude lines range from 44°N to 52°N in increments of 2°. Flood is abbreviated as FL and earthquake as EQ.
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Figure 9. Spatial distribution by country of the change in: average annual percent of population affected by (a) flood and (b) earthquake, the average annual population affected by
(c) flood and (d) earthquake, and the national level of (e) GDP, and (f) population. The national-level change in average annual percent (a and b) equals 100*(2080, — 2015)/2015y,
where X is affected population. The change in average annual affected population, GDP and population equals (2080, — 2015y), where Y is annual affected population, GDP, or
population. The longitude lines are 50°, 100° and 150°E. Latitude lines range from 90° (where longitude lines cross) to 40° (the outer circle on the maps) north in 10° increments.
Flood is abbreviated as FL and earthquake as EQ.
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Figure 10. Spatial distribution by country of the change in: average annual percent of GDP affected by (a) flood and (b) earthquake, the average annual GDP affected by (c) flood and
(d) earthquake, and the relative change in national () GDP and (f) population. The national-level change in average annual affected GDP (a and b), and the relative change in GDP
and population (e and f) equals (2080 — 2015y)/2015y, where X is affected GDP, GDP, or population. The change in average annual affected GDP (c and d) equals (2080, — 2015y),
where Y is affected GDP. The longitude lines are 50°, 100°, and 150°E. Latitude lines range from 90° (where longitude lines cross) to 40° (the outer circle on the maps) north in 10°
increments. Flood is abbreviated as FL and earthquake as EQ.
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5. Region V is where the relative decrease in flood-affected population due to a lower population is
countered by a climate change-induced increase in flooding.

6. Region VI is where a climate change-induced increase in flooding so large that it overwhelms the
decrease in risk due to a decrease in population.

For example, despite having little relative change in population, Tajikistan (TJK) experiences one of the
largest relative increases in populations affected by flooding because of climate change (Figure 14a). In
contrast, for Cyprus (CYP), climate change effects temper the relative increase in flood-affected population
that would be expected purely based on the large increase in relative population (Figure 14a). For Tajik-
istan, climate change has the largest increasing effect on relative flood-affected GDP, and for Ukraine (UKR)
climate change has the largest decreasing effect on relative flood-affected GDP (Figure 14b). Finally, some
countries, such as Romania (ROU), fall near to the 1:1 line and experience relative changes in flood risk that
are related mainly to changes in exposure, and climate change impacts on their flood risk are expected to
be marginal.

The view of relative change in flood risk can inform efforts to prioritize climate change adaptation efforts
related to managing flood risk. As an example consider that the model scenarios suggest that Turkey (TUR)
(Region lll) and Georgia (GEO) (Region

a Turkey . o ] .
BN —— V) will see a similar decrease in relative
° SSP1 il flood-affected population (Figure 14a).
A SSP2 The decrease in Turkey occurs despite
g 1751 M SSP3 the increase in population whereas
8g + ssP4 the decrease in Georgia is less than
tH % ssps expected based on its projected
%é 1901 change in population. Thus, a first-order
g3 = A approximation would imply that there
2% might be more value in projects that
: reduce flood risk in Georgia than for
those in Turkey given that climate
1001 ! 1 1 1 change-related flood risk is expected
2020 2040 Year 2000 2% to increase in Georgia but decrease
b Ukraine in Turkey. Regardless of the choice of
0.104 country, improved modeling would

be needed to make a robust decision
regarding risk management within a

3_ "1 scenario specific country. This would include,
g
£s ® ssP1 for example, more specific information
52 el A SS on the location of exposure, the incor-
s ” ® SSP3 : ;
08 poration of flood defenses in the flood
53 - ssP4 ..
g8 5 SSP5 models and the use of vulnerability
< 0.071 . .
° functions that are more appropriate
+ for a specific project, to produce more
0.064 sophisticated modeling results for
2020 2040 2060 200 projects of interest. In addition, other

Year factors beyond technical considera-

. ) ) tions need to be considered [Murnane
Figure 11. Average annual population affected by earthquakes in Turkey (top)

and Ukraine (bottom) for three time slices: 2015, 2030, and 2080. The black linein €t dl., 2016], including the capacity of
A and B shows the mean value based on the population derived from the five the country to manage a project and
SSPs. The earthquake hazard is constant for the three time slices so the change in the interest within the country in the

population drives the change in affected population. A . A
disaster risk management project.

The results from the risk assessment will be used to focus the attention of national-level decision makers on
areas with high flood and earthquake risk and to support the prioritization of studies to further quantify risk.
However, these results provide only a preliminary view of risk and should not be used for the design of risk
reduction measures such as flood protection, retrofitting of buildings or risk-informed urban planning. Such
measures require more detailed and calibrated models that include critical information on local conditions
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Figure 12. Average annual population affected by floods in Turkey (a) and Ukraine (b) for three time slices: 2015, 2030, and 2080. The black lines in a and b show the mean value for
affected population derived from the five GCMs with the flood model. The figure shows three types of model runs. The first type, across the top rows of a and b, shows the results for
the combined effects of changes in climate and population. The second type, the RCP runs on the bottom left of a and b, shows the results where climate varies and exposure is fixed.
The third type, the SSP runs on the bottom right, shows the results where climate is constant and exposure varies.
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such as river profiles, current flood
defenses, local building standards and
soil characteristics, as well as more
detailed information on exposure, such
as the occupancy and construction of
local structures, and information on the
vulnerability of structures to forces gen-
erated by a peril, all of which are incor-
porated into this study.
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larger than the impact of 10 cm of flood
water. However, the model results will
Figure 13. Relative change between 2080 and 2015, (2080, — 2015,)/2015y, in show the same amount of affected GDP

Relative Change in GDP

annual average population and GDP affected by earthquakes as a function of
relative change in population (a) and GDP (b), where X represents population,
GDP, annual average affected population or annual average affected GDP. The
gray line shows the 1:1 relationship between the relative change in population
and annual average EQ-affected population (a) and between the relative change
in GDP and annual average EQ-affected GDP (b). The vertical dashed lines denote
zero relative change in population (a) and GDP (b) and the horizontal dashed lines

for both 2 m and 10 cm flood water.

GLOFRIS, the flood model used for
this publication, is a global model that
can be used to assess large-scale river
flood risks. It does not assess coastal

denote zero relative change in annual average EQ-affected population (a) and
GDP (b). As shown in Figure 1, the mean GDP for all SSPs increases by 2080. As a ﬂOOdé’ flash .ﬂOOdS or urban ﬂ(?OdS’ nor
result, the relative change in GDP is always positive. The results are the average does it consider flood protection mea-
from the five SSPs. The colors are intended to make it easier to distinguish sures. Thus, for those areas where flood
individual countries. .

defenses are present, the model will
overestimate the affected GDP and population for return periods lower than the design flood protection
level of the existing flood defenses. This in turn leads to an overestimation of the annual average of affected
GDP and population. In general, uncertainties in absolute flood risk estimates are large [Apel et al., 2008;
Merz et al. 2008; DeMoel and Aerts, 2011], while estimates of relative changes in risk under different scenar-
ios or variability across space are more robust according to Bupeck et al. [2011]. A detailed description of the
limitations of the GLOFRIS model can be found in Ward et al. [2013] and Winsemius et al. [2013].

A number of additional caveats are associated with the results that we present. The model results assume
no migration of population or GDP. The impact of these assumptions could have a significant impact on
the future risk results and the relative changes in risk. Also, we have only considered the primary hazard
associated with each peril. Secondary hazards such as liquefaction and/or landslides due to ground motion
from an earthquake would increase the hazard and, most likely, risk.

The model results assume a passive response to hazards. People continue to build, live, and work in areas
exposed to a hazard and do not improve building practices. With proper planning and construction, risk
from hazards can be reduced. One of the best examples of how construction practices can alter the risk from
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a hazard is the reduction in urban conflagrations as a result of changes in building practice such as requiring
the installation of firewalls and sprinkler systems. Thus, although extreme events such as earthquakes and
floods will continue to happen, natural disasters can be minimized through reductions in exposure and
vulnerability, and future events such as those shown in Table 1 can be avoided.

5. Summary

A regional flood and earthquake risk assessment was undertaken for 33 countries in the ECA region.
The assessment examined current risk (2015) and scenarios for future risk in 2030 and 2080. Flood and
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Figure 14. Relative change between 2080 and 2015, (2080 — 2015y)/2015y, in
annual average population and GDP affected by flood as a function of relative
change in population (a) and GDP (b), where X represents population, GDP,
annual average affected population, or annual average affected GDP. The gray line
shows the 1:1 relationship between the relative change in population and annual
average flood-affected population (a) and between the relative change in GDP
and annual average flood-affected GDP (b). The vertical dashed lines denote zero
relative change in population (a) and GDP (b) and the horizontal dashed lines
denote zero relative change in annual average flood-affected population (a) and
GDP (b). As shown in Figure 1, the mean GDP for all SSPs increases by 2080. As a
result, the relative change in GDP is always positive (b). There is more variability in
floods than earthquake (Figure 13) as the spatial distribution of flooding changes
in response to climate variation. The model results are the average of the 15
results from all five climate models and the three combinations of SSPs and RCPs.
The colors are intended to make it easier to distinguish individual countries. See
the text for a discussion of the sectors defined by the dashed and solid lines and
labeled by the roman numerals in Figure 14a.

earthquake risk were quantified in
terms of affected population and
affected GDP. Population or GDP were
considered to be affected by flooding
if a grid cell was affected by a flood of
greater than 10 cm, and population or
GDP were considered to be affected by
an earthquake if a grid cell experienced
ground motion equivalent to MMI VI.
Earthquake risk was also quantified in
terms of fatalities and capital loss.

Within the ECA region there is a wide
range in average annual population
and GDP in 2015 affected by flood
and earthquake. As seen in Figure 6,
for some countries, e.g., Turkey, earth-
quake risk is much greater than flood
risk. For other countries, e.g., Russia,
the situation is reversed. Also, there are
other countries that have significant risk
from both flood and earthquake. The
impact of floods tends to reach a max-
imum at shorter return periods than
that for earthquakes, but this may be
due in part to not accounting for flood
defenses and because of the binary
approach used to account for affected
population and GDP.

For 2030 and 2080, national-level
changes in population and GDP were
distributed spatially as a function of
current population and GDP. Estimates
of future population and GDP affected
by earthquakes vary significantly with
population and GDP changes consis-
tent with the SSPs. There is a linear
relationship between the relative
change in population or GDP and the
relative change in earthquake risk. Esti-
mates of future population and GDP
affected by floods vary as a function of
population and GDP changes consis-

tent with two SSPs and with changes in climate consistent with two RCPs. There is not a linear relationship
between the relative change in population and GDP and relative change in flood risk because the flood

hazard changes in the future.
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Six regions can be specified in the two-dimensional space defined by future relative changes in population
or GDP and the relative changes in flood risk to population or GDP at a national level. Positive or negative
relative changes in population or GDP each have three regions. Climate change can alter relative flood risk
in a manner that either counters, tempers, or enhances the change in relative flood risk expected from a
change in exposure. A comparison of the amount of relative change in flood risk for a country could be used
to inform decisions regarding countries for further study of the benefits of flood hazard mitigation. However,
such decisions will require additional inputs such as information on flood defenses, the vulnerability of the
exposure of interest, and higher resolution information on the location of exposures.
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